

Does fresh organic matter addition to an industrial soil have an impact on soil structure and on PAHs distribution?

Audrey PERNOT^{1,2}

Stéphanie OUVRARD¹, Pierre LEGLIZE¹, Pierre FAURE²

¹Laboratoire Sols et Environnement ²Laboratoire Interdisciplinaire des Environnements Continentaux

Context

oEnd of industrial activities associated to coal exploitation

oHuge areas of **wasteland**

Homécourt coking plant 60's

Homécourt coking plant 90's

•Persistent organic pollutant contamination •PAHs (polycyclic aromatic hydrocarbons)

 Toxic and carcinogenic compounds occur in all environmental compartments

necessity of remediation treatment

Context

oAmong treatments: plant-assisted remediation

onumerous benefits

- •Increased biological activity
- •Soil aeration
- •Surfactant release
- •Biomass production

Context

oLow PAH availability limits the treatment efficiency

onet benefit over several years of culture (including plant death and litter incorporation) on PAH availability and degradation is not demonstrated

Objectives: assess the effects of natural C input
•on the soil structure
•consequences on the PAH distribution, repartition and availability

➡ lab and field scales

General approach

oCase study of a former coking plant soil

TOC (g kg ⁻¹)	EOM	Σ16PAHs	PAHs availability
	(g kg ⁻¹)	(mg kg ⁻¹)	(mg kg ⁻¹)
72	9.2	1025	17.8
	(13% of the TOC)	(11% of the EOM)	(1.7 % of 16PAH)

Combined agronomic, isotopic and organic
 geochemistry approaches and tools

- granulodensimetric fractionation (water stable soil aggregates)
- •¹³C and ¹⁴C measurements
- OM characterization at molecular scale

oTwo scales:

and

Lab scale: maize incubation

Incubation in the dark and at 20°C

o6 durations of incubation: **0**, **3**, **6**, **9**, **12**, **15 months** with 4 replicates (statistical test: ANOVA)

Field scale: lysimetric plots

•Experimental site: French Scientific Interest Group –
 Industrial Wastelands (www.gisfi.fr)

•**Lysimeter plots** filled with the same industrial soil with two modalities: **bare soil and planted soil** (*Medicago sativa*) with 4 replicates

oMonitoring during 6 years

•Fresh carbon incorporation was followed with the ¹⁴C activity

Biomass and soil structure

Fumigation-extraction: to estimate the microbial biomass

 ○Water granulodensimetric fractionation: soil structure without OM or carbonate removal (≠ texture)

Results Lab experiment

Microbial biomass evolution

oMore microorganisms in M10 modality

 \circ Priming effect at t₃ (optimal conditions of incubation and fresh OM impact for M10)

oM10 reach M0 after 15 months

OHeterogeneity between both modalities

•Disaggregation trend for M0 modality

oAggregation trend for M10 modality

Total carbon content evolution (in bulk)

oTC higher in M10 due to maize addition in bulk

o**TC in M0: stable** in bulk

 \circ TC decreases in M10 to reach M0 at t₆

Total carbon content evolution (in fractions)

•M0: stable whatever the fractions

○M10:

•Initial incorporation in the sands (coarse and fine)

•After 3 months, accumulation in fine silts

Maize carbon: ¹³C and mixing model (M10 modality)

Sands (coarse and fine): C from maize is rapidly
 degraded

Maize carbon: ¹³C and mixing model (M10 modality)

•Silts: Stabilization and accumulation of fresh carbon

oFine silts: higher amount of C deriving from the maize

•**Bulk:** Proportion of C coming from the maize **stable** with a trend to decrease

EOM and Total PAH (in bulk)

•EOM decrease showing **anthropogenic C degradation** (only significant in fine silts)

oNo difference between M0 and M10

010% of PAH degradation

•PAH availability: •stable in the bulk soil •similar behavior in fractions

Results Field experiment

Fresh carbon monitoring: ¹⁴C activity

	Percentage of modern carbon			
Fractions	Bare soil	Planted soil		
Bulk	5.66	12.14		

•Small amount of fresh carbon

oIncorporation of fresh OM when presence of plants

Fresh carbon monitoring: ¹⁴C activity

		Percentage of modern carbon		
	Fractions	Bare soil	Planted soil	
	Bulk	5.66	12.14	
	Coarse sands	6.87	13.11	
	Fine sands	12.74	13.82	
	Coarse silts	11.28	11.24	
	Fine silts	17.53	33.44	
Small amount of fresh carbon				

oIncorporation of fresh OM when presence of plants

•Slight accumulation in the coarse sands

•**Storage in the fine silts** even when the amount of fresh carbon is low

Compatible with the experiment at lab scale

EOM Evolution

oNo difference between planted or bare soil

Compatible with the experiment at lab scale

EOM Evolution

oNo difference between planted or bare soil

Compatible with the experiment at lab scale

Conclusion

oAggregation of the soil with fresh OM input

oStimulation of the microbial biomass

 Fresh OM rapidly degraded in the sands and stored in the silts

oNo difference between M0 and M10 in a pollution point if view (EOM content, PAH concentration and PAH availability)

oField experiment confirm these conclusions

Fresh OM is not a mobilizing agent for the pollution

Acknowledgments

Adeline BOUCHARD (Université de Lorraine/INRA - LSE)
 Romain GOUDON (Université de Lorraine/INRA - LSE)
 Jean-Claude BEGIN (Université de Lorraine/INRA - LSE)
 Stéphane COLIN (Université de Lorraine/INRA - LSE)
 Lucas CHARROIS (Université de Lorraine/INRA - LSE)

Olephine DERRIEN (INRA - BEF)
 OEmile BENIZRI (Université de Lorraine/INRA - LSE)
 OCatherine LORGEOUX (Université de Lorraine/CNRS - Géoressources)
 OFrançoise WATTEAU (Université de Lorraine/INRA - LSE)
 ONicolas ANGELI (INRA - BEF)

Thank you for your attention