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In this article, we investigate Gevrey and summability properties of formal power series solutions of certain classes of inhomogeneous linear integro-di¤erential equations with analytic coe¢ cients in a neighborhood of (0; 0) 2 C 2 . In particular, we give necessary and su¢ cient conditions under which these solutions are convergent or are k-summable, for a convenient positive rational number k, in a given direction.

Setting the problem

For several years, various works allowed to formulate many results on Gevrey properties, summability and multisummability of divergent solutions of some linear partial di¤erential equations or linear integro-di¤erential equations with constant coe¢ cients (see [START_REF] Balser | Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke[END_REF][START_REF] Balser | Multisummability of formal power series solutions of partial di¤erential equations with constant coe¢ cients[END_REF][START_REF] Balser | Summability of formal solutions of certain partial di¤erential equations[END_REF][START_REF] Balser | Gevrey order of formal power series solutions of inhomogeneous partial di¤erential equations with constant coe¢ cients[END_REF][START_REF] Lutz | On the borel summability of divergent solutions of the heat equation[END_REF][START_REF] Miyake | Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations[END_REF] etc.) or variable coe¢ cients (see [5,10-13, 17-19, 23, 24, 27-29, 32-34] etc.) in two variables or more.

In this paper, we are interested in inhomogeneous linear integro-di¤erential equations of the form (1.1) Du = e f (t; x) ; D := 1 P (@ 1 t ; @ x ) where P (T; X) = X i2K pi X q=0 a (i;q) (t; x)T i X q 2 O(D 1 D 2 )[T; X] is a nonzero polynomial in two variables T and X satisfying the following conditions (C 1 ) K is a nonempty …nite subset of N (= the set of positive integers), (C 2 ) p i 0 is a nonnegative integer for all i 2 K, (C 3 ) the coe¢ cients a (i;q) (t; x) are holomorphic in the two variables t and x in a polydisc D 1 D 2 centered at the origin (0; 0) 2 C 2 (D j denotes the disc with center 0 and radius j > 0) for all i 2 K and q 2 f0; :::; p i g, (C 4 ) a (i;pi) (0; x) 6 0 for all i 2 K.

and where e f (t; x) 2 O(D 2 )[[t]] 1 may be smooth or not. Notation @ 1 t u stands for the anti-derivation Z t 0 u(s; x)ds of u with respect to t which vanishes at t = 0. ]; @ t ; @ x ) is a C-di¤erential algebra stable under anti-derivation @ 1 t (and anti-derivation @ 1

x too) and the coe¢ cients a (i;q) (t;

x) belong to O(D 1 D 2 ) O(D 2 )[[t]
] for all i and q. On the other hand, given

e f (t; x) 2 O(D 2 )[[t]], a series e u(t; x) = X j 0 u j; (x) t j j! is a solution of Du = e f (t; x)
if and only if its coe¢ cients u j; (x) satisfy, for all j 0, the identities m; (x)@ q x u j m i; (x)

with the classical convention that the third sum is 0 if j < i. Thereby, equation Du = e f (t; x) admits a unique solution e u(t; x) 2 O(D 2 )[[t]], which proves the bijectivity of D and ends the proof. Note that e u(t; x) is divergent in general.

Remark 1.4 Let 2 N and K a nonempty subset of f1; :::; g. Let the Cauchy problem

(1.3) 8 > < > : @ t X i2K pi X q=0
a (i;q) (t; x)@ i t @ q x ! U = e q(t; x) @ j t U (t; x) jt=0 = ' j (x) ; j = 0; :::; 1 1 We denote e f with a tilde to emphasize the possible divergence of the series e f .

with inhomogeneity e q(t; x) 2 O(D 2 )[[t]] and initial conditions ' j (x) 2 O(D 2 ) for all j. Then, the change of unknown function U to u by

U (t; x) = 1 X j=0 ' j (x)
t j j! + @ t u(t; x)

allows to reduce problem (1.3) to equation (1.1) with e f (t; x) = e q(t; x)

X i2K pi X q=0 1 X j= i
a (i;q) (t; x)@ q x ' j (x)

t j +i (j + i)! :
More precisely, it is easy to check that the unique solvability in O(D 

: + ' 1 (x)t 1 =( 1)
! is analytic at the origin (0; 0) 2 C 2 . Thereby, it is equivalent to work with the Cauchy problem (1.3) or with the integro-di¤erential equation (1.1). For both calculations and notational conveniences, it is this latter point of view we have chosen to adopt here.

In this article, we propose to study some Gevrey and summability properties related to the unique formal solution e u(t; x) of equation (1.1). Denoting I K := fi 2 K ; p i > ig, we …rst show in section 3 that e u(t; x) and the inhomogeneity e f (t; x) are together convergent when I K = ; and 1=k-Gevrey, with k the smallest positive slope of the Newton polygon at t = 0 of D, otherwise. Then, in this latter case, and under two additionnal conditions on D, we investigate the summability of e u(t; x). In particular, we prove in section 4, through a …xed point method, a necessary and su¢ cient condition under which e u(t; x) is k-summable in a given direction arg(t) = .

Gevrey order and summability of formal series

In this section, we recall, for the convenience of the reader, some de…nitions and basic properties about the Gevrey order and the summability of formal power series in O(D 2 )[[t]], which are needed in the sequel.

All along the article, we consider t as the variable and x as a parameter. Doing that, any formal power series e

u(t; x) 2 O(D 2 )[[t]
] can be seen as a formal power series in t with coe¢ cients in the Banach space O(D 2 ). Thereby, to de…ne the notions of Gevrey classes and summability of such formal series, one extends the classical notions of Gevrey classes and summability of elements in C[[t]] to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. For a general treatment of this theory, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤ erential equations[END_REF].

s-Gevrey formal series

The classical notion of s-Gevrey formal series is extended to x-families as follows.

De…nition 2.1 Let s 0. A series e u(t; x) = X j 0 u j; (x) t j j! 2 O(D 2 )[[t]
] is said to be Gevrey of order s (in short, s-Gevrey) if there exist 0 < r 2 2 , C > 0 and K > 0 such that inequalities ju j; (x)j CK j (1 + (s + 1)j) hold for all j 0 and x 2 D r2 .

In other words, de…nition 2.1 means that e u(t; x) is s-Gevrey in t, uniformly in x on a neighborhood of x = 0.

We denote by O(D 

Cft; xg = O(D 2 )[[t]] 0 O(D 2 )[[t]] s O(D 2 )[[t]] s 0 O(D 2 )[[t]]
for all s and s 0 satisfying 0 < s < s 0 < +1.

Following proposition 2. 

k-summability

Among the many equivalent de…nitions of k-summability in a given direction arg(t) = at t = 0, we choose in this article a generalization of Ramis'de…nition which states that a formal series e g(t; x) 2 C[[t]] is k-summable in direction if there exists a holomorphic function g which is 1=k-Gevrey asymptotic to e

g in an open sector ;> =k bisected by and with opening larger than =k [START_REF] Ramis | Les séries k-sommables et leurs applications[END_REF]Def. 3.1]. To express the 1=k-Gevrey asymptotic, there also exist various equivalent ways. We choose here the one which sets conditions on the successive derivatives of g (see [20, p. 171] where, according to relations between the Gamma and Beta functions,

a `;j = (2 + (s + 1)`) Z 1 0 t (s+1)j (1 t) (s+1)(` j) dt (2 + (s + 1)`):
Thereby,

@ t w(t; x) C 2 K ` (2 + (s + 1)`) X j=0 j = C 2 (2K) `(1 + (s + 1)`) (1 + (s + 1)`) C 2 (2K) `e1+(s+1)` (1 + (s + 1)`)
and, consequently,

@ t w(t; x) C 0 K 0` (1 + (s + 1)`)
with C 0 = eC 2 et K 0 = 2Ke s+1 . This proves condition 3 of de…nition 2.3; hence the stability of O(D 2 )ftg k; under multiplication.

/ The stability of O(D 2 )ftg k; under derivation @ t and under anti-derivations @ 1 t and @ 1 x is straightforward and is left to the reader.

/ Derivation @ x . Let e u(t; x) 2 O(D 2 )ftg k; and e w(t; x) = @ x e u(t; x). Let u(t; x) be the k-sum of e u(t; x). Then, w(t; x) = @ x u(t; x) satis…es conditions 1 and 2 of de…nition 2.3. Let us now …x a proper subsector b ;> s and choose a sector 0 such that b 0 b ;> s . By assumption, there exist C; K > 0 such that @ t u(t; x) CK ` (1 + (s + 1)`) for all ` 0, t 2 0 and x 2 D r2 . Let be so small that, for all t 2 , the closed disc with center t and radius jtj be contained in 0 . Then, denoting u `(t; x) = @ t u(t; x) and choosing 0 < r 0 2 < r 2 , Cauchy integral formula yields relation

@ t w(t; x) = @ x u `(t; x) = 1 (2i ) 2 Z jt 0 tj=jtj jx 0 xj=r2 r 0 2 u `(t 0 ; x 0 ) (t 0 t)(x 0 x) 2 dt 0 dx 0 ; hence, the inequality @ t w(t; x) 1 r 2 r 0 2 sup (t 0 ;x 0 )2 0 Dr 2 ju `(t 0 ; x 0 )j C 0 K ` (1 + (s + 1)`) with C 0 = C r 2 r 0 2
for all ` 0, t 2 and x 2 D r 0 2 . This proves condition 3 of de…nition 2.3 and, consequently, the stability of O(D 2 )ftg k; under derivation @ x .

With respect to t, the k-sum u(t; x) of a k-summable series e u(t; x) 2 O(D 2 )ftg k; is analytic on an open sector for which there is no control on the angular opening except that it must be larger than =k (hence, it contains a closed sector ; =k bisected by and with opening =k) and no control on the radius except that it must be positive. Thereby, the k-sum u(t; x) is well-de…ned as a section of the sheaf of analytic functions in (t; x) on a germ of closed sector of opening =k (i.e., a closed interval I ; =k of length =k on the circle S 1 of directions issuing from 0; see [21, 1.1] or [14, I.2]) times f0g (in the plane C of the variable x). We denote by O I ; =k f0g the space of such sections.

Corollary 2.5 The operator of k-summation

S k; : O(D 2 )ftg k; ! O I ; =k f0g e u(t; x) 7 ! u(t; x)
is a homomorphism of di¤ erential C-algebras for the derivations @ t and @ x . Moreover, it commutes with the anti-derivations @ 1 t and @ 1 x . Let us now turn to the study of the unique formal series solution e

u(t; x) 2 O(D 2 )[[t]] of equation (1.1).

Gevrey properties of e u(t; x)

The aim of this section is to investigate Gevrey properties of e u(t; x). In particular, we propose to give necessary and su¢ cient conditions under which e u(t; x) is s-Gevrey for some s 0. Before starting the calculations, let us de…ne the Newton polygon of D at t = 0.

Newton polygon

As de…nition of the Newton polygon, we choose the de…nition of M. Miyake [START_REF] Miyake | Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations[END_REF] (see also A. Yonemura [START_REF] Yonemura | Newton polygons and formal Gevrey classes[END_REF] or S. Ouchi [START_REF] Ouchi | Multisummability of formal solutions of some linear partial differential equations[END_REF]) which is an analogue to the one given by J.-P. Ramis [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations di¤érentielles ordinaires[END_REF] for linear ordinary di¤erential equations. Recall that, H. Tahara and H. Yamazawa use in [START_REF] Tahara | Multisummability of formal solutions to the cauchy problem for some linear partial di¤erential equations[END_REF] a slightly di¤erent one. For any (a; b) 2 R 2 , we denote by C(a; b) the domain

C(a; b) = f(x; y) 2 R 2 ;
x a and y bg:

For any formal series a(t; x) 2 O(D 2 )[[t]],
we also denote by val t (a) the valuation of a(t; x) with respect to t, i.e., the order of the zero of a(t; x) at t = 0. De…nition 3.1 The Newton polygon N t (D) of D at t = 0 is de…ned as the convex hull of the union of sets C(0; 0) and C q i; val t a (i;q) + i for i 2 K and q 2 f0; :::; p i g:

N t (D) = CH 2 6 6 4 C(0; 0) [ [ i2K q2f0;:::;pig C q i; val t a (i;q) + i 3 7 7 5
where CH[ ] denotes the convex hull of the elements in [ ].

Following lemma 3.2 gives us some properties of N t (D). Lemma 3.2 Let I K := fi 2 K; p i > ig.

1. Assume I K = ;. Then, N t (D) = C(0; 0). In particular, N t (D) has no side with a positive slope.

2. Assume I K 6 = ;. Then, N t (D) has (at least) one side with a positive slope. Moreover, its smallest positive slope k is given by

k = min i p i i ; i 2 I K
and the side of slope k has for length p i0 i 0 , where

i 0 = max i 2 K; i p i i = k :
Proof. Point 1 stems obvious from the fact that condition I K = ; implies C q i; val t a (i;q) + i C(0; 0) for all i and q. As for point 2, it su¢ ces to remark, on one hand, that condition (C 4 ) implies C q i; val t a (i;q) + i C(p i i; i) for all i; q and, on the other hand, that the segment with two end points (0; 0) and (p i i; i) has a slope equal to i=(p i i) which is positive if and only if i 2 I K .

In the sequel, we set k := i 0 p i0 i 0 when I K 6 = ;. Note that the following inequalities (3.1)

p i0 i 0 p i i
hold for all i 2 K.

Let us now turn to the Gevrey properties of e u(t; x).

Gevrey order

Let us begin by observing that proposition 2.2 implies the following.

Lemma 3.3 D(O(D 2 )[[t]] s ) O(D 2 )[[t]
] s for all s 0.

Main theorem 3.4 below precises this statement by showing more especially that D is actually a linear automorphism of O(D 2 )[[t]] s for some s 0. Theorem 3.4 Let I K := fi 2 K; p i > ig and s the rational number de…ned by

s := 0 if I K = ; 1=k = p i0 =i 0 1 if I K 6 = ; : Then, D is a linear automorphism of O(D 2 )[[t]] s .
In particular, theorem 3.4 gives us Gevrey properties of e u(t; x) in view in this section. More precisely, it provides, in the case I K = ;, necessary and su¢ cient condition under which e u(t; x) is convergent and, in the opposite case I K 6 = ;, necessary and su¢ cient condition under which e u(t; x) is s-Gevrey with s = p i0 =i 0 1. Corollary 3.5 Let I K := fi 2 K; p i > ig. Note that point 1 can be actually extended to any integro-di¤erential equation of the form (1.1), where condition (C 4 ) fails, but is replaced by the very general condition a (i;pi) 6 0 for all i 2 K. We shall come back later to this (see remark 3.10). For the moment, let us prove the main theorem 3.4.

Proof of theorem 3.4

According to theorem 1.2 and lemma 3.3, D is an injective linear operator acting inside O(D 2 )[[t]] s . To prove the surjectivity of D, we shall use below an approach based on Nagumo norms [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed di¤erential equations[END_REF][START_REF] Nagumo | Über das Anfangswertproblem partieller Di¤erentialgleichungen[END_REF] and majorant series; approach which is similar to the ones developed by W. Balser and M. Loday-Richaud in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] and by the author in [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial di¤erential equations with variable coe¢ cients[END_REF] for some classes of linear partial di¤erential equations. De…nition 3.6 (Nagumo norms) Let f 2 O(D ), q 0 and 0 < r . Let d r (x) = r jxj denote the Euclidian distance of x 2 D r to the boundary of the disc D r . Then, the Nagumo norm kf k q;r of f is de…ned by kf k q;r := sup x2Dr jf (x)d r (x) q j : Proposition 3.7 (Properties of Nagumo norms) Let f; g 2 O(D ). Let q; q 0 0 and 0 < r . One has the following properties:

1. k k q;r is a norm on O(D ).

2. For all x 2 D r , jf (x)j kf k q;r d r (x) q .

3. kf k 0;r = sup x2Dr jf (x)j is the usual sup-norm on D r .

4. kf gk q+q 0 ;r kf k q;r kgk q 0 ;r .

5. k@ x f k q+1;r e(q + 1) kf k q;r .

Note that the same index r occurs on both sides of inequalities 4 and 5. In particular, we get estimates for the product f g in terms of f and g and for the derivative @ x f in terms of f without having to shrink the disc D r .

Let us now turn to the proof of the surjectivity of D. Let us …x e f (t; x) = X j 0

f j; (x) t j j! 2 O(D 2 )[[t]] s and let us write e u(t; x) 2 O(D 2 )[[t]] in the same form e u(t; x) = X j 0 u j; (x) t j j!
. By assumption, the coe¢ cients f j; (x) satisfy conditions

f j; (x) 2 O(D 2
) for all j 0, there exist 0 < r 2 2 , C > 0 and K > 0 such that jf j; (x)j CK j (1 + (s + 1)j) for all j 0 and x 2 D r2 .

We shall now prove that the coe¢ cients u j; (x) satisfy similar conditions. Calculations below are analogous to those detailed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial di¤erential equations with variable coe¢ cients[END_REF], but are much more complicated because of the many terms @ i t @ q x .

/ From now on, we denote by the maximum of the i 2 K (hence, 1 i for all i 2 K). We also denote by p the positive integer de…ned by

p := if I K = ; p i0 if I K 6 = ; :
From identities (1.2), it results relations

u j; (x) (1 + (s + 1)j) = f j; (x) (1 + (s + 1)j) + X i2K pi X q=0 j i X m=0 j m a (i;q) m; (x) @ q x u j m i; (x) (1 + (s + 1)j)
for all j 0 (as before, we use the classical convention that the third sum is 0 if j < i). Applying then the Nagumo norm of indices (pj; r 2 ), we deduce from property 4 of proposition 3.7 that ku j; (x)k pj;r2

(1 + (s + 1)j) kf j; (x)k pj;r2

(1 + (s + 1)j) + X i2K pi X q=0 j i X m=0 j m a (i;q) m; (x)
p(m+i) q;r2 k@ q x u j m i; (x)k p(j m i)+q;r2

(1 + (s + 1)j)

and from property 5 of proposition 3.7 that

ku j; (x)k pj;r2
(1 + (s + 1)j) kf j; (x)k pj;r2

(1 + (s + 1)j) + X i2K pi X q=0 j i X m=0 e q A i;q;m a (i;q) m; (x) p(m+i) q;r2 m! ku j m i; (x)k p(j m i);r2
where

A i;q;m := m 1 Y `=0 (j `)! q 1 Y `0=0
(p(j m i) + q `0)

!

(1 + (s + 1)j) with the convention that the …rst product is 1 when m = 0 and the second product is 1 when q = 0. Note that the norms a

(i;q) m; (x) p(m+i) q;r2
are well-de…ned for all i, q and m. Indeed, in the case I K = ;, conditions i 1 and i p i imply p(m + i) q pi q = i q i p i i( 1) 0 and, in the opposite case I K 6 = ;, relations (3.1) and condition i 0 1 imply p(m + i) q pi q = p i0 i q p i i 0 q p i i 0 p i = p i (i 0 1) 0:

Following technical lemmas allow to bound the A i;q;m 's.

Lemma 3.8 Let i 2 K and j i. Then, for all m 2 f0; :::; j ig,

m 1 Y `=0
(j `)

(1 + (s + 1)j) 1 (1 + (s + 1)(j m)) :
Proof. Lemma 3.8 is clear for m = 0. For m 1, we deduce from identity

(1 + (s + 1)j) = (1 + (s + 1)j m) m 1 Y `=0 ((s + 1)j `)
the following

m 1 Y `=0
(j `)

(1 + (s + 1)j) = m 1 Y `=0 j (s + 1)j ` (1 + (s + 1)j m) 1 (1 + (s + 1)j m) :
Lemma 3.8 follows then from inequalities

1 + (s + 1)j m 1 + (s + 1)(j m) 1 + (s + 1)i 2 (indeed, i 2 K ) i 1)
and from the increase of the Gamma function on [2; +1[. Lemma 3.9 Let i 2 K, q 2 f0; :::; p i g and j i. Then, for all m 2 f0; :::; j ig,

q 1 Y `0=0 (p(j m i) + q `0) (1 + (s + 1)(j m)) q (1 + (s + 1)(j m i)) :
Proof. Let us …rst assume I K = ; (hence, p = and s = 0). Since q p i i , identities

q 1 Y `0=0 (p(j m i) + q `0) = q q 1 Y `0=0 j m i + q `0
and

(1 + (s + 1)(j m)) = (1 + j m) = (1 + j m i) i 1 Y `0=0
(j m `0)

imply relation

q 1 Y `0=0
(p(j m i) + q `0)

(1 + (s + 1)(j m)) q (1 + j m i) q 1 Y `0=0 j m i + q `0 j m `0 i 1 Y `0=q
(j m `0)

with, when the products make sense,

j m i + q `0 j m `0 1 and j m `0 1:

Note that the …rst inequality of (3.2) stems from inequalities

i + q `0 + `0 i + q + i 1 q 1 0
(indeed, we have 0 `0 q 1 i 1 and q ). As for the second inequality of (3.2), it is straightforward from inequalities `0 i 1 and m j i. Hence, the following

q 1 Y `0=0 (p(j m i) + q `0) (1 + (s + 1)(j m)) q (1 + j m i) = q (1 + (s + 1)(j m i)) ;
which proves lemma 3.9 for I K = ;.

Let us now assume I K 6 = ; (hence, p = p i0 and s = p i0 =i 0 1). When m < j i, we proceed in a similar way as the case I K = ;. Let us …rst observe that condition i 0 implies p= s + 1 and, thereby,

q 1 Y `0=0 (p(j m i) + q `0) q q 1 Y `0=0
(s + 1)(j m i) + q `0 :

Writing then (1 + (s + 1)(j m)) in the form

(1 + (s + 1)(j m)) = (1 + (s + 1)(j m) q) q 1 Y `0=0
((s + 1)(j m) `0)

(note that (1+(s+1)(j m) q) is well-de…ned since conditions (m < j i ; q p i ) and relations (3.1) imply 1 + (s + 1)(j m) q > 1 + (s + 1)i p i 1), we get

q 1 Y `0=0
(p(j m i) + q `0)

(1 + (s + 1)(j m)) q q 1 Y `0=0
(s + 1)(j m i) + q `0 (s + 1)(j m) `0

(1 + (s + 1)(j m) q)
where the product on the right-hand side is 1. Indeed, inequalities (3.1) implying (s + 1)i p i , it stems from conditions q p i and 1 that relations (s + 1)i + q `0 + `0 (p i `0) 1 1 0 hold for all `0. Lemma 3.9 follows then from inequalities

1+(s+1)(j m) q 1+(s+1)(j m) p i 1+(s+1)(j m i) 1+(s+1) 2
and from the increase of the Gamma function on [2; +1[. Note that the second inequality stems again from relations (3.1) and that the third inequality stems from condition m < j i.

In particular, this latter inequality shows that calculations above do not allow to prove lemma 3.9 when m = j i, since it fails in this case. To get around this problem, we shall proceed as follows. Let us …rst recall we must prove the following

(3.3) q 1 Y `0=0 (q `0) (1 + (s + 1)i) q (1) = q :
For all q 2 f0; :::; p i g, we have

q 1 Y `0=0 (q `0) = (1 + q) (1 + p i ):
On the other hand, if p i = 0, inequality 1 + (s + 1)i 2 implies (1 + (s + 1)i) (2) = 1 = (1 + p i ) and, if p i 1, inequalities 1 + (s + 1)i 1 + p i 2 (use again relations (3.1)) imply (1 + (s + 1)i)

(1 + p i ) too. Consequently,

q 1 Y `0=0
(q `0)

(1 + (s + 1)i) (1 + p i ) (1 + p i ) = 1 q (since 1).
Hence, inequality (3.3). This achieves the proof. Applying then lemmas 3.8 and 3.9, we get

A i;q;m q (1 + (s + 1)(j m i))
and, thereby, the following inequalities

ku j; (x)k pj;r2
(1 + (s + 1)j)

g j + X i2K j i X m=0 i;m ku j m i; (x)k p(j m i);r2 (1 + (s + 1)(j m i))
hold for all j 0 with g j := kf j; (x)k pj;r2

(1 + (s + 1)j)

and i;m := pi X q=0 (e ) q a (i;q) 
m; (x) p(m+i) q;r2 m! :

/ Let us now bound the Nagumo norms ku j; (x)k pj;r2 . To do that, we shall use a technique of majorant series. Let us consider the nonnegative numerical sequence (v j ) de…ned for all j 0 by the recurrence relations

v j = g j + X i2K j i X m=0 i;m v j m i
where, as above, the sum is 0 when j < i. By construction, we have 0 ku j; (x)k pj;r2

(1 + (s + 1)j) v j for all j 0.

Furthermore, the v j 's can be bounded as follows. By assumption on the f j; (x) (see the beginning of section 3.3), we have

0 g j CK j (1 + (s + 1)j) (1 + (s + 1)j) r pj 2 = C(Kr p 2 ) j
for all j 0 and the series g(X) := X j 0 g j X j is convergent. On the other hand, all the coe¢ cients a (i;q) (t; x) belong to O(D 2 )ftg. Then, there exist two positive constants C 0 ; K 0 > 0 such that a

(i;q) m; (x) C 0 K 0m m! for all i 2 K, q 2 
f0; :::; p i g, m 0 and x 2 D r2 . Hence,

0 i;m pi X q=0 (e ) q C 0 K 0m m! m! r p(m+i) q 2 = C 0 1 (K 0 r p 2 ) m with C 0 1 = C 0 r pi 2 pi X q=0 e r 2 q
> 0 and, consequently, the series A i (X) := X j 0 i;j X j are convergent for all i 2 K too. In particular, these calculations show us that the series v(X) := X j 0 v j X j is also convergent. Indeed, due to the recurrence relation on the v j 's, the series v(X) satis…es the identity

1 X i2K X i A i (X) ! v(X) = g(X):
Therefore, there exist C 00 ; K 00 > 0 such that v j C 00 K 00j for all j 0. Hence, the following inequalities ku j; (x)k pj;r2 C 00 K 00j (1 + (s + 1)j) for all j 0 and we are left to prove similar estimates on the sup-norm of the u j; (x)'s. To this end, we proceed by shrinking the domain D r2 . Let 0 < r 0 2 < r 2 . Then, for all j 0 and x 2 D r 0 2 , we have

ju j; (x)j = u j; (x)d r2 (x) pj 1 d r2 (x) pj 1 (r 2 r 0 2 ) pj u j; (x)d r2 (x) pj
and, consequently,

sup x2D r 0 2 ju j; (x)j ku j; (x)k pj;r2 (r 2 r 0 2 ) pj C 00 K 00 (r 2 r 0 2 ) p j (1 + (s + 1)j):
This achieves the proof of the main theorem 3.4.

Remark 3.10 When I K = ;, calculations above show that just the condition p i i is required. In particular, condition (C 4 ) on the a (i;pi) (0; x)'s may fail and, as we previously said, point 1 of corollary 3.5 is actually valid for any integro-di¤erential equation.

Summability of e u(t; x)

In previous section 3, we have shown that the formal solution e u(t; x) and the inhomogeneity e f (t; x) of equation (1.1) are together s-Gevrey for a convenient s 0 (see theorem 3.4). In particular, this has allowed us to display in the case I K = ; a necessary and su¢ cient condition under which e u(t; x) is convergent (see corollary 3.5).

In the present section, we consider the opposite case I K 6 = ;. Moreover, we assume from now on that equation (1.1) satis…es besides the following additional two conditions (C 5 ) i 0 = the maximum of the i 2 K, (C 6 ) a ( ;p ) (0; 0) 6 = 0.

Note that condition (C 5 ) implies, on one hand, that the slope k = i 0 p i0 i 0 = p is actually the unique positive slope of the Newton polygon N t (D) of operator D (see section 3.1) and, on the other hand, that inequalities (3.1) become (4.1) p p i i for all i 2 K.

Under these conditions, we propose here below to prove a necessary and su¢cient condition under which e u(t; x) is k-summable in a given direction arg(t) = .

Remark 4.1 When condition (C 5 ) fails, the Newton polygon N t (D) of D may have several positive slopes. Then, as in the theory of linear ordinary di¤erential equations (see for instance [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤ erential equations[END_REF][START_REF] Balser | Multisummability of formal power series solutions of linear ordinary di¤erential equations[END_REF][START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic di¤erential equations[END_REF][START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF][START_REF] Malgrange | Fonctions multisommables[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF] etc.), the notion of k-summability ceases generally to be su¢ cient and must be replaced by the notion of multisummability. This will be investigated in further articles.

Main result

Before stating the main result of this section, let us start by a preliminary remark on e u(t; x). Writing the coe¢ cients a (i;q) (t; x) of D on the form a (i;q) (t; x) = X n 0 a (i;q)

;n (t)

x n n! with a (i;q)

;n (t) 2 O(D 1 ), an identi…cation of the powers in x in equation (0) 6 = 0, the quotient 1=a

D 0 @ X n 0 e u ;n (t) x n n! 1 A = X n 0 e f ;
( ;p ) ;0 (t) is well- de…ned in C[[t]].
More precisely, we have the following main result. 2. Moreover, the k-sum u(t; x) in direction , if any exists, satis…es equation (1.1) in which e f (t; x) is replaced by its k-sum f (t; x) in direction .

Note that the necessary condition of point 1 is straigthforward from proposition 2.4 (indeed, e u ;n (t) = @ n x e u(t; x) jx=0 and e f = De u) and that point 2 stems obvious from corollary 2.5. Thereby, we are left to prove the su¢ cient condition of point 1. To that, we shall proceed through a …xed point method similar to the ones already used by W. Balser and M. Loday-Richaud in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] and by the author in [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial di¤erential equations with variable coe¢ cients[END_REF].

Proof of theorem 4.2

As we said just above, it remains to prove the su¢ cient condition of point 1.

Let us write e u(t; x) on the form

e u(t; x) = p 1 X n=0 e u ;n (t) x n n! + @ p x e v(t; x) with e v(t; x) 2 O(D 2 )[[t]
] and let us set e w := @ t e v. Then, since condition (C 6 ) implies that 1=a ( ;p ) (t; x) is well-de…ned and holomorphic in a neighborhood of (0; 0) 2 C 2 and since @ i t @ t = @ i t for all i 2 K (indeed, we have i by de…nition of ), equation (1.1) becomes

(4.3) e w = e g(t; x) with = 1 b ( ;p ) (t; x)@ p x @ t + X i2K X q2Qi b (i;q) (t; x)@ q p x @ i t , e g = 1 a ( ;p ) 0 @ p 1 X n=0 e u ;n (t) x n n! X i2K X q2Qi p 1 q X n=0 a (i;q) e u ;n+q (t) x n n! e f 1 A :
The Q i 's are the sets already introduced in (4.2) and the b (i;q) 's are the holomorphic functions de…ned by

b (i;q) = 8 > < > : 1 a ( ;p ) if (i; q) = ( ; p ) a (i;q) a ( ;p ) if (i; q) 6 = ( ; p ) : We denote below by D 0 1 D 0 
2 , with 0 1 ; 0 2 > 0, the common domain of (0; 0) 2 C 2 where all the b (i;q) 's are holomorphic.

Let us now assume e f (t; x) and the e u ;n (t)'s k-summable in a given direction . Then, e g(t; x) is k-summable in direction (see proposition 2.4) and calculations above tell us it su¢ ces to prove that it is the same for e w(t; x). To this end, we shall proceed similarly as [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial di¤erential equations with variable coe¢ cients[END_REF] through a …xed point method.

Let us set e w(t; x) = X m 0 e w m (t; x) and let us consider the solution of equation 

( ;p ) (t; x)@ p x @ t e w m X i2K X q2Qi b (i;q) (t; x)@ q p x @ i t e w m :
Note that, for all m 0, the formal series e w m (t; x) are of order O(x m ) in x and, consequently, the series e w(t; x) itself makes sense as a formal series in t and x. Let us now denote by w 0 (t; x) the k-sum of e w 0 = e g in direction and, for all m 0, let w m (t; x) be determined as the solution of system (4.4) in which all the e w m are replaced by w m . By construction, all the w m (t; x) are de…ned and holomorphic on a common domain

;> s D 00
2 , where the radius 00 1 of ;> s and the radius 00 2 of D 00 2 can always be chosen so that 0 < 00 1 < 0 1 and 0 < 00 2 < min( 2 ; 0 2 ). To end the proof, it remains to prove that the series X m 0 w m (t; x) is convergent and that its sum w(t; x) is the k-sum of e w(t; x) in direction .

According to de…nition 2.3, the k-summability of e w 0 implies that there exists 0 < r 2 < 00 2 such that, for any proper subsector b ;> s , there exist constants C > 0 and K 1 such that, for all ` 0 and all (t; x) 2 D r2 , the function w 0 satis…es the inequalities (4.5) @ t w 0 (t; x) CK ` (1 + (s + 1)`):

Let us now …x a proper subsector b ;> s and let us denote by r 1 its radius. Note that inequalities (4.5) still hold with the same constants C and K for any 0 < r 0 2 < r 2 . In particular, we can always assume in the sequel that r 2 < 1.

Proposition 4.3 below provides us some estimates on the derivatives @ t w m of w m . Before stating it, let us …rst begin by given some estimates on the holomorphic functions @ t b (i;q) . Let B := max

(i;q) max (t;x)2D 00 1 D 00 2 b (i;q) (t; x) ! ;
where D denotes the closed disc with center 0 and radius > 0. Note that B is well-de…ned since all the b (i;q) are holomorphic on D 0 1 D 0 2 and 0 < 00 j < 0 j for j = 1; 2. Then, the Cauchy integral formula

@ t b (i;q) (t; x) = `! (2i ) 2 Z jt 0 tj= 00 1 r1 jx 0 xj= 00 2 r2 b (i;q) (t 0 ; x 0 ) (t 0 t) `+1 (x 0 x) dt 0 dx 0 implies inequalities @ t b (i;q) (t; x) `!B 1 00 1 r 1 `
for all ` 0 and (t; x) 2 D r2 . In particular, these estimates only depend on the radius r 1 of and not on r 2 . Thereby, the constant K being chosen 1=( 00 1 r 1 ), we get (4.6) @ t b (i;q) (t; x) `!BK for all (i; q); ` 0 and (t; P 0 (x) = 1;

P m+1 (x) = 0 @ @ p x + X i2K 0 X q2Q 0 i (mp )! (mp + p i )! @ q x 1 A P m (x) for m 0;
with K 0 := fi 2 K ; p i 1g and Q 0 i := fmax(p p i ; 1); :::; p 1g. Then, the following inequalities

(4.7) @ t w m (t; x) CB 0m K m+` (1 + (s + 1)( m + `))P m (jxj)
hold for all m; ` 0 and all (t; x) 2 D r2 .

Note that the set K 0 is never empty since p > 1 implies 2 K 0 . The following proof of proposition 4.3 proceeds by recursion on m 0. Proof. The case m = 0 is straightaway from inequalities (4.5). Let us now suppose that inequalities (4.7) hold for a certain m 0. Then, according to relations (4.4), we deduce from Leibniz formula and from inequalities (4.6) and K 1 that, for all ` 0 and (t; x) 2 D r2 , @ t w m+1 (t; x) CBB 0m K (m+1)+`X i2K[f0g 0 @ S `;i X q2Qi (@ q p x P m )(jxj)

1 A ;
where we set Q 0 := f0g and where S `;i is the sum de…ned by

S `;i := X j=0 `! j! (1 + (s + 1)( m + + j i)):
This latter can be bounded as follows by applying successively technical lemmas 4.4, 4.5 and 4.6 below.

S `;i X j=0

(1 + (s + 1)( m + + j i) + ` j)

= (1 + (s + 1)( m + + ` i)) X j=0 (1 + (s + 1)( m + + j i) + ` j) (1 + (s + 1)( m + + ` i)) ( + 1) (1 + (s + 1)( m + + ` i)) ( + 1) (mp )! (mp + p i )! (1 + (s + 1)( (m + 1) + `))
with the convention that p 0 = 0. This leads then us to the following @ t w m+1 (t; x) ( + 1)CBB 0m K (m+1)+` (1 + (s + 1)( (m + 1) + `))

X i2K[f0g X q2Qi (mp )! (mp + p i )! (@ q p x P m )(jxj)
and inequalities (4.7) follow by observing that the double-sum of the right-hand side satis…es

X i2K[f0g X q2Qi (mp )! (mp + p i )! (@ q p x P m )(jxj) ( + 1)(@ p x P m )(jxj) + X i2K 0 X q2Q 0 i (mp )! (mp + p i )! (@ q x P m )(jxj); hence, X i2K[f0g X q2Qi
(mp )! (mp + p i )! (@ q p x P m )(jxj) ( + 1)P m+1 (jxj):

Indeed, (mp )!=(mp + p i )! 1 for all i, K f1; :::; g and the coe¢ cients of polynomial P m are positive. This ends the proof of proposition 4.3.

Lemma 4.4 Let i 2 K [ f0g.
Then, for all ` 0, j 2 f0; :::; `g and m 0, `! j! (1 + (s + 1)( m + + j i))

(1 + (s + 1)( m + + j i) + ` j):

Proof. Lemma 4.4 is clear for j = `. Let us now assume j < `and let us write `!=j! on the form

`! j! = Ỳ n=j+1 n = Ỳ n=j+1 (j + n j):
Then,

`! j! Ỳ n=j+1 ((s + 1)( m + + j i) + n j) = ` j Y n=1 ((s + 1)( m + + j i) + n)
and relation

(1 + (s + 1)( m + + j i) + ` j) = (1 + (s + 1)( m + + j i)) ` j Y n=1 ((s + 1)( m + + j i) + n) completes the proof.
Thereby, the …rst sum of the right-hand side of (4.9) gives us ` X j=0 (:::) (` + 1)

(1 + (s + 1)( m + + ` i) s ) (1 + (s + 1)( m + + ` i)) = ` + 1 (s + 1)( m + + ` i) (1 + (s + 1)( m + + ` i) s ) (1 + (s + 1)( m + + ` i) 1) ` + 1 (s + 1)( m + + ` i) :
Indeed, we have `> 1 and s = p 1; hence,

2 1 + 1 + (s + 1)( m + + ` i) s 1 + (s + 1)( m + + ` i) 1
and, consequently,

(1 + (s + 1)( m + + ` i) s ) (1 + (s + 1)( m + + ` i) 1) 1:
We then conclude by observing that

` + 1 (s + 1)( m + + ` i) 1 s + 1 1
for all ` 0. This ends the proof of lemma 4.5. where we set p 0 := 0.

Proof. Lemma 4.6 is clear for i = 0. When i 1, let us …rst observe that relations (4.1), which stems from condition (C 5 ), imply

1 + (s + 1)( (m + 1) + `) = 1 + (s + 1)( m + + ` i) + p i 1 + (s + 1)( m + + ` i) + p i : Thereby, since 1 
+ (s + 1)( m + + ` i) + p i 1 + p 2 if i = 1 + i 2 if i <
we deduce from the increase of the Gamma function on [2; +1[ that

(1 + (s + 1)( (m + 1) + `)) (1 + (s + 1)( m + + ` i) + p i );
hence the inequality

(1 + (s + 1)( (m + 1) + `)) (1 + (s + 1)( m + + ` i)) pi Y n=1 ((s + 1)( m + + ` i) + n): Lemma 4.6 follows then from relations pi Y n=1 ((s + 1)( m + + ` i) + n) pi Y n=1 ((s + 1) m + n) = pi Y n=1 (mp + n) = (mp + p i )! (mp )! ;
which ends the proof.

Let us now give some estimates on the P m (x)'s. We have the following. ::: Q 0 in A j1;:::;jn i1;:::;in x (m n)p +qi 1 ;j 1 +:::qi n ;jn with A j1;:::;jn i1;:::;in = 1 ((m n)p + q i1;j1 + :::

q in;jn )! n Y `=1 ((j ` 1)p )! ((j ` 1)p + p i `)! :
Moreover, the coe¢ cients A j1;:::;jn i1;:::;in holds for all x 2 D r2 .

Proof. / Formula (4.10) can be proved by recursion on m 0 and stems from the de…nition of the sequence (P m (x)) given in proposition 4.3 above. The calculations are left to the reader. / To bound the coe¢ cients A j1;:::;jn i1;:::;in , we proceed as follows. Let us …rst denote by a `the positive integer de…ned by

a `:= 1 if i `= p p i `if i `6 =
so that q i `;j ` a `for all `= 1; :::; n. In particular, we get 1 ((m n)p + q i1;j1 + :::q in;jn )! 1 ((m n)p + a 1 + :::

+ a n )! 1 ((m n)p )! n Y `=1 B ` with B `:= a Ỳ r=1 1 a 1 + :::a ` 1 + r :
On the other hand, we have

n Y `=1 ((j ` 1)p )! ((j ` 1)p + p i `)! = n Y `=1 pi Ỳ r=1 1 (j ` 1)p + r n Y `=1 pi Ỳ r=1 1 (` 1)p + r = 1 (np )! n Y `=1 B 0 ẁith B 0 `:= 8 > < > : 1 if i `= p pi Ỳ r=1 ((` 1)p + p i `+ r) if i `6 = :
This brings then us to the following inequality A j1;:::;jn i1;:::;in Note that this latter relation stems from inequality p > 1 and from the fact that p p i 1 for all i 2 K 0 .

1 (mp )! mp np n Y `=1 B `B0 ẁhere the product B `B0 `satis…es B `B0 `= 1 a 1 + ::: + a ` 1 + 1 1 = (1 + p ) p pi `if i `= and 
B `B0 `= p pi Ỳ r=1 1 
/ We are left to prove inequality (4.12).This one is clear for m = 0 since P 0 (x) = 1. For m 1, let us …rst observe that the assumption r 2 < 1 and inequalities p 1 and q i `;j ` 1 imply jxj mp jxj m and jxj Indeed, we have K 0 K f1; :::; g and Q 0 i ` f1; :::; p 1g for all `= 1; :::; n. This proves inequality (4.12) and completes thereby the proof of proposition 4.7.

Let B 00 := B 0 K p 2 p (1 + p ) p 1 . Then, we deduce from propositions 4.3 and 4.7 that, for all ` 0 and (t; x) 2 D r2 , X m 0 @ t w m (t; for all ` 0 and (t; x) 2 D r2 . Let us now choose 0 < r < min(r 2 ; 2 p =B 00 ) and let us denote C 0 := C X m 0

(2 p B 00 r) m 2 R + and K 0 := 2 p K. Then, for all ` 0 and (t; x) 2 D r , we get (4.13) X m 0 @ t w m (t; x) C 0 K 0` (1 + (s + 1)`):

In particular, for `= 0, the series X m 0 w m (t; x) is normally convergent on D r . Therefore, its sum w(t; x) is well-de…ned and holomorphic on D r . This proves condition 1 of de…nition 2.3 if we choose for a sector bisected by and opening larger than s = =k. Note that such a choice is already possible due to the de…nition of proper subsector (see note 2).

For all ` 1, the series X m 0 @ t w m (t; x) is also normally convergent on D r .

Thereby, the series X m 0 w m (t; x) can be derivated termwise in…nitely many times with respect to t and inequalities (4.13) imply @ t w(t; x) C 0 K 0` (1 + (s + 1)`) for all ` 0 and (t; x) 2 D r . This proves condition 3 of de…nition 2.3 (we consider here proper subsectors of ).

Note that the fact that all derivatives of w(t; x) with respect to t are bounded on implies the existence of lim t!0 t2 @ t w(t; x) for all x 2 D r and thereby the existence of the Taylor series of w at 0 on for all x 2 D r (see for instance [START_REF] Malgrange | Sommation des séries divergentes[END_REF]Cor. 1.1.3.3]; see also [START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF]Prop. 2.2.11]). On the other hand, considering recurrence relations (4.4) with w m and the k-sum g(t; x) instead of e w m and e g(t; x), it is clear that w(t; x) satis…es equation (4.3) with right-hand side g(t; x) in place of e g(t; x) and, consequently, so does its Taylor series. Then, since equation (4.3) has a unique formal series solution e w(t; x) (see theorem 1.2 by exchanging the roles of x and t), we then conclude that the Taylor expansion of w(t; x) is e w(t; x), which proves condition 2 of de…nition 2.3. This achieves the proof of the k-summability of e w(t; x). Hence, the su¢ cient condition of point 1 of theorem 4.2, which ends the proof.

(1. 2 )

 2 u j; (x) = f j; (x) + X

Corollary 1 . 3

 13 Equation (1.1) admits a unique formal series solution e u(t; x) 2 O(D 2 )[[t]]. Moreover, its coe¢ cients u j; (x) 2 O(D 2 ) are recursively determined for all j 0 by identities (1.2).

Theorem 4 . 2

 42 Let us assume that equation (1.1) satis…es I K 6 = ; and conditions (C 1 ) (C 6 ). Let s = p = 1, k = 1=s and arg(t) = 2 R=2 Z a direction issuing from 0. Then,

( 4 . 3 )

 43 , where the e w m (t; x)'s belong to O(D )[[t]] for a suitable common > 0 and are recursively determined, for all m 0, by the relations (

x) 2 D r2 : Proposition 4 . 3

 43 Let B 0 := ( + 1) 2 B and (P m (x)) the sequence of polynomials in R + [x] recursively determined by 8

Lemma 4 . 6

 46 Let i 2 K [ f0g.Then, for all ` 0 and m 0,(1 + (s + 1)( m + + ` i)) (mp )! (mp + p i )!(1 + (s + 1)( (m + 1) + `));

(m n)p +qi 1

 1 ;j 1 +:::qi n ;jn jxj m for all `= 1; :::; n. Then, since 2 p (1 + p ) p 1 1, we get, for all x 2 D r2 , P m (jxj) (2 p (1 + p ) p 1 ) m m ( p ) m :

0 @ 0 ( 2 p

 002 s + 1)( m + `)) (1 + (s + 1)`) (B 00 jxj) m (mp )! :Let us now observe that inequality s + 1 p implies(1 + (s + 1)( m + `)) = (1 + (s + 1)`+ mp ) = (1 + (s + 1)`) t w m (t; x) C(2 p K) ` (1 + (s + 1)`) X m B 00 jxj) m

  Under conditions above, it is easy to check that equation(1.1) has a unique solution in O(D 2 )[[t]]. More precisely, we have the following. Theorem 1.2 D is a linear automorphism of O(D 2 )[[t]]. Proof. Let us begin by observing that D is a linear operator acting inside O(D 2 )[[t]]. Indeed, (O(D 2 )[[t]

	Notation 1.1 For any series e u(t; x) 2 O(D 2 )[[t]], we denote in the sequel
	e u(t; x) =	X j 0	u j; (x)	t j j!	=	X n 0	e u ;n (t)	x n n!	=	X j;n 0	u j;n	t j j!	x n n!

  2 )[[t]] of equation (1.1) (which is proved in theorem 1.2 above) is equivalent to the unique solvability in O(D

2 )[[t]] of problem

(1.3)

. Besides, these two solutions have the same Gevrey and summability/multisummability properties since ' 0 (x) + ' 1 (x)t + ::

  2 )[[t]] s the set of all the formal series in O(D 2 )[[t]] which are s-Gevrey. Note that the set O(D 2 )[[t]] 0 coincides with the set Cft; xg of germs of analytic functions at the origin (0; 0) 2 C 2 . Note also that the sets O(D 2 )[[t]] s are …ltered as follows:

  or[START_REF] Ramis | Les séries k-sommables et leurs applications[END_REF] Thm. 2.4] for instance). Let k > 0 and 2 R=2 Z. Then, (O(D 2 )ftg k; ; @ t ; @ x ) is a C-di¤ erential algebra stable under anti-derivatives @ 1

			@ t u(t; x)		CK ` (1 + (s + 1)`).
	We denote by O(D 2 )ftg k; the subset of O(D 2 )[[t]] made of all the k-summable formal series in the direction arg(t) = . Obviously, we have O(D 2 )ftg k; O(D 2 )[[t]] s .
	u(t; x) coincides with Note that, for any …xed x 2 D r2 , the k-summability of e the classical k-summability. Consequently, Watson's lemma implies the unicity
	of its k-sum, if any exists.			
	Note also that the k-sum of a k-summable formal series e u(t; x) 2 O(D 2 )ftg k; may be analytic with respect to x on a disc D r2 smaller than the common disc
	D 2 of analyticity of the coe¢ cients u j; (x) of e u(t; x).
	Obsviously, the set O(D 2 )ftg k; is a subspace of O(D 2 )[[t]] s . Proposition 2.4 below precises its algebraic structure.
	Proposition 2.4 t	and @ 1 x .
	Proof. It is su¢ cient to prove that O(D 2 )ftg k; is stable under multiplication, derivations and anti-derivations.
	/ Multiplication. Let e u(t; x); e v(t; x) 2 O(D 2 )ftg k; be two k-summable formal series in direction with k-sums u(t; x) and v(t; x) and e w = e ue v. In de…nition
	2.3 above, we can always choose the same constants r 2 , C and K and the same
	sector ;> s both for e u and e v. Obviously, the product w(t; x) = u(t; x)v(t; x)
	satis…es conditions 1 and 2 of de…nition 2.3. Moreover, given a proper subsector b ;> s and using Leibniz formula, we get, for all ` 0, t 2 and x 2 D r2 ,
	@ t w(t; x)	X	j @ j t u(t; x) @ ` j t	v(t; x)
		j=0			
		C 2 K	`X j=0	j	|	(1 + (s + 1)j) (1 + (s + 1)(` j)) {z } a `;j
	De…nition 2.3 (k-summability) Let k > 0 and s = 1=k. A formal series
	e u(t; x) 2 O(D 2 )[[t]] is said to be k-summable in the direction arg(t) = if there exist a sector ;> s , a radius 0 < r 2 2 and a function u(t; x) called k-sum
	of e u(t; x) in direction such that	
	1. u is de…ned and holomorphic on ;> s D r2 ;
	2. For any x 2 D r2 , the map t 7 ! u(t; x) has e u(t; x) =	X j 0	u j; (x)	t j j!	as Taylor
	series at 0 on ;> s ;		
	3. For any proper 2 subsector b ;> s , there exist constants C > 0 and
	K > 0 such that, for all ` 0, all t 2 and all x 2 D r2 ,

  Proposition 4.7 Let m 0. Then, P m (x) reads as

	(4.10)	P m (x) =	x mp (mp )!	+	n=1 m X M n (x);
	where M n (x) 2 R + [x] is the polynomial with positive coe¢ cients de…ned by M n (x) := X X X
		(i1;:::;in) 2(K 0 ) n 1 j1<:::<jn m	(qi 1 ;j 1 ;:::;qi n ;jn ) 2Q 0 i 1

A subsector of a sector 0 is said to be a proper subsector and one denotes b 0 if its closure in C is contained in 0 [ f0g.

(1 + (s + 1)( m + + j i) + ` j)

(1 + (s + 1)( m + + ` i)) + 1:

Proof. / Let us …rst suppose ` . When m 6 = 0 or i 6 = , we have, for all j 2 f0; :::; `g,

and

Hence, using the increase of the Gamma function on [2; +1[,

and so inequality (4.8). When m = 0 and i = , we must prove the inequality X j=0

(1 + (s + 1)j + ` j)

This one is clear for `= 0. Otherwise, we have 2 1 + ` j 1 + (s + 1)j + ` j = 1 + sj + ` 1 + (s + 1)f or all j < `; hence, X j=0

(1 + (s + 1)j + ` j)

/ Let us now suppose `> and let us write the sum of (4.8) on the form (:::):

The second sum of the right-hand side of (4.9) is treated as in the previous case and we get On the other hand, for j 2 f0; :::; ` g, similar calculations as above lead us to the following inequalities 2 1 + 1 + (s + 1)( m + + j i) + ` j 1 + (s + 1)( m + + ` i) s :