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Abstract

In this article, we investigate Gevrey and summability properties of
formal power series solutions of certain classes of inhomogeneous linear
integro-differential equations with analytic coeffi cients in a neighborhood
of (0, 0) ∈ C2. In particular, we give necessary and suffi cient conditions
under which these solutions are convergent or are k-summable, for a con-
venient positive rational number k, in a given direction.
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1 Setting the problem

For several years, various works allowed to formulate many results on Gevrey
properties, summability and multisummability of divergent solutions of some
linear partial differential equations or linear integro-differential equations with
constant coeffi cients (see [1,3,6,7,16,25] etc.) or variable coeffi cients (see [5,10—
13,17—19,23,24,27—29,32—34] etc.) in two variables or more.
In this paper, we are interested in inhomogeneous linear integro-differential

equations of the form

(1.1) Du = f̃(t, x) , D := 1− P (∂−1
t , ∂x)

where P (T,X) =
∑
i∈K

pi∑
q=0

a(i,q)(t, x)T iXq ∈ O(Dρ1 × Dρ2)[T,X] is a nonzero

polynomial in two variables T and X satisfying the following conditions

(C1) K is a nonempty finite subset of N∗ (= the set of positive integers),

(C2) pi ≥ 0 is a nonnegative integer for all i ∈ K,

1
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(C3) the coeffi cients a(i,q)(t, x) are holomorphic in the two variables t and x in
a polydisc Dρ1 ×Dρ2 centered at the origin (0, 0) ∈ C2 (Dρj denotes the
disc with center 0 and radius ρj > 0) for all i ∈ K and q ∈ {0, ..., pi},

(C4) a(i,pi)(0, x) 6≡ 0 for all i ∈ K.

and where f̃(t, x) ∈ O(Dρ2)[[t]]
1 may be smooth or not. Notation ∂−1

t u stands

for the anti-derivation
∫ t

0

u(s, x)ds of u with respect to t which vanishes at t = 0.

Notation 1.1 For any series ũ(t, x) ∈ O(Dρ2)[[t]], we denote in the sequel

ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
=
∑
n≥0

ũ∗,n(t)
xn

n!
=
∑
j,n≥0

uj,n
tj

j!

xn

n!

Under conditions above, it is easy to check that equation (1.1) has a unique
solution in O(Dρ2)[[t]]. More precisely, we have the following.

Theorem 1.2 D is a linear automorphism of O(Dρ2)[[t]].

Proof. Let us begin by observing that D is a linear operator acting inside
O(Dρ2)[[t]]. Indeed, (O(Dρ2)[[t]], ∂t, ∂x) is a C-differential algebra stable under
anti-derivation ∂−1

t (and anti-derivation ∂−1
x too) and the coeffi cients a(i,q)(t, x)

belong to O(Dρ1 ×Dρ2) ⊂ O(Dρ2)[[t]] for all i and q. On the other hand, given

f̃(t, x) ∈ O(Dρ2)[[t]], a series ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
is a solution of Du = f̃(t, x)

if and only if its coeffi cients uj,∗(x) satisfy, for all j ≥ 0, the identities

(1.2) uj,∗(x) = fj,∗(x) +
∑
i∈K

pi∑
q=0

j−i∑
m=0

(
j
m

)
a

(i,q)
m,∗ (x)∂qxuj−m−i,∗(x)

with the classical convention that the third sum is 0 if j < i. Thereby, equation
Du = f̃(t, x) admits a unique solution ũ(t, x) ∈ O(Dρ2)[[t]], which proves the
bijectivity of D and ends the proof.

Corollary 1.3 Equation (1.1) admits a unique formal series solution ũ(t, x) ∈
O(Dρ2)[[t]]. Moreover, its coeffi cients uj,∗(x) ∈ O(Dρ2) are recursively determ-
ined for all j ≥ 0 by identities (1.2).

Note that ũ(t, x) is divergent in general.

Remark 1.4 Let κ ∈ N∗ and K a nonempty subset of {1, ..., κ}. Let the Cauchy
problem

(1.3)


(
∂κt −

∑
i∈K

pi∑
q=0

a(i,q)(t, x)∂κ−it ∂qx

)
U = q̃(t, x)

∂jtU(t, x)|t=0 = ϕj(x) , j = 0, ..., κ− 1

1We denote f̃ with a tilde to emphasize the possible divergence of the series f̃ .
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with inhomogeneity q̃(t, x) ∈ O(Dρ2)[[t]] and initial conditions ϕj(x) ∈ O(Dρ2)
for all j. Then, the change of unknown function U to u by

U(t, x) =

κ−1∑
j=0

ϕj(x)
tj

j!
+ ∂−κt u(t, x)

allows to reduce problem (1.3) to equation (1.1) with

f̃(t, x) = q̃(t, x)−
∑
i∈K

pi∑
q=0

κ−1∑
j=κ−i

a(i,q)(t, x)∂qxϕj(x)
tj−κ+i

(j − κ+ i)!
.

More precisely, it is easy to check that the unique solvability in O(Dρ2)[[t]] of
equation (1.1) (which is proved in theorem 1.2 above) is equivalent to the unique
solvability in O(Dρ2)[[t]] of problem (1.3). Besides, these two solutions have
the same Gevrey and summability/multisummability properties since ϕ0(x) +
ϕ1(x)t+ ...+ϕκ−1(x)tκ−1/(κ−1)! is analytic at the origin (0, 0) ∈ C2. Thereby,
it is equivalent to work with the Cauchy problem (1.3) or with the integro-
differential equation (1.1). For both calculations and notational conveniences,
it is this latter point of view we have chosen to adopt here.

In this article, we propose to study some Gevrey and summability proper-
ties related to the unique formal solution ũ(t, x) of equation (1.1). Denoting
IK := {i ∈ K ; pi > i}, we first show in section 3 that ũ(t, x) and the inhomo-
geneity f̃(t, x) are together convergent when IK = ∅ and 1/k-Gevrey, with k
the smallest positive slope of the Newton polygon at t = 0 of D, otherwise.
Then, in this latter case, and under two additionnal conditions on D, we invest-
igate the summability of ũ(t, x). In particular, we prove in section 4, through a
fixed point method, a necessary and suffi cient condition under which ũ(t, x) is
k-summable in a given direction arg(t) = θ.

2 Gevrey order and summability of formal series

In this section, we recall, for the convenience of the reader, some definitions and
basic properties about the Gevrey order and the summability of formal power
series in O(Dρ2)[[t]], which are needed in the sequel.
All along the article, we consider t as the variable and x as a parameter.

Doing that, any formal power series ũ(t, x) ∈ O(Dρ2)[[t]] can be seen as a
formal power series in t with coeffi cients in the Banach space O(Dρ2). Thereby,
to define the notions of Gevrey classes and summability of such formal series, one
extends the classical notions of Gevrey classes and summability of elements in
C[[t]] to families parametrized by x in requiring similar conditions, the estimates
being however uniform with respect to x. For a general treatment of this theory,
we refer for instance to [2].

2.1 s-Gevrey formal series

The classical notion of s-Gevrey formal series is extended to x-families as follows.
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Definition 2.1 Let s ≥ 0. A series ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
∈ O(Dρ2)[[t]] is said

to be Gevrey of order s (in short, s-Gevrey) if there exist 0 < r2 ≤ ρ2, C > 0
and K > 0 such that inequalities

|uj,∗(x)| ≤ CKjΓ(1 + (s+ 1)j)

hold for all j ≥ 0 and x ∈ Dr2 .

In other words, definition 2.1 means that ũ(t, x) is s-Gevrey in t, uniformly
in x on a neighborhood of x = 0.
We denote by O(Dρ2)[[t]]s the set of all the formal series in O(Dρ2)[[t]] which

are s-Gevrey. Note that the set O(Dρ2)[[t]]0 coincides with the set C{t, x} of
germs of analytic functions at the origin (0, 0) ∈ C2. Note also that the sets
O(Dρ2)[[t]]s are filtered as follows:

C{t, x} = O(Dρ2)[[t]]0 ⊂ O(Dρ2)[[t]]s ⊂ O(Dρ2)[[t]]s′ ⊂ O(Dρ2)[[t]]

for all s and s′ satisfying 0 < s < s′ < +∞.
Following proposition 2.2 precises the algebraic structure of theO(Dρ2)[[t]]s’s.

Proposition 2.2 Let s ≥ 0. Then, (O(Dρ2)[[t]]s, ∂t, ∂x) is a C-differential
algebra stable under anti-derivations ∂−1

t and ∂−1
x .

Proof. See for instance [32, Prop. 1] or [2, p. 64].
Let us now define the notion of k-summability of a series ũ(t, x) ∈ O(Dρ2)[[t]]

at t = 0.

2.2 k-summability

Among the many equivalent definitions of k-summability in a given direction
arg(t) = θ at t = 0, we choose in this article a generalization of Ramis’definition
which states that a formal series g̃(t, x) ∈ C[[t]] is k-summable in direction θ if
there exists a holomorphic function g which is 1/k-Gevrey asymptotic to g̃ in
an open sector Σθ,>π/k bisected by θ and with opening larger than π/k [30, Def.
3.1]. To express the 1/k-Gevrey asymptotic, there also exist various equivalent
ways. We choose here the one which sets conditions on the successive derivatives
of g (see [20, p. 171] or [30, Thm. 2.4] for instance).

Definition 2.3 (k-summability) Let k > 0 and s = 1/k. A formal series
ũ(t, x) ∈ O(Dρ2)[[t]] is said to be k-summable in the direction arg(t) = θ if there
exist a sector Σθ,>πs, a radius 0 < r2 ≤ ρ2 and a function u(t, x) called k-sum
of ũ(t, x) in direction θ such that

1. u is defined and holomorphic on Σθ,>πs ×Dr2 ;

2. For any x ∈ Dr2 , the map t 7→ u(t, x) has ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
as Taylor

series at 0 on Σθ,>πs;

3. For any proper2 subsector Σ b Σθ,>πs, there exist constants C > 0 and
K > 0 such that, for all ` ≥ 0, all t ∈ Σ and all x ∈ Dr2 ,

2A subsector Σ of a sector Σ′ is said to be a proper subsector and one denotes Σ b Σ′ if
its closure in C is contained in Σ′ ∪ {0}.
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∣∣∂`tu(t, x)
∣∣ ≤ CK`Γ(1 + (s+ 1)`).

We denote byO(Dρ2){t}k;θ the subset ofO(Dρ2)[[t]]made of all the k-summable
formal series in the direction arg(t) = θ. Obviously, we have O(Dρ2){t}k;θ ⊂
O(Dρ2)[[t]]s.

Note that, for any fixed x ∈ Dr2 , the k-summability of ũ(t, x) coincides with
the classical k-summability. Consequently, Watson’s lemma implies the unicity
of its k-sum, if any exists.
Note also that the k-sum of a k-summable formal series ũ(t, x) ∈ O(Dρ2){t}k;θ

may be analytic with respect to x on a disc Dr2 smaller than the common disc
Dρ2 of analyticity of the coeffi cients uj,∗(x) of ũ(t, x).

Obsviously, the set O(Dρ2){t}k;θ is a subspace of O(Dρ2)[[t]]s. Proposition
2.4 below precises its algebraic structure.

Proposition 2.4 Let k > 0 and θ ∈ R/2πZ. Then, (O(Dρ2){t}k;θ, ∂t, ∂x) is a
C-differential algebra stable under anti-derivatives ∂−1

t and ∂−1
x .

Proof. It is suffi cient to prove that O(Dρ2){t}k;θ is stable under multiplication,
derivations and anti-derivations.

/ Multiplication. Let ũ(t, x), ṽ(t, x) ∈ O(Dρ2){t}k;θ be two k-summable formal
series in direction θ with k-sums u(t, x) and v(t, x) and w̃ = ũṽ. In definition
2.3 above, we can always choose the same constants r2, C and K and the same
sector Σθ,>πs both for ũ and ṽ. Obviously, the product w(t, x) = u(t, x)v(t, x)
satisfies conditions 1 and 2 of definition 2.3. Moreover, given a proper subsector
Σ b Σθ,>πs and using Leibniz formula, we get, for all ` ≥ 0, t ∈ Σ and x ∈ Dr2 ,

∣∣∂`tw(t, x)
∣∣ ≤ ∑̀

j=0

(
`
j

) ∣∣∣∂jt u(t, x)
∣∣∣ ∣∣∣∂`−jt v(t, x)

∣∣∣
≤ C2K`

∑̀
j=0

(
`
j

)
Γ(1 + (s+ 1)j)Γ(1 + (s+ 1)(`− j))︸ ︷︷ ︸

a`,j

where, according to relations between the Gamma and Beta functions,

a`,j = Γ(2 + (s+ 1)`)

∫ 1

0

t(s+1)j(1− t)(s+1)(`−j)dt ≤ Γ(2 + (s+ 1)`).

Thereby,

∣∣∂`tw(t, x)
∣∣ ≤ C2K`Γ(2 + (s+ 1)`)

∑̀
j=0

(
`
j

)
= C2(2K)`(1 + (s+ 1)`)Γ(1 + (s+ 1)`)

≤ C2(2K)`e1+(s+1)`Γ(1 + (s+ 1)`)

and, consequently, ∣∣∂`tw(t, x)
∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`)
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with C ′ = eC2 et K ′ = 2Kes+1. This proves condition 3 of definition 2.3; hence
the stability of O(Dρ2){t}k;θ under multiplication.

/ The stability of O(Dρ2){t}k;θ under derivation ∂t and under anti-derivations
∂−1
t and ∂−1

x is straightforward and is left to the reader.

/ Derivation ∂x. Let ũ(t, x) ∈ O(Dρ2){t}k;θ and w̃(t, x) = ∂xũ(t, x). Let u(t, x)
be the k-sum of ũ(t, x). Then, w(t, x) = ∂xu(t, x) satisfies conditions 1 and 2
of definition 2.3. Let us now fix a proper subsector Σ b Σθ,>πs and choose a
sector Σ′ such that Σ b Σ′ b Σθ,>πs. By assumption, there exist C,K > 0 such
that

∣∣∂`tu(t, x)
∣∣ ≤ CK`Γ(1 + (s + 1)`) for all ` ≥ 0, t ∈ Σ′ and x ∈ Dr2 . Let δ

be so small that, for all t ∈ Σ, the closed disc with center t and radius |t| δ be
contained in Σ′. Then, denoting u`(t, x) = ∂`tu(t, x) and choosing 0 < r′2 < r2,
Cauchy integral formula yields relation

∂`tw(t, x) = ∂xu`(t, x) =
1

(2iπ)2

∫
|t′−t|=|t|δ
|x′−x|=r2−r′2

u`(t
′, x′)

(t′ − t)(x′ − x)2
dt′dx′;

hence, the inequality∣∣∂`tw(t, x)
∣∣ ≤ 1

r2 − r′2
sup

(t′,x′)∈Σ′×Dr2
|u`(t′, x′)|

≤ C ′K`Γ(1 + (s+ 1)`) with C ′ =
C

r2 − r′2
for all ` ≥ 0, t ∈ Σ and x ∈ Dr′2

. This proves condition 3 of definition 2.3 and,
consequently, the stability of O(Dρ2){t}k;θ under derivation ∂x.
With respect to t, the k-sum u(t, x) of a k-summable series ũ(t, x) ∈ O(Dρ2){t}k;θ

is analytic on an open sector for which there is no control on the angular opening
except that it must be larger than π/k (hence, it contains a closed sector Σθ,π/k
bisected by θ and with opening π/k) and no control on the radius except that it
must be positive. Thereby, the k-sum u(t, x) is well-defined as a section of the
sheaf of analytic functions in (t, x) on a germ of closed sector of opening π/k
(i.e., a closed interval Iθ,π/k of length π/k on the circle S1 of directions issuing
from 0; see [21, 1.1] or [14, I.2]) times {0} (in the plane C of the variable x).
We denote by OIθ,π/k×{0} the space of such sections.

Corollary 2.5 The operator of k-summation

Sk;θ : O(Dρ2){t}k;θ −→ OIθ,π/k×{0}
ũ(t, x) 7−→ u(t, x)

is a homomorphism of differential C-algebras for the derivations ∂t and ∂x.
Moreover, it commutes with the anti-derivations ∂−1

t and ∂−1
x .

Let us now turn to the study of the unique formal series solution ũ(t, x) ∈
O(Dρ2)[[t]] of equation (1.1).

3 Gevrey properties of ũ(t, x)

The aim of this section is to investigate Gevrey properties of ũ(t, x). In partic-
ular, we propose to give necessary and suffi cient conditions under which ũ(t, x)
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is s-Gevrey for some s ≥ 0. Before starting the calculations, let us define the
Newton polygon of D at t = 0.

3.1 Newton polygon

As definition of the Newton polygon, we choose the definition of M. Miyake [24]
(see also A. Yonemura [34] or S. Ouchi [27]) which is an analogue to the one
given by J.-P. Ramis [31] for linear ordinary differential equations. Recall that,
H. Tahara and H. Yamazawa use in [33] a slightly different one.
For any (a, b) ∈ R2, we denote by C(a, b) the domain

C(a, b) = {(x, y) ∈ R2;x ≤ a and y ≥ b}.

For any formal series a(t, x) ∈ O(Dρ2)[[t]], we also denote by valt(a) the
valuation of a(t, x) with respect to t, i.e., the order of the zero of a(t, x) at
t = 0.

Definition 3.1 The Newton polygon Nt(D) of D at t = 0 is defined as the
convex hull of the union of sets C(0, 0) and C

(
q − i, valt

(
a(i,q)

)
+ i
)
for i ∈ K

and q ∈ {0, ..., pi}:

Nt(D) = CH

C(0, 0) ∪
⋃
i∈K

q∈{0,...,pi}

C
(
q − i, valt

(
a(i,q)

)
+ i
)

where CH[·] denotes the convex hull of the elements in [·].

Following lemma 3.2 gives us some properties of Nt(D).

Lemma 3.2 Let IK := {i ∈ K; pi > i}.

1. Assume IK = ∅. Then, Nt(D) = C(0, 0). In particular, Nt(D) has no
side with a positive slope.

2. Assume IK 6= ∅. Then, Nt(D) has (at least) one side with a positive slope.
Moreover, its smallest positive slope k is given by

k = min

(
i

pi − i
; i ∈ IK

)
and the side of slope k has for length pi0 − i0, where

i0 = max

(
i ∈ K;

i

pi − i
= k

)
.

Proof. Point 1 stems obvious from the fact that condition IK = ∅ implies
C
(
q − i, valt

(
a(i,q)

)
+ i
)
⊂ C(0, 0) for all i and q. As for point 2, it suffi ces to

remark, on one hand, that condition (C4) implies C
(
q − i, valt

(
a(i,q)

)
+ i
)
⊂

C(pi − i, i) for all i, q and, on the other hand, that the segment with two end
points (0, 0) and (pi− i, i) has a slope equal to i/(pi− i) which is positive if and
only if i ∈ IK.
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In the sequel, we set k :=
i0

pi0 − i0
when IK 6= ∅. Note that the following

inequalities

(3.1)
pi0
i0
≥ pi

i

hold for all i ∈ K.
Let us now turn to the Gevrey properties of ũ(t, x).

3.2 Gevrey order

Let us begin by observing that proposition 2.2 implies the following.

Lemma 3.3 D(O(Dρ2)[[t]]s) ⊂ O(Dρ2)[[t]]s for all s ≥ 0.

Main theorem 3.4 below precises this statement by showing more especially
that D is actually a linear automorphism of O(Dρ2)[[t]]s for some s ≥ 0.

Theorem 3.4 Let IK := {i ∈ K; pi > i} and s the rational number defined by

s :=

{
0 if IK = ∅
1/k = pi0/i0 − 1 if IK 6= ∅

.

Then, D is a linear automorphism of O(Dρ2)[[t]]s.

In particular, theorem 3.4 gives us Gevrey properties of ũ(t, x) in view in
this section. More precisely, it provides, in the case IK = ∅, necessary and
suffi cient condition under which ũ(t, x) is convergent and, in the opposite case
IK 6= ∅, necessary and suffi cient condition under which ũ(t, x) is s-Gevrey with
s = pi0/i0 − 1.

Corollary 3.5 Let IK := {i ∈ K; pi > i}.

1. Assume IK = ∅. Then, ũ(t, x) is convergent if and only if the inhomogen-
eity f̃(t, x) is convergent.

2. Assume IK 6= ∅ and let s = pi0/i0 − 1. Then, ũ(t, x) is s-Gevrey if and
only if the inhomogeneity f̃(t, x) is s-Gevrey.

Note that point 1 can be actually extended to any integro-differential equa-
tion of the form (1.1), where condition (C4) fails, but is replaced by the very
general condition a(i,pi) 6≡ 0 for all i ∈ K. We shall come back later to this (see
remark 3.10). For the moment, let us prove the main theorem 3.4.

3.3 Proof of theorem 3.4

According to theorem 1.2 and lemma 3.3, D is an injective linear operator
acting inside O(Dρ2)[[t]]s. To prove the surjectivity of D, we shall use below an
approach based on Nagumo norms [9, 26] and majorant series; approach which
is similar to the ones developed by W. Balser and M. Loday-Richaud in [5] and
by the author in [32] for some classes of linear partial differential equations.



9

Definition 3.6 (Nagumo norms) Let f ∈ O(Dρ), q ≥ 0 and 0 < r ≤ ρ. Let
dr(x) = r − |x| denote the Euclidian distance of x ∈ Dr to the boundary of the
disc Dr. Then, the Nagumo norm ‖f‖q,r of f is defined by

‖f‖q,r := sup
x∈Dr

|f(x)dr(x)q| .

Proposition 3.7 (Properties of Nagumo norms) Let f, g ∈ O(Dρ). Let
q, q′ ≥ 0 and 0 < r ≤ ρ. One has the following properties:

1. ‖·‖q,r is a norm on O(Dρ).

2. For all x ∈ Dr, |f(x)| ≤ ‖f‖q,r dr(x)−q.

3. ‖f‖0,r = sup
x∈Dr

|f(x)| is the usual sup-norm on Dr.

4. ‖fg‖q+q′,r ≤ ‖f‖q,r ‖g‖q′,r.

5. ‖∂xf‖q+1,r ≤ e(q + 1) ‖f‖q,r.

Note that the same index r occurs on both sides of inequalities 4 and 5. In
particular, we get estimates for the product fg in terms of f and g and for the
derivative ∂xf in terms of f without having to shrink the disc Dr.

Let us now turn to the proof of the surjectivity of D. Let us fix f̃(t, x) =∑
j≥0

fj,∗(x)
tj

j!
∈ O(Dρ2)[[t]]s and let us write ũ(t, x) ∈ O(Dρ2)[[t]] in the same

form ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
. By assumption, the coeffi cients fj,∗(x) satisfy

conditions

• fj,∗(x) ∈ O(Dρ2) for all j ≥ 0,

• there exist 0 < r2 ≤ ρ2, C > 0 and K > 0 such that |fj,∗(x)| ≤ CKjΓ(1 +
(s+ 1)j) for all j ≥ 0 and x ∈ Dr2 .

We shall now prove that the coeffi cients uj,∗(x) satisfy similar conditions. Cal-
culations below are analogous to those detailed in [5, 32], but are much more
complicated because of the many terms ∂−it ∂qx.

/ From now on, we denote by κ the maximum of the i ∈ K (hence, 1 ≤ i ≤ κ
for all i ∈ K). We also denote by p the positive integer defined by

p :=

{
κ if IK = ∅
pi0 if IK 6= ∅

.

From identities (1.2), it results relations

uj,∗(x)

Γ(1 + (s+ 1)j)
=

fj,∗(x)

Γ(1 + (s+ 1)j)
+
∑
i∈K

pi∑
q=0

j−i∑
m=0

(
j
m

)
a

(i,q)
m,∗ (x)

∂qxuj−m−i,∗(x)

Γ(1 + (s+ 1)j)
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for all j ≥ 0 (as before, we use the classical convention that the third sum is 0
if j < i). Applying then the Nagumo norm of indices (pj, r2), we deduce from
property 4 of proposition 3.7 that

‖uj,∗(x)‖pj,r2
Γ(1 + (s+ 1)j)

≤
‖fj,∗(x)‖pj,r2

Γ(1 + (s+ 1)j)
+

∑
i∈K

pi∑
q=0

j−i∑
m=0

(
j
m

)∥∥∥a(i,q)
m,∗ (x)

∥∥∥
p(m+i)−q,r2

‖∂qxuj−m−i,∗(x)‖p(j−m−i)+q,r2
Γ(1 + (s+ 1)j)

and from property 5 of proposition 3.7 that

‖uj,∗(x)‖pj,r2
Γ(1 + (s+ 1)j)

≤
‖fj,∗(x)‖pj,r2

Γ(1 + (s+ 1)j)
+

∑
i∈K

pi∑
q=0

j−i∑
m=0

eqAi,q,m

∥∥∥a(i,q)
m,∗ (x)

∥∥∥
p(m+i)−q,r2
m!

‖uj−m−i,∗(x)‖p(j−m−i),r2

where

Ai,q,m :=

(
m−1∏
`=0

(j − `)
)(

q−1∏
`′=0

(p(j −m− i) + q − `′)
)

Γ(1 + (s+ 1)j)

with the convention that the first product is 1 when m = 0 and the second

product is 1 when q = 0. Note that the norms
∥∥∥a(i,q)

m,∗ (x)
∥∥∥
p(m+i)−q,r2

are well-

defined for all i, q and m. Indeed, in the case IK = ∅, conditions κ ≥ i ≥ 1 and
i ≥ pi imply

p(m+ i)− q ≥ pi− q = κi− q ≥ κi− pi ≥ i(κ− 1) ≥ 0

and, in the opposite case IK 6= ∅, relations (3.1) and condition i0 ≥ 1 imply

p(m+ i)− q ≥ pi− q = pi0i− q ≥ pii0 − q ≥ pii0 − pi = pi(i0 − 1) ≥ 0.

Following technical lemmas allow to bound the Ai,q,m’s.

Lemma 3.8 Let i ∈ K and j ≥ i. Then, for all m ∈ {0, ..., j − i},
m−1∏
`=0

(j − `)

Γ(1 + (s+ 1)j)
≤ 1

Γ(1 + (s+ 1)(j −m))
.

Proof. Lemma 3.8 is clear for m = 0. For m ≥ 1, we deduce from identity

Γ(1 + (s+ 1)j) = Γ(1 + (s+ 1)j −m)

m−1∏
`=0

((s+ 1)j − `)

the following

m−1∏
`=0

(j − `)

Γ(1 + (s+ 1)j)
=

m−1∏
`=0

j − `
(s+ 1)j − `

Γ(1 + (s+ 1)j −m)
≤ 1

Γ(1 + (s+ 1)j −m)
.
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Lemma 3.8 follows then from inequalities

1 + (s+ 1)j −m ≥ 1 + (s+ 1)(j −m) ≥ 1 + (s+ 1)i ≥ 2

(indeed, i ∈ K ⇒ i ≥ 1) and from the increase of the Gamma function on
[2,+∞[.

Lemma 3.9 Let i ∈ K, q ∈ {0, ..., pi} and j ≥ i. Then, for all m ∈ {0, ..., j−i},

q−1∏
`′=0

(p(j −m− i) + q − `′)

Γ(1 + (s+ 1)(j −m))
≤ κq

Γ(1 + (s+ 1)(j −m− i)) .

Proof. • Let us first assume IK = ∅ (hence, p = κ and s = 0). Since q ≤ pi ≤
i ≤ κ, identities

q−1∏
`′=0

(p(j −m− i) + q − `′) = κq
q−1∏
`′=0

(
j −m− i+

q − `′
κ

)
and

Γ(1 + (s+ 1)(j −m)) = Γ(1 + j −m) = Γ(1 + j −m− i)
i−1∏
`′=0

(j −m− `′)

imply relation

q−1∏
`′=0

(p(j −m− i) + q − `′)

Γ(1 + (s+ 1)(j −m))
≤ κq

Γ(1 + j −m− i)

q−1∏
`′=0

j −m− i+
q − `′
κ

j −m− `′
i−1∏
`′=q

(j −m− `′)

with, when the products make sense,

(3.2)
j −m− i+

q − `′
κ

j −m− `′ ≤ 1 and j −m− `′ ≥ 1.

Note that the first inequality of (3.2) stems from inequalities

−i+
q − `′
κ

+ `′ ≤ −i+
q

κ
+ i− 1 ≤ q

κ
− 1 ≤ 0

(indeed, we have 0 ≤ `′ ≤ q− 1 ≤ i− 1 and q ≤ κ). As for the second inequality
of (3.2), it is straightforward from inequalities `′ ≤ i− 1 and m ≤ j − i. Hence,
the following

q−1∏
`′=0

(p(j −m− i) + q − `′)

Γ(1 + (s+ 1)(j −m))
≤ κq

Γ(1 + j −m− i) =
κq

Γ(1 + (s+ 1)(j −m− i)) ,
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which proves lemma 3.9 for IK = ∅.

• Let us now assume IK 6= ∅ (hence, p = pi0 and s = pi0/i0 − 1). When
m < j − i, we proceed in a similar way as the case IK = ∅. Let us first observe
that condition κ ≥ i0 implies p/κ ≤ s+ 1 and, thereby,

q−1∏
`′=0

(p(j −m− i) + q − `′) ≤ κq
q−1∏
`′=0

(
(s+ 1)(j −m− i) +

q − `′
κ

)
.

Writing then Γ(1 + (s+ 1)(j −m)) in the form

Γ(1 + (s+ 1)(j −m)) = Γ(1 + (s+ 1)(j −m)− q)
q−1∏
`′=0

((s+ 1)(j −m)− `′)

(note that Γ(1+(s+1)(j−m)−q) is well-defined since conditions (m < j−i ; q ≤
pi) and relations (3.1) imply 1 + (s+ 1)(j −m)− q > 1 + (s+ 1)i− pi ≥ 1), we
get

q−1∏
`′=0

(p(j −m− i) + q − `′)

Γ(1 + (s+ 1)(j −m))
≤
κq

q−1∏
`′=0

(s+ 1)(j −m− i) +
q − `′
κ

(s+ 1)(j −m)− `′

Γ(1 + (s+ 1)(j −m)− q)

where the product on the right-hand side is ≤ 1. Indeed, inequalities (3.1)
implying (s+ 1)i ≥ pi, it stems from conditions q ≤ pi and κ ≥ 1 that relations

−(s+ 1)i+
q − `′
κ

+ `′ ≤ (pi − `′)
(

1

κ
− 1

)
≤ 0

hold for all `′. Lemma 3.9 follows then from inequalities

1+(s+1)(j−m)−q ≥ 1+(s+1)(j−m)−pi ≥ 1+(s+1)(j−m−i) ≥ 1+(s+1) ≥ 2

and from the increase of the Gamma function on [2,+∞[. Note that the second
inequality stems again from relations (3.1) and that the third inequality stems
from condition m < j − i.

In particular, this latter inequality shows that calculations above do not
allow to prove lemma 3.9 when m = j − i, since it fails in this case. To get
around this problem, we shall proceed as follows. Let us first recall we must
prove the following

(3.3)

q−1∏
`′=0

(q − `′)

Γ(1 + (s+ 1)i)
≤ κq

Γ(1)
= κq.

For all q ∈ {0, ..., pi}, we have

q−1∏
`′=0

(q − `′) = Γ(1 + q) ≤ Γ(1 + pi).
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On the other hand, if pi = 0, inequality 1+(s+1)i ≥ 2 implies Γ(1+(s+1)i) ≥
Γ(2) = 1 = Γ(1 + pi) and, if pi ≥ 1, inequalities 1 + (s + 1)i ≥ 1 + pi ≥ 2 (use
again relations (3.1)) imply Γ(1 + (s+ 1)i) ≥ Γ(1 + pi) too. Consequently,

q−1∏
`′=0

(q − `′)

Γ(1 + (s+ 1)i)
≤ Γ(1 + pi)

Γ(1 + pi)
= 1 ≤ κq (since κ ≥ 1).

Hence, inequality (3.3). This achieves the proof.
Applying then lemmas 3.8 and 3.9, we get

Ai,q,m ≤
κq

Γ(1 + (s+ 1)(j −m− i))

and, thereby, the following inequalities

‖uj,∗(x)‖pj,r2
Γ(1 + (s+ 1)j)

≤ gj +
∑
i∈K

j−i∑
m=0

αi,m
‖uj−m−i,∗(x)‖p(j−m−i),r2
Γ(1 + (s+ 1)(j −m− i))

hold for all j ≥ 0 with

gj :=
‖fj,∗(x)‖pj,r2

Γ(1 + (s+ 1)j)
and αi,m :=

pi∑
q=0

(eκ)q

∥∥∥a(i,q)
m,∗ (x)

∥∥∥
p(m+i)−q,r2
m!

.

/ Let us now bound the Nagumo norms ‖uj,∗(x)‖pj,r2 . To do that, we shall
use a technique of majorant series. Let us consider the nonnegative numerical
sequence (vj) defined for all j ≥ 0 by the recurrence relations

vj = gj +
∑
i∈K

j−i∑
m=0

αi,mvj−m−i

where, as above, the sum is 0 when j < i. By construction, we have

0 ≤
‖uj,∗(x)‖pj,r2

Γ(1 + (s+ 1)j)
≤ vj for all j ≥ 0.

Furthermore, the vj’s can be bounded as follows. By assumption on the fj,∗(x)
(see the beginning of section 3.3), we have

0 ≤ gj ≤
CKjΓ(1 + (s+ 1)j)

Γ(1 + (s+ 1)j)
rpj2 = C(Krp2)j

for all j ≥ 0 and the series g(X) :=
∑
j≥0

gjX
j is convergent. On the other

hand, all the coeffi cients a(i,q)(t, x) belong to O(Dρ2){t}. Then, there exist two
positive constants C ′,K ′ > 0 such that

∣∣∣a(i,q)
m,∗ (x)

∣∣∣ ≤ C ′K ′mm! for all i ∈ K,
q ∈ {0, ..., pi}, m ≥ 0 and x ∈ Dr2 . Hence,

0 ≤ αi,m ≤
pi∑
q=0

(eκ)qC ′K ′mm!

m!
r
p(m+i)−q
2 = C ′1(K ′rp2)m
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with C ′1 = C ′rpi2

pi∑
q=0

(
eκ

r2

)q
> 0 and, consequently, the seriesAi(X) :=

∑
j≥0

αi,jX
j

are convergent for all i ∈ K too. In particular, these calculations show us that
the series v(X) :=

∑
j≥0

vjX
j is also convergent. Indeed, due to the recurrence

relation on the vj’s, the series v(X) satisfies the identity(
1−

∑
i∈K

XiAi(X)

)
v(X) = g(X).

Therefore, there exist C ′′,K ′′ > 0 such that vj ≤ C ′′K ′′j for all j ≥ 0. Hence,
the following inequalities

‖uj,∗(x)‖pj,r2 ≤ C
′′K ′′jΓ(1 + (s+ 1)j) for all j ≥ 0

and we are left to prove similar estimates on the sup-norm of the uj,∗(x)’s. To
this end, we proceed by shrinking the domain Dr2 . Let 0 < r′2 < r2. Then, for
all j ≥ 0 and x ∈ Dr′2

, we have

|uj,∗(x)| =
∣∣∣∣uj,∗(x)dr2(x)pj

1

dr2(x)pj

∣∣∣∣ ≤ 1

(r2 − r′2)pj
∣∣uj,∗(x)dr2(x)pj

∣∣
and, consequently,

sup
x∈Dr′2

|uj,∗(x)| ≤
‖uj,∗(x)‖pj,r2
(r2 − r′2)pj

≤ C ′′
(

K ′′

(r2 − r′2)p

)j
Γ(1 + (s+ 1)j).

This achieves the proof of the main theorem 3.4.

Remark 3.10 When IK = ∅, calculations above show that just the condition
pi ≤ i is required. In particular, condition (C4) on the a(i,pi)(0, x)’s may fail
and, as we previously said, point 1 of corollary 3.5 is actually valid for any
integro-differential equation.

4 Summability of ũ(t, x)

In previous section 3, we have shown that the formal solution ũ(t, x) and the
inhomogeneity f̃(t, x) of equation (1.1) are together s-Gevrey for a convenient
s ≥ 0 (see theorem 3.4). In particular, this has allowed us to display in the case
IK = ∅ a necessary and suffi cient condition under which ũ(t, x) is convergent
(see corollary 3.5).
In the present section, we consider the opposite case IK 6= ∅. Moreover, we

assume from now on that equation (1.1) satisfies besides the following addi-
tional two conditions

(C5) i0 = κ the maximum of the i ∈ K,

(C6) a(κ,pκ)(0, 0) 6= 0.
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Note that condition (C5) implies, on one hand, that the slope k =
i0

pi0 − i0
=

κ

pκ − κ
is actually the unique positive slope of the Newton polygon Nt(D) of

operator D (see section 3.1) and, on the other hand, that inequalities (3.1)
become

(4.1)
pκ
κ
≥ pi

i
for all i ∈ K.

Under these conditions, we propose here below to prove a necessary and suffi -
cient condition under which ũ(t, x) is k-summable in a given direction arg(t) = θ.

Remark 4.1 When condition (C5) fails, the Newton polygon Nt(D) of D may
have several positive slopes. Then, as in the theory of linear ordinary differential
equations (see for instance [2,4,8,14,15,21,22] etc.), the notion of k-summability
ceases generally to be suffi cient and must be replaced by the notion of multisum-
mability. This will be investigated in further articles.

4.1 Main result

Before stating the main result of this section, let us start by a preliminary remark
on ũ(t, x). Writing the coeffi cients a(i,q)(t, x) of D on the form a(i,q)(t, x) =∑
n≥0

a
(i,q)
∗,n (t)

xn

n!
with a(i,q)

∗,n (t) ∈ O(Dρ1), an identification of the powers in x in

equation

D

∑
n≥0

ũ∗,n(t)
xn

n!

 =
∑
n≥0

f̃∗,n(t)
xn

n!

provides for all n ≥ 0 the recurrence relations

a
(κ,pκ)
∗,0 (t)∂−κt ũ∗,n+pκ = ũ∗,n − f̃∗,n −

n∑
m=1

(
n
m

)
a

(κ,pκ)
∗,m (t)∂−κt ũ∗,n−m+pκ

−
∑
i∈K

∑
q∈Qi

n∑
m=0

(
n
m

)
a

(i,q)
∗,m (t)∂−it ũ∗,n−m+q

where the Qi’s are defined by

(4.2) Qi =

{
{0, ..., pi} if i < κ
{0, ..., pκ − 1} if i = κ

.

In particular, these relations tell us that each ũ∗,`(t) (hence, ũ(t, x) too) is
uniquely determined from f̃(t, x) and from the ũ∗,n(t) with n = 0, ..., pκ − 1.
Indeed, condition (C6) implying a(κ,pκ)

∗,0 (0) 6= 0, the quotient 1/a
(κ,pκ)
∗,0 (t) is well-

defined in C[[t]].
More precisely, we have the following main result.

Theorem 4.2 Let us assume that equation (1.1) satisfies IK 6= ∅ and condi-
tions (C1)−(C6). Let s = pκ/κ−1, k = 1/s and arg(t) = θ ∈ R/2πZ a direction
issuing from 0. Then,
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1. The unique formal series solution ũ(t, x) ∈ O(Dρ2)[[t]] of equation (1.1)
is k-summable in direction θ if and only if the inhomogeneity f̃(t, x) and
the coeffi cients ũ∗,n(t) ∈ C[[t]] for n = 0, ..., pκ − 1 are k-summable in
direction θ.

2. Moreover, the k-sum u(t, x) in direction θ, if any exists, satisfies equation
(1.1) in which f̃(t, x) is replaced by its k-sum f(t, x) in direction θ.

Note that the necessary condition of point 1 is straigthforward from propos-
ition 2.4 (indeed, ũ∗,n(t) = ∂nx ũ(t, x)|x=0 and f̃ = Dũ) and that point 2 stems
obvious from corollary 2.5. Thereby, we are left to prove the suffi cient condition
of point 1. To do that, we shall proceed through a fixed point method similar
to the ones already used by W. Balser and M. Loday-Richaud in [5] and by the
author in [32].

4.2 Proof of theorem 4.2

As we said just above, it remains to prove the suffi cient condition of point 1.
Let us write ũ(t, x) on the form

ũ(t, x) =

pκ−1∑
n=0

ũ∗,n(t)
xn

n!
+ ∂−pκx ṽ(t, x)

with ṽ(t, x) ∈ O(Dρ2)[[t]] and let us set w̃ := ∂−κt ṽ. Then, since condition (C6)
implies that 1/a(κ,pκ)(t, x) is well-defined and holomorphic in a neighborhood
of (0, 0) ∈ C2 and since ∂κ−it ∂−κt = ∂−it for all i ∈ K (indeed, we have i ≤ κ by
definition of κ), equation (1.1) becomes

(4.3) ∆w̃ = g̃(t, x)

with

• ∆ = 1− b(κ,pκ)(t, x)∂−pκx ∂κt +
∑
i∈K

∑
q∈Qi

b(i,q)(t, x)∂q−pκx ∂κ−it ,

• g̃ =
1

a(κ,pκ)

pκ−1∑
n=0

ũ∗,n(t)
xn

n!
−
∑
i∈K

∑
q∈Qi

pκ−1−q∑
n=0

a(i,q)ũ∗,n+q(t)
xn

n!
− f̃

 .

The Qi’s are the sets already introduced in (4.2) and the b(i,q)’s are the holo-
morphic functions defined by

b(i,q) =


1

a(κ,pκ)
if (i, q) = (κ, pκ)

a(i,q)

a(κ,pκ)
if (i, q) 6= (κ, pκ)

.

We denote below by Dρ′1
×Dρ′2

, with ρ′1, ρ
′
2 > 0, the common domain of (0, 0) ∈

C2 where all the b(i,q)’s are holomorphic.
Let us now assume f̃(t, x) and the ũ∗,n(t)’s k-summable in a given direction

θ. Then, g̃(t, x) is k-summable in direction θ (see proposition 2.4) and calcu-
lations above tell us it suffi ces to prove that it is the same for w̃(t, x). To this
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end, we shall proceed similarly as [5, 32] through a fixed point method.

Let us set w̃(t, x) =
∑
m≥0

w̃m(t, x) and let us consider the solution of equation

(4.3), where the w̃m(t, x)’s belong to O(Dρ)[[t]] for a suitable common ρ > 0
and are recursively determined, for all m ≥ 0, by the relations

(4.4)


w̃0 = g̃,

w̃m+1 = b(κ,pκ)(t, x)∂−pκx ∂κt w̃m −
∑
i∈K

∑
q∈Qi

b(i,q)(t, x)∂q−pκx ∂κ−it w̃m.

Note that, for all m ≥ 0, the formal series w̃m(t, x) are of order O(xm) in x and,
consequently, the series w̃(t, x) itself makes sense as a formal series in t and x.
Let us now denote by w0(t, x) the k-sum of w̃0 = g̃ in direction θ and, for

all m ≥ 0, let wm(t, x) be determined as the solution of system (4.4) in which
all the w̃m are replaced by wm. By construction, all the wm(t, x) are defined
and holomorphic on a common domain Σθ,>πs × Dρ′′2

, where the radius ρ′′1 of
Σθ,>πs and the radius ρ′′2 of Dρ′′2

can always be chosen so that 0 < ρ′′1 < ρ′1
and 0 < ρ′′2 < min(ρ2, ρ

′
2). To end the proof, it remains to prove that the series∑

m≥0

wm(t, x) is convergent and that its sum w(t, x) is the k-sum of w̃(t, x) in

direction θ.
According to definition 2.3, the k-summability of w̃0 implies that there exists

0 < r2 < ρ′′2 such that, for any proper subsector Σ b Σθ,>πs, there exist
constants C > 0 and K ≥ 1 such that, for all ` ≥ 0 and all (t, x) ∈ Σ×Dr2 , the
function w0 satisfies the inequalities

(4.5)
∣∣∂`tw0(t, x)

∣∣ ≤ CK`Γ(1 + (s+ 1)`).

Let us now fix a proper subsector Σ b Σθ,>πs and let us denote by r1 its
radius. Note that inequalities (4.5) still hold with the same constants C and K
for any 0 < r′2 < r2. In particular, we can always assume in the sequel that
r2 < 1.

Proposition 4.3 below provides us some estimates on the derivatives ∂`twm
of wm. Before stating it, let us first begin by given some estimates on the
holomorphic functions ∂`t b

(i,q). Let

B := max
(i,q)

(
max

(t,x)∈Dρ′′1 ×Dρ′′2

∣∣∣b(i,q)(t, x)
∣∣∣) ,

where Dρ denotes the closed disc with center 0 and radius ρ > 0. Note that B
is well-defined since all the b(i,q) are holomorphic on Dρ′1

×Dρ′2
and 0 < ρ′′j < ρ′j

for j = 1, 2. Then, the Cauchy integral formula

∂`t b
(i,q)(t, x) =

`!

(2iπ)2

∫
|t′−t|=ρ′′1−r1
|x′−x|=ρ′′2−r2

b(i,q)(t′, x′)

(t′ − t)`+1(x′ − x)
dt′dx′

implies inequalities ∣∣∣∂`t b(i,q)(t, x)
∣∣∣ ≤ `!B( 1

ρ′′1 − r1

)`
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for all ` ≥ 0 and (t, x) ∈ Σ × Dr2 . In particular, these estimates only depend
on the radius r1 of Σ and not on r2. Thereby, the constant K being chosen
≥ 1/(ρ′′1 − r1), we get

(4.6)
∣∣∣∂`t b(i,q)(t, x)

∣∣∣ ≤ `!BK`

for all (i, q), ` ≥ 0 and (t, x) ∈ Σ×Dr2 .

Proposition 4.3 Let B′ := (κ+1)2B and (Pm(x)) the sequence of polynomials
in R+[x] recursively determined by

P0(x) = 1,

Pm+1(x) =

∂−pκx +
∑
i∈K′

∑
q∈Q′

i

(mpκ)!

(mpκ + pi)!
∂−qx

Pm(x) for m ≥ 0,

with K′ := {i ∈ K ; pi ≥ 1} and Q′i := {max(pκ − pi, 1), ..., pκ − 1}. Then, the
following inequalities

(4.7)
∣∣∂`twm(t, x)

∣∣ ≤ CB′mKκm+`Γ(1 + (s+ 1)(κm+ `))Pm(|x|)

hold for all m, ` ≥ 0 and all (t, x) ∈ Σ×Dr2 .

Note that the set K′ is never empty since pκ > κ ≥ 1 implies κ ∈ K′. The
following proof of proposition 4.3 proceeds by recursion on m ≥ 0.
Proof. The case m = 0 is straightaway from inequalities (4.5). Let us now
suppose that inequalities (4.7) hold for a certain m ≥ 0. Then, according to
relations (4.4), we deduce from Leibniz formula and from inequalities (4.6) and
K ≥ 1 that, for all ` ≥ 0 and (t, x) ∈ Σ×Dr2 ,

∣∣∂`twm+1(t, x)
∣∣ ≤ CBB′mKκ(m+1)+`

∑
i∈K∪{0}

S`,i∑
q∈Qi

(∂q−pκx Pm)(|x|)

 ,

where we set Q0 := {0} and where S`,i is the sum defined by

S`,i :=
∑̀
j=0

`!

j!
Γ(1 + (s+ 1)(κm+ κ+ j − i)).

This latter can be bounded as follows by applying successively technical lemmas
4.4, 4.5 and 4.6 below.

S`,i ≤
∑̀
j=0

Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j)

= Γ(1 + (s+ 1)(κm+ κ+ `− i))×∑̀
j=0

Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j)
Γ(1 + (s+ 1)(κm+ κ+ `− i))

≤ (κ+ 1)Γ(1 + (s+ 1)(κm+ κ+ `− i))

≤ (κ+ 1)
(mpκ)!

(mpκ + pi)!
Γ(1 + (s+ 1)(κ(m+ 1) + `))
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with the convention that p0 = 0. This leads then us to the following∣∣∂`twm+1(t, x)
∣∣ ≤ (κ+ 1)CBB′mKκ(m+1)+`Γ(1 + (s+ 1)(κ(m+ 1) + `))

×
∑

i∈K∪{0}

∑
q∈Qi

(mpκ)!

(mpκ + pi)!
(∂q−pκx Pm)(|x|)

and inequalities (4.7) follow by observing that the double-sum of the right-hand
side satisfies

∑
i∈K∪{0}

∑
q∈Qi

(mpκ)!

(mpκ + pi)!
(∂q−pκx Pm)(|x|) ≤ (κ+ 1)(∂−pκx Pm)(|x|)

+
∑
i∈K′

∑
q∈Q′

i

(mpκ)!

(mpκ + pi)!
(∂−qx Pm)(|x|);

hence, ∑
i∈K∪{0}

∑
q∈Qi

(mpκ)!

(mpκ + pi)!
(∂q−pκx Pm)(|x|) ≤ (κ+ 1)Pm+1(|x|).

Indeed, (mpκ)!/(mpκ + pi)! ≤ 1 for all i, K ⊂ {1, ..., κ} and the coeffi cients of
polynomial Pm are positive. This ends the proof of proposition 4.3.

Lemma 4.4 Let i ∈ K ∪ {0}. Then, for all ` ≥ 0, j ∈ {0, ..., `} and m ≥ 0,

`!

j!
Γ(1 + (s+ 1)(κm+ κ+ j − i)) ≤ Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j).

Proof. Lemma 4.4 is clear for j = `. Let us now assume j < ` and let us write
`!/j! on the form

`!

j!
=

∏̀
n=j+1

n =
∏̀

n=j+1

(j + n− j).

Then,

`!

j!
≤

∏̀
n=j+1

((s+ 1)(κm+ κ+ j − i) + n− j)

=

`−j∏
n=1

((s+ 1)(κm+ κ+ j − i) + n)

and relation

Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j) = Γ(1 + (s+ 1)(κm+ κ+ j − i))

×
`−j∏
n=1

((s+ 1)(κm+ κ+ j − i) + n)

completes the proof.
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Lemma 4.5 Let i ∈ K ∪ {0}. Then, for all ` ≥ 0 and m ≥ 0,

(4.8)
∑̀
j=0

Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j)
Γ(1 + (s+ 1)(κm+ κ+ `− i)) ≤ κ+ 1.

Proof. / Let us first suppose ` ≤ κ. When m 6= 0 or i 6= κ, we have, for all
j ∈ {0, ..., `},

1 + (s+ 1)(κm+ κ+ j − i) + `− j = 1 + (s+ 1)(κm+ κ− i) + `+ sj

≤ 1 + (s+ 1)(κm+ κ+ `− i)

and

1 + (s+ 1)(κm+ κ+ j − i) + `− j ≥ 1 + (s+ 1)(κm+ κ− i) ≥ 2.

Hence, using the increase of the Gamma function on [2,+∞[,

∑̀
j=0

Γ(1 + (s+ 1)(κm+ κ+ j − i) + `− j)
Γ(1 + (s+ 1)(κm+ κ+ `− i)) ≤

∑̀
j=0

1 = `+ 1 ≤ κ+ 1

and so inequality (4.8). When m = 0 and i = κ, we must prove the inequality

∑̀
j=0

Γ(1 + (s+ 1)j + `− j)
Γ(1 + (s+ 1)`)

≤ κ+ 1.

This one is clear for ` = 0. Otherwise, we have

2 ≤ 1 + `− j ≤ 1 + (s+ 1)j + `− j = 1 + sj + ` ≤ 1 + (s+ 1)`

for all j < `; hence,

∑̀
j=0

Γ(1 + (s+ 1)j + `− j)
Γ(1 + (s+ 1)`)

≤
`−1∑
j=0

1 + 1 = `+ 1 ≤ κ+ 1.

/ Let us now suppose ` > κ and let us write the sum of (4.8) on the form

(4.9)
∑̀
j=0

(...) =

`−κ∑
j=0

(...) +
∑̀

j=`−κ+1

(...).

The second sum of the right-hand side of (4.9) is treated as in the previous case
and we get ∑̀

j=`−κ+1

(...) ≤
∑̀

j=`−κ+1

1 = κ.

On the other hand, for j ∈ {0, ..., ` − κ}, similar calculations as above lead us
to the following inequalities

2 ≤ 1 + κ

≤ 1 + (s+ 1)(κm+ κ+ j − i) + `− j ≤ 1 + (s+ 1)(κm+ κ+ `− i)− sκ.
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Thereby, the first sum of the right-hand side of (4.9) gives us

`−κ∑
j=0

(...) ≤ (`− κ+ 1)
Γ(1 + (s+ 1)(κm+ κ+ `− i)− sκ)

Γ(1 + (s+ 1)(κm+ κ+ `− i))

=
`− κ+ 1

(s+ 1)(κm+ κ+ `− i)
Γ(1 + (s+ 1)(κm+ κ+ `− i)− sκ)

Γ(1 + (s+ 1)(κm+ κ+ `− i)− 1)

≤ `− κ+ 1

(s+ 1)(κm+ κ+ `− i) .

Indeed, we have ` > κ ≥ 1 and sκ = pκ − κ ≥ 1; hence,

2 ≤ 1 + κ

≤ 1 + (s+ 1)(κm+ κ+ `− i)− sκ ≤ 1 + (s+ 1)(κm+ κ+ `− i)− 1

and, consequently,

Γ(1 + (s+ 1)(κm+ κ+ `− i)− sκ)

Γ(1 + (s+ 1)(κm+ κ+ `− i)− 1)
≤ 1.

We then conclude by observing that

`− κ+ 1

(s+ 1)(κm+ κ+ `− i) ≤
1

s+ 1
≤ 1

for all ` ≥ 0. This ends the proof of lemma 4.5.

Lemma 4.6 Let i ∈ K ∪ {0}. Then, for all ` ≥ 0 and m ≥ 0,

Γ(1 + (s+ 1)(κm+ κ+ `− i)) ≤ (mpκ)!

(mpκ + pi)!
Γ(1 + (s+ 1)(κ(m+ 1) + `)),

where we set p0 := 0.

Proof. Lemma 4.6 is clear for i = 0. When i ≥ 1, let us first observe that
relations (4.1), which stems from condition (C5), imply

1 + (s+ 1)(κ(m+ 1) + `) = 1 + (s+ 1)(κm+ κ+ `− i) +
pκ
κ
i

≥ 1 + (s+ 1)(κm+ κ+ `− i) + pi.

Thereby, since

1 + (s+ 1)(κm+ κ+ `− i) + pi ≥
{

1 + pκ ≥ 2 if i = κ
1 + κ− i ≥ 2 if i < κ

we deduce from the increase of the Gamma function on [2,+∞[ that

Γ(1 + (s+ 1)(κ(m+ 1) + `)) ≥ Γ(1 + (s+ 1)(κm+ κ+ `− i) + pi);

hence the inequality

Γ(1 + (s+ 1)(κ(m+ 1) + `)) ≥ Γ(1 + (s+ 1)(κm+ κ+ `− i))

×
pi∏
n=1

((s+ 1)(κm+ κ+ `− i) + n).
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Lemma 4.6 follows then from relations
pi∏
n=1

((s+ 1)(κm+ κ+ `− i) + n) ≥
pi∏
n=1

((s+ 1)κm+ n)

=

pi∏
n=1

(mpκ + n) =
(mpκ + pi)!

(mpκ)!
,

which ends the proof.
Let us now give some estimates on the Pm(x)’s. We have the following.

Proposition 4.7 Let m ≥ 0. Then, Pm(x) reads as

(4.10) Pm(x) =
xmpκ

(mpκ)!
+

m∑
n=1

Mn(x),

where Mn(x) ∈ R+[x] is the polynomial with positive coeffi cients defined by

Mn(x) :=
∑

(i1,...,in)
∈(K′)n

∑
1≤j1<...<jn≤m

∑
(qi1,j1 ,...,qin,jn )

∈Q′
i1
×...×Q′

in

Aj1,...,jni1,...,in
x(m−n)pκ+qi1,j1+...qin,jn

with

Aj1,...,jni1,...,in
=

1

((m− n)pκ + qi1,j1 + ...qin,jn)!

n∏
`=1

((j` − 1)pκ)!

((j` − 1)pκ + pi`)!
.

Moreover, the coeffi cients Aj1,...,jni1,...,in
∈ R+ satisfy

(4.11) Aj1,...,jni1,...,in
≤ (2pκ(1 + pκ)pκ−1)m

(mpκ)!
for all n = 1, ...,m

and the following inequality

(4.12) Pm(|x|) ≤ (κpκ2pκ(1 + pκ)pκ−1)m

(mpκ)!
|x|m .

holds for all x ∈ Dr2 .

Proof. / Formula (4.10) can be proved by recursion on m ≥ 0 and stems
from the definition of the sequence (Pm(x)) given in proposition 4.3 above. The
calculations are left to the reader.
/ To bound the coeffi cients Aj1,...,jni1,...,in

, we proceed as follows. Let us first denote
by a` the positive integer defined by

a` :=

{
1 if i` = κ
pκ − pi` if i` 6= κ

so that qi`,j` ≥ a` for all ` = 1, ..., n. In particular, we get

1

((m− n)pκ + qi1,j1 + ...qin,jn)!
≤ 1

((m− n)pκ + a1 + ...+ an)!

≤ 1

((m− n)pκ)!

n∏
`=1

B`
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with

B` :=

a∏̀
r=1

1

a1 + ...a`−1 + r
.

On the other hand, we have

n∏
`=1

((j` − 1)pκ)!

((j` − 1)pκ + pi`)!
=

n∏
`=1

pi∏̀
r=1

1

(j` − 1)pκ + r

≤
n∏
`=1

pi∏̀
r=1

1

(`− 1)pκ + r
=

1

(npκ)!

n∏
`=1

B′`

with

B′` :=


1 if i` = κ
pκ−pi`∏
r=1

((`− 1)pκ + pi` + r) if i` 6= κ
.

This brings then us to the following inequality

Aj1,...,jni1,...,in
≤ 1

(mpκ)!

(
mpκ
npκ

) n∏
`=1

B`B
′
`

where the product B`B′` satisfies

B`B
′
` =

1

a1 + ...+ a`−1 + 1
≤ 1 = (1 + pκ)pκ−pi` if i` = κ

and

B`B
′
` =

pκ−pi`∏
r=1

(
1 +

`pκ − (pκ − pi`)− a1 − ...− a`−1

a1 + ...+ a`−1 + r

)

≤
pκ−pi`∏
r=1

(
1 +

`pκ
`

)
= (1 + pκ)pκ−pi` if i` 6= κ.

Indeed, we have pκ ≥ pκ − pi` ≥ 1 and ai ≥ 1 by definition. Hence,

Aj1,...,jni1,...,in
≤ 1

(mpκ)!

(
mpκ
npκ

)
(1 + pκ)npκ−pi1−...−pin

and inequality (4.11) follows from relations(
mpκ
npκ

)
≤
mpκ∑
`=0

(
mpκ
`

)
= 2mpκ

and
0 ≤ npκ − pi1 − ...− pin ≤ n(pκ − 1) ≤ m(pκ − 1).

Note that this latter relation stems from inequality pκ > κ ≥ 1 and from the
fact that pκ ≥ pi ≥ 1 for all i ∈ K′.
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/We are left to prove inequality (4.12).This one is clear for m = 0 since P0(x) =
1. For m ≥ 1, let us first observe that the assumption r2 < 1 and inequalities
pκ ≥ 1 and qi`,j` ≥ 1 imply |x|mpκ ≤ |x|m and |x|(m−n)pκ+qi1,j1+...qin,jn ≤ |x|m
for all ` = 1, ..., n. Then, since 2pκ(1 + pκ)pκ−1 ≥ 1, we get, for all x ∈ Dr2 ,

Pm(|x|) ≤ (2pκ(1 + pκ)pκ−1)m

(mpκ)!
bm |x|m

with

bm := 1 +

m∑
n=1

∑
(i1,...,in)
∈(K′)n

∑
1≤j1<...<jn≤m

∑
(qi1,j1 ,...,qin,jn )

∈Q′
i1
×...×Q′

in

1

≤ 1 +

m∑
n=1

(
m
n

)
(κ(pκ − 1))n

= (1 + κ(pκ − 1))m ≤ (κpκ)m.

Indeed, we have K′ ⊂ K ⊂ {1, ..., κ} and Q′i` ⊂ {1, ..., pκ− 1} for all ` = 1, ..., n.
This proves inequality (4.12) and completes thereby the proof of proposition
4.7.
Let B′′ := B′Kκκpκ2pκ(1+pκ)pκ−1. Then, we deduce from propositions 4.3

and 4.7 that, for all ` ≥ 0 and (t, x) ∈ Σ×Dr2 ,∑
m≥0

∣∣∂`twm(t, x)
∣∣ ≤ CK`Γ(1 + (s+ 1)`)

∑
m≥0

Am,`(x)

with

Am,`(x) =
Γ(1 + (s+ 1)(κm+ `))

Γ(1 + (s+ 1)`)

(B′′ |x|)m
(mpκ)!

.

Let us now observe that inequality s+ 1 ≤ pκ implies

Γ(1 + (s+ 1)(κm+ `)) = Γ(1 + (s+ 1)`+mpκ)

= Γ(1 + (s+ 1)`)

mpκ∏
j=1

((s+ 1)`+ j)

≤ Γ(1 + (s+ 1)`)

mpκ∏
j=1

(`pκ + j)

= Γ(1 + (s+ 1)`)
(`pκ +mpκ)!

(`pκ)!

and, thereby,

Γ(1 + (s+ 1)(κm+ `))

(mpκ)!Γ(1 + (s+ 1)`)
≤
(
`pκ +mpκ

mpκ

)
≤
`pκ+mpκ∑
j=0

(
`pκ +mpκ

j

)
= 2`pκ+mpκ .

Consequently,∑
m≥0

∣∣∂`twm(t, x)
∣∣ ≤ C(2pκK)`Γ(1 + (s+ 1)`)

∑
m≥0

(2pκB′′ |x|)m
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for all ` ≥ 0 and (t, x) ∈ Σ×Dr2 . Let us now choose 0 < r < min(r2, 2
−pκ/B′′)

and let us denote C ′ := C
∑
m≥0

(2pκB′′r)m ∈ R+ and K ′ := 2pκK. Then, for all

` ≥ 0 and (t, x) ∈ Σ×Dr, we get

(4.13)
∑
m≥0

∣∣∂`twm(t, x)
∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`).

In particular, for ` = 0, the series
∑
m≥0

wm(t, x) is normally convergent on

Σ×Dr. Therefore, its sum w(t, x) is well-defined and holomorphic on Σ×Dr.
This proves condition 1 of definition 2.3 if we choose for Σ a sector bisected by
θ and opening larger than πs = π/k. Note that such a choice is already possible
due to the definition of proper subsector (see note 2).
For all ` ≥ 1, the series

∑
m≥0

∂`twm(t, x) is also normally convergent on Σ×Dr.

Thereby, the series
∑
m≥0

wm(t, x) can be derivated termwise infinitely many times

with respect to t and inequalities (4.13) imply∣∣∂`tw(t, x)
∣∣ ≤ C ′K ′`Γ(1 + (s+ 1)`)

for all ` ≥ 0 and (t, x) ∈ Σ ×Dr. This proves condition 3 of definition 2.3 (we
consider here proper subsectors of Σ).
Note that the fact that all derivatives of w(t, x) with respect to t are bounded

on Σ implies the existence of lim
t→0
t∈Σ

∂`tw(t, x) for all x ∈ Dr and thereby the

existence of the Taylor series of w at 0 on Σ for all x ∈ Dr (see for instance
[20, Cor. 1.1.3.3]; see also [15, Prop. 2.2.11]). On the other hand, considering
recurrence relations (4.4) with wm and the k-sum g(t, x) instead of w̃m and
g̃(t, x), it is clear that w(t, x) satisfies equation (4.3) with right-hand side g(t, x)
in place of g̃(t, x) and, consequently, so does its Taylor series. Then, since
equation (4.3) has a unique formal series solution w̃(t, x) (see theorem 1.2 by
exchanging the roles of x and t), we then conclude that the Taylor expansion of
w(t, x) is w̃(t, x), which proves condition 2 of definition 2.3.
This achieves the proof of the k-summability of w̃(t, x). Hence, the suffi cient

condition of point 1 of theorem 4.2, which ends the proof.
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