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Abstract -

Camera 3D pose estimation, to be consistent and pre-
cise, can benefit from two things: a 3D model of the en-
vironment, as it is well known, and the photometric ap-
pearance of the environment. The latter recently received
more attention from the research community. However, it
is mainly tackled for conventional cameras and using 3D
models obtained from their images and for this purpose.
In parallel, recent tools like 3D laser scanners have been
more and more improved and are now able to rapidly
generate an accurate and colored dense point clouds of
a scene. We propose in this paper to tackle wide field
of view camera 3D pose estimation using intensities of
the whole image and surrounding datasets previously ac-
quired by a 3D laser scanner. The direct use of image
intensities withdraws features detection and matching is-
sues and ensures more consistency than using geometric
features. The performance of the approach is proven in
simulation and real experiments in indoor and outdoor
situations.

Keywords - Localization, virtual visual servoing, point
clouds, laser scanners

1. Introduction

Robot or vehicle localization, using embedded devices
only, is still a challenging issue. Tackling the problem us-
ing vision is full of potential since images bring a lot of
information about the environment. The current work is
in this field, even if it proposes a more general method
applicable to any non uniform object visual pose estima-
tion.

Using a conventional camera can lead to precise pose
estimation, up to the availability of any visual features
in the camera field of view. To correct this issue, a
panoramic or omnidirectional camera should be used.
Thanks to its very wide field of view, the probability of
seeing visual features dramatically increases. Further-
more, it maximizes the number of sensed features too,
leading obviously to more constraints for motion or pose
estimation.

In recent years, 3D laser scanners have been more and
more improved and have now digital cameras included
which assign a color to each acquired points. It is now
possible to rapidly extract a geometric and visual rep-
resentation of an environment. Thanks to these equip-
ments, the number of 3D point cloud models of cities

and historical monuments is increasing. This work is
focused on camera localization in this kind of environ-
ments where GPS can be defeated due to occlusion, or
multi-reflections. So using a large field of view camera
on top of a mobile robot (Fig. 1), the goal of this work is
to estimate its pose in a previously scanned environment
using its images. The problem very recently received at-
tention from researchers in perspective vision, exploiting
normalized mutual information (NMI) [23] or point fea-
tures [12]. However in our case, point features are not us-
able and we can exploit the point intensities provided by
the scanner. That is why, to estimate the pose of the cam-
era, and therefore localize the robot, we propose to rely
on 3D model-based tracking and pose estimation princi-
ples but using the photometric feature rather than a geo-
metric one and a 3D point cloud as model.

(d)

Fig. 1 Material: the mobile robot Pioneer 3-AT with
a FishEye Camera pointing up (a) and examples of
FishEye digital images acquired outside (b) and in-
side (¢)

A way to do 3D model based visual tracking and pose
estimation is to optimize the pose minimizing the error
between the projection of the model of a real object and
corresponding image measurements. The pose optimiza-
tion process is often preceded by a linear estimation step
which has well been tackled in the literature for points,
in perspective vision [11], [22] or in omnidirectional vi-
sion [20], and other features as lines [2]. This kind of
method can be used with feature points or lines shared by
real images and virtual images of the 3D model for the
first image of a sequence for initialization. For follow-
ing images, as we assume being in a tracking process, the
optimal pose of the previous image is used as the initial
pose for the current image.

So, when an initial guess of the pose is available,
matched features which are shared by images and the 3D
model, are used to compute a cost function leading to a
non-linear system with respect to the pose of the 3D ob-
ject. The linearization of the system by a Taylor devel-
opment allows to design a Gauss-Newton or Levenberg-



Marquardt optimization process using feature points [15],
[10] or lines [21].

However, in our case, detection, matching and track-
ing of such geometric features is very difficult. The dig-
ital camera included to the scanner has a low resolution
and a low intensity dynamics. So, when the points sam-
pling rate is greater than the digital camera resolution, a
3D point and its nearest neighbors are colorized with the
same RGB value. This phenomenon creates a blur effect
on the colored point clouds. We also have to place the
laser scanner at different geographical positions to avoid
occlusions in large environments, we have to make sev-
eral acquisition stations. Despite fast acquisitions, these
point clouds have been acquired at different times of the
day, so at different sun exposures. Because of that, two
points side by side from two separate stations may have
a completely different color. These problems are visi-
ble on the virtual images generated by projecting our 3D
point clouds. Moreover, dealing with point clouds im-
plies that virtual images can contain empty pixels when
not any 3D point is projected in. Because of that, in-
terest points detection and the matching (ASIFT [18],
KAZE [1], Brisk [14]) between a digital image and a vir-
tual one failed or gave us inaccurate results. For the same
reasons, extracting lines are also a tricky operation con-
sidering that kind of images.

The photometric feature received recently much at-
tention from the research community, mainly due to its
potential of precision but also since it withdraws feature
detection and matching issues. The photometric feature
has been used to track planes in a 2D motion estimation
scheme in perspective [5] and in omnidirectional [17] vi-
sion or in the visual control of a robot under the visual
servoing framework in [8] (perspective vision) and [6]
(omnidirectional vision).

The current work proposes to adapt the use of the pho-
tometric feature for 3D model based pose estimation in
wide angle vision. For this, we use a dense point cloud as
model of an environment which has not only a geometric
structure but also a photometric value for each 3D point.

The rest of the paper is then organized as follow. First,
the section 2 describes the point clouds database genera-
tion. After this, the pose estimation method itself is pre-
sented in section 3. Finally, simulation results and real
experiments are presented in section 4 before conclusion.

2. Organized Point Cloud Database

For large scanned environments, such as cities or his-
torical monuments, the number of 3D points can rapidly
become enormous (several millions). Thus, generating
virtual images using all the 3D points of these models
would be really time-consuming operations. This is why
we propose a solution for only considering the useful 3D
points of the model depending on the robot pose.

2.1 Camera model

The wide field of view camera that we use is a fisheye
camera. A fisheye camera involves an ultra wide-angle

lens that generates strong visual distortions to create an
hemispherical image. We use the unified spherical pro-
jection model which is well suited for single viewpoint
camera but which can be also used for modelling the fish-
eye projection [3], considering additional radial distor-
tion parameters.

Following the spherical model, a 3D point X =
(X,Y,Z)T is first projected onto a unitary sphere, cen-
tered at (0,0,£)”. The obtained point is then perspec-
tively projected on the normalized image plane as x =

(x,¥):
x = prg(X) with x:zfﬁ and y:ﬁ , (D

and p = VX2+Y2+Z2. An image point is obtained
from a 3D point using pry(X) = Kpr¢ (X), knowing in-
trinsic parameters ¥ = {px, py,uo,vo,71,r2,§}, where r|
and ry are radial distortion parameters and some others
compose the matrix K:

P 0 up
K=|0 p, v|. 2)
0O 0 1

2.2 Organized Point Cloud

We note P; (X, I) the j* 3D point from the point cloud
acquired by the station i where X is its coordinates and /
its intensity. The point cloud acquired by the station i
is noted PC; = {P;;(X,I)/Vj € [0,N; —1]} with N; the
number of points acquired by the i’ station. The com-
plete model PCm contains the N registered point clouds:
PCm = {PC;/Vie [O,N—-1]}.

An organized point cloud OPC dataset is the name
given to point clouds that resemble an organized image
(or matrix) like structure, where the data is split into rows
and columns. ! We can see an OPC as two matrix, one
which is an intensity image (Fig. 2) and another which
contains the coordinates of the projected and visible 3D
points in the image. In the following, we note Igpc the
intensity image of an OPC.

Fig. 2 Example of virtual fisheye image obtained in-
side a 3D point cloud environment using the unified
spherical projection camera model

We expressed the generation of a virtual fisheye orga-
nized point cloud in a scene by OPC(pr, (PCm),* M,)
where pr,, represents the unified spherical projection pre-
viously presented and © M, is the virtual camera pose in
the scene. A matrix “M, represents the transformation
from the PCm (object (0)) frame to a camera (c) frame :

c CR X Ct X
(1x3) (4x4)



This matrix ‘Mo 4x4) is formed by a rotation matrix
“Ro(3x3) and a translation vector “to(3x1)-

2.3 Database generation process

In our experimentations we use a model of a cathe-
dral interior (Fig. 3(a)) and a urban model of four streets
(Fig. 3(b)). These models contain tens of millions of 3D
points. It is unthinkable to use these complete models
as robot environment representation. To deal with this
problem, offline, we create a database of organized point
clouds. Then, during the online pose estimation process
of an input digital image, the robot only uses one orga-
nized point cloud of the database.

Fig. 3 Examples of two point cloud models: a cathe-
dral interior visible from the outside (a) and a urban
environment of four streets (b)

For creating the database, wide field of view virtual
cameras pointing up are placed every a regular step all
over the ground surface of the 3D model PCm. For the x
camera positions **M,, we generate an organized point
cloud OPCx(pr,(PCm),"*M,). We apply the Hidden
Point Removal (HPR) [13] on the OPCy to remove the
3D points which should be invisible as viewed from the
pose "*M,. Figure 4 shows an Igpc before (a) and af-
ter (b) using the Hidden Point Removal on its associated
OPC.

Finally, the OPCy treated by the HPR operator and
their associated Y“*M,, are stored into the database. From
now, if we want to generate a virtual image from a
pose ""M, we do not need to use the complete model
PCm but only the organized point cloud OPCyx of the
database whose the pose "*M, is the closest to V"*MO.
To simplify notations in the following, the nearest OPCy

of the database is written OPC and Ig5.(“M,) ex-

presses the image of the oPC generated from the pose
‘M,. A pose can also be expressed as a vector r =
[tx,ty,tz,0x,0y,0z]. r is a vector representation of a
‘M, including three translation and three rotation degrees
of freedom.

3. Localization

The aim of the work is to compute the pose of the real
camera using its digital images and an organized point
cloud of the environment as a reference. The image-
based virtual visual servoing (VVS) is an interesting
framework in a tracking process to deal with this prob-
lem. VVS is a full scale non-linear optimization tech-
nique which can be used for pose optimization based on
a cost function defined in the image [9].

IPoint Cloud Library - http://pointclouds.org
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Fig. 4 Comparison between an Igpc before (a) and
after (b) applying the HPR operator on its associated
OPC. The zoomed part (c) show an area of (a) which
contains a lot of points which should not be visible.
The zoomed part (d) show the same area after the
HPR operator.

3.1 Pose optimization

Our visual servoing goal is to regulate the difference
between a desired digital image and virtual images ob-
tained using the camera model projection presented in
section 2.1 and the OPC of the database which has been
generated from the closest pose than the previously esti-
mated robot pose :

e=Igpe(r) T, )

The time variation of a pixel x = (x,y) in the image
plane I 55 (r) is related by a geometric interaction ma-
trix [7] to the pose velocity v =1 as:

X =Lyv. ®)

where v = (0, ®) is respectively the linear and angu-
lar camera velocities. The interaction matrix Ly de-
pends on the projection model defined for the unified
projection model [4]. Ly contains the point depth p =
VX2 4+ Y2472 as defined in section 2.1. The 3D point
coordinates (X,Y,Z) are easily and rapidly found because
they are in the organized point cloud OPC associated to
the IO/P\C‘

Note /5p (X, t) the intensity of the pixel x at time 7. Un-
der temporal luminance consistency [8] and assuming a
small pixel displacement dx, we can write :

IO/FC(X—FdX,t-l-dt) = IO/P\C(X’t) (6)

If dx is small enough, and considering a Lambertian
scene, the optical flow constraint equation is valid, then

VIO/P\CX-FIO/P?C =0 7



\‘;vlith Vispe the spatial gradient of e (x,t) and I5p. =
spc (%t . . .
%(X), is the temporal gradient. The computation of

the spatial gradients VI 5. is conventionally done in the
image with two derivative filters along X (8) and ¥ (9)
image axes :

F —112,-913,-2047,0,2047,913,112)  (8)

*= 8418
Fy =F," )

Coefficients are obtained from a derivative Gaussian fil-
ter. However, in our case, the image I 55 is generated by
projecting 3D points of a cloud. Consequently, the vir-
tual image can have "holes” because of pixels which are
not filled by a 3D point (like on the top of the image in
Figure 4(d)). Using these pixels would affect the compu-
tation of the image gradients. That is why we only use
the pixels which contain a projected 3D point and whose
the six vertical and six horizontal pixels neighbors con-
tain projected 3D points.

Substituting eq.(5) in eq.(7), we get the relationship be-
tween the intensity variation at an image point and the
camera velocity:

j —_ - 1-/\ =
Iope = VIOPCLXV Ll(ﬁcv. (10)
An image I55¢. of size N x M can be seen as a vector of
intensities : IO/FC_ = (Igpeo: I(ﬁpl’j'" Ispensy)- Then,
€q.(10) can be writen for the entire image as :
Lt g5
1 —
I OPC1
IO/P\C = : V= LI()/\PCV (1 1)
Ly
OPCNxM

Considering visual servoing as an optimization prob-
lem [16], [8] formulate photometric servoing control
law using a Levenberg-Marquardt like optimization tech-
nique. It has been shown that it ensures better conver-
gence than other kind of control laws for the photometric
feature. According to eq.(4), the control law of the virtual
camera in our case is given by:

v= A+ pdiag(H) L (Tgge(n) -T) (12)

where H = LITA Ly __ with Lj__ the interaction matrix
. . OPC OPC . OPC .

linking the luminance of image I 55 and the camera dis-

placements.

At each iteration of the visual servoing, the pose incre-

ment v is used to update the camera pose using the expo-

nential map el of SE(3):

‘ML =Ml el (13)

The process is repeated until the error e (eq.(4)) is sta-
ble. Here, time ¢, represents optimization loop iteration
number.

4. RESULTS

The correlation criteria that we use is the Zero-mean
Normalized Sum of Square Differences (ZNSSD) be-
tween intensities of the virtual current and the desired
digital images. In a previous work [19], we compared
different cost function shapes obtained with several cor-
relation criteria (ZNSSD, Zero mean Normalized Cross-
Correlation (ZNCC), Mutual Information (MI)). We ob-
served that the ZNSSD cost function has a more convex
shape than the others and a more pronounced minimum.
Moreover, the ZNSSD is faster to compute.

We first tackle the use of our method on a sequence of
virtual images where the virtual fisheye camera is driven
in a simple 3D model (Fig. 5) made of colored meshes.
The goal of this section is to highlight the ability of our
proposed method to succeed.

Fig. 5 The virtual scene used in our simulation exper-
iments

4.1 Simulation results

The virtual room is 14 meters long to 9 meters wide
to 7 meters height. To try our complete approach we
generate a database containing 12 organized point clouds
which cover the room.

A synthetic sequence is made by moving a virtual
camera along a 23 meters path in the 3D room (Fig. 6).
We extract 390 rendered images from this sequence. In
a mean, there are around 10 cm between each image or
a rotation of 2 degrees. Poses of these images are the
ground truth of the virtual experiment.

() (®) (©

Fig. 6 Three virtual images extracted from the be-
ginning (a), middle (b) and end (c) of the synthetic
sequence

Our method succeeds to track the 3D room in virtual
fisheye images all along the sequence using the organized
point clouds of the database. Figure 7 shows qualita-
tively the proximity between true and estimated trajecto-
ries.

Indeed, the mean distance between true and estimated
positions is about 4.0 cm. Specifically, the mean errors
for the three axes X, Y and Z are respectively 0.8 cm,
1.3 cm and 1.2 cm. The mean errors for the three rota-
tions around the axes X, Y and Z are respectively 0.148°,
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Fig. 7 Comparison between the true trajectory (a) and
the estimated one (b)

0.128° and 0.041°. Figure 8 shows the errors on the vir-
tual camera six degrees-of freedom for the 390 images of
the sequence.

These results show our method is not only able to con-
verge to a minimal error in the image plane, starting from
image differences, but also very close to the true pose.
The remaining error is due to the discretization induced
by considering point clouds on which the images are reg-
istered.

4.2 Real experiments

The real localization experiments aim to estimate the
fisheye camera 3D pose for each image of sequences.
The initial pose of the virtual camera is manually deter-
mined at the beginning of the image sequence but then,
the complete process is automatic. We realized our ex-
periments using two point clouds, a model of a cathe-
dral interior (Fig. 3(a)) and a urban model of four streets
(Fig. 3(b)). These points clouds have been acquired by a
Leica Geosystems TPS400 laser scanner for the former,
and a Faro Focus 3D, for the latter.

A. Cathedral interior

This environment has been scanned by placing the
laser scanner at more than 50 positions. The model com-
posed by the acquired point clouds contains more than 30
million of 3D points for a volume of around 140 meters
long to 50 meters wide to 42 meters height.

In a first time, we produce the organized point clouds
database. We experimentally chose a one meter step be-
tween each camera positions for creating the database.
When the database is loaded by the robot each OPCy
pose "*M, is added to a k-dimensional tree. We aim to
estimate the wide-angle camera 3D pose for each image
of a sequence of 600 images acquired by the robot which
navigate inside the cathedral along a path of more than 20
m (Fig. 10 (a-c)). The pose of the virtual camera is opti-
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Fig. 8 Errors on the virtual camera six degrees of
freedom for the 390 images of the sequence at con-
vergence. X-axis: red, Y-axis: green, Z-axis: blue

mized minimizing the difference between the virtual view
of the environment and the desired digital image. At each
iteration of the pose optimization, the virtual image is
generated using the organized point cloud of the database
which has been generated from the closest pose than the
previously estimated robot pose. The closest OPC pose is
rapidly found using a nearest neighbor search method in
the k-dimensional tree. Figure 10 (d-f) show virtual im-
ages rendered at optimal poses corresponding to real im-
ages of figure 10 (a-c). In order to qualitatively evaluate
pose estimations, figure 9 shows the estimated trajectory
rendered inside the complete 3D cathedral model. The
robots labelled (1), (2) and (3) are rendered respectively
at the estimated poses of the digital images of figure 10
(a-c), in other words at the same camera poses which gen-
erated the virtual images of figure 10 (d-f).

(@

Fig. 9 The estimated trajectory rendered inside the
complete 3D cathedral model



(d

Fig. 10 Some digital images at the (a) beginning, (b) middle and (c) end of the sequence acquired by the robot. (d-f)
show virtual images obtained at optimal poses corresponding to real images (a-c). The estimated trajectory rendered

inside the complete 3D cathedral model (g)

B. Urban streets

This environment has been scanned by placing the
laser scanner at 13 geographical positions. The model
composed by the acquired point clouds contains more
than 10 million of 3D points for about 1000 meters of
streets length.

This time, we produce the organized point clouds
database with a three meters step between each camera
positions because there are fewer things that can cause
occlusions unlike inside the cathedral. We aim to esti-
mate the wide-angle camera 3D pose for each image of
a sequence of 620 images acquired by the robot which
navigate in a street along a path of more than 110 me-
ters (Fig. 11 (a-c)). In order to qualitatively evaluate pose
estimations, figure 12 shows the estimated trajectory su-
perimposed to an aerial view of the street in which the ex-
periment took place. One can note that between the start
and end positions of the camera, it moved progressively
going closer and closer to the cathedral portal. This is
true and it can be seen too in fisheye images of figure 11.
An attached video shows other results for a longer path.

Fig. 12 The complete trajectory of the robot (more
than 110 meters) successfully estimated

We obtained the same kind of results from other exper-
iments realized using a car with the camera on top of it or
moving manually the camera on top of head, walking in
the street.

5. CONCLUSIONS

The visual tracking of dense point clouds models for
wide-angle cameras, exploiting their acquired images
have been successfully led on a robot, when the camera is
hand-led and even on the top of a car. To reach this goal,
we proposed a method to only considering the useful 3D
points of the model depending on the robot pose. The vir-
tual images generated with the useful points are taken as
input of a Levenberg-Marquardt optimization process to
compute the optimal pose of the camera. The pose of the
camera is computed based on the photometric feature, i.e.
the whole image, leading to consistent and precise pose
estimations. To tackle the fact that we are dealing with
point clouds, adaptations to the photometric camera ser-
voing have been proposed. In future work we would like
to do a GPU implementation of our process and adapt
our organized point cloud database generation to be able
to localize a UAV.
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