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Abstract

This is a brief review1 of the main results of our paper arXiv:1101.1759 that contains
a complete global treatment of the compactified trigonometric Ruijsenaars-Schneider sys-
tem by quasi-Hamiltonian reduction. Confirming previous conjectures of Gorsky and
collaborators, we have rigorously established the interpretation of the system in terms
of flat SU(n) connections on the one-holed torus and demonstrated that its self-duality
symplectomorphism represents the natural action of the standard mapping class generator
S on the phase space. The pertinent quasi-Hamiltonian reduced phase space turned out
to be symplectomorphic to the complex projective space equipped with a multiple of the
Fubini-Study symplectic form and two toric moment maps playing the roles of particle-
positions and action-variables that are exchanged by the duality map. Open problems
and possible directions for future work are also discussed.

1To appear in the proceedings of “Lie Theory and its Applications in Physics IX” (Varna, June 2011).
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1 Introduction

In his study of action-angle maps, Ruijsenaars [12] discovered an intriguing duality relation for
both non-relativistic and relativistic Calogero type classical many-body systems associated to
An root systems and rational, hyperbolic or trigonometric interaction potentials. In this paper
our concern is a particular system of that kind, locally given by the trigonometric Hamiltonian
(25) later on, which was invented and proved to be self-dual in [13]. Our principal goal is
to give a self-contained but concise presentation of the main results of our detailed work [4],
where we showed that the global variant of this system (called compactified trigonometric
Ruijsenaars-Schneider IIIb system) and its self-duality can be naturally understood by means
of quasi-Hamiltonian reduction. This connects the system to the SU(n) Chern-Simons theory
on the one-holed torus, with a special boundary condition, and traces back its self-duality
symplectomorphism to the standard duality generator S ∈ SL(2,Z) of the mapping class
group of the one-holed torus. Our results thus provide rigorous justification of conjectures put
forward over a decade ago by Gorsky and his collaborators [8, 6] about the IIIb system.

The plan of this contribution is as follows. In Section 2 we start with the definition of
the concept of “Ruijsenaars duality”. In particular, we shall discuss two alternative, equivalent
definitions of self-duality. Necessary background information from quasi-Hamiltonian geometry
is summarized next in Subsection 3.1, focusing on the example of the internally fused double
that will be used subsequently. Then in Subsection 3.2 we explain how the mapping class group
SL(2,Z) acts on every reduced phase space arising from the double. Section 4 is devoted to
expounding the definition of the compactified IIIb system. The main results of [4] are presented
in Section 5. The content of Section 5 and related further results are discussed in Section 6
together with an exposition of open problems.

2 The concept of Ruijsenaars duality

This concept is relevant for classical integrable many-body systems of “particles” moving in
1-dimension. Due to their physical interpretation and Liouville integrability, these systems
possess “particle-positions” and “action-variables” that span two Abelian subalgebras in the
Poisson algebra of observables. By definition, two such systems are in duality if there exists a
symplectomorphism between their phase spaces that converts the particle-positions of system
(i) into the action-variables of system (ii) and converts the action-variables of system (i) into
the particle-positions of system (ii). In particular, one speaks of self-duality if the leading
Hamiltonians of both systems (which underlie the many-body interpretation) have the same
form. An alternative second definition of self-duality is to consider a single integrable many-
body Hamiltonian system (M,Ω, H), and call it self-dual if there exists a symplectomorphism
S of the phase space (M,Ω) that converts the particle-positions into the action-variables and
the action-variables into the particle-positions. Notice that the second definition is a special
case of the first definition where the two systems in duality are two copies of the same system
and their duality relation is provided by S.

If not clear from the context, we propose the full name of the above duality be “Ruijsenaars
duality” or “duality in the sense of Ruijsenaars” (also known as action-angle duality).
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Let us further discuss the relation between the above two definitions of (Ruijsenaars) self-
duality. To do this, denote by Jk and Ik (k = 1, ..., N) the particle-positions and action-
variables for the system (M,Ω, H). It is required that there exists a dense open submanifold
M loc ⊆ M where the symplectic form Ω is equal to Ωloc =

∑N

k=1 dθk ∧ dJk, with conjugates θk
of the Jk. We can view (J , θ) and I as maps from M loc into R2N and RN , and then have

H loc = H ◦ (J , θ) = h ◦ I (1)

with some functions H and h, where the form of H underlies the many-body interpretation.
Any global symplectomorphism S takes H into the integrable Hamiltonian H̃ := H ◦S. One
has the relations Ωloc =

∑N

k=1 dθ̃k ∧ dJ̃k and

H̃ loc = H loc ◦S = H ◦ (J̃ , θ̃) = h ◦ Ĩ (2)

with (J̃ , θ̃) := (J , θ) ◦S and Ĩ := I ◦S. Thus H̃ loc has the same form in terms of the tilded-
variables as H loc in terms of the tilde-free variables. Now observe that the system (M,Ω, H)
is in duality with (M,Ω, H̃) if J̃ is the same as I and Ĩ is the same as J . Spelling this out
in more detail: if (M,Ω, H) is self-dual in the sense of the second definition, then its dual pair
(M,Ω, H̃) is automatically manufactured and these two systems are in duality with respect to
the identity map2 on M . The full equivalence of our alternative definitions of self-duality is
also not difficult to prove. In this paper we adopt the second definition.

To be precise, we note that in the statement “is the same as” above one must admit
some some sign change or re-labeling of the indices of the variables. In fact, the self-duality
symplectomorphism S is usually not an involution but has order 4. As an illustration, consider
the free system with Hamiltonian H = p2 on the phase space R2 = {(q, p)}, whose particle-
position and action-variable are q and p, respectively. The free system is trivially self-dual with
self-duality symplectomorphism S : (q, p) 7→ (p,−q), and dual Hamiltonian H̃ = q2.

Ruijsenaars [12, 13] actually found three distinct dual pairs of systems and three self-dual
systems. For example, the dual of the hyperbolic Sutherland system is the rational Ruijsenaars-
Schneider system, and the rational Calogero system is self-dual. See the review [14] for the
other cases. Incidentally, at the quantum mechanical level, all these systems are known to enjoy
the related bispectral property [2], too. As was already mentioned, in this paper our concern
will be the self-dual IIIb system. For a detailed geometric treatment of a very different, not
self-dual, case of the trigonometric Ruijsenaars duality, the reader may consult [3].

3 Generalities about the internally fused double D

The basic reference for Subsection 3.1 is [1]. The mapping class group action presented in
Subsection 3.2 is also well-known to experts [1, 7, 9]; in its explicit description we follow [4].

2 In general, identifying the phase spaces of any dual pair by the symplectomorphism that appears in the
definition of the duality relation given at the beginning, one may always turn this symplectomorphism into the
identity map. Thus the phase spaces of the systems in duality become models of a single phase space, (not
accidentally) similar to two gauge slices serving as models of the single space of gauge orbits in a gauge theory.
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3.1 Quasi-Hamiltonian systems on D and their reductions

Let G be a (connected and simply connected) compact Lie group and fix a positive definite
invariant scalar product 〈 , 〉 on its Lie algebra G. Equip the Cartesian product

D := G×G = {(A,B) |A,B ∈ G} (3)

with the 2-form ω,

2ω := 〈A−1dA ∧, dBB−1〉+ 〈dAA−1 ∧, B−1dB〉 − 〈(AB)−1d(AB) ∧, (BA)−1d(BA)〉, (4)

which is invariant under the G-action Ψ on D defined by

Ψg : (A,B) 7→ (gAg−1, gBg−1), ∀g ∈ G. (5)

Introduce the G-equivariant map µ : D → G by the group commutator

µ(A,B) := ABA−1B−1. (6)

These data satisfy

dω = −
1

12
µ∗〈ϑ, [ϑ, ϑ]〉, ω(ζD, ·) =

1

2
µ∗〈ϑ+ ϑ̄, ζ〉, ∀ζ ∈ G, (7)

Ker(ωx) = {ζD(x) | ζ ∈ Ker(Adµ(x) + IdG)}, ∀x ∈ D, (8)

where ϑ and ϑ̄ denote, respectively, the G-valued left- and right-invariant Maurer-Cartan forms
on G and ζD generates the infinitesimal action of ζ ∈ G on D. All this means [1] that (D,ω, µ)
is a so-called quasi-Hamiltonian G-space with moment map µ. This quasi-Hamiltonian G-space
is nicknamed the internally fused double of G.

According to the general theory [1], every G-invariant function h ∈ C∞(D)G induces a
unique vector field vh on D by requiring that ω(vh, ·) = dh and Lvhµ = 0. The vector field
vh is G-invariant and its flow preserves ω. In this way, (D,ω, µ, h) yields a quasi-Hamiltonian
dynamical system. Although (D,ω) is not a symplectic manifold, one can also introduce an
honest Poisson bracket on C∞(D)G. Naturally, for G-invariant functions f and h the Poisson
bracket is furnished by

{f, h} := ω(vf , vh). (9)

Generally speaking, quasi-Hamiltonian systems are of interest since they can be reduced to
true Hamiltonian systems by a generalization of the Marsden-Weinstein symplectic reduction,
and this can give convenient realizations of important Hamiltonian systems. To specialize to
our case, let us choose a moment map value µ0 ∈ G and denote its stabilizer with respect to
the adjoint action by G0. Then consider the space of G0-orbits

P (µ0) := µ−1(µ0)/G0, (10)

where µ−1(µ0) := {x ∈ D |µ(x) = µ0}. Denote by ι : µ−1(µ0) → D the tautological injection
and p : µ−1(µ0) → P (µ0) the obvious projection. Under favourable circumstances (where the
meaning of “favourable” is the same as for usual symplectic reduction), there exists a standard
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Hamiltonian system (P (µ0), ω̂, ĥ) such that the symplectic form ω̂ and the reduced Hamiltonian
ĥ satisfy the relations

p∗ω̂ = ι∗ω, p∗ĥ = ι∗h. (11)

The Hamiltonian vector field and the flow defined by ĥ on P (µ0) can be obtained by first
restricting the quasi-Hamiltonian vector field vh and its flow to µ−1(µ0) and then applying the
projection p. The Poisson brackets on (P (µ0), ω̂) are inherited from the Poisson brackets (9)
of the G-invariant functions like in usual symplectic reduction.

Of course, the space of orbits P (µ0) is not a smooth manifold in general. However, it always
turns out to be a stratified symplectic space [9], which means that it is a disjoint union of
symplectic manifolds of various dimensions glued together (in a specific manner).

The symplectic spaces obtained from quasi-Hamiltonian reduction always arise also from
usual symplectic reduction of certain infinite-dimensional manifolds with respect to infinite-
dimensional symmetry groups [1]. In particular, let Σ denote the torus with a hole (that is, with
an open disc removed); often called the “one-holed torus”. It is known that the moduli space
(space of gauge equivalence classes) of flat principal G-connections on Σ whose holonomy along
the boundary of the hole is constrained to the conjugacy class of µ0 is a stratified symplectic
space, which can be canonically identified with the quasi-Hamiltonian reduced phase space
P (µ0) in (10). It is also worth noting that this space supports two natural Abelian Poisson
algebras. Namely, for any H ∈ C∞(G)G let H1 and H2 denote the G-invariant functions on D
given by

H1(A,B) := H(A) and H2(A,B) := H(B). (12)

The two Abelian Poisson algebras on P (µ0) are provided by

Ca := {Ĥ1 | H ∈ C∞(G)G}, Cb := {Ĥ2 | H ∈ C∞(G)G}. (13)

Note also that D itself can be identified as the space of flat connections on Σ modulo the “based
gauge transformations” defined by maps η ∈ C∞(Σ, G) for which η(p0) = e for a fixed point p0
on the boundary of the removed disc. The matrices A and B represent the holonomies of the
flat connections along the standard generators of the fundamental group π1(Σ, p0).

3.2 Symplectic action of the mapping class group on P (µ0)

Let us consider the (orientation-preserving) mapping class group of the one-holed torus,

MCG+(Σ) ≡ π0(Diff+(Σ)), (14)

whose elements are equivalence classes of orientation-preserving diffeomorphisms up to homo-
topy. It is known that the mapping class groups acts by structure preserving smooth maps
on every reduced phase space P (µ0) (10), where “structure preserving” means symplectomor-
phism whenever P (µ0) is a smooth manifold. The origin of the mapping class group action
is especially clear in the setting of flat connections, where it arises from the pull-back of the
connection 1-forms by diffeomorphisms. However, it is also possible to directly describe the
mapping class group action on P (µ0) by taking advantage of the quasi-Hamiltonian formalism.

For the one-holed torus there exists a (geometrically engendered) isomorphism

MCG+(Σ) ≃ SL(2,Z). (15)
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The infinite discrete group SL(2,Z) is generated by two elements S and T subject to the
relations

S2 = (ST )3, S4 = 1. (16)

As concrete matrices, one may take

S =

[

0 1
−1 0

]

, T =

[

1 0
1 1

]

, (17)

which actually represent the action of corresponding mapping classes on the standard basis of
the homology group H1(Σ;Z) ≃ Z2. The mapping class of T is known as a Dehn twist and
that of S as the standard orientation-preserving duality generator “exchanging” the standard
homology cycles. By arguments detailed in [4, 7], it is natural to associate to S and T the
following diffeomorphisms SD and TD of the double:

SD(A,B) := (B−1, BAB−1), TD(A,B) := (AB,B). (18)

It is not difficult to check that

S∗
Dω = ω, SD ◦Ψg = Ψg ◦ SD, µ ◦ SD = µ, (19)

and similar relations hold for TD as well, i.e., both SD and TD are automorphisms of the
internally fused double. Moreover, one finds that SD and TD satisfy

S2
D = (SD ◦ TD)

3, S4
D = Q, (20)

where Q is the central element of the group of automorphisms of the double given by

Q(A,B) = Ψµ(A,B)−1(A,B). (21)

It is an immediate consequence of the above relations that SD and TD descend to maps SP and
TP on any reduced phase space P (µ0) (10), and these maps generate an SL(2,Z) action on
P (µ0). Indeed, Q descends to the trivial identity map idP on P (µ0), and thus (20) implies the
identities

S2
P = (SP ◦ TP )

3, S4
P = idP . (22)

The resulting SL(2,Z) action preserves the (stratified) symplectic structure on P (µ0).

Finally, consider the action of SP on the two Abelian Poisson algebras Ca and Cb displayed
in (13). For any H ∈ C∞(G)G, define H♯ ∈ C∞(G)G by

H♯(g) := H(g−1). (23)

Then the following identities hold:

Ĥ2 ◦ SP = Ĥ1 and Ĥ1 ◦ SP = Ĥ♯
2, ∀H ∈ C∞(G)G. (24)

In this way, SP exchanges the elements Ĥ2 of Cb with the elements Ĥ1 of Ca.
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4 Compactified Ruijsenaars-Schneider IIIb system

In [13] Ruijsenaars studied, among others, a particular real form of the complex trigonometric
Ruijsenaars-Schneider system whose Hamiltonian exhibits periodic dependence both on the
particle-positions and on the conjugate momenta. This system is termed the IIIb system, where
the label “b” indicates the bounded nature of the underlying phase space. The IIIb Hamiltonian
given by (25) below is formally integrable since it admits the sufficient number of constants
of motion in involution. However, true integrability holds only after compactifying the local
phase space, whereby the Hamiltonian flows become complete. Here, we first summarize the
definition of the local IIIb system and then present its compactification. Although the content
of this section can be found in [13], too, for the sake of readability we display all definitions in
a self-contained manner.

The many-body interpretation of the IIIb system is based on the Hamiltonian

H loc
y (δ,Θ) ≡

n
∑

j=1

cos pj

n
∏

k 6=j

[

1−
sin2 y

sin2(xj − xk)

]

1

2

, (25)

where δj = ei2xj (j = 1, ..., n) are interpreted as the positions of n “particles” moving on the
circle and the canonically conjugate momenta pj encode the compact variables Θj = e−ipj ; the
index k in the product runs over {1, 2, ..., n}\{j}. The real coupling constant y can be obviously
restricted to the range 0 < |y| < π/2 (and its sign is irrelevant). Then the reality of H loc

y can be
ensured by choosing the variables from a connected open domain where |y| < |xj−xk| < π−|y|
holds for all j 6= k. The non-emptiness of such a domain is guaranteed by the requirement

0 < |y| < π/n. (26)

We impose the center of mass condition
∏n

j=1 δj =
∏n

j=1Θj = 1, and parametrize the variables
so that the local phase space of the system gets identified with

M loc
y ≡ P0

y × Tn−1, (27)

where Tn−1 is the (n− 1)-torus and P0
y is the interior of the polytope

Py :=
{

(ξ1, ..., ξn−1) ∈ R
n−1

∣

∣

∣
ξj ≥ |y|, j = 1, ..., n− 1,

n−1
∑

j=1

ξj ≤ π − |y|
}

. (28)

Using the n×n matrix Ej,j having 1 in the jj position and the identity matrix 1n, we introduce

Hk := Ek,k − Ek+1,k+1, λk :=

k
∑

j=1

Ej,j −
k

n
1n, k = 1, ..., n− 1. (29)

Then, for ξ ∈ P0
y and τ = (τ1, ..., τn−1) = (eiθ1 , ..., eiθn−1) ∈ Tn−1, we define the diagonal SU(n)

matrices

δ(ξ) := exp
(

−2i
n−1
∑

k=1

ξkλk

)

, Θ(τ) := exp
(

−i
n−1
∑

k=1

θkHk

)

. (30)
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The choice of P0
y as the domain of the particle-positions ξ guarantees the positivity of the

expressions under the square root in (25). In terms of the variables (ξ, τ) ∈ P0
y × Tn−1, the

symplectic form of the system reads

Ωloc :=
1

2
tr
(

δ−1dδ ∧Θ−1dΘ
)

= i
n−1
∑

k=1

dξk ∧ τ−1
k dτk =

n−1
∑

k=1

dθk ∧ dξk. (31)

Note that for any diagonal matrix D (like δ,Θ etc), we apply the notation D = diag(D1, ...,Dn).

The Hamiltonian (25) admits (n − 1) Poisson commuting constants of motion given by
independent spectral invariants of the following SU(n)-valued local Lax matrix:

Ly
loc(ξ, τ)jl :=

eiy − e−iy

eiyδj(ξ)δl(ξ)−1 − e−iy
Wj(ξ, y)Wl(ξ,−y)Θl(τ)∆l(τ)∆j(τ)

−1. (32)

Here we use the positive functions

Wj(ξ, y) :=

n
∏

k 6=j

[

eiyδj(ξ)− e−iyδk(ξ)

δj(ξ)− δk(ξ)

]
1

2

, (33)

and ∆(τ) := diag(τ1, ..., τn−1, 1). The Hamiltonian (25) is recovered from the local Lax matrix
as the real part of the trace

H loc
y (δ(ξ),Θ(τ)) = Re tr

(

Ly
loc(ξ, τ)

)

. (34)

Ruijsenaars [13] realized that the flows of H loc
y and of its commuting family are not complete

on M loc
y , and then completed the local phase space in the way described below.

Let us consider the symplectic manifold (CP (n− 1), χ0ωFS), where

χ0 := π − n|y|, (35)

and ωFS is the standard Fubini-Study symplectic form. It is convenient to identify the complex
projective space CP (n− 1) as the factor space S2n−1

χ0
/U(1) with

S2n−1
χ0

=
{

(u1, ..., un) ∈ C
n |

n
∑

k=1

|uk|
2 = χ0

}

. (36)

Let CP (n− 1)0 be the open dense submanifold of CP (n− 1) where none of the homogeneous
coordinates can vanish. By utilizing the canonical projection πχ0

: S2n−1
χ0

→ CP (n − 1), we
define a diffeomorphism E : M loc

y → CP (n− 1)0 by the formula

E(ξ, τ) := πχ0
(τ1

√

ξ1 − |y|, ..., τn−1

√

ξn−1 − |y|,
√

ξn − |y|) (37)

with ξn := π −
∑n−1

k=1 ξk. By using that π∗
χ0
(χ0ωFS) = i

∑n
k=1 dūk ∧ duk, one sees that E is a

symplectomorphism
E∗(χ0ωFS) = Ωloc. (38)

Thus we can identify (M loc
y ,Ωloc) with the dense open submanifold CP (n− 1)0 of the compact

phase space (CP (n − 1), χ0ωFS). The crucial fact is that, by means of this identification, the
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local Lax matrix Ly
loc extends to a smooth (even real-analytic) matrix function on CP (n− 1).

This fact is actually not difficult to verify [13, 4]. From now on we denote the resulting “global
Lax matrix” as Ly. Since Ly ∈ C∞(CP (n− 1), SU(n)) satisfies

Ly ◦ E = Ly
loc, (39)

it follows that all the smooth spectral invariants of Ly
loc (like the Hamiltonian (34)) extend to

smooth functions on the compactified phase space CP (n− 1). The corresponding Hamiltonian
flows are automatically complete on CP (n − 1), simply since every smooth vector field has
complete flows on a compact manifold. By definition, the compactified IIIb system is the
integrable system on the phase space (CP (n − 1), χ0ωFS) whose commuting Hamiltonians are
generated by the Lax matrix Ly.

5 Self-duality of the IIIb system from reduction

The compactified IIIb system, encapsulated by the triple

(CP (n− 1), χ0ωFS, L
y), (40)

possesses two distinguished Abelian Poisson algebras of observables. The first Abelian algebra
is generated by the “global particle-position variables” Jk defined by

Jk ◦ πχ0
(u) = |uk|

2 + |y|, k = 1, ..., n− 1. (41)

The terminology is justified by the identity Jk(E(ξ, τ)) = ξk. The Jk are the components of
the toric moment map

J := (J1, ...,Jn−1) : CP (n− 1) → R
n−1 (42)

that generates the so-called rotational action of the torus Tn−1 on (CP (n − 1), χ0ωFS). Its
image is the closed polytope Py (28). The other distinguished Abelian algebra is spanned by
the action-variables furnished by certain spectral functions of the global Lax matrix Ly.

In the rest of this section we take

G := SU(n), 〈X, Y 〉 := −
1

2
tr (XY ), ∀X, Y ∈ G. (43)

Define the polytope P0 similarly to (28) and also define δ(ξ) like in (30) for any ξ ∈ P0. It is
well-known that any g ∈ G is conjugate to a matrix δ(ξ) for a unique ξ ∈ P0, and g is regular
(has n distinct eigenvalues) if and only if the corresponding ξ belongs to the interior P0

0 of P0.
Therefore we can uniquely define a G-invariant (i.e. conjugation invariant) function Ξk on G
by requiring that

Ξk(δ(ξ)) = ξk, ∀ξ ∈ P0, k = 1, ..., n− 1. (44)

The “spectral function” Ξk is continuous on G and its restriction to the dense open submanifold
of regular elements, Greg, belongs to C∞(Greg)

G.

It was shown in [13], and follows readily from our Theorem 1 given below, that the global
Lax matrix Ly takes values in Greg and the functions

Ik := Ξk ◦ L
y (45)
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can serve as action-variables of the compactified IIIb system. In fact, these functions Poisson
commute and their Hamiltonian flows are 2π-periodic. The image of the toric moment map

I := (I1, ..., In−1) : CP (n− 1) → R
n−1 (46)

is the same polytope Py as the image of moment map J .

One can check that the spectral functions satisfy

Ξ♯
k = Ξn−k, (47)

where we applied the definition (23). Thus, if we define the spectral Hamiltonians αk and βk

on D by
αk(A,B) := Ξk(A) and βk(A,B) := Ξk(B), (48)

then (18) implies the identities βk◦SD = αk and αk◦SD = βn−k. Although they are not globally
C∞, αk and βk descend to “reduced spectral Hamiltonians” α̂k and β̂k on any reduced phase
space P (µ0) obtained from the double. As special cases of (24), with the SL(2,Z) generator
SP they satisfy

β̂k ◦ SP = α̂k and α̂k ◦ SP = β̂n−k, ∀k = 1, ..., n− 1. (49)

Having the necessary preliminaries at hand, the principal result of our paper [4] can be
summarized as follows.

Theorem 1. For the particular moment map value

µ0 = diag(e2iy, ..., e2iy, e2(1−n)iy), 0 < |y| < π/n, (50)

the “constraint surface” µ−1(µ0) lies in Greg ×Greg and the reduced phase space (P (µ0), ω̂) is a
smooth manifold symplectomorphic to (CP (n− 1), χ0ωFS). The maps

α̂ := (α̂1, ..., α̂n−1) : P (µ0) → R
n−1 and β̂ : (β̂1, ..., β̂n−1) : P (µ0) → R

n−1 (51)

are toric moment maps generating two effective Hamiltonian actions of Tn−1 on (P (µ0), ω̂).
The images of both α̂ and β̂ yield the polytope Py (28), and there exists a symplectomorphism

fβ : CP (n− 1) → P (µ0) (52)

that satisfies
β̂k ◦ fβ = Jk and α̂k ◦ fβ = Ik, ∀k = 1, ..., n− 1. (53)

Combining Theorem 1 with the generalities reviewed in Subsection 3.2, we obtain the fol-
lowing important result.

Corollary 1. The symplectomorphisms f−1
β ◦ SP ◦ fβ and f−1

β ◦ TP ◦ fβ generate an SL(2,Z)
action on the compactified IIIb phase space (CP (n − 1), χ0ωFS). The mapping class duality
symplectomorphism

S := f−1
β ◦ SP ◦ fβ (54)
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acts by exchanging the particle-positions Jk with the action-variables Ik according to

Jk ◦S = Ik, and Ik ◦S = Jn−k, ∀k = 1, ..., n− 1. (55)

For the sake of completeness, let us also present the explicit formula of our map fβ. For
this, we introduce a unitary matrix gy(ξ) for each ξ ∈ P0

y by

gy(ξ)jn := −gy(ξ)nj := vj(ξ, y), ∀j = 1, ..., n− 1, gy(ξ)nn := vn(ξ, y),

gy(ξ)jl := δjl −
vj(ξ, y)vl(ξ, y)

1 + vn(ξ, y)
, ∀j, l = 1, ..., n− 1, (56)

where vj(ξ, y) :=
[

sin y

sinny

]
1

2

Wj(ξ, y) using (33).

Theorem 2. Applying the previous notations, the map f0 : CP (n− 1)0 → P (µ0) defined by

(f0 ◦ E)(ξ, τ) := p
(

gy(ξ)
−1∆(τ)Ly

loc(ξ, τ)∆(τ)−1gy(ξ), gy(ξ)
−1δ(ξ)gy(ξ)

)

(57)

is a diffeomorphism from CP (n − 1)0 onto a dense open submanifold of P (µ0). This map is
symplectic, f ∗

0 ω̂ = χ0ωFS, and it extends to a global diffeomorphism fβ : CP (n− 1) → P (µ0).

The map fβ that extends f0 automatically has the properties mentioned in the Theorem
above. The statement that f0 is symplectic and that it extends to a global diffeomorphism were
quite non-trivial to prove. In [4]3 the extended map fβ was also given explicitly by making use
of a covering of CP (n− 1) by n coordinate patches and giving fβ explicitly on each patch.

To conclude this section, we remind that an integrable many-body system is self-dual in the
sense of Ruijsenaars if there exists a symplectomorphism that exchanges its particle-position
variables with the action-variables. Hence the message of equation (55) is that our mapping
class symplectomorphism S (54) qualifies as a self-duality symplectomorphism in the sense
of Ruijsenaars. In fact, we have also checked that S coincides precisely with the self-duality
symplectomorphism of the IIIb system constructed originally by a very different (non-geometric,
direct) method in [13].

6 Further results and open problems

This section contains a collection of remarks concerning the results of [4] and open problems.

First of all, let us recall that every quasi-Hamiltonian reduction of the internally fused
double represents the moduli space of flat connections on the one-holed torus Σ with fixed
conjugacy class of the holonomy around the hole. This is also the classical phase space of
the Chern-Simons field theory on the three-dimensional manifold [0, 1]×Σ with corresponding
boundary condition. Therefore, our results outlined in the previous section prove the Chern-
Simons interpretation of the IIIb system and that of its self-duality, confirming the conjectures
of Gorsky and his collaborators [8, 6].

3The correspondence L
y

loc
(ξ, τ) ≡ ∆(τ)−1Lloc

y
(δ(ξ), ρ(τ)−1)∆(τ) between the respective notations should be

noted for those wish to see the details in [4].
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In addition to the coupling constant, y, a second parameter, Λ, can be introduced into the
IIIb system by replacing the symplectic form (31) by ΛΩloc. This parameter, which is important
at the quantum mechanical level, can be incorporated into the reduction approach by taking
the invariant scalar product on su(n) to be −Λ

2
tr instead of (43). The quantum mechanics

of the IIIb system was studied by van Diejen and Vinet [15], who diagonalized the relevant
commuting difference operators using Macdonald polynomials; see also our note [5] where we
reproduced the joint spectrum of the action-variables by a simple argument. The Hilbert space
of the Chern-Simons theory can be always equipped with a representation of the mapping class
group [16], and it could be interesting to elaborate this representation in the specific case of
the IIIb system by building on the work [15].

Ruijsenaars [13] also considered an anti-symplectic involution R on CP (n− 1) that enjoys

Jk ◦R = Ik, Ik ◦R = Jk, k = 1, ..., n− 1, (58)

and is given by R = Ĉ ◦S where Ĉ is the complex conjugation involution. We have shown [4]
that R arises from the map RD of the double of SU(n) defined by

RD := ̺D ◦ S2
D, ̺D(A,B) := (B̄, Ā), ∀(A,B) ∈ D. (59)

Although RD is not quite an automorphism of D, it descends to a map RP on any reduced
phase space P (µ0) with diagonal constant matrix µ0. (If µ0 and µ′

0 are conjugate then P (µ0)
and P (µ′

0) are naturally equivalent, and therefore one may take µ0 diagonal without loss of
generality.) The involution RP reverses the sign of the induced Poisson structure on P (µ0),
and together with SP and TP it generates a GL(2,Z) action on P (µ0).

Let Z be the center of the group G. Notice that Z ×Z acts on the internally fused double
D = G×G by the automorphisms

(z1, z2) : (A,B) 7→ (z1A, z2B), ∀(z1, z2) ∈ Z ×Z. (60)

This action descends to the reduced phase space P (µ0), and in the special case G = SU(n) and
µ0 (50) it gives rise to the Zn × Zn action on CP (n− 1) used in some considerations in [13].

The reader is invited to study [4] for further results, which include for example the factor-
ization of SD as a product of three Dehn twist automorphisms of the double, where the Dehn
twist automorphisms themselves are realized in terms of certain quasi-Hamiltonian flows.

It could be worthwhile to explore the structure of the stratified symplectic spaces P (µ0) in
general, and to possibly uncover new integrable systems on them. Some sort of trigonometric
spin Ruijsenaars-Schneider systems are expected to arise in this way, which might be integrable
analogously to spin Sutherland systems [11].

Finally, the most intriguing open problem stems from the fact that a reduction treatment
of the self-dual hyperbolic Ruijsenaars-Schneider system (the one which is related for example
to sine-Gordon solitons) is still missing. Presently we do not know what master phase space
should give this system upon reduction. Is it possible to construct such a master phase space?
Of course, there exist other important variants of the Ruijsenaars-Schneider system (BCn case
[10], elliptic systems) that should be further studied as well.
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