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Abstract

In this article, we prove that we can introduce a small ~ parameter in the six Painlevé
equations through their corresponding Lax pairs and Hamiltonian formulations. Moreover,
we prove that these ~-deformed Lax pairs satisfy the Topological Type property proposed
by Bergère, Borot and Eynard for any generic choice of the monodromy parameters. Conse-
quently we show that one can reconstruct the formal ~ series expansion of the tau-function
and of the determinantal formulas by applying the so-called topological recursion on the
spectral curve attached to the Lax pair in all six Painlevé cases. Eventually we illustrate the
former results with the explicit computations of the first orders of the six tau-functions.
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B.4 Painlevé 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1 Introduction

It is now well known that the study of hermitian random matrices is intrinsically related to inte-
grable systems and Painlevé equations. In particular it is proved that the partition functions of
hermitian matrix models define isomonodromic tau-functions [5, 6]. Moreover, (see for example
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[31] for a review) it is also well understood that the local correlations between consecutive eigen-
values in hermitian random matrices exhibit universal behaviors when the size of the matrix goes
to infinity. For example, the gap probability in the bulk of the distribution of eigenvalues can
be directly connected to the Painlevé V equation, the so-called Hastings McLeod solution of the
Painlevé II equation is related to the gap probability at the edge, and many similar results at dif-
ferent locations of the eigenvalues distribution are now available in relation with the other Painlevé
equations. In a more algebraic perspective, it was recently realized that the connection between
integrable systems and hermitian matrix models can be understood because of the existence of loop
equations (also known as Schwinger-Dyson equations) that can be solved perturbatively (under
additional assumptions like convex potentials or genus 0 spectral curve) throughout the topological
recursion introduced by Eynard and Orantin in [16]. Since the scope of the topological recursion
has been proved to go much beyond matrix models, it is natural to wonder if one could define
the formalism of the topological recursion directly into the integrable systems formalism. In [2]
and [3], Bergère, Borot and Eynard suggested determinantal formulas that associate to any Lax
pair (in fact any finite dimensional linear differential system) a set of correlation functions that
satisfy the same loop equations as the one arising in hermitian matrix models. Consequently at
the perturbative (i.e. formal) level, one may expect these correlation functions to be reconstructed
by the topological recursion. However, since loop equations may have many solutions it is not
obvious why the functions generated by the topological recursion (that are one set of solutions
to the loop equations) should necessarily identify with the determinantal formulas (that are also
one set of solutions to the loop equations). In [2] and [3] the authors discussed about sufficient
conditions on the Lax pair, known as the Topological Type property, on the Lax pair to prove that
both sets are identical. The purpose of this article is to show that in the case of the six Painlevé
equations with generic monodromy parameters, one can introduce a perturbative formal parameter
~ in the Lax pair and prove the Topological Type property in all six cases. We introduce a formal
~ parameter in the Painlevé Lax pairs (historically proposed by Jimbo, Miwa and Ueno in [22]
and [23]) through a rescaling of the parameters thus providing a ~ perturbation of the Painlevé
equations. We also provide ~-deformations of the Hamiltonian structures underlying the Painlevé
equations [34]. Our results extend similar results developed for the Painlevé II equation in [19] as
well as partial results (vanishing monodromies and an incomplete proof via the insertion operator)
for the Painlevé V equation in [30]. Our analysis is sufficiently general to cover all six Painlevé
cases and provides many interesting remarks that would deserve closer attention. In particular
it appears that only specific features of the Lax systems are involved in the computation of the
determinantal formulas and that all physically relevant quantities are invariant under reasonable
gauge transformations of the Lax pairs.
Our paper is organized as follow: First, we present the six Lax pairs, Hamiltonians and Jimbo-
Miwa-Ueno tau-functions describing the six Painlevé equations. Since our gauge choices and
notations are slightly different from the historical ones given by Jimbo and Miwa in [23] we also
provide the explicit correspondences in appendix A. Then we present the natural rescaling of the
parameters thus introducing our formal expansion parameter ~. In section 5 we present the com-
putation and analysis of the spectral curves. Section 6 is then dedicated to the presentation of the
determinantal formulas and of the Topological Type property. Finally in section 6.3 we get to the
statement of our main theorem, i.e. that all six Lax pairs satisfy the Topological Type property.
The proof of the Topological Type property is postponed in appendices E, F, G and H and follows
the same strategy as the one developed in [19]. Eventually conclusions and outlooks are presented
in section 7 and computations of the unstable cases F (0) and F (1) are presented in appendix I.
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2 Painlevé equations, Lax pairs, Hamiltonians and τ-

functions

2.1 Lax pairs

Painlevé equations play an important role in the theory of integrable systems. They were studied
originally by Garnier and Painlevé and their connections with integrable systems was detailed later
by Jimbo, Miwa and Ueno in a series of famous papers [22, 23, 24]. In this series of papers, the
authors provide various 2 × 2 Lax pairs from which one can reconstruct the Painlevé equations
throughout the compatibility equations of the systems. Since then, many adaptations and other
Lax pairs have been proposed to recover these Painlevé equations. In this paper we will use Lax
pairs that can be directly connected to the Jimbo-Miwa pairs and we provide in appendix A the
correspondences between our Lax pairs and the Lax pairs proposed by Jimbo and Miwa in [23].

Definition 2.1 (Lax pair) A Lax pair corresponds to the definition of two n×n matrices D(x; t)
and R(x; t) such that the system:

∂xΨ(x, t) = D(x, t)Ψ(x, t) , ∂tΨ(x, t) = R(x, t)Ψ(x, t)

is consistent. In the theory, x is usually called the spatial parameter while t provides the so-called
time-evolution of the system. The compatibility equations (also known as zero-curvature equations)
are given by:

∂tD(x, t)− ∂xR(x, t) + [D(x, t),R(x, t)] = 0

In [23], Jimbo and Miwa provide 2×2 matrices (DJ(x, t),RJ(x, t)) with 1 ≤ J ≤ 6. We propose
here adaptations of these Lax pairs:

• For (PI):

DI(x, t) =

(
−p x2 + qx+ q2 + t

2

4(x− q) p

)
, RI(x, t) =

(
0 x

2
+ q

2 0

)
(2.1)

• For (PII):

DII(x, t) =

(
x2 + p+ t

2
x− q

−2 (xp+ qp+ θ) −
(
x2 + p+ t

2

)) , RII(x, t) =

(
x+q

2
1
2

−p −x+q
2

)
. (2.2)

• For (PIII):

DIII(x, t) =

 t
2
− θ∞

2x
+

p− t
2

x2 −pq
x
− p

x2

−(p−t)q−θ∞+
t(θ0+θ∞)

2p

x
+ p−t

x2 −
(
t
2
− θ∞

2x
+

p− t
2

x2

)
RIII(x, t) =

x
2
− p− t

2

tx
+ θ0+θ∞

2p
+ q − θ∞

2t
−pq

t
+ p

tx

−(p−t)q−θ∞+
t(θ0+θ∞)

2p

t
− p−t

tx
−
(
x
2
− p− t

2

tx
+ θ0+θ∞

2p
+ q − θ∞

2t

) (2.3)

• For (PIV):

DIV(x, t) =

(
x+ t+ pq+θ0

x
1− q

x

−2(pq + θ0 + θ∞) + p(pq+2θ0)
x

−
(
x+ t+ pq+θ0

x

))
RIV(x, t) =

(
x+ q + t 1

−2(pq + θ0 + θ∞) −(x+ q + t)

)
(2.4)
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• For (PV):

DV(x, t) =

 t
2

+ 1
x

(
pq +

θ0
2

)
− 1
x−1

(
pq +

θ0+θ∞
2

)
− pq+θ0

x
+
p+

θ0−θ1+θ∞
2q

x−1

pq
x
−
pq2+q

θ0+θ1+θ∞
2

x−1
−
(
t
2

+ 1
x

(
pq +

θ0
2

)
− 1
x−1

(
pq +

θ0+θ∞
2

))


RV(x, t) =

 x
2
− 1

2t

(
p(q − 1)2 − θ0 +

θ0−θ1+θ∞
2q

+ q
θ0+θ1+θ∞

2
)
)

− 1
t

(
p(q − 1) + θ0 −

θ0−θ1+θ∞
2q

)
− q
t

(
p(q − 1) +

θ0+θ1+θ∞
2

)
)

−
(
x
2
− 1

2t

(
p(q − 1)2 − θ0 +

θ0−θ1+θ∞
2q

+ q
θ0+θ1+θ∞

2

))
(2.5)

• For (PVI):

DVI(x, t) =
A0(t)

x
+
A1(t)

x− 1
+
At(t)

x− t
, RVI(x, t) = −At(t)

x− t
− (q − t)(θ∞ − 1)

2t(t− 1)
σ3 (2.6)

where

A0 =

(
z0 + θ0

2
− q
t

tz0(z0+θ0)
q

−
(
z0 + θ0

2

)) , A1 =

(
z1 + θ1

2
q−1
t−1

− (t−1)z1(z1+θ1)
q−1

−
(
z1 + θ1

2

))

At =

(
zt + θt

2
− q−t
t(t−1)

t(t−1)zt(zt+θt)
q−t −

(
zt + θt

2

)) , A∞ =

(
θ∞
2

0
0 − θ∞

2

)
= −(A0 + A1 + At)

Here, z0(t), z1(t) and zt(t) are auxiliary functions of t that can be expressed in terms q(t)
and a function p(t) defined by:

p =
z0 + θ0

q
+
z1 + θ1

q − 1
+
zt + θt
q − t

(2.7)

The explicit expressions of (z0, z1, zt) in terms of (p, q) are given by:

z0 =
1

θ∞t

[
q2(q − 1)(q − t)p2 − pq((θ0 + θ1 + θt − θ∞)q2 − ((θ0 + θ1 − θ∞)t+ θ0 + θt − θ∞)q + (θ0 − θ∞)t)

+
1

4
(θ0 + θ1 + θt − θ∞)2q2 − 1

4
(θ0 + θ1 + θt − θ∞)((θ0 + θ1 − θt − θ∞)t+ θ0 − θ1 − θ∞ + θt)q − tθ0θ∞

]
z1 =

1

(t− 1)θ∞

[
− q(q − 1)2(q − t)p2 + p(q − 1)((θ0 + θ1 + θt − θ∞)2q2 − q((θ0 + θ1 − θ∞)t+ θ0 + θt) + θ0t)

−1

4
(θ0 + θ1 + θt − θ∞)2(q − 1)2 +

1

4
(θ0 + θ1 + θt − θ∞)(t(θ0 + θ1 − θt − θ∞) + 2θ∞ − 2θ1)(q − 1)

−θ1θ∞(t− 1)

zt = −z0 − z1 −
1

2
(θ0 + θ1 + θt + θ∞) (2.8)

In the previous six Lax pair, the monodromy parameters θ, θ0, θ1, θ∞, θt are assumed to be
generic (i.e. non singular in a sense defined below). In all six cases, the functions q(t) satisfy the
corresponding Painlevé equation. The functions p(t) are directly connected to the Hamiltonian
formulation of the problems that will be given in the next section. As one can notice, our Lax
pairs differ from the original ones given by Jimbo and Miwa. For completeness, we provide the
correspondence in appendix A. The choice of a Lax pair depends on a gauge choice Ψ(x, t) →
U(x, t)Ψ(x, t). Indeed, for a general gauge transformation Ψ̃(x, t) = U(x, t)Ψ(x, t) we have that
Ψ̃(x, t) satisfies a Lax pair system ∂xΨ̃ = D̃Ψ̃, ∂tΨ̃ = R̃Ψ̃ with:

D̃(x, t) = U(x, t)D(x, t)U−1(x, t) +
∂U

∂x
(x, t)U−1(x, t)

R̃(x, t) = U(x, t)R(x, t)U−1(x, t) +
∂U

∂t
(x, t)U−1(x, t) (2.9)

We discuss the possible gauge transformations and their consequences in the next sections:
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2.2 Admissible gauge transformations

In general, the Lax pair characterizing the Painlevé equations prescribes the pole singularities at
x ∈ {0, 1, t}. Therefore, in order to keep this structure, we may only allow gauge transformations
in which U(x, t) only depends on t but not on x (i.e. we take U(t)) or gauge transformations
that depend on x in a trivial way in order not to introduce “fake” singularities. This leads us to
introduce the following gauge transformations:

Definition 2.2 (Admissible gauge transformations) The gauge transformations Ψ̃(x, t) =
U(x, t)Ψ(x, t) where U(x, t) is given by either:

• U(x, t) = f(x, t)I2 =

(
r∏
i=1

(x− ai(t))νiθi
)
I2 where (ai(t))1≤i≤r are the pole singularities,

(θi)1≤i≤r the corresponding monodromy parameters and (νi)1≤i≤r are given real numbers.

• U(x, t) = U(t) is independent of x with U(t) invertible.

are called admissible.

The choice of the specific form of f(x, t) =
r∏
i=1

(x − ai(t))
νiθi is made so that x 7→ U(x, t) is

invertible except at the existing singularities of the Lax pairs. In the first kind of transformation
we get:

U(x, t) =

(
r∏
i=1

(x− ai(t))νiθi
)
I2 ⇒

(
D̃(x, t), R̃(x, t)

)
=

(
D(x, t) +

r∑
i=1

νiθi
x− ai

,R(x, t)−
r∑
i=1

νiθiȧi
x− ai

)
(2.10)

In the second case we get:

U(x, t) = U(t) ⇒
(
D̃(x, t), R̃(x, t)

)
=
(
U(t)D(x, t)U−1(t), U(t)R(x, t)U−1(t) + U̇(t)U−1(t)

)
(2.11)

Note in particular that we only used admissible gauge transformations (in appendix B) to
connect the Jimbo-Miwa Lax pairs to ours. As we will see later, all interesting quantities,
including Eynard-Orantin differentials, symplectic invariants, tau-functions, determi-
nantal formulas and spectral curve (up to a trivial symplectic transformation) are
invariant under admissible gauge transformations. For simplicity, we chose the gauge in
which all Lax pair are traceless (this fixes the right choice for f(x, t)) and in which the matrices
D(x, t) and R(x, t) have a nice ~ series expansion (this fixes U(t) up to trivial constant factors).
However, we stress again that our main results remain valid in any admissible gauge.

2.3 Introduction of ~
We deform the previous Lax pair by introducing a formal parameter ~ in the Lax system:

Definition 2.3 (Introduction of ~) We define a ~-deformation of the Lax pairs by requiring:

~∂xΨ(x, t) = D(x, t)Ψ(x, t) and ~∂tΨ(x, t) = R(x, t)Ψ(x, t) (2.12)

In particular the compatibility equation now reads:

~∂tD(x, t)− ~∂xR(x, t) + [D(x, t),R(x, t)] = 0 (2.13)
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Introducing ~ in this way may appear arbitrary, but for all six cases we can recover the ~-
deformation by a proper rescaling. Indeed, if we perform rescaling of the form:

(t̃, x̃, q̃, p̃, θ̃i) = (~δtt, ~δxx, ~δqq, ~δpp, ~δiθi) and Ψ̃ =

(
~δΨ 0
0 ~−δΨ

)
Ψ (2.14)

with suitable exponents, then the tilde systems expressed in the tilde variables satisfy the ~-
deformed versions of the Painlevé systems. In our six cases, the rescalings are given by:

• For Painlevé 1, we can obtain the ~-deformed version from (2.1) with the change of variables:

(t̃, x̃, q̃, p̃) =
(
~

4
5 t, ~

2
5x, ~

2
5 q, ~

3
5p
)

and Ψ̃ =

(
~ 1

10 0

0 ~− 1
10

)
Ψ (2.15)

• For Painlevé 2, we can obtain the ~-deformed version from (2.2) with the change of variables:

(t̃, x̃, q̃, p̃, θ̃) =
(
~

2
3 t, ~

1
3x, ~

1
3 q, ~

2
3p, ~θ

)
and Ψ̃ =

(
~ 1

6 0

0 ~− 1
6

)
Ψ (2.16)

• For Painlevé 3, we can obtain the ~-deformed version from (2.3) with the change of variables:

(t̃, x̃, q̃, p̃, θ̃0, θ̃∞) = (~t, x, q, ~p, ~θ0, ~θ∞) and Ψ̃ = Ψ (2.17)

• For Painlevé 4, we can obtain the ~-deformed version from (2.4) with the change of variables:

(t̃, x̃, q̃, p̃, θ̃0, θ̃∞) =
(
~

1
2 t, ~

1
2x, ~

1
2 q, ~

1
2p, ~θ0, ~θ∞

)
and Ψ̃ =

(
~ 1

4 0

0 ~− 1
4

)
Ψ (2.18)

• For Painlevé 5, we can obtain the ~-deformed version from (2.5) with the change of variables:

(t̃, x̃, q̃, p̃, θ̃0, θ̃1, θ̃∞) = (~t, x, q, ~p, ~θ0, ~θ1, ~θ∞) and Ψ̃ = Ψ (2.19)

• For Painlevé 6, we can obtain the ~-deformed version from (2.6) with the change of variables:

(t̃, x̃, q̃, z̃0, z̃1, θ̃0, θ̃1, θ̃t, θ̃∞) = (t, x, q, ~z0, ~z1, ~θ0, ~θ1, ~θt, ~θ∞) and Ψ̃ =

(
~ 1

2 0

0 ~− 1
2

)
Ψ (2.20)

In this way, we observe that the introduction of a parameter ~ is equivalent to consider a
suitable scaling limit of the problem in which the monodromy parameters, x and t are sent to 0
or infinity in a certain way. Note also that we recover all standard Lax pairs by taking ~ = 1.
Introducing the ~ parameter modifies the Lax pairs, their compatibility equations and the Painlevé
equations. For example the Painlevé 6 Lax pair becomes:

D(x, t) =
A0(t)

x
+
A1(t)

x− 1
+
At(t)

x− t
, R(x, t) = −At(t)

x− t
− (q − t)(θ∞ − ~)

2t(t− 1)
σ3 (2.21)

where

A0 =

(
z0 + θ0

2
− q
t

tz0(z0+θ0)
q

−
(
z0 + θ0

2

)) , A1 =

(
z1 + θ1

2
q−1
t−1

− (t−1)z1(z1+θ1)
q−1

−
(
z1 + θ1

2

))

At =

(
zt + θt

2
− q−t
t(t−1)

t(t−1)zt(zt+θt)
q−t −

(
zt + θt

2

)) , A∞ =

(
θ∞
2

0
0 − θ∞

2

)
= −(A0 + A1 + At)

For completeness, we propose in appendix B the derivation of the ~-deformed version of the
Painlevé equations. We find:
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• Painlevé 1:
~2q̈ = 6q2 + t (2.22)

• Painlevé 2:

~2q̈ = 2q3 + tq +
~
2
− θ (2.23)

• Painlevé 3:

~2q̈ =
~2

q
q̇2 − ~2

t
q̇ +

4

t

(
θ0q

2 − θ∞ + ~
)

+ 4q3 − 4

q
(2.24)

• Painlevé 4:

~2q̈ =
~2

2q
q̇2 + 2

(
3q3 + 4tq2 +

(
t2 − 2θ∞ + ~

)
q − θ2

0

q

)
(2.25)

• Painlevé 5:

~2q̈ =

(
1

2q
+

1

q − 1

)
(~q̇)2 − ~2 q̇

t
+

(q − 1)2

t2

(
αq +

β

q

)
+
γq

t
+
δq(q + 1)

q − 1

with α =
(θ0 − θ1 − θ∞)2

8
, β = −(θ0 − θ1 + θ∞)2

8
, γ = θ0 + θ1 − ~ and δ = −1

2
(2.26)

• Painlevé 6:

~2q̈ =
~2

2

(
1

q
+

1

q − 1
+

1

q − t

)
q̇2 − ~2

(
1

t
+

1

t− 1
+

1

q − t

)
q̇

+
q(q − 1)(q − t)
t2(t− 1)2

[
α + β

t

q2
+ γ

t− 1

(q − 1)2
+ δ

t(t− 1)

(q − t)2

]
(2.27)

where the parameters are:

α =
1

2
(θ∞ − ~)2 , β = −θ

2
0

2
, γ =

θ2
1

2
and δ =

~2 − θ2
t

2

As mentioned earlier we recover the standard Painlevé equations by taking ~ = 1. Introducing
the ~ parameter modifies the admissible gauge transformations in the following sense:

Definition 2.4 (~-deformed admissible gauge transformations) With the introduction of
the parameter ~, the admissible gauge transformations Ψ̃(x, t) = U(x, t, ~)Ψ(x, t) are deformed
into:

• U(x, t, ~) =

(
r∏
i=1

(x− ai(t))
νiθi
~

)
I2 where (ai(t))1≤i≤r are the pole singularities, (θi)1≤i≤r the

corresponding monodromy parameters and (νi)1≤i≤r are given real numbers independent of x,
t and ~.

• U(x, t, ~) = U(t, ~) is independent of x with U(t, ~) invertible.
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The previous admissible gauge transformations transform the Lax pairs like:

U(x, t, ~) =

(
r∏
i=1

(x− ai)
νiθi
~

)
I2 ⇒

(
D̃(x, t), R̃(x, t)

)
=

(
D(x, t) +

r∑
i=1

νiθi
x− ai

,R(x, t)−
r∑
i=1

νiθiȧi
x− ai

)
(2.28)

and

U(x, t, ~) = U(t, ~) ⇒
(
D̃(x, t), R̃(x, t)

)
=
(
U(t, ~)D(x, t)U−1(t, ~), U(t, ~)R(x, t)U−1(t, ~) + ~U̇(t, ~)U−1(t, ~)

)
(2.29)

Remark 2.5 One could consider more general gauge transformations of the form U(x, t, ~) =
f(x, t, ~)I2 with any arbitrary function f(x, t, ~) . In that case, the correlation functions associ-
ated to the Lax pair Wn (defined in (6.1) or equivalently in (6.7)) would be invariant under such

transformations for n ≥ 2. However W1(x) would be changed into W̃1(x) = W1(x)− ∂xf(x,t,~)
f(x,t,~)

. This

implies that W1(x) may not have a nice ~ series expansion and may have poles at zeros of f(x, t, ~).
On the topological recursion side, the spectral curve (defined in section 5) would be changed by a

symplectic transformation of the form
(
x̃, Ỹ

)
=

(
x, Y −

(
∂xf(x,t,~)
f(x,t,~)

)(0)
)

. Note that this only makes

sense if ∂xf(x,t,~)
f(x,t,~)

admits a series expansion in ~. This transformation keeps the Eynard-Orantin

differentials ω
(g)
n with (n, g) 6= (1, 0) unchanged (see definition 5.3) as well as the symplectic in-

variants F (g) for g ≥ 0. However ω
(0)
1 (x) transforms into ω̃

(0)
1 (z) = ω

(0)
1 (z)−

(
∂xf(x,t,~)
f(x,t,~)

)(−1)

dx(z).

Consequently one can see that the correspondence between W̃1(x) and ω
(0)
1 (z) may only be gauge

invariant if ∂xf(x,t,~)
f(x,t,~)

is proportional to 1
~ . This is precisely why we restricted the admissible gauge

transformations to this specific form in definition 2.2 (and after rescaling definition 2.4). Note that
if we are only interested in the tau-function or in correlation functions Wn with n ≥ 2 then we may
include these general gauge transformations in the definition of admissible gauge transformations.

2.4 Hamiltonians, tau-function and Okamoto’s σ-form of the Painlevé
equations

It is well known since the works of Okamoto [34] that the Painlevé equations can be represented
as Hamiltonian systems. In this section, we provide the corresponding Hamiltonians associated
to our ~-deformed version of the Painlevé equations as well as the Jimbo-Miwa τ -functions and
Okamoto’s σ-functions.

Theorem 2.6 (Hamiltonian formulation) All six ~-deformations of the Painlevé equations
can be recovered from an Hamiltonian system HJ(p, q, ~) with 1 ≤ J ≤ 6 with the ~-deformed
equations of motion:

~q̇ =
∂HJ

∂p
(p, q, ~) and ~ṗ = −∂HJ

∂q
(p, q, ~) (2.30)

We list here the various Hamiltonians as well as their relations to the tau-function and
Okamoto’s σ-functions.

• Painlevé 1: The Hamiltonian is given by:

H1(p, q, t) =
1

2
p2 − 2q3 − tq (2.31)
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Moreover we have:
log τ1(t) = H1(p(t), q(t)) and σ1(t) = log τ1(t) (2.32)

Okamoto sigma-function satisfies the following differential equation:

~2σ̈1
2 + 4σ̇1

3 + 2tσ̇1 − 2σ1 = 0 (2.33)

• Painlevé 2: The Hamiltonian is given by:

H2(p, q, t) =
1

2
p2 + (q2 +

t

2
)p+ θq (2.34)

Moreover we have:
log τ2(t) = H2(p(t), q(t)) and σ2(t) = log τ2(t) (2.35)

Okamoto sigma-function satisfies the following differential equation:

~2σ̈2
2 + 4σ̇2

3 + 2tσ̇2
2 − 2σ2σ̇2 −

θ2

4
= 0 (2.36)

• Painlevé 3: The Hamiltonian is given by:

H3(p, q, t, ~) =
1

t

[
2q2p2 + 2(−tq2 + θ∞q + t)p− (θ0 + θ∞)tq − t2 − 1

4
(θ2

0 − θ2
∞)− ~pq

]
(2.37)

Moreover we have:

log τ3(t) = H3(p(t), q(t)) + ~
pq

t

=
1

t

[
2q2p2 + 2(−tq2 + θ∞q + t)p− (θ0 + θ∞)tq − t2 − 1

4
(θ2

0 − θ2
∞)

]
(2.38)

Okamoto sigma-function is directly connected to the tau-function by σ3(t) = t log τ3(t). It
satisfies the following differential equation:

~2 (tσ̈3 − σ̇3)2 − 4(2σ3 − tσ̇3)(σ̇3
2 − 4t2)− 2(θ2

0 + θ2
∞)(σ̇3

2 + 4t2) + 16θ0θ∞tσ̇3 = 0 (2.39)

• Painlevé 4: The Hamiltonian is given by:

H4(p, q, t) = qp2 + 2(q2 + tq + θ0)p+ 2(θ0 + θ∞)q (2.40)

Moreover we have:

log τ4(t) = H4(p(t), q(t)) and σ4(t) = log τ4(t) + 2t

(
θ0 +

1

3
θ∞

)
(2.41)

Okamoto sigma-function satisfies the following differential equation:

~2σ̈4
2 − 4(tσ̇4 − σ4)2 + 4(σ̇4 + α)(σ̇4 + β)(σ̇4 + γ) = 0 (2.42)

with α = −2θ0 − 2
3
θ∞, β = 2θ0 − 2

3
θ∞ and γ = 4

3
θ∞.
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• Painlevé 5: The Hamiltonian is given by:

H5(p, q, t) =
1

t

[
q(q − 1)2p2 +

(
θ0 − θ1 + θ∞

2
(q − 1)2 + (θ0 + θ1)q(q − 1)− tq

)
p+

1

2
θ0(θ0 + θ1 + θ∞)q

]
(2.43)

Jimbo-Miwa tau-function is directly connected to the Hamiltonian by:

log τ5 = H5(p(t), q(t))− θ0 + θ∞
2

− 1

4t
(θ0 − θ1 + θ∞)(θ0 + θ1 + θ∞) (2.44)

Okamoto sigma-function is defined by σ5(t) = tH5(p(t), q(t)) and satisfies:

~2t2σ̈5
2 −

(
σ5 − tσ̇5 + 2σ̇5

2 + (ν1 + ν2 + ν3)σ̇5

)2
+ 4σ̇5(σ̇5 + ν1)(σ̇5 + ν2)(σ̇5 + ν3) = 0 (2.45)

where (ν1, ν2, ν3) =
(
− θ0−θ1+θ∞

2
,−θ0,− θ0+θ1+θ∞

2

)
.

• Painlevé 6: The Hamiltonian is given by:

H6(p, q, t, ~) =
1

t(t− 1)

[
q(q − 1)(q − t)p2 − p (θ0(q − 1)(q − t) + θ1q(q − t) + (θt − ~)q(q − 1))

+
1

4
(θ0 + θ1 + θt − θ∞)(θ0 + θ1 + θt + θ∞ − ~)(q − t) +

1

2
((t− 1)θ0 + tθ1)(θt − ~)

]
(2.46)

Jimbo-Miwa tau-function is defined by:

log τ6 = H6(p(t), q(t), ~ = 0)

=
1

t(t− 1)

[
q(q − 1)(q − t)p2 − p (θ0(q − 1)(q − t) + θ1q(q − t) + θtq(q − 1))

+
1

4
(θ0 + θ1 + θt − θ∞)(θ0 + θ1 + θt + θ∞)(q − t) +

1

2
((t− 1)θ0 + tθ1)θt

]
(2.47)

We can then define Okamoto sigma-function with:

σ6(t) = t(t− 1) log τ6(t) +
1

4
(θ2
t − θ2

∞)t− 1

8
(θ2

0 + θ2
t − θ2

1 − θ2
∞) (2.48)

It satisfies the following differential equation:

0 = ~2σ̇6t
2(t− 1)2σ̈6

2 +

(
2σ̇6(tσ̇6 − σ6)− σ̇6

2 +
1

16
(θ2
t − θ2

∞)(θ2
1 − θ2

0)

)2

−
(
σ̇6 +

(θt + θ∞)2

4

)(
σ̇6 +

(θt − θ∞)2

4

)(
σ̇6 +

(θ0 + θ1)2

4

)(
σ̇6 +

(θ0 − θ1)2

4

)
(2.49)

Note that we can also define y(t) = t(t − 1)H6(p(t), q(t), ~) + 1
4
((θt − ~)2 − (θ∞ − ~)2)t −

1
8
(θ2

0 − θ2
1 + (θt − ~)2 − (θ∞ − ~)2) and observe that it satisfies:

0 = ~2t2(t− 1)2ẏÿ2 +

(
2ẏ(tẏ − y)− ẏ2 +

1

16
(θt − θ∞)(θt + θ∞ − 2~)(θ2

1 − θ2
0)

)2

−
(
ẏ +

(θt + θ∞ − 2~)2

4

)(
ẏ +

(θt − θ∞)2

4

)(
ẏ +

(θ0 + θ1)2

4

)(
ẏ +

(θ0 − θ1)2

4

)
(2.50)
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One can verify that the equations of motion for these Hamiltonians respectively recover (B.1),
(B.2), (B.3), (B.4), (B.5), (B.6). We also remark:

1. Only Painlevé 3 and Painlevé 6 Hamiltonians explicitly depend on ~.

2. In all six cases the tau-function is recovered from the Hamiltonian by taking:

log τj(t) = Hj(p(t), q(t), t, ~ = 0) (2.51)

Consequently all tau-functions can be seen as functions of (q, p) without any explicit depen-
dence on ~.

3. The σ-functions and the tau-functions always satisfy differential equations that only involve
~2 but not directly ~.

3 Formal series expansion in ~

3.1 General assumption

In this paper we are interested in the computation of the formal series expansion in ~. This
is equivalent to the WKB expansion of the matrix Ψ(x, t). It is well known that these series
expansions may not be convergent and that convergent solutions may require additional correction
terms. In this paper we only deal with the combinatorial formal series expansion in ~ and postpone
the convergence issues to future works. Conseuently we assume that the solutions of the Painlevé
equations admit a series expansion in ~:

Assumption 3.1 (Existence of a formal expansion) We assume that the solutions
(qJ(t))1≤J≤6 of the Painlevé equations admit (possibly formal) series expansions in ~ of the
form:

qJ(t) =
∞∑
k=0

q
(k)
J (t)~k (3.1)

Moreover to have more compact notation we will denote q(0)(t) by q0(t) in the rest of the paper.

Under the previous assumption, it is very easy to see that the other quantities in the Lax pairs
(2.1)∼(2.6) admit a series expansion of the same form. Thus we get:

DJ(x, t) =
∞∑
k=0

D(k)
J (x, t)~k and RJ(x, t) =

∞∑
k=0

R(k)
J (x, t)~k (3.2)

We stress here that the existence of a series expansion of the form (3.2) depends
on the very specific selection of the gauge U(t, ~). However the existence of such series
expansions is invariant under gauge transformations defined in (2.28).

Remark 3.2 We note that the gauge choice in [23] is not exactly of the right form to obtain
(3.2). Indeed, in Jimbo-Miwa, most of the Lax pairs involved off-diagonal factors u(t), v(t) or k(t)
satisfying differential equations of the form ~d log u

dt
= . . . where . . . indicates some explicit functions
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of (q(t), p(t)) having a series expansion starting at ~0. Thus u(t) (resp. v(t), k(t)) would have a

term in e−
u(−1)(t)

~ . Consequently in Jimbo-Miwa gauge we would get series expansions of the form:

DJ(x, t) =


∞∑
k=0

d1,1(x, t) e−
u(−1)(t)

~

(
∞∑
k=0

d1,2(x, t)

)
e
u(−1)(t)

~

(
∞∑
k=0

d2,1(x, t)

)
∞∑
k=0

d2,2(x, t)


RJ(x, t) =


∞∑
k=0

r1,1(x, t) e−
u(−1)(t)

~

(
∞∑
k=0

r1,2(x, t)

)
e
u(−1)(t)

~

(
∞∑
k=0

r2,1(x, t)

)
∞∑
k=0

r2,2(x, t)


(3.3)

In all six cases, we selected the gauge by an adequate transformation ΨJ(x, t) → UJ(t, ~)ΨJ(x, t)

with UJ(t, ~) =

(
u(−1)(t)

1
2 0

0 u(−1)(t)−
1
2

)
such that the exponential factors vanish. Details can be

found in appendix A for all six cases. As mentioned earlier, the gauge choice U(t, ~) is irrelevant
since all interesting quantities that we are about to define will be invariant under admissible gauge
transformations.

3.2 Generic monodromy parameters and singular times

In our paper, we want to study generic cases of the Painlevé equations. This implies that some
values of the monodromy parameters should be avoided because they correspond to singular cases
where the Painlevé equations are degenerate. We assume that:

Assumption 3.3 (Non-singular monodromy parameters) The monodromy parameters of
the Painlevé equations are assumed to be generic in the following sense:

• For Painlevé 2: θ 6= 0

• For Painlevé 3: θ∞ 6= 0, θ0 6= 0 and θ2
∞ 6= θ2

0

• For Painlevé 4: θ∞ 6= 0, θ0 6= 0 and θ2
∞ 6= θ2

0

• For Painlevé 5: θ0, θ1, θ∞ 6= 0 and θ∞ + ε0θ0 + ε1θ1 6= 0 for all possible choice of (ε0, ε1) in
{−1, 1}2.

• For Painlevé 6: θ0, θ1, θt, θ∞ 6= 0 and θ2
0 6= θ2

1 and θ∞ + ε0θ0 + ε1θ1 6= 0 for all possible choice
of (ε0, ε1) in {−1, 1}2 and θ∞ + ε0θ0 + ε1θ1 + εtθt 6= 0 for all possible choice of (ε0, ε1, εt) in
{−1, 1}2.

Moreover, we also need to exclude some specific times t0. Let us denote generically:

~2q̈(t) = ~2BJ(q, q̇, t) + AJ(q, t, ~) (3.4)

the J th Painlevé equations where AJ and BJ are polynomial functions. Note that AJ is always at
most linear in ~. Then we define singular times in the following sense:
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Definition 3.4 (Singular times) We call a time t singular for the Painlevé equation PJ if it
belongs to the set

∆J =

{
t ∈ C such that there exists q satisfying AJ(q, t, ~)|~=0 = 0 and

∂AJ
∂q

(q, t, ~)|~=0 = 0

}
.

(3.5)

Singular times correspond to specific algebraic relations satisfied by q0, t and the monodromy
parameters. We list here the corresponding conditions on the monodromy parameters to avoid
singular cases:

• For Painlevé 1: 6q2
0 + t = 0 is always satisfied by q0(t). The condition of singular times adds

the relation 12q0 = 0 thus giving that only t = 0 is a singular time corresponding to q0 = 0.

• For Painlevé 2: 2q3
0 + tq0− θ = 0 is always satisfied by q0(t). The condition of singular times

adds the relation 6q2
0 + t = 0 thus giving that singular times correspond to times for which

we have the algebraic relation:
4q3

0 + θ = 0 (3.6)

• For Painlevé 3: tq4
0 +θ0q

3
0−θ∞q0−t = 0 is always satisfied by q0(t). The condition of singular

times adds the relation 4tq3
0 + 3θ0q

2
0 − θ∞ = 0 thus giving that singular times correspond to

times for which we have the algebraic relation:

θ0q
6
0 − 3θ∞q

4
0 + 3θ0q

2
0 − θ∞ = 0 (3.7)

• For Painlevé 4: 3q4
0 + 4tq3

0 + (t2− 2θ∞)q2
0 − θ2

0 = 0 is always satisfied by q0(t). The condition
of singular times adds the relation 6q2

0 + 6tq0 + t2 − 2θ∞ = 0 thus giving that singular times
correspond to times for which we have the algebraic relation:

3q8
0 + 8θ∞q

6
0 + 6θ2

0q
4
0 + θ4

0 = 0 (3.8)

• For Painlevé 5 q0(t) satisfies the equation:

0 = (θ0 − θ1 − θ∞)2q5
0 − 3(θ0 − θ1 − θ∞)2q4

0

−2(2t2 − 4(θ0 + θ1)t− θ2
0 − θ2

1 − θ2
∞ + 4θ∞(θ0 − θ1) + 2θ0θ1)q3

0

−2(2t2 + 4(θ0 + θ1)t− θ2
0 − θ2

1 − θ2
∞ − 4θ∞(θ0 − θ1) + 2θ0θ1)q2

0

−3(θ0 − θ1 + θ∞)2q0 + (θ0 − θ1 + θ∞)2 (3.9)

The condition of singular times adds the relation:

t = −
(q0 − 1)2

(
(θ0 − θ1 − θ∞)2q4

0 + 2(θ0 − θ1 − θ∞)2q3
0 − 2(θ0 − θ1 + θ∞)2q0 − (θ0 − θ1 + θ∞)2

)
8q3

0(θ0 + θ1)

thus giving that singular times correspond to times for which we have the algebraic relation:

0 = (θ0 − θ1 − θ∞)4q9
0 + 3(θ0 − θ1 − θ∞)4q8

0 + 8(θ0 − θ1 − θ∞)2(θ2
0 + 6θ0θ1 + θ2

1 − θ2
∞)q6

0

−6(θ0 − θ1 − θ∞)2(θ0 − θ1 + θ∞)2q5
0 + 6(θ0 − θ1 − θ∞)2(θ0 − θ1 + θ∞)2q4

0

−8(θ0 − θ1 + θ∞)2(θ2
0 + 6θ0θ1 + θ2

1 − θ2
∞)q3

0 − 3(θ0 − θ1 + θ∞)4q0 − (θ0 − θ1 + θ∞)4

(3.10)
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• For Painlevé 6 q0(t) satisfies the equation:

θ2
∞ −

θ2
0t

q2
0

+
(t− 1)θ2

1

(q0 − 1)2
− θ2

t t(t− 1)

(q0 − t)2
= 0 (3.11)

This is equivalent to a polynomial equation of degree 6:

0 = θ2
∞q

6
0 − 2(t+ 1)θ2

∞q
5
0 +

(
−tθ2

0 + (t− 1)θ2
1 + (t2 + 4t+ 1)θ2

∞ − t(t− 1)θ2
t

)
q4

0

+2t
(
(t+ 1)θ2

0 − (t− 1)θ2
1 − (t+ 1)θ2

∞ + (t− 1)θ2
t

)
q3

0

−t
(
(t2 + 4t+ 1)θ2

0 − t(t− 1)θ2
1 − tθ2

∞ + (t− 1)θ2
t

)
q2

0

+2t2(t+ 1)θ2
0q0 − t3θ2

0 (3.12)

The condition of singular times adds the relation:

θ2
0t

q3
0

− (t− 1)θ2
1

(q0 − 1)3
+
t(t− 1)θ2

t

(q0 − t)3
= 0 (3.13)

4 Symmetry ~↔ −~
In this section we are interested into changing the formal parameter ~ into −~ and discuss about
the consequences on the various functions p(t), q(t), log τ(t), σ(t). We denote † the involution
operator that changes ~ into −~ and we would like to connect (p†, q†) to (p, q) For example in
Painlevé 2, q†(t) corresponds to the solution of the differential equation ~2ÿ = 2y3 + ty(−~

2
− θ)

while q(t) corresponds to the solution of the differential equation ~2ÿ = 2y3 + ty(~
2
− θ). There

are many ways to compute the connection: one can use the fact that σ(t) satisfies a differential
equation only involving ~2 but not directly ~ and show recursively that odd coefficients of the series
are vanishing. We choose here a simpler way starting directly from the Hamiltonian formalism.
More specifically we use the fact that by definition of an Hamiltonian system:

HJ(p†, q†, t,−~) = HJ(p, q, t, ~) and
∂HJ

∂t
(p†, q†, t,−~) =

∂HJ

∂t
(p, q, t, ~) (4.1)

The last conditions are sufficient to determine p† and q†. Then all other dag quantities ((log τ)†(t)
or σ†(t) for example)can easily be obtained. We find the following results:

• Painlevé 1:
q† = q , p† = −p , σ†1 = σ1 , (log τ1)† = log τ1 (4.2)

• Painlevé 2:

q† = −q − θ

p
, p† = p , σ†2 = σ2 , (log τ2)† = log τ2 (4.3)

• Painlevé 3:

q† =
−2qp2 + 2(tq − θ∞)p+ t(θ0 + θ∞)

2(p− t)p
, p† = p , σ†3 = σ3 , (log τ3)† = log τ3 (4.4)

• Painlevé 4:

q† =
p(pq + 2θ0)

2(pq + θ0 + θ∞)
, p† =

2q(pq + θ0 + θ∞)

pq + 2θ0

, σ†4 = σ4 , (log τ4)† = log τ4 (4.5)
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• Painlevé 5:

q† =
p(2pq + θ0 − θ1 + θ∞)

(pq + θ0)(2pq + θ0 + θ1 + θ∞)
, p† =

q(pq + θ0)(2pq + θ0 + θ1 + θ∞)

2pq + θ0 − θ1 + θ∞
σ†5 = σ5 , (log τ5)† = log τ5 (4.6)

• Painlevé 6:

q† =
t2z0(z0 + θ0)(q − 1)

t2z0(z0 + θ0)(q − 1)− (t− 1)2z1(z1 + θ1)q
, p† =

z0 + θ0

q†
+
z1 + θ1

q† − 1
+
zt + θt
q† − t

z†0 = z0 , z
†
1 = z1 , z

†
t = zt , σ

†
6 = σ6 , (log τ6)† = log τ6 (4.7)

where z0, z1 and zt are given in (2.8)

We then observe in all six cases that the τ -functions and the σ-functions are even function of
~. Consequently their series expansions may only involve even powers of ~ and we may write:

log τJ(t) =
∞∑
k=0

τ
(2k)
J ~2k and σJ(t) =

∞∑
k=0

σ
(2k)
J ~2k (4.8)

This is of course consistent with the fact that the differential equations for σJ(t) (equations (2.33)-
(2.49)) only involve ~2 but not directly ~. This is also coherent with the fact that we want to
match the tau-function with the symplectic invariants (that only involve even powers of ~) arising
from the topological recursion.

5 Spectral curves and topological recursion

5.1 Computation of the spectral curves

Following the theory developed by Bergère and Eynard in [3], the spectral curve associated to a
2× 2 Lax pair is defined by:

(det(Y I2 −D(x, t)))(0) = 0 (5.1)

In other words, it is given by the leading order in ~ of the characteristic polynomial of D(x, t). In
our case, since the Lax pairs are traceless, it is equivalent to an hyper-elliptic equation:

Y 2 = − (detDJ)(0) (x, t) = EJ(x, t) with EJ(x, t) rational function of x (5.2)

Precisely speaking, the curve (5.1) is a family of algebraic curves parametrized by the time t and
the monodromy parameters θ∗, but we will omit the dependence of parameters for simplicity. As
presented in [3] and in [16], the spectral curve is the key element to implement the topological
recursion. It is also connected with the WKB expansion of the matrix ΨJ(x, t) since the phase
function sJ(x, t) satisfies sJ(x, t)2 = EJ(x, t). and thus corresponds to the semi-classical limit in
the WKB analysis. Computing the spectral curves is relatively straightforward. One must project
the compatibility equations at order ~0. This implies that q0(t) satisfies a polynomial equation
that we provide in appendix C. Then one simply needs to compute the determinant and factorize
it using the various identities obtained at order ~0. We provide here the list of spectral curves for
our Painlevé Lax pairs.
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(PI) : Y 2 = 4(x+ 2q0)(x− q0)2

(PII) : Y 2 = (x− q0)2
(
x2 + 2q0x+ q2

0 + θ
q0

)
(PIII) : Y 2 =

(θ∞−θ0q2
0)2(q0x+1)2(x2+

2q0(θ∞q20−θ0)

θ0q
2
0−θ∞

x+q2
0)

4x4(q4
0−1)2 with t =

q0(θ∞−θ0q2
0)

q4
0−1

(PIV) : Y 2 =
(x−q0)2

(
x2+2(q0+t)x+

θ20
q20

)
x2 where t = −2q0 +

√
q2

0 + 2θ∞ +
θ2
0

q2
0

(PV) : Y 2 = t2(x−Q0)2(x−Q1)(x−Q2)
4x2(x−1)2

(See appendix D for formulas connecting (Q0, Q1, Q2) with q0, p0 and t)

(PVI) : Y 2 = θ2
∞(x−q0)2P2(x)

4x2(x−1)2(x−t)2 with P2(x) = x2 +
(
−1− θ2

0t
2

θ2
∞q

2
0

+
θ2
1(t−1)2

θ2
∞(q0−1)2

)
x+

θ2
0t

2

θ2
∞q

2
0

Table 1: List of all spectral curves

Remark 5.1 As one can see, the spectral curve is only defined through the matrix D(x, t) but
does not involve the second matrix R(x, t). Consequently, the notion of spectral curve is well-
defined not only for Lax pairs but simply for any linear differential system ∂xΨ(x) = L(x)Ψ(x).
Moreover, an important point is that the spectral curve is invariant under admissible
gauge transformations of the form Ψ̃(x, t) = U(t, ~)Ψ(x, t) even if D(0)(x, t) cannot be

defined (but (detD)(0) always will be). Note however that the spectral curve is not invariant under
admissible gauge transformations (2.28). Nevertheless, the two spectral curves are connected via a
symplectic transformation (x̃ = F (x, Y ), Ỹ = G(x, Y )) with dx̃∧ dỸ = dx∧ dY of the form x̃ = x

and Ỹ = Y + g(x) (with g(x) = −1
2

∑r
i=1

νiθi
x−ai ) under which Eynard-Orantin differentials ω

(g)
n with

(n, g) 6= (1, 0) and symplectic invariants (defined in section 5.3) are known to be invariant.

5.2 General features of the spectral curves

In the topological recursion, the number and type of branchpoints of the spectral curve are crucial
and thus we need to exclude all possible non-generic cases that may arise in the previous list of
spectral curves. In this section, we detail why we can exclude all these cases for our spectral curves.

• For PI, the spectral curve presents a double zero at x = q0 and a simple zero at x = −2q0.
Consequently as soon as q0 6= 0, i.e. t 6= 0 (since 6q2

0 + t = 0) these zeros are distinct. This
exceptional situation precisely corresponds to the singular time defined in 3.4.

• For PII, the spectral curve presents a double zero at x = q0 and generically two simple zeros

at x = −q0 ±
√

θ
q0

. Thus we observe that these simple zeros are always distinct as soon as

the monodromy parameter θ is not vanishing. Moreover, these simple zeros can never equal
q0 as soon as t /∈ ∆II . Indeed, saying that one of the simple zero equals the double zero q0

at time t is equivalent to say that 4q3
0 + θ = 0 which precisely corresponds to the singular

times as defined in 3.4.

• For PIII, The spectral curve has a double zero at x = − 1
q0

and generically two simple zeros

solutions of (θ∞ − θ0q
2
0)X2 − 2q0(θ∞q

2
0 − θ0)X + q2

0(θ∞ − θ0q
2
0) = 0. The spectral curve is

also singular at x = 0. Requiring that we have at least a triple zero is equivalent to having a
singular time (3.7). Moreover, requiring that the two simple poles coincide is equivalent to
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q2
0(q4

0 − 1)(θ2
∞ − θ2

0) = 0. This precisely corresponds to singular monodromy parameters and
therefore can be discarded.

• For PIV, the spectral curve presents a double zero at x = q0, a double pole at x = 0 and

generically two simple zeros satisfying X2 + 2(q0 + t)X +
θ2
0

q2
0
. Requiring that a zero occurs at

x = 0 is equivalent to having the singular monodromy θ0 = 0. It may happen that for some
time t, the two simple zeros coincide. This is equivalent to requiring that q2

0(q0 + t)2 = θ2
0.

However, q0 satisfies (C.4) at all time which is equivalent to t2q2
0 +4tq3

0 +3q4
0−2θ∞q

2
0−θ0 = 0.

Combining both equations leads to:

(θ0 + θ∞)q2
0 = 0 or (θ0 − θ∞)q2

0 = 0

Since q0 can never vanish, it is equivalent to θ2
0 6= θ2

∞ i.e. that we have singular monodromy
parameters. Eventually requiring that for some time t, one of the simple zero coincide with

the double zero q0 is equivalent to require that 3q3
0 +2tq0+

θ2
0

q0
= 0 which is precisely equivalent

to (3.8), i.e. that we have a singular time.

• For PV, the generic case corresponds to a spectral curve with two double poles at x ∈ {0, 1}
with a double zero at x = Q0 and two simple zeros at Q1 and Q2. In appendix D, the
discussion leads to the fact that Q0, Q1 and Q2 cannot be equal to 0 or 1 as soon as the
monodromies θ0, θ1 and θ∞ are non-vanishing. Moreover we also prove that the simple zeros
can never coincide as soon as the monodromy parameters are non-singular. Eventually,
requiring that we have a triple zero is proved to be equivalent to having a singular time.

• For PVI, the generic case corresponds to a spectral with a double zero at x = q0 and two

simple zeros solutions of P2(X) = X2 +
(
−1− θ2

0t
2

θ2
∞q

2
0

+
θ2
1(t−1)2

θ2
∞(q0−1)2

)
X +

θ2
0t

2

θ2
∞q

2
0
. Note that the

polynomial P2(x) is equivalently defined through the following conditions:

P2(0) =
θ2

0t
2

θ2
∞q

2
0

, P2(1) =
(t− 1)2θ2

1

θ2
∞(q0 − 1)2

and P2(t) =
t2(t− 1)2θ2

t

θ2
∞(q0 − t)2

. (5.3)

So that we have:

P2(x) =
θ2

0t

θ2
∞q

2
0

(x− 1)(x− t)− (t− 1)θ2
1

θ2
∞(q0 − 1)2

x(x− t) +
t(t− 1)θ2

t

θ2
∞(q0 − t)2

x(x− 1) (5.4)

The spectral curve also has double poles at x ∈ {0, 1, t}. Discussion in appendix D leads to
the fact that as soon as the monodromy parameters are non-singular then the zeros can never
equal the poles {0, 1, t} and that the simple zeros may never coincide. Eventually, requiring
a triple zero is equivalent to having a singular time (3.13).

In the end, we obtain the following statement:

Proposition 5.2 (Non degeneracy of the spectral curve) For any J = I, . . . ,VI, the spec-
tral curves generically have a double zero and two simple zeros. Moreover:

• As soon as the monodromy parameters are non-singular then the zeros of the spectral curve
are different from its poles and the simple zeros are distinct.

• Requiring that the spectral curve has a triple zero is equivalent to having a singular time.

In conclusion as soon as we take non-singular monodromies and avoid singular times then the
spectral curves are generic.
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5.3 Topological recursion

In the previous list of spectral curves, we observe that the r.h.s. always have at most two simple
zeros. This is equivalent to say that the Riemann surfaces S defined by the spectral curves are of
genus 0 and therefore that the functions (x, Y ) can be parametrized with rational functions x(z),
y(z) of z with z ∈ C ∪ {∞}. The standard approach is to take the Zhukovski parametrization
whose expression is given by:

• For (PI) (one branchpoint case) we can use the parametrization:{
x(z) = z2 − 2q0

Y (z) = 2z(z2 − 3q0).
(5.5)

• For (PII), (PIII), (PIV), (PV) and (PVI) (two branchpoints cases), let us denote generically
Y 2(x) = (x−a)(x− b)C2(x) with C(x) a rational function of x. Then we can use the general
parametrization: 

x(z) =
a+ b

2
+
b− a

4
(z +

1

z
)

Y (z) =
b− a

4
(z − 1

z
)C(x(z)).

(5.6)

In both cases, points where the one-form dx(z) is vanishing are called branchpoints. With the
parametrizations presented above they are located at z = 0 and z = ±1. In both cases, there
exists a global involution z 7→ z̄ satisfying:

x(z̄) = x(z) and Y (z̄) = Y (z)

In the parametrizations presented above, the involution is respectively z̄ = −z for Painlevé 1 and
z̄ = 1

z
for the other cases. Note that in the case of a genus 0 curve, the involution is not only local

(i.e. valid around branchpoints) but global (i.e. valid on the whole Riemann surface). We now
recall the definition of correlation functions and symplectic invariants as introduced by Eynard
and Orantin in [16].

Definition 5.3 (Definition 4.2 of [16]) For g ≥ 0 and n ≥ 1, Eynard-Orantin differentials

(known also as correlation functions) ω
(g)
n (z1, . . . , zn) of type (g, n) associated to the spectral curve

(x(z), Y (z)) are defined by the following recursive relations:

ω
(0)
1 (z1) = (Y (z1)− Y (z̄1))dx(z1) = 2Y (z1)dx(z1), (5.7)

ω
(0)
2 (z1, z2) =

dz1dz2

(z1 − z2)2
, (5.8)

ω
(g)
n+1(z0, z1, . . . , zn) =

∑
r branchpoints

Res
z→r

K(z0, z)
[
ω

(g−1)
n+1 (z, z̄, z1, . . . , zn) (5.9)

+
′∑

g1+g2=g
I∪J={1,...,n}

ω
(g1)
1+|I|(z, zI)ω

(g2)
1+|J |(z̄, zJ)

]
.

Here

K(z0, z) =

∫ z̄
z
ω

(0)
2 (·, z0)

(Y (z)− Y (z̄))dx(z)
(5.10)
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is called the recursion kernel, and the ′ in the last line of (5.7) means that the cases (g1, I) = (0, ∅)
and (g2, J) = (0, ∅) must be excluded from the sum.

The Eynard-Orantin differentials ω
(g)
n ’s are meromorphic multi-differentials on Sn and are

known to be holomorphic except at the branchpoints if (g, n) 6= (0, 1), (0, 2). In [16], the authors
also introduced symplectic invariants F (g) defined by

Definition 5.4 (Definition 4.3 of [16]) The gth symplectic invariant of the spectral curve is
defined by

F (g) =
1

2− 2g

∑
r branchpoints

Res
z→r

Φ(z)ω
(g)
1 (z) for g ≥ 2 (5.11)

where

Φ(z) =

∫ z

zo

Y (z̃)dx(z̃) (zo is a generic point). (5.12)

F (0) and F (1) are defined with specific formulas (see §4.2.2 and §4.2.3 of [16]).

Note that this definition extends to the case n ≥ 0 (with the identification ω
(g)
0 = F (g)) the

following property satisfied by the Eynard-Orantin differentials:

ω(g)
n (z1, . . . , zn) =

1

2− 2g − n
∑

r branchpoints

Res
z→r

Φ(z)ω
(g)
n+1(z, z1, . . . , zn) for g ≥ 0 (5.13)

Note also that the Eynard-Orantin differentials or symplectic invariants do not depend on the
choice of parametrization (x(z), Y (z)).

Remark 5.5 Since the spectral curve is invariant under gauge transformations of the form
Ψ̃(x, t) = U(t, ~)Ψ(x, t) then all Eynard-Orantin differentials and symplectic invariants are triv-
ially invariant under these gauge transformations. Eventually, as suggested by its name (see [16]
and [17] for the complicated proof), the symplectic invariants

(
F (g)

)
g≥0

are invariant under sym-

plectic transformations of the spectral curve, i.e. transformations (x̃, Ỹ ) = (F (x, Y ), G(x, Y )) for
which dx̃ ∧ dỸ = dx ∧ dY . In general, the Eynard-Orantin differentials may be affected by such
transformations but it happens that they remain invariant (except for ω

(0)
1 (z)) under simpler trans-

formations of the form (x̃ = x, Ỹ = Y + f(x)). The last point is obvious because the recursion

kernel K(z0, z) and ω
(0)
2 (z1, z2) are trivially invariant under such transformations. Consequently

we get that the Eynard-Orantin differentials ω
(g)
n with (n, g) 6= (1, 0) and the symplec-

tic invariants F (g) are invariant under admissible gauge transformations defined in
definition 2.4.

The case of ω
(0)
1 (z) is special. It is invariant under gauge transformations of the form (2.29)

but is not invariant under gauge transformations of the form (2.28). Easy computations show that:

ω̃
(0)
1 (z) = ω

(0)
1 (z)−

r∑
i=1

νiθi
x(z)− ai

dx(z) (5.14)

This will be in complete correspondence with the upcoming definition of the determinantal formulas.

Surprisingly, from the integrable system point of view, it appears that the notion of spectral
curve in its present form may not be as fundamental as expected in the literature since it is not
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invariant under all admissible gauge transformations. However, one can easily create a gauge
invariant object by considering the equivalence class of spectral curves (defined by an algebraic
equation E(x, Y ) = 0) under the equivalence relation R:

(E(x, Y ) = 0) R
(
Ẽ(x̃, Ỹ ) = 0

)
⇔ ∃f such that Ẽ(x, Y + f(x)) = E(x, Y )

In particular, the notions of Eynard-Orantin differentials (for (n, g) 6= (1, 0)) and symplectic in-
variants associated to an equivalence class are well-defined since they are invariant under such
transformations.

6 Determinantal formulas and topological type property

6.1 Determinantal formula

In this section we review the determinantal formulas formalism (developed in [2],[3]) that connect
the WKB solution of isomonodromic systems to the topological recursion correlation functions.
Let

Ψ(x) =

(
ψ(x) φ(x)

ψ̃(x) φ̃(x)

)
(6.1)

be the WKB solution of the isomonodromic system defined by our Lax pairs (here we are omit-
ting the t-dependence for simplicity). Determinantal formulas are obtained from the Christoffel-
Darboux kernel

K(x1, x2) =
ψ(x1)φ̃(x2)− ψ̃(x1)φ(x2)

x1 − x2

(6.2)

with the following definition:

Definition 6.1 (Definition 2.3 of [3]) The (connected) correlation functions are defined by:

W1(x) =
∂ψ

∂x
(x)φ̃(x)− ∂ψ̃

∂x
(x)φ(x), (6.3)

Wn(x1, . . . , xn) = − δn,2
(x1 − x2)2

+ (−1)n+1
∑

σ:n-cycles

n∏
i=1

K(xi, xσ(i)) for n ≥ 2 (6.4)

where σ is a n-cycle.

Under assumption (3.1), the correlation functions Wn admit a formal power series in ~ whose
coefficients are symmetric functions of x1, . . . , xn. Note that there exists an alternative expression
for the correlation functions in terms of the rank 1 projector:

M(x) = Ψ(x)

(
1 0
0 0

)
Ψ−1(x) =

(
ψφ̃ −ψφ
ψ̃φ̃ −φψ̃

)
. (6.5)

It is in fact the canonical projector on the first coordinate taken into the basis defined by Ψ(x).
The rank 1 projector satisfies:

M2 = M , TrM = 1 , detM = 0. (6.6)
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We remark that, under a general gauge transformation Ψ̃(x, t) = U(x, t)Ψ(x, t), M is only affected
by a simple change of basis: M̃(x, t) = U−1(x, t)M(x, t)U(x, t). Moreover, theorem 2.1 of [3] gives
an alternative expression for Wn(x1, . . . , xn):

W1(x) = −1

~
Tr(D(x)M(x)), (6.7)

W2(x1, x2) =
Tr(M(x1)M(x2))− 1

(x1 − x2)2
, (6.8)

Wn(x1, . . . , xn) = (−1)n+1Tr
∑

σ:n-cycles

n∏
i=1

M(xσ(i))

xσ(i) − xσ(i+1)

(6.9)

=
(−1)n+1

n

∑
σ∈Sn

TrM(xσ(1)) . . .M(xσ(n))

(xσ(1) − xσ(2)) . . . (xσ(n−1) − xσ(n))(xσ(n) − xσ(1))
for n ≥ 3.

Note that the definition of the correlation functions only involves the matrix D(x, t) but not
directly the time dependence. In fact these definitions apply for any 2× 2 linear system ∂xΨ(x) =
D(x)Ψ(x) even if it does not come from a Lax pair. From the alternative definition and the fact
that admissible gauge transformations acts on M only through a change of basis, it is obvious
that the correlation functions Wn (except W1) are invariant under admissible gauge
transformations defined in definition 2.4. We also mention that as presented in [2] and
[3], the correlation functions satisfy the so-called loop equations (i.e. an infinite set of relations
connecting the various functions).

The case of W1(x) is special. It is invariant under gauge transformations of type (2.29) but not

under gauge transformations of type (2.28). For such transformations Ψ̃(x, t) =
∏r

i=1(x − ai)
νiθi
~

we find from the alternative definition that:

W̃1(x) = W1(x)− 1

~

r∑
i=1

νiθi
x− ai

(6.10)

In particular, if the system satisfies the Topological Type property (6.13) this implies that:

W̃
(0)
1 (x) = W

(0)
1 (x)−

r∑
i=1

νiθi
x− ai

and W̃
(g)
1 (x) = W

(g)
1 (x) for g ≥ 1 (6.11)

in perfect correspondence with (5.14) and remark 5.5.

6.2 Topological Type property

Following the work of Bergère, Borot and Eynard, we now give the definition of the Topological
Type property:

Definition 6.2 (Definition 3.3 of [2], Section 2.5 of [3]) In the case of a genus 0 spectral
curve, the differential system ∂xΨ(x) = D(x)Ψ(x) is said to be of topological type (or (TT), for
short) if the correlation functions Wn given in definition (6.3) or (6.7) satisfy the following condi-
tions:

(1) Existence of a series expansion in ~: The correlation functions admit a series expansion in
~ of the form:

Wn(x1, . . . , xn) =
∞∑
g=0

W (g)
n (x1, . . . , xn)~g (6.12)
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(2) Parity property: Wn|~ 7→−~ = (−1)nWn holds for n ≥ 1. This is equivalent to say that the
previous series expansion is even (resp. odd) when n is even (resp. odd).

(3) Pole structure: The functions W
(g)
n (x1, . . . , xn) only have poles at the branchpoints when

(g, n) 6= (0, 1), (0, 2), and W
(0)
2 (x1, x2) has a double pole at x1 = x2 with no other poles.

(4) Leading order: The leading order of the series expansion of the correlation function Wn is at
least of order ~n−2.

In summary, the four conditions are necessary and sufficient to prove that the functions Wn admit
a series expansion of the form:

Wn(x1, . . . , xn) =
∞∑
g=0

~n−2+2gW (g)
n (x1, . . . , xn) for n ≥ 1. (6.13)

with W
(g)
n (x1, . . . , xn) regular at the even zeros of the spectral curve.

Remark 6.3 If the spectral curve Y 2 = EJ(x) is of genus greater than one, we must add a

condition on filling fractions (period integrals of W
(g)
n along closed cycles on the spectral curve).

See Section 2.5 of [3] for details.

The main interest of the Topological Type property is that it is a sufficient condition to prove
the connection with the topological recursion. Indeed, it is proved in[2] and [3] that:

Theorem 6.4 (Theorem 2.1 of [3], Theorem 3.1 and Corollary 4.2 of [2]) If the differen-

tial system (2.1–2.6) satisfies the Topological Type property, then the functions W
(g)
n (x1, . . . , xn)

appearing in the formal expansion (6.13) of the correlation functions Wn(x1, . . . , xn) are identical

to the Eynard-Orantin differentials ω
(g)
n (z1, . . . , zn) obtained from the topological recursion applied

on the spectral curve in the following way:

W (g)
n (x(z1), . . . , x(zn))dx(z1) · · · dx(zn) = ω(g)

n (z1, . . . , zn) for g ≥ 0 and n ≥ 1, (6.14)

where x(z) is the parametrization of the spectral curve. Moreover, when the correlation functions
comes from a Lax pair, the ~ expansion of the isomonodromic τ -function (in the sense of [22]) of

the differential system (2.1–2.6) matches with the symplectic invariants generating function F
(g)
J (t)

obtained from the topological recursion applied to the spectral curve in the following sense:

− dF (g)

dt
(t) = τ (2g) for g ≥ 0 where τ (2g) is defined in (4.8) (6.15)

The last theorem is particularly interesting since it shows that the topological recursion recon-
structs the formal series expansions of the determinantal formulas and the tau-function of the Lax
system. Note that the Topological Type property is a sufficient condition to obtain this result but
at the moment it is not known whether it is necessary or not (so far all known cases in which the
topological recursion is known to reconstruct the corresponding quantities are of Topological Type
but it is unclear if this situation is generic).
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Remark 6.5 • The Topological Type property is invariant under admissible gauge
transformations presented in definition 2.4. Indeed, we have seen earlier that for
n ≥ 2 the correlation functions Wn(x1, . . . , xn) are invariant under admissible gauge trans-
formations (W1(x) being studied separately in (6.10)) so that if they satisfy the Topological
Type property in a gauge, they will satisfy the same property in any other gauge connected
to the previous one by an admissible gauge transformation.

• The sign in (6.15) is a matter of conventions chosen in [16]. Since we kept the notations of
[16] for the definition of the symplectic invariants we get an overall minus sign.

6.3 Main theorem

Our main theorem is formulated as follows:

Theorem 6.6 In all six Painlevé cases with generic monodromy parameters θ∗ satisfying Assump-
tion 3.3, the Lax pairs (2.1–2.6) associated with the Painlevé equations are of Topological Type.
Therefore, the ~-expansion of the τ -function and correlation functions Wn are respectively identi-
fied with the generating functions of symplectic invariants F

(g)
J and the correlation functions ω

(g)
J,n

computed from the topological recursion applied to the corresponding spectral curve as follows:

− 1

~2
ln τ(t, ~) =

∞∑
g=0

~2g−2 d

dt
F (g)(t), (6.16)

Wn

(
x(z1), . . . , x(zn)

)
dx(z1) · · · dx(zn) =

∞∑
g=0

~2g−2+nω(g)
n (z1, . . . , zn) for n ≥ 1. (6.17)

To support and complete our theorem we provide in appendix I the specific computations of
F (0) and F (1) and prove that they match with −τ (0) and −τ (2) up to constants. The general proof
of the Topological Type property is provided in Appendices E, F, G, H where we will prove that
the four conditions (1) ∼ (4) hold for all Lax pairs listed in section 2.1. The idea of our proof
is that choosing a gauge in which all quantities, including D(x, t), R(x, t) and M(x, t)
have nice ~ series expansion will allow us to show that the Topological Type property
is verified in this gauge. Since the correlation functions, the Eynard-Orantin differentials
and the Topological Type property are invariant under any admissible gauge transformations we
can extend this result for any Lax pairs connected to ours with an admissible gauge
transformation (thus including Jimbo-Miwa Lax pairs). In order to prove the four conditions
defining the Topological Type property, and especially the pole structure condition, we use to our
advantage the additional time differential equations that characterize our Lax pairs. This shows
the important role played by the isomonodromic time t in the Painlevé equations.

7 Conclusion

In this article we showed how to introduce by rescaling of the monodromy parameters a small formal
~ parameter in the formalism of the six Painlevé Lax pairs. In this formalism we then presented a
proof of the Topological Type property for all six Painlevé cases as well as the various connections
with the tau-function, Okamoto’s σ-functions and the Hamiltonians of the underlying problems.
The proof of the Topological Type property implies that for the six Painlevé equations, we can
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match the ~-formal series expansions of the correlation functions (i.e. determinantal formulas) Wn

and the tau-functions ln τ with respectively the Eynard-Orantin differentials ω
(g)
n and symplectic

invariants F (g) computed from the topological recursion applied on the spectral curve associated
to the Lax pair. We also discussed the validity of this result under certain gauge transformations
of the Lax pairs. Several questions arise from this work that would deserve further study:

• We have introduced the ~ parameter with a rescaling of the monodromy parameters but it
would be interesting to see if other interesting rescalings lead to regimes for which a spectral
curve can be defined.

• The approach developed in this article is purely formal since we assumed that solutions of
Painlevé equations had a series expansion in ~. However it is well known in matrix models
and in perturbation theory that these series expansions may not be convergent but only
Borel summable at ~ = 0. Therefore a natural extension to our work would be to study the
convergence of the series introduced in this paper. In particular, the fact that our spectral
curves are of genus 0 allows to hope that the series may be convergent at least in an open
neighborhood of ~ = 0.

• Connections between the topological recursion, matrix models, and integrable systems are
now well documented in the literature and this article corroborates this point. However,
since the strategy presented in this article (selection of a good gauge, introduction of ~,
computation of the spectral curve and proof of the topological type property) is quite general,
it seems that it could be tried successfully on other integrable systems.

• On the integrable system side, our analysis shows that the important quantity is the matrix
M(x, t) rather than the matrix Ψ(x, t) whose gauge freedom artificially hardens the discussion
(in a similar way as the Ricatti versus Schrödinger equation). In fact, we believe that all
interesting physical quantities should be invariant under admissible gauge transformations
thus giving some legitimacy to the definition of correlation functions. In particular, it would
be interesting to redefine the initial Lax pair problem exclusively in terms of the matrix
M(x, t).

• In this article we introduced the ~ parameter from the Lax pair (rescaling of the parameters)
and deduced the corresponding modifications on the Hamiltonians underlying the Painlevé
equations. Surprisingly we found that for Painlevé equations 1, 2, 4 and 5, the introduction
of the ~ parameter does not change the explicit expression of the Hamiltonians (see theorem
2.6). For Painlevé equations 3 and 6 only a linear term in ~ appears and we can always obtain
the tau-function (see (2.51)) by taking ln τJ(t) = HJ(p(t), q(t), t, ~ = 0). This suggests that
our parameter ~ may have some nice interpretation in the Hamiltonian formulation.
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cursion in a specific asymptotic regime”, 2015.

[21] K. Iwaki and A. Saenz, “Quantum Curve and the First Painlevé Equation”, arxiv:1507.06557 ,
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A Connection with Jimbo-Miwa Lax pairs

In [23], the authors produced a list of Lax pairs corresponding to all six Painlevé equations.
In this paper we defined slightly different Lax pairs and for completeness we describe here the
various transformations connecting both sets. To avoid confusion, we denote with an index (JM)

all quantities appearing in Jimbo-Miwa paper [23]. The Jimbo-Miwa Lax pairs are:

∂

∂x
YJM(x, t) = AJM(x, t)YJM(x, t) and

∂

∂t
YJM(x, t) = BJM(x, t)YJM(x, t)

where AJM(x, t) and BJM(x, t) are 2× 2 matrices.

• The Lax pair for Painlevé 1 is the same as our Lax pair (2.1) with the identification (p, q) =
(zJM , yJM).

• The Lax pair for Painlevé 2 proposed by Jimbo and Miwa is:

AJM(x, t) =

(
x2 + zJM + t

2
uJM(x− yJM)

−2u−1
JM (zJMx+ zJMyJM + θ) −

(
x2 + zJM + t

2

))
BJM(x, t) =

1

2

(
x u

−2u−1
JMzJM −x

)
.

where two t-dependent functions zJM(t) and uJM(t) are introduced. Our Lax pair (2.2) is
connected to the former one with:

Ψ(x, t) =

(
u
− 1

2
JM(t) 0

0 u
1
2
JM(t)

)
YJM(x, t) and (p, q) = (zJM , yJM) .

• The Lax pair for Painlevé 3 proposed by Jimbo and Miwa is given by:

AJM(x, t) =
t

2
σ3 +

1

x

(
− θ∞

2
uJM

vJM
θ∞
2

)
+

1

x2

(
zJM − t

2
−wJMzJM

w−1
JM(zJM − t) −zJM + t

2

)
BJM(x, t) =

x

2
σ3 +

1

t

(
0 uJM
vJM 0

)
− 1

2tx

(
zJM − t

2
−wJMzJM

w−1
JM(zJM − t) −zJM + t

2

)

where uJM = −zJMyJMwJM and vJM =
−(zJM−t)yJM−θ∞+ t

2zJM
(θ0+θ∞)

wJM
. The connection with

our Lax pair (2.3) is given by the gauge transformation:

Ψ(x, t) =

(
w
− 1

2
JM(t) 0

0 w
1
2
JM(t)

)
YJM(x, t) and (p, q) = (zJM , yJM)

28



• The Lax pair for Painlevé 4 proposed by Jimbo and Miwa is given by:

AJM(x, t) =

(
x+ t− zJM−θ0

x
uJM

(
1− yJM

2x

)
2

uJM
(zJM − θ0 − θ∞) + 2zJM (zJM−2θ0)

uJMyJMx
−x− t+ zJM−θ0

x

)
BJM(x, t) =

(
x uJM

2
uJM

(zJM − θ0 − θ∞) −x

)
Our Lax pair (2.4) can be obtained from the former Lax pair by the gauge transformation:

Ψ(x, t) =

(
u
− 1

2
JM 0

0 u
1
2
JM

)
YJM(x, t)

and the identification (p, q) =
(
−2zJM

yJM
, yJM

2

)
.

• The Lax pair for Painlevé 5 proposed by Jimbo and Miwa is:

AJM (x, t) =

 t
2 +

zJM+
θ0
2

x − zJM+
θ0+θ∞

2

x−1 −uJM (zJM+θ0)
x +

uJMyJM (zJM+
θ0−θ1+θ∞

2 )

x−1
zJM
uJMx

− zJM+
θ0+θ1+θ∞

2

uJMyJM (x−1) − t
2 −

zJM+
θ0
2

x +
zJM+

θ0+θ∞
2

x−1


BJM (x, t) =

(
x
2

uJM
t

(
zJM + θ0 − yJM

(
zJM + θ0−θ1+θ∞

2

))
1

tuJM

(
zJM − 1

yJM

(
zJM + θ0+θ1+θ∞

2

))
−x2

)

We note here two typos in the Lax pair proposed in [23] where BJM(x, t) lacks the x factor
and the sign of the (1, 2) entry is not correct. We can obtain the Lax pair proposed in (2.5)
from this one by the gauge transformation:

Ψ(x, t) =

(
u
− 1

2
JM 0

0 u
1
2
JM

)
YJM(x, t)

and the identification (p, q) = (zJMyJM ,
1

yJM
).

• The Lax pair for Painlevé 6 proposed by Jimbo and Miwa is:

AJM(x, t) =
(A0)JM

x
+

(A1)JM
x− 1

+
(At)JM
x− t

and B(x, t) = −(At)JM
x− t

where the matrices (A0)JM , (A1)JM and (At)JM are defined by:

(A0)JM =

(
(z0)JM + θ0 −uJM(z0)JM

u−1
JM((z0)JM + θ0) −(z0)JM

)
(A1)JM =

(
(z1)JM + θ1 −vJM(z1)JM

v−1
JM((z1)JM + θ1) −(z1)JM

)
(At)JM =

(
(zt)JM + θt −wJM(zt)JM

w−1
JM((zt)JM + θt) −(zt)JM

)
(A∞)JM =

(
1
2

(θ∞ − θ0 − θ1 − θt) 0
0 −1

2
(θ∞ + θ0 + θ1 + θt)

)
= −(A0 + A1 + At)

with:

uJM =
kJMyJM
t(z0)JM

, vJM = −kJM(yJM − 1)

(t− 1)(z1)JM
, wJM =

kJM(yJM − t)
t(t− 1)(zt)JM
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Our Lax pair (2.6) is connected to the previous Lax pair via a gauge transformation:

Ψ(x, t) = x−
θ0
2 (x− 1)−

θ1
2 (x− t)−

θt
2

(
kJM(t)−

1
2 0

0 kJM(t)
1
2

)
YJM(x, t)

and the identifications:

z0 = (z0)JM , z1 = (z1)JM , zt = (zt)JM and (p, q) = (zJM , yJM).

B Derivation of the ~-deformed Painlevé equations from

the Lax pairs

The introduction of the ~ parameter in the Lax pair after rescaling modifies to some extent the
various equations obtained from the compatibility equation

~∂tD(x, t)− ~∂xR(x, t) + [D(x, t),R(x, t)] = 0.

In this section we present those modifications as well as their consequences on the final Painlevé
equations.

B.1 Painlevé 1

The compatibility equation for (2.1) gives the following system of equations:

~ṗ = 6q2 + t and ~q̇ = p, (B.1)

from which it is trivial to deduce that q(t) satisfy the ~-modified Painlevé 1 equation:

~2q̈ = 6q2 + t.

B.2 Painlevé 2

The compatibility equation for (2.2) gives the following system of equations:

~ṗ = −2qp− θ and ~q̇ = p+ q2 +
t

2
. (B.2)

Taking the derivative of the first equation and inserting it back into the second equation gives that
q(t) satisfies the ~-modified Painlevé 2 equation:

~2q̈ = 2q3 + tq +
~
2
− θ.

B.3 Painlevé 3

The compatibility equation for (2.3) gives the following system of equations:

~ṗ =
1

t

[
−4qp2 − p(−4tq + 2θ∞ − ~) + t(θ0 + θ∞)

]
and ~q̇ =

1

t

[
4q2p− 2tq2 + q(2θ∞ − ~) + 2t

]
.

(B.3)
Extracting p(t) from the second equation and inserting it back into the first one gives that q(t)
satisfies the ~-modified Painlevé 3 equation:

~2q̈ =
~2

q
q̇2 − ~2

t
q̇ +

4

t

(
θ0q

2 − θ∞ + ~
)

+ 4q3 − 4

q
.
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B.4 Painlevé 4

The compatibility equation for (2.4) gives the following system of equations:

~ṗ = −p2 − 4pq − 2tp− 2(θ0 + θ∞) and ~q̇ = 2(pq + q2 + tq + θ0). (B.4)

Extracting p from the second equation and inserting it back into the first equation gives (after
some substantial computations) that q(t) satisfies the ~-modified Painlevé 4 equation:

~2q̈ =
~2

2q
q̇2 + 2

(
3q3 + 4tq2 +

(
t2 − 2θ∞ + ~

)
q − θ2

0

q

)
.

B.5 Painlevé 5

The compatibility equation for (2.5) gives the following system of equations:

t~
d(pq)

dt
= −q(q2 − 1)p2 +

(
−q2 3θ0 + θ1 + θ∞

2
+
θ0 − θ1 + θ∞

2

)
p− qθ0(θ0 + θ1 + θ∞)

2

2t~q̇(2pq + θ0 − θ1 + θ∞)− 4t~q
d(pq)

dt
= 4p2q2(3q − 1)(q − 1)

+4pq
(
(4θ0 + 2θ∞)q2 − q(t+ 4θ0 + 2θ1 + 3θ∞) + θ0 − θ1 + θ∞

)
+q2(5θ2

0 − θ2
1 + θ2

∞ + 6θ0θ∞)− 2q(θ0 − θ1 + θ∞)(t+ 2θ0 + θ∞) + (θ0 − θ1 + θ∞)2.

This is equivalent to:

t~q̇ = 2q(q − 1)2p+
3θ0 + θ1 + θ∞

2
q2 − (t+ 2θ0 + θ∞)q +

θ0 − θ1 + θ∞
2

t~ṗ = −(3q2 − 4q + 1)p2 + (−(3θ0 + θ1 + θ∞)q + t+ 2θ0 + θ∞) p− 1

2
θ0(θ0 + θ1 + θ∞).(B.5)

Extracting p from the first equation and inserting it back into the second gives that q(t) satisfies
the ~-modified Painlevé 5 equation:

~2q̈ =

(
1

2q
+

1

q − 1

)
(~q̇)2 − ~2 q̇

t
+

(q − 1)2

t2

(
αq +

β

q

)
+
γq

t
+
δq(q + 1)

q − 1

with α =
(θ0 − θ1 − θ∞)2

8
, β = −(θ0 − θ1 + θ∞)2

8
, γ = θ0 + θ1 − ~ and δ = −1

2
.

B.6 Painlevé 6

Following the various steps proposed in [23], one can follow the introduction of the ~ parameter in
the Painlevé 6 system. We find:

~t(t− 1)q̇ = 2q(q − 1)(q − t)p− θ0(q − 1)(q − t)− θ1q(q − t)− (θt − ~)q(q − 1)
~t(t− 1)ṗ = (−3q2 + 2q(t+ 1)− t)p2 + ((2q − t− 1)θ0 + (2q − t)θ1 + (2q − 1)(θt − ~)) p

−1

4
(θ0 + θ1 + θt − θ∞)(θ0 + θ1 + θt + θ∞ − 2~) (B.6)

Extracting p from the first equation and inserting it back into the first one gives that q satisfies
the ~-modified Painlevé 6 equation:

~2q̈ =
~2

2

(
1

q
+

1

q − 1
+

1

q − t

)
q̇2 − ~2

(
1

t
+

1

t− 1
+

1

q − t

)
q̇
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+
q(q − 1)(q − t)
t2(t− 1)2

[
α + β

t

q2
+ γ

t− 1

(q − 1)2
+ δ

t(t− 1)

(q − t)2

]
(B.7)

where the parameters are:

α =
1

2
(θ∞ − ~)2 , β = −θ

2
0

2
, γ =

θ2
1

2
and δ =

~2 − θ2
t

2
.

C Algebraic equations satisfied by q0(t)

Considering the leading order in ~, we have that q0(t) satisfies an algebraic equation. These
equations can easily be obtained from the ~-deformed versions of the Painlevé equations after
discarding all higher ~ terms. Equivalently, they can also be obtained from the Hamiltonian
formalism by requiring that ∂HJ

∂p
= ∂HJ

∂q
= 0. We note these algebraic relation by EJ(q0, t) = 0

with J ∈ {1, . . . , 6} where EJ is a polynomial. We list here these equations in the case of our Lax
pairs:

• Painlevé 1:

6q2
0 + t = 0 ⇔ q0(t) = ±

√
t

6
(C.1)

• Painlevé 2:
2q3

0 + tq0 − θ = 0 (C.2)

• Painlevé 3:
tq4

0 + θ0q
3
0 − θ∞q0 − t = 0 (C.3)

• Painlevé 4:
3q4

0 + 4tq3
0 + (t2 − 2θ∞)q2

0 − θ2
0 = 0 (C.4)

• Painlevé 5:

(q0 − 1)2

t2

(
q0(θ0 − θ1 + θ∞)2

8
− (θ0 − θ1 − θ∞)2

8q0

)
+ (θ0 + θ1)

q0

t
− 1

2

q0(q0 + 1)

q0 − 1
= 0 (C.5)

which is equivalent to a polynomial equation of degree 5:

0 = q50 − 3q40 − 2q30

(
−1 +

2t2 − 4t(θ0 + θ1) + 2θ∞(θ0 − θ1)

(θ0 − θ1 − θ∞)2

)
−2q20

(
−1 +

2t2 + 4t(θ0 + θ1)− 6θ∞(θ0 − θ1)

(θ0 − θ1 − θ∞)2

)
− 3

(
θ0 − θ1 + θ∞
θ0 − θ1 − θ∞

)2

q0 +

(
θ0 − θ1 + θ∞
θ0 − θ1 − θ∞

)2

(C.6)

• Painlevé 6:

θ2
∞ −

θ2
0t

q2
0

+
(t− 1)θ2

1

(q0 − 1)2
− θ2

t t(t− 1)

(q0 − t)2
= 0 (C.7)

This is equivalent to a polynomial equation of degree 6:

0 = θ2
∞q

6
0 − 2(t+ 1)θ2

∞q
5
0 +

(
−tθ2

0 + (t− 1)θ2
1 + (t2 + 4t+ 1)θ2

∞ − t(t− 1)θ2
t

)
q4

0

+2t
(
(t+ 1)θ2

0 − (t− 1)θ2
1 − (t+ 1)θ2

∞ + (t− 1)θ2
t

)
q3

0

−t
(
(t2 + 4t+ 1)θ2

0 − t(t− 1)θ2
1 − tθ2

∞ + (t− 1)θ2
t

)
q2

0

+2t2(t+ 1)θ2
0q0 − t3θ2

0 (C.8)
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D Spectral curve for Painlevé 5 and Painlevé 6

In this appendix, we present the computations required to obtain the various results regarding the
spectral curves of the Painlevé 5 and Painlevé 6 case.

D.1 Spectral curve for Painlevé 5

Projecting the compatibility equations and the Painlevé 5 equation gives that p0 and q0 must obey:

0 = p0

(
p0 +

θ0 − θ1 + θ∞
2q0

)
− (p0q0 + θ0)

(
p0q0 +

θ0 + θ1 + θ∞
2

)
0 = t− 2p0(q0 − 1)2 + (q0 − 1)

(
θ0 − θ1 + θ∞

2q0

− 3θ0 + θ1 + θ∞
2

)
(D.1)

The determinant of D(x, t) is given by:

∆ =
t2

4x2(x− 1)2

(
x(x− 1)− θ∞

t
x− 2p0q0 + θ0

t

)2

+
1

x2(x− 1)2

(
−(x− 1)(p0q0 + θ0) + x

(
p0 +

θ0 − θ1 + θ∞
2q0

))(
p0q0(x− 1)− q0x

(
p0q0 +

θ0 + θ1 + θ∞
2

))
(D.2)

From the first equation of (D.1) it is easy to see that the second term of (D.2) admits a double
zero Q0(t) verifying:

Q0 = − p0

p0(q0 − 1) + θ0+θ1+θ∞
2

=
p0q0 + θ0

p0q0 + θ0 −
(
p0 + θ0−θ1+θ∞

2q0

) (D.3)

The second equation of (D.1) shows that Q0 is also a zero of x(x−1)− θ∞
t
x− 2p0q0+θ0

t
. Consequently

we also get that:

Q0 =
1

2

(
1 +

θ∞
t

)
+

1

2

√(
1 +

θ∞
t

)2

− 4(2p0q0 + θ0)

t
(D.4)

Solving for p0 in the second equation of (D.1) shows from (D.3) that we also have:

Q0 =
−(3θ0 + θ1 + θ∞)(q0 − 1)2 + 2(t− θ0 − θ1)(q0 − 1) + 2t

(q0 − 1) ((θ0 − θ1 − θ∞)(q0 − 1)2 − 2(t+ θ∞)(q0 − 1)− 2t)

=
q0 ((θ0 − θ1 − θ∞)(q0 − 1)2 + 2(t− θ0 − θ1)(q0 − 1) + 2t)

(q0 − 1) ((θ0 − θ1 − θ∞)(q0 − 1)2 + 2(t− θ∞)(q0 − 1) + 2t)
(D.5)

The last two expressions are equivalent since q0 satisfies (C.5). Eventually the determinant reads:

∆ = −t
2(x−Q0)2(x2 − Sx+ P )

4x2(x− 1)2
(D.6)

where at the moment S and P are the remaining unknown parameters of ∆. In fact they are given
by:

S =
1

2tq0

[
−(θ0 − θ1 − θ∞)q20 + 2(θ∞ + t)q0 + θ0 − θ1 + θ∞

]
P =

−1

16t2q20(q0 − 1)2
[
(θ0 − θ1 − θ∞)q30 − (3θ0 − 3θ1 − θ∞ + 2t)q20 + (3θ0 − 3θ1 + θ∞ − 2t)q0 − θ0 + θ1 − θ∞

]
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(D.7)

Another way to obtain the coefficients (Q0, S, P ) directly is to look at the asymptotic at x ∼ 0, x ∼
1 and x ∼ ∞. Using the form of the matrix D(x, t) we have that detD ∼

x→0
− θ2

0

4x2 , detD(x, t) ∼
x→1

− θ2
1

4(x−1)2 and detD(x, t) =
x→∞

− t2

4
+ tθ∞

2x
+ O

(
1
x2

)
. Therefore the parameters (Q0, S, P ) of the

spectral curve are characterized by the following system of equations:

t2Q2
0P = θ2

0

t2(1−Q0)2(1− S + P ) = θ2
1

t(2Q0 − 2 + S) = 2θ∞ (D.8)

This system can be solved and we get that the double zero Q0 of ∆(x, t) must satisfy the algebraic
equation:

0 = 2t2Q5
0 − t(5t+ 2θ∞)Q4

0 + 4t(t+ θ∞)Q3
0 − ((t+ θ∞)2 − (θ2

0 − θ2
1 + θ2

∞))Q2
0 − 2θ2

0Q0 + θ2
0

0 = Q2
0(Q0 − 1)2(2Q0 − 1)t2 − 2θ∞Q

2
0(Q0 − 1)2t+ (Q0(θ0 + θ1)− θ0)(Q0(θ0 − θ1)− θ0) (D.9)

This provides a direct evolution of the double zero Q0(t) in terms of t. Note that this evolution is
completely independent of q0 and p0 and only depends on the monodromy parameters. We now
need to rule out possible non-generic cases:

• The double zero may never equal 0 or 1. Indeed in that case (D.9) implies that θ2
0 = 0 and

−θ2
1 = 0 respectively.

• The simple zeros may never equal 0 or 1. Indeed in that case (D.8) implies that θ0 = 0 or
θ1 = 0 respectively.

• The simple zeros may never coincide. Indeed in that case we would get P = d2 and S = 2d
in (D.8). Solving the first and third equations leads to Q0 + d = 1 + θ∞

t
and dQ0 = ε0θ0

t
.

Inserting these relations into the second equation t2(Q0 − 1)2(d − 1)2 = θ2
1 is equivalent

to 1
t

∏
(ε0,ε1)∈{±1}2 (θ∞ + ε0θ0 + ε1θ1) = 0. Since t 6= 0, we get that the simple zeros never

coincide as soon as:

θ∞ + ε0θ0 + ε1θ1 6= 0 for all choices of (ε0, ε1) ∈ {±1}2 (D.10)

These conditions are exactly the same as those requiring that Painlevé 5 is non-degenerate.

• Eventually, we need to rule out the possibility that one of the simple zero becomes equal to
the double zero Q0. Let us observe that we have:

Q0 = −(3θ0 + θ1 + θ∞)q2
0 − 2(2θ0 + θ∞ + t)q0 + θ0 − θ1 + θ∞

(θ0 − θ1 − θ∞)q2
0 − 2(θ0 − θ1 + t)q0 + θ0 − θ1 + θ∞

Moreover assuming that Q0 is a triple zero of ∆(x) is equivalent to saying that ∆′′(Q0) = 0.
This provides a polynomial relation P (q0, t) between q0 and t. This polynomial is originally
of degree 4 in t and 8 in q0. However, since q0 and t are related by a polynomial relation
E5(q0, t) = 0 (Cf. (C.5)) which is of degree 2 in t, requiring P (q0, t) = 0 is equivalent to
require that gcd(P,E5)(q0, t) = 0 therefore leading to a new polynomial relation R(q0, t) = 0
of degree 1 in t. Solving this equation in t is easy and let us denote t = g(q0) the corresponding
solution where z 7→ g(z) is a rational function of z whose expression is explicit (but lengthy
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so we omit it here). Hence so far we have proved that the spectral curve admits a triple zero
if and only if t = g(q0) with g an explicit rational function. We can then insert t = g(q0)
into (C.5) and we get that:

4(q2
0 − 1)3q2

0 ((θ0 + θ1 + θ∞)q0 + θ0 − θ1 + θ∞)2R9(q0) = 0

where R9(z) is given by (3.10). It is obvious to see that q0 = − θ0−θ1+θ∞
θ0+θ1+θ∞

does not lead to an
admissible solution since it corresponds to t = 0. Consequently we recognize here that Q0 is
a triple zero if and only if t is a singular time.

D.2 Spectral curve for Painlevé 6

The computation of the spectral curve for Painlevé 6 leads to:

Y 2 =
θ2
∞(x− q0)2P2(x)

4(x− t)2x2(x− 1)2
with P2(x) = x2 +

(
−1− θ̃2

0t
2

q2
0

+
θ̃2

1(t− 1)2

(q0 − 1)2

)
x+

θ̃2
0t

2

q2
0

. (D.11)

Note that we can factorize θ2
∞ and rewrite the spectral curve only in terms of reduced monodromy

parameters defined by θ̃i = θi
θ∞

for i ∈ {0, 1, t}. Moreover P2(x) also admits a more symmetric
formulation. Using (C.7) we can reformulate it into:

Y 2 =
θ2
∞(x− q0)2P2(x)

4(x− t)2x2(x− 1)2
with P2(x) = x2 +

(
− θ̃

2
0t(t+ 1)

q2
0

+
θ̃2

1t(t− 1)

(q0 − 1)2
− θ̃2

t t(t− 1)

(q0 − t)2

)
x+

θ̃2
0t

2

q2
0

.

(D.12)
Equivalently it is defined by the following 3 conditions:

P2(0) =
θ̃2

0t
2

q2
0

, P2(1) =
(t− 1)2θ̃2

1

(q0 − 1)2
and P2(t) =

t2(t− 1)2θ̃2
t

(q0 − t)2
. (D.13)

so that:

P2(x) =
θ̃2

0t

q2
0

(x− 1)(x− t)− (t− 1)θ̃2
1

(q0 − 1)2
x(x− t) +

t(t− 1)θ̃2
t

(q0 − t)2
x(x− 1). (D.14)

We now discuss the general form of the spectral curve and its possible degeneracies.

• The spectral curve is generically of genus 0 since the numerator admits a double zero at
x = q0.

• From (D.13) we observe that P2(x) cannot have zeros at x ∈ {0, 1, t} when the monodromy
parameters θ0, θ1 and θt are non-vanishing. Additionally, P2(x) cannot have a double zero

since in that case, it would lead to the fact that 1 ± θ̃0t
q0
± θ̃1(t−1)

q0−1
= 0 in contradiction with

(C.7) when the monodromies are non-vanishing.

• The simple poles of P2(x) can never coincide. Indeed, in that case we would get from (D.11)
that:

1 + ε0
θ0t

θ∞q0

+ ε1
θ1(t− 1)

θ∞(q0 − 1)
= 0 with ε0, ε1 ∈ {−1,+1}

35



Extracting t from this equation and inserting it back into the algebraic equation satisfied by
q0 (C.7) leads to:

θ2
∞ (ε0θ0 + ε1θ1)

(
(ε0θ0 + ε1θ1 + θ∞)2 − θ2

t

)(
q0 +

ε0θ0

θ∞

)(
q0 − 1− ε1θ1

θ∞

)(
q0 −

ε0θ0

ε0θ0 + ε1θ1

)
= 0

Note also that q0 = ε0θ0
ε0θ0+ε1θ1

is equivalent to t = ∞ or θ∞ + ε0θ0 + ε1θ1 = 0. Similarly,

q0 = − ε0θ0
θ∞

is equivalent to t = 1 and q0 = 1 + ε1θ1
θ∞

is equivalent to t = 1 both of which have
been ruled out before. Consequently as soon as:

θ2
0 6= θ2

1 , θ∞ + ε0θ0 + ε1θ1 6= 0 and θ∞ + ε0θ0 + ε1θ1 + εtθt 6= 0 (D.15)

for any choice of the signs (ε0, ε1, εt) ∈ {−1,+1}3 then we can rule out that the simple
zeros coincide at any time. This corresponds to the assumptions made for non-singular
monodromies.

• The zeros of P2(x) can never coincide with q0. Indeed from (D.14), that would imply:

θ̃2
0t

q3
0

− (t− 1)θ̃2
1

(q0 − 1)3
+
t(t− 1)θ̃2

t

(q0 − t)3
= 0

which precisely corresponds to a singular time (3.13).

E Proof of the existence of a formal series expansion for

Wn

In this section we prove that the first condition required for the Topological Type property holds
in the six Painlevé cases defined from (2.1)∼(2.6). We have assumed in assumption 3.1 that the
solutions qJ(t) of the Painlevé equations admit a formal series expansion in ~. Since M(x, t)
satisfies:

~∂xM(x, t) = [D(x, t),M(x, t)]
~∂tM(x, t) = [R(x, t),M(x, t)] (E.1)

and because we know that D(x, t) and R(x, t) also have a series expansion in ~ from (3.2) we get
that M(x, t) admits a formal series expansion in ~ of the form:

M(x, t) =


∞∑
k=0

M
(k)
1,1 (x, t)~k

∞∑
k=0

M
(k)
1,2 (x, t)~k

∞∑
k=0

M
(k)
2,1 (x, t)~k 1−

∞∑
k=0

M
(k)
1,1 (x, t)~k

 (E.2)

From the alternative definition (6.7) of the correlation functions Wn we get that the correlation
functions also have a series expansion in ~:

∀n ≥ 1 : Wn(x1, . . . , xn) =
∞∑
k=0

W (k)
n (x1, . . . , xn)~k (E.3)

Note that if we perform an admissible gauge transformation of type Ψ̃(x, t) = U(t, ~)Ψ(x, t)
then D(x, t), R(x, t) and M(x, t) may have a much more complicated ~ series expansion if U(t, ~)
depends on ~ in a non-trivial way. In particular M(x, t) may not have a series expansion at all.
However, since the correlation functions are defined as traces of products of such matrices, then
(E.3) still holds in any admissible gauge.
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F Proof of the parity property

We want to prove in this section that the ~ series expansion of the correlation functions
Wn(x1, . . . , xn) only involves powers of ~ of the same parity as n (i.e. we want to explain why we
have an exponent 2g and not only g in (6.13)). In order to do this, we use Proposition 3.3 of [2]
that provides a sufficient criteria to obtain the ~ ↔ −~ symmetry. We recall their proposition
here:

Proposition F.1 (Proposition 3.3 of [2]) Let us denote † the operator switching ~ into −~. If
there exists an invertible matrix Γ(t) independent of x such that:

Γ−1(t)Dt(x, t)Γ(t) = D†(x, t) (F.1)

then the correlation functions Wn satisfy:

∀n ≥ 1 : W †
n = (−1)nWn (F.2)

In particular if this proposition is satisfied then it automatically follows that the ~ expansion
of a given function Wn(x1, . . . , xn) (if it exists) may only involve powers of ~ with the same parity
(given by the parity of n). Therefore all we have to do is prove the existence of a suitable matrix
Γ(t) in our six Painlevé cases. Since we know from (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) the
expression of (p†, q†) in terms of (p, q) it is straightforward to compute the various Γ(t) matrices.

Theorem F.2 (Parity Property) In all six Painlevé cases, there exists a matrix ΓJ(t) (1 ≤
J ≤ 6) such that

Γ−1
J (t)DtJ(x, t)ΓJ(t) = D†J(x, t)

The corresponding matrices are the following:

• Painlevé 1: ΓI(t) =

(
0 1
1 0

)

• Painlevé 2: ΓII(t) =

(
−2p 0

0 1

)

• Painlevé 3: ΓIII(t) =

(
−p−t

t
0

0 1

)

• Painlevé 4: ΓIV(t) =

(
−2(pq + θ0 + θ∞) 0

0 1

)

• Painlevé 5: ΓV(t) =

(
− pq
pq+θ0

0

0 1

)

• Painlevé 6: ΓVI(t) =

(
− t2z0(z0+θ0)

q
+ (t−1)2z1(z1+θ1)

q−1
0

0 1

)
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We remark that the determination of Γ(t) is not unique. Indeed, it is determined up to a global
constant since multiplying Γ(t) by a constant does not change the product Γ−1(t)Dt(x, t)Γ(t).
To fix this degree of freedom, we chose to fix one entry to 1 (usually the entry (2, 2) except for
Painlevé 1). We also observe that in all six cases: Γt(t) = Γ(t) and Γ†(t) = Γ(t). Note that
the parity property is obviously invariant under admissible gauge transformations because the
correlation functions are invariant (except W1 that may be shifted (6.10) but for which the result
holds too). However since the existence of the Γ(t) matrix is only a sufficient condition to prove the
parity property, it is a natural question to wonder if the existence of a Γ matrix satisfying (F.2) is
independent of the choice of an admissible gauge. The answer to this question is positive. In fact
gauge transformations of type (2.29) lead to Γ̃(t) = (U−1)tΓ(t)(U †)−1 while gauge transformations
of type (2.28) lead to Γ̃(t) = Γ(t).

G Proof of the pole structure

We want to prove in this section that the correlation functions defined through the determinantal
formulas only have poles at the branchpoints of the spectral curve. In particular, we show that
there is no singularities at the even zeros of the spectral curve or at the poles of the matrices
R(x, t) and D(x, t) (i.e. depending on the case x = 0, x = 1 and/or x = t). First we note that
this condition is not trivial since in all six Painlevé cases, the spectral curve admits a double zero.
The idea of the proof follows the same spirit as the one proposed in appendix B of [19]. It consists
in two steps:

1. Compute the matrix M (0)(x, t) and observe that it is regular at poles of R(x, t) and D(x, t)
or at the even zeros of the spectral curve.

2. Compute the inverse of the matrix R(0)(x, t) with which one can establish a recursive relation
between M (k)(x, t) and lower orders M (j)(x, t) with 0 ≤ j ≤ k− 1 and their time derivatives.

Differential equations on Ψ(x, t) defining the Lax pairs turns into the following system for
M(x, t):

~∂xM(x, t) = [D(x, t),M(x, t)] and ~∂tM(x, t) = [R(x, t),M(x, t)] (G.1)

These equations will give a way to compute all orders M (k)(x, t).

G.1 Computation of M (0)(x, t)

In full generality, the matrix M (0)(x, t) is characterized by the following set of equations:[
D(0)(x, t),M (0)(x, t)

]
= 0 or

[
R(0)(x, t),M (0)(x, t)

]
= 0 (G.2)

as well as TrM (0)(x, t) = 1 and detM (0)(x, t) = 0. Note that using the matrixD(0)(x, t) orR(0)(x, t)

in the last equation is completely equivalent. Thus if we denote M (0)(x, t) =

(
m1,1 m1,2

m2,1 1−m1,1

)
a

possible minimal set of equations is given by:

0 = R(0)
2,1m1,2 −R(0)

1,2m2,1

0 = (2m1,1 − 1)R(0)
1,2 − 2R(0)

1,1m1,2

0 = m1,1(1−m1,1)−m1,2m2,1 (G.3)
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This system can be solved explicitly by:

M (0)(x, t) =

1
2

+
R(0)

1,1(x,t)

2
√
− detR(0)(x,t)

R(0)
1,2(x,t)

2
√
− detR(0)(x,t)

R(0)
2,1(x,t)

2
√
− detR(0)(x,t)

1
2
− R(0)

1,1(x,t)

2
√
− detR(0)(x,t)

 (G.4)

Note that one can replace the matrix R(0) by D(0) without changing the solution. From the
definition of the Lax pairs, the entries R(0)

i,j (x, t) may be singular, but that is only the case for

Painlevé 3 and 6. In those cases, the poles of R(0)
i,j (x, t) cancel out with the determinants of

R(0)(x, t) that we give below. Consequently, the matrix M (0)(x, t) is singular only at the points
where the determinant R(0)(x, t) vanishes. It is long but straightforward computations to get these
determinants in all six Painlevé cases:

(PI) : detR(0)
I = −(x+ 2q0)

(PII) : detR(0)
II = −1

4

(
x2 + 2q0x+ q2

0 + θ
q0

)
(PIII) : detR(0)

III = − (q0x−1)2((θ∞−θ0q2
0)x2−2xq0(θ∞q2

0−θ0)+q2
0(θ∞−θ0q2

0))
4x2q2

0(θ∞−θ0q2
0)

(PIV) : detR(0)
IV = q2

0

(
x2 + 2(q0 + t)x+

θ2
0

q2
0

)
(PV) : detR(0)

V = −1
4
(x−Q1)(x−Q2)

where Q1 and Q2 are the simple zeros of the spectral curve.

(PVI) : detR(0)
VI = − (q0−t)2θ2

∞P2(x)
t2(t−1)2(x−t)2

where P2(x) is the monic polynomial of degree 2 appearing in the spectral curve.

Table 2: List of detR
(0)
J (x, t)

One can observe that these determinants only involve the simple zeros (i.e. the branchpoints)
of the spectral curve but never vanish at the double zero of the spectral curve. Consequently we
get that in all six Painlevé cases, the matrix M (0)(x, t) is only singular at the branchpoints of the
spectral curve.

Remark G.1 One could replace R(0)(x, t) by D(0)(x, t) everywhere in (G.4) and still obtain the
same expression for M (0)(x, t). However by doing so, we see that the discussion about a possible
singularity at a double zero of the spectral curve is not obvious because the denominator is vanishing
there. One would have to prove that for any of the four entries, the numerator also vanishes at
the double zero, which is far from obvious.

G.2 Recursive system for higher orders

Let us first start with the trivial observation that the entries x 7→ R(k)
i,j (x, t) for k ≥ 1 are trivially

regular in all Painlevé cases except for Painlevé 3 and 6. Indeed, these entries are only singular at
x = 0 for Painlevé 3 and at x = t for Painlevé 6. Let us now look at order ~k with k ≥ 1 of (G.1)
and in detM(x, t) = 0. We get:

[
R(0)(x, t),M (k)(x, t)

]
= ∂tM

(k−1)(x, t)−
k−1∑
i=0

[
R(k−i)(x, t),M (i)(x, t)

]
M (k−1)(x, t)1,1

(
1− 2M (k−1)(x, t)1,1

)
−M (0)(x, t)2,1M

(k)(x, t)1,2 −M (0)(x, t)1,2M
(k)(x, t)2,1
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=
k−1∑
i=1

(
M (i)(x, t)1,1M

(k−i)(x, t)1,1 +M (i)(x, t)1,2M
(k−i)(x, t)2,1

)
. (G.5)

The first matrix equation provides two independent scalar equations and thus we get a 3×3 linear
system that can be written in the following matrix form:


0 −R(0)

2,1 R(0)
1,2

−2R(0)
1,2 2R(0)

1,1 0

2M
(0)
1,1 − 1 M

(0)
2,1 M

(0)
1,2


M(k)(x, t)1,1

M(k)(x, t)1,2

M(k)(x, t)2,1

 =


∂tM(k−1)(x, t)1,1 −

k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,1

∂tM(k−1)(x, t)1,2 −R(k)
1,2 −

k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,2

k−1∑
i=1

(
M(i)(x, t)1,1M(k−i)(x, t)1,1 +M(i)(x, t)1,2M(k−i)(x, t)2,1

)


(G.6)

Using the exact expression for M (0)(x, t) we get:


0 −R(0)

2,1 R(0)
1,2

−2R(0)
1,2 2R(0)

1,1 0

R(0)
1,1

1
2
R(0)

2,1
1
2
R(0)

1,2


M(k)(x, t)1,1

M(k)(x, t)1,2

M(k)(x, t)2,1

 =


∂tM(k−1)(x, t)1,1 −

k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,1

∂tM(k−1)(x, t)1,2 −
k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,2√

− detR(0)
k−1∑
i=1

(
M(i)(x, t)1,1M(k−i)(x, t)1,1 +M(i)(x, t)1,2M(k−i)(x, t)2,1

)


(G.7)

Note in particular that the 3 × 3 matrix on the l.h.s. does not depend on the order k we
consider (it is only ~0 terms). In general inverting a matrix may create poles at the zeros of the
determinant of the matrix (this is obvious if one uses the definition of the inverse using the matrix
of cofactors). However in our case we have:

det

 0 −R(0)
2,1 R(0)

1,2

−2R(0)
1,2 2R(0)

1,1 0

R(0)
1,1

1
2
R(0)

2,1
1
2
R(0)

1,2

 = −2R(0)
1,2(x, t) detR(0)(x, t) (G.8)

Consequently the inverse of the matrix will only have singularities at the zeros of the former
determinant and at the singularities of the entries of R(0). We have also seen earlier that the
entries of R(0) are regular, except for Painlevé 3 and 6. In exceptional cases, one has that the

zeros of
[
−2R(0)

1,2(x, t) detR(0)(x, t)
]−1

cancel out the poles of the entries of R(0). Also, as we noted

before, detR(0)(x, t) only vanishes at the branchpoints of the spectral curve, as we wish. Thus,

the only singularities that may arise now are where the term R(0)
1,2(x, t) vanishes. Again, from the

definition, we see that this term is actually independent of x and it doesn’t vanish for any Painlevé
cases, except for Painlevé 1 and 3. For Painlevé 1, R(0)

1,2(x, t) vanishes at a branch point, as we

wish. For Painlevé 3, the zero from R(0)
1,2(x, t) cancels out with a pole from detR(0)(x, t).

Thus, one can proceed to a simple recursion to prove that x 7→ M (k)(x, t) only has poles at
branchpoints of the spectral curve.

Theorem G.2 The function x 7→ M (k)(x, t) only has poles at the branchpoints of the spectral
curve for any k ≥ 0.

From the last theorem and the alternative definition of the correlation functions (6.7), it is then

obvious that the correlation functions W
(g)
n only have poles at the branchpoints of the spectral

curve for (g, n) 6= (0, 1), (0, 2), and W
(0)
2 only has a double pole along the diagonal and no other

poles.
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Remark G.3 The proof of the pole structure presented here is only valid for our very specific
gauge choice in which D(x, t), R(x, t) and M(x, t) have series expansion in ~. Indeed, as seen
earlier, if we perform a gauge transformation of the form Ψ̃(x, t) = U(t, ~)Ψ(x, t) where U(t, ~)
has a singular behavior in ~ then none of the matrices D(x, t), R(x, t) or M(x, t) will admit a
series expansion in ~ (making quantities like M (0)(x, t), R(0)(x, t) ill-defined) and therefore the

previous proof will fail. However, the final result, i.e. that the correlation functions W
(g)
n only

have poles at the branchpoints of the spectral curve remains valid since the spectral curve and the
correlation functions are invariant under these gauge transformations. In other words, we chose a
particular gauge in which the proof can be written more easily but the validity of the results holds
for any admissible gauge.

H Proof of the O(~n−2)-property

Let us start the proof with introducing some notations similar to [2] and [3]. We remind the
reader that determinantal formulas (6.1) have been introduced so that they satisfy a set of equa-
tions known as loop equations. These loop equations (also known as Schwinger-Dyson equations)
originate in random matrix theory where they are crucial. We recall here the main result of [3]:

Proposition H.1 (Theorem 2.9 of [3]) Let us define the following functions (we denote by Ln
the set of variables {x1, . . . , xn}):

P1(x) =
1

~2
detD(x, t)

P2(x;x2) =
1

~
Tr

(
D(x, t)−D(x2, t)− (x− x2)D′(x2, t)

(x− x2)2
M(x2)

)
Qn+1(x;Ln)

=
1

~
∑
σ∈Sn

Tr
(
D(x)M(xσ(1)) . . .M(xσ(n))

)
(x− xσ(1))(xσ(1) − xσ(2)) . . . (xσ(n−1) − xσ(n))(xσ(n) − x)

Pn+1(x;Ln) = (−1)n

[
Qn+1(x;Ln)−

n∑
j=1

1

x− xj
Res
x′→xj

Qn+1(x′, Ln)

]
(H.1)

Then the correlation functions satisfy

P1(x) = W2(x, x) +W1(x)2, (H.2)

and for n ≥ 1:

0 = Pn+1(x;Ln) +Wn+2(x, x, Ln) + 2W1(x)Wn+1(x, Ln)+∑
J⊂Ln,J /∈{∅,Ln}

W1+|J |(x, J)W1+n−|J |(x, Ln \ J)

+
n∑
j=1

d

dxj

Wn(x, Ln \ xj)−Wn(Ln)

x− xj
(H.3)

Moreover Pn+1(x;Ln) is a rational function of x whose poles are at the poles of D(x, t).

The equations (H.2) and (H.3) are called loop equations. As we will see this proposition and
a subtle induction are sufficient to prove that Wn is at least of order ~n−2 as developed in [19].
Let us now analyze the different possible poles of Pn+1(x, Ln) using proposition H.1. We get the
important theorem:
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Theorem H.2 (Pole Structure of Pn+1(x, Ln)) For any of the six Painlevé cases we have:

• For Painlevé 1 and Painlevé 2, x 7→ Pn+1(x, Ln) does not depend on x.

• For Painlevé 3, x 7→ Pn+1(x, Ln) = P̃n+1(Ln)
x2 .

• For Painlevé 4, x 7→ Pn+1(x, Ln) = P̃n+1(Ln)
x

.

• For Painlevé 5, x 7→ Pn+1(x, Ln) = P̃n+1(Ln)
x(x−1)

.

• For Painlevé 6, x 7→ Pn+1(x, Ln) = P̃n+1(Ln)
x(x−1)(x−t) .

proof:
The proof of the previous theorem is based on the evaluation of the different orders of singularity

of x 7→ Pn+1(x, Ln) at the finite possible singularities and at x =∞ from definition (H.1).

• For Painlevé 1 and 2, x 7→ D(x, t) does not have finite singularities and therefore
x 7→ Pn+1(x, Ln) is a polynomial of x. However from its definition (H.1) we see that
Pn+1(x, Ln) =

x→∞
O(1) so that it cannot depend on x.

• For Painlevé 3, x 7→ D(x, t) has a double pole at x = 0 so that Pn+1(x, Ln) is a rational
function of x with only a possible double pole at x = 0 and a pole at x =∞. Moreover from
its definition (H.1), we see that Pn+1(x, Ln) =

x→∞
O
(

1
x2

)
. Therefore the only possible case is

that Pn+1(x, Ln) = P̃n+1(Ln)
x2 .

• For Painlevé 4, x 7→ D(x, t) has a simple pole singularity at x = 0 and from (H.1), the
behavior of Pn+1(x, Ln) is of the form Pn+1(x, Ln) =

x→∞
O
(

1
x

)
. Therefore the only possible

case is that Pn+1(x, Ln) = P̃n+1(Ln)
x

.

• For Painlevé 5, x 7→ D(x, t) has a simple pole singularity at x = 0 and x = 1. From (H.1),
the behavior at infinity of Pn+1(x, Ln) is of the form Pn+1(x, Ln) =

x→∞
O
(

1
x2

)
. Consequently

the only possible solution is that Pn+1(x, Ln) = P̃n+1(Ln)
x(x−1)

• For Painlevé 6, x 7→ D(x, t) has a simple pole singularity at x = 0, x = 1 and x = t.
From (H.1), the behavior at infinity of Pn+1(x, Ln) is of the form Pn+1(x, Ln) =

x→∞
O
(

1
x3

)
.

Consequently the only possible solution is that Pn+1(x, Ln) = P̃n+1(Ln)
x(x−1)(x−t) .

�
As in [19], the last theorem is sufficient to prove by induction that the leading order of

Wn(x1, . . . , xn) is at least of order ~n−2. As we will see, the induction is very similar in the
six cases and the last theorem is used only at very specific places. Let us define the following
statement:

Pk : Wj(x1, . . . , xj) is at least of order ~k−2 for j ≥ k. (H.4)

The statement is obviously true for k = 1 and k = 2 from the definitions. Let us assume that
the statement Pi is true for all i ≤ n. Now we look at the loop equation (H.3). By induction
assumption, we have that the last two terms are at least of order ~n−2. Indeed in the sum we have
terms of order ~1+|J |−2+1+n−|J |−2 = ~n−2. Moreover we also have from the same assumption that
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Wn+2(x, x, Ln) is also of order at least ~n−2 (since n+ 2 ≥ n). Therefore Wn+1(x, Ln) is at least of
order ~n−2, and by considering the coefficients of the ~n−3 in (H.3) we have:

0 = P
(n−3)
n+1 (x;Ln) + 2W

(−1)
1 (x)W

(n−2)
n+1 (x, Ln) (H.5)

If we assume that W
(n−2)
n+1 (x, Ln) 6= 0 then we have:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (x;Ln)

2W
(−1)
1 (x)

(H.6)

Since by definition W
(−1)
1 (x) is the spectral curve of the system, we get in our six cases:

• For Painlevé 1:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (Ln)

4(x− q0)
√
x+ 2q0

• For Painlevé 2:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (Ln)

2(x− q0)
√
x2 + 2q0x+ q2

0 + θ
q0

• For Painlevé 3:

W
(n−2)
n+1 (x, Ln) =

√
q0(q4

0 − 1)P
(n−3)
n+1 (Ln)

√
t(q0x+ 1)

√
(θ∞ − θ0q2

0)x2 − 2xq0(θ∞q2
0 − θ0) + q2

0(θ∞ − θ0q2
0)

• For Painlevé 4:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (Ln)

2(x− q0)
√
x2 + 2(q0 + t)x+

θ2
0

q2
0

• For Painlevé 5:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (Ln)

t(x−Q0)
√

(x−Q1)(x−Q2)

• For Painlevé 6:

W
(n−2)
n+1 (x, Ln) =

P
(n−3)
n+1 (Ln)

θ∞(x− q0)

√
x2 +

(
−1− θ2

0t
2

θ2
∞q

2
0

+
θ2
1(t−1)2

θ2
∞(q0−1)2

)
x+

θ2
0t

2

θ2
∞q

2
0

Now we observe that in all cases, we get that x 7→ W
(n−2)
n+1 (x, Ln) must have a simple pole at

the double zero of the spectral curve (i.e. q0 for Painlevé 1, 2, 4, 6 and − 1
q0

for Painlevé 3 and Q0

for Painlevé 5). This is in contradiction with the pole structure of the correlation functions proved

in appendix G. Consequently we must have W
(n−2)
n+1 (x, Ln) = 0. This proves that Wn+1(x, Ln) is

at least of order ~n−1. We now need to prove the same statement for higher correlation functions.
Let us prove it by a second induction by defining:

P̃i : Wi(x1, . . . , xi) is of order at least ~n−1. (H.7)
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We want to prove P̃i for all i ≥ n+ 1 by induction. We just proved it for i = n+ 1 so initialization
is done. Let us assume that P̃j is true for all j satisfying n + 1 ≤ j ≤ i0. We look at the loop
equation:

0 = Pi0+1(x;Li0) +Wi0+2(x, x, Li0) + 2W1(x)Wi0+1(x, Li0)

+
∑

J⊂Li0 ,J /∈{∅,Li0}

W1+|J |(x, J)W1+i0−|J |(x, Li0 \ J)

+

i0∑
j=1

d

dxj

Wi0(x, Li0 \ xj)−Wi0(Li0)

x− xj
. (H.8)

By assumption on P̃i0 , the last sum with the derivatives contains terms of order at least ~n−1. In
the sum involving the subsets of Li0 it is straightforward to see that the terms are all of order
at least ~n−1. Indeed, as soon as one of the index is greater than n + 1, the assumption P̃i for
n + 1 ≤ i ≤ i0 tells us that this term is already at order at least ~n−1. Since the second factor of
the product is at least of order ~0 then it does not decrease the order. Now if both factors have
indexes strictly lower than n+ 1, then the assumption of Pj for all j ≤ n tell us that the order of
the product is at least of ~|J |+1−2+1+i0−|J |−2 = ~i0−2 which is greater than n − 1 since i0 ≥ n + 1.
Additionally by induction on Pn we know that Wi0+1(x, Li0) is at least of order ~n−2 as well as
Wi0+2(x, x, Li0). Consequently looking at order ~n−3 in (H.8) gives:

0 = P
(n−3)
i0+1 (x;Li0) + 2W

(−1)
1 (x)W

(n−2)
i0+1 (x, Li0) (H.9)

We can apply a similar reasoning as the one developed for (H.5). If we assume W
(n−2)
i0+1 (x, Li0) 6= 0,

then we have:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (x;Li0)

2W
(−1)
1 (x)

. (H.10)

In our six cases we get:

• For Painlevé 1:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (Li0)

4(x− q0)
√
x+ 2q0

• For Painlevé 2:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (Li0)

2(x− q0)
√
x2 + 2q0x+ q2

0 + θ
q0

• For Painlevé 3:

W
(n−2)
i0+1 (x, Li0) =

√
q0(q4

0 − 1)P
(n−3)
i0+1 (Li0)

√
t(q0x+ 1)

√
(θ∞ − θ0q2

0)x2 − 2xq0(θ∞q2
0 − θ0) + q2

0(θ∞ − θ0q2
0)

• For Painlevé 4:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (Li0)

2(x− q0)
√
x2 + 2(q0 + t)x+

θ2
0

q2
0
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• For Painlevé 5:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (Li0)

t(x−Q0)
√

(x−Q1)(x−Q2)

• For Painlevé 6:

W
(n−2)
i0+1 (x, Li0) =

P
(n−3)
i0+1 (Li0)

θ∞(x− q0)

√
x2 +

(
−1− θ2

0t
2

θ2
∞q

2
0

+
θ2
1(t−1)2

θ2
∞(q0−1)2

)
x+

θ2
0t

2

θ2
∞q

2
0

In all cases we obtain that x 7→ W
(n−2)
i0+1 (x, Li0) must have a simple pole at the double zero

of the spectral curve in contradiction with the pole structure of the correlation functions proved
in appendix G. Consequently we must have W

(n−2)
i0+1 (x, Li0) = 0. In particular it means that

Wi0+1(x, Li0) (which by assumption of Pn was already known to be at least of order ~n−2) is at
least of order ~n−1 thus making the induction on P̃i0 . Hence by induction we have proved that
∀ i ≥ n+ 1, P̃i holds which exactly proves that Pn+1 is true. Eventually by induction we have just
proved that Pn holds for n ≥ 1. In other words, we have proved the leading order condition of the
topological type property in our six cases.

Remark H.3 As for the pole structure, the proof presented here is only valid in the gauge we
selected. Indeed, the proof uses the existence of a nice ~ series expansion for D(x, t), R(x, t)
and M(x, t) that may not exist after performing an admissible gauge transformation Ψ̃(x, t) =
U(t, ~)Ψ(x, t) with U(t, ~) presenting a complicated ~ dependence. However the final result (i.e.
that the leading order of Wn is ~n−2) remains valid in any admissible gauge transformations. since
the correlation functions Wn are invariant under any admissible gauge transformations.

I Computation of the free energies F (g)

I.1 Computation of F (0)

The computation of F (0) requires specific computations detailed in [16]. We find the following
results:

• Painlevé 1: dω(z) = Y (z)dx(z) has one singularity at z =∞ (pole of x(z) of order 4 in the
language of [16]). The temperature t∞ is vanishing and we find:

F
(0)
I =

48 q5
0

5
(I.1)

Note that we have q̇0 = − 1
12 q0

so that d
dt
F

(0)
I = −4q3

0 in agreement with τ
(0)
I = 4q3

0 and
d
dt
F

(0)
I = −τ (0)

I .

• Painlevé 2: dω(z) = Y (z)dx(z) has two singularities at z = 0 and z =∞. We get (see [19]):

F
(0)
II =

4θq3
0

3
+

θ3

24q3
0

+
θ2

2
ln q0 −

θ2

4
− θ2

2
ln θ + θ2 ln 2 (I.2)

We verify that d
dt
F

(0)
II = − θ(8q3

0−θ)
8q2

0
= −τ (0)

II .
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• Painlevé 3: dω(z) = Y (z)dx(z) has two additional singularities at simple zeros of x(z). These
singularities are poles of order 2. We find:

F
(0)
III =

1

4
θ0θ∞ ln

(
q2

0 + 1

q2
0 − 1

)
+
θ2

0

8
ln

(
q2

0(q2
0θ0 − θ∞)2

q4
0 − 1

)
+
θ2
∞
8

ln

(
(q2

0θ0 − θ∞)2

q2
0(q4

0 − 1)

)
+

3θ2
0 − 3θ2

∞ − 2θ0θ∞q
2
0 + (5θ2

∞ − θ2
0)q4

0 − 2θ0θ∞q
6
0

(q4
0 − 1)2

(I.3)

We verify that d
dt
F

(0)
III = − (θ2

0−θ2
∞)−4θ0θ∞q2

0+4(θ2
∞+θ2

0)q4
0−4θ0θ∞q6

0+(θ2
∞−θ2

0)q8
0

4q0(q4
0−1)(q2

0θ0−θ∞)
= −τ (0)

III

• Painlevé 4: dω(z) = Y (z)dx(z) has four singularities at z = 0 and z = ∞ (poles of x(z) of
order 2) as well as zeros of x(z) (poles of Y (z)). We get:

F
(0)
IV =

(3q4
0 − (8θ0 + θ∞)q2

0 + 2θ2
0)
√
q4

0 + 2θ∞q2
0 + θ2

0

2q2
0

− 3q4
0

2
+ 5θ0q

2
0 +

θ3
0

q2
0

+
(θ2

0 + θ2
∞)

2
ln

(
q2

0 + θ2
∞ +

√
q4

0 + 2θ∞q2
0 + θ2

0

)
− 2θ0(θ0 − θ∞) ln q0

−θ0θ∞ ln

(
2θ2

0 + 2θ∞q
2
0 + 2θ0

√
q4

0 + 2θ∞q2
0 + θ2

0

)
(I.4)

We can verify that d
dt
F

(0)
IV = −2(θ0−q2

0)(q2
0−θ0−

√
q4
0+2θ∞q2

0+θ2
0)

q0
= −τ (0)

IV .

• Painlevé 5: In this case, it is easier to express all quantities in terms of the double zero Q0

of the spectral curve. dω(z) = Y (z)dx(z) has six singularities at z = 0 and z = ∞ and at
the two conjugate zeros of x(z) and x(z)− 1. Tedious computations give:

F
(0)
V = (θ20 + θ21 + θ2∞)

(
1

2
ln 2− 1

8
ln

(∏
±

(
1± θ0

tQ0
± θ1
t(Q0 − 1)

)))
+
θ20
2

ln θ0 +
θ21
2

ln θ1 −
θ20
2

lnQ0

−θ
2
1

2
ln(Q0 − 1)− θ20 + θ21

2
ln t+

θ0θ∞
4

ln


(

1− θ0
tQ0

+ θ1
t(Q0−1)

)(
1− θ0

tQ0
− θ1

t(Q0−1)

)
(

1 + θ0
tQ0

+ θ1
t(Q0−1)

)(
1 + θ0

tQ0
− θ1

t(Q0−1)

)


+
θ1θ∞

4
ln


(

1 + θ0
tQ0
− θ1

t(Q0−1)

)(
1− θ0

tQ0
− θ1

t(Q0−1)

)
(

1 + θ0
tQ0

+ θ1
t(Q0−1)

)(
1− θ0

tQ0
+ θ1

t(Q0−1)

)


+
θ0θ1

4
ln


(

1− θ0
tQ0

+ θ1
t(Q0−1)

)(
1 + θ0

tQ0
− θ1

t(Q0−1)

)
(

1 + θ0
tQ0

+ θ1
t(Q0−1)

)(
1− θ0

tQ0
− θ1

t(Q0−1)

)


− θ20
2Q0

+
θ21

2(Q0 − 1)
+

1

4
tθ∞

(
1 +

θ20
t2Q2

0

− θ21
t2(Q0 − 1)2

)
− t2

32

∏
±

(
1± θ0

tQ0
± θ1
t(Q0 − 1)

)
(I.5)

where the product
∏
± is to be taken on the 4 possible choice of signs. Moreover we get

from the Lax pair:

τ
(0)
V =

(θ0 + θ1 − θ∞)q20 + θ0 + θ1 + θ∞
4(q20 − 1)

−
(
(θ0 − θ1 − θ∞)q20 − θ0 + θ1 − θ∞

)
((θ0 − θ1 − θ∞)q0 − θ0 + θ1 − θ∞)

8t(q0 + 1)q0
(I.6)

In order to compare it with the expression of F
(0)
V we observe that we have:

q0 =
Q2

0(θ0 − θ1)− θ0(2Q0 − 1) +Q0(Q0 − 1)((2Q0 − 1)t− θ∞)

Q0(Q0 − 1)(θ0 − θ1 − θ∞)
(I.7)
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and that following (C.5), (t, Q0) satisfies the following algebraic equation:

Q2
0(Q0− 1)2(2Q0− 1)t2− 2θ∞tQ

2
0(Q0− 1)2 + (Q0(θ0 + θ1)− θ0)(Q0(θ0− θ1)− θ0) = 0 (I.8)

Consequently we can express τ
(0)
V from (I.6) and (I.7) in terms of t and Q0 and observe using

(I.8) that d
dt
F

(0)
V = −τ (0)

V .

• Painlevé 6: The long computation is detailed in section I.4 as illustrations of the method.
We find:

F
(0)
VI =

θ2
0 + θ2

1 + θ2
t + θ2

∞
2

ln 2− θ2
0 + θ2

1 + θ2
t

2
ln θ∞ +

θ2
0

2
ln θ0 +

θ2
1

2
ln θ1 +

θ2
t

2
ln θt

−θ
2
0

2
ln q0 −

θ2
1

2
ln(q0 − 1)− θ2

t

2
ln(q0 − t) +

iπ

4
(θ0θ1 + θ0θt + θ1θt)

+

(
θ2

0 + θ2
t

2
− θ2

0 + θ2
1 + θ2

∞ + θ2
t

12

)
ln t+

(
θ2

1 + θ2
t

2
− θ2

0 + θ2
1 + θ2

∞ + θ2
t

12

)
ln(t− 1)

−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ0θ∞

8
+
θ1θ∞

8
+
θ0θ1

4

)
ln

(
1 +

θ0t

θ∞q0

+
θ1(t− 1)

θ∞(q0 − 1)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ0θ∞

8
− θ1θ∞

8
+
θ0θ1

4

)
ln

(
1− θ0t

θ∞q0

− θ1(t− 1)

θ∞(q0 − 1)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ0θ∞

8
− θ1θ∞

8
− θ0θ1

4

)
ln

(
1 +

θ0t

θ∞q0

− θ1(t− 1)

θ∞(q0 − 1)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ0θ∞

8
+
θ1θ∞

8
− θ0θ1

4

)
ln

(
1− θ0t

θ∞q0

+
θ1(t− 1)

θ∞(q0 − 1)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ0θ∞

8
− θtθ∞

8
− θ0θt

4

)
ln

(
1 +

θ0

θ∞q0

+
θt(t− 1)

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ0θ∞

8
+
θtθ∞

8
− θ0θt

4

)
ln

(
1− θ0

θ∞q0

− θt(t− 1)

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ0θ∞

8
+
θtθ∞

8
+
θ0θt

4

)
ln

(
1 +

θ0

θ∞q0

− θt(t− 1)

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ0θ∞

8
− θtθ∞

8
+
θ0θt

4

)
ln

(
1− θ0

θ∞q0

+
θt(t− 1)

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ1θ∞

8
− θtθ∞

8
+
θ1θt

4

)
ln

(
1 +

θ1

θ∞(q0 − 1)
+

θtt

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ1θ∞

8
+
θtθ∞

8
+
θ1θt

4

)
ln

(
1− θ1

θ∞(q0 − 1)
− θtt

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
− θ1θ∞

8
+
θtθ∞

8
− θ1θt

4

)
ln

(
1 +

θ1

θ∞(q0 − 1)
− θtt

θ∞(q0 − t)

)
−
(
θ2

0 + θ2
1 + θ2

∞ + θ2
t

24
+
θ1θ∞

8
− θtθ∞

8
− θ1θt

4

)
ln

(
1− θ1

θ∞(q0 − 1)
+

θtt

θ∞(q0 − t)

)
(I.9)

We can verify that d
dt
F

(0)
VI = −τ (0)

VI with:

τ
(0)
VI =

(
θ20 − (θ20 − θ21 + θ2∞ − θ2t )q0 + (θ2∞ − θ2t )q20

)
t(t− 2q0) + q20

(
θ20 + θ2t − (θ21 − θ20 − θ2∞ − θ2t )q0 + θ2∞q

2
0

)
4t(t− 1)q0(q0 − 1)(q0 − t)

(I.10)
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I.2 Computation of F (1)

One branchpoint case:
In the case of a parametrization of the form (5.5) x(z) = z2 + a and Y (z) = zg(x(z)) (i.e.

Y 2(x) = (x − a)g(x)2 with g a rational function that does not vanish at x = a) with only one
branchpoint at x = a (i.e. z = 0), the formula proposed by Eynard and Orantin (mind the different
sign convention) for F (1) in [16] reduces to:

F
(1)
I =

1

24
ln(y′(0)) =

1

24
ln g(a) (I.11)

For Painlevé 1 we find (g(x) = 2(x− q0) and a = −2q0):

F
(1)
I =

1

24
ln(−6q0) and τ

(2)
I = − d

dt
F

(1)
I = − 1

288q2
0

=
1

48t
(I.12)

We have used here the fact that q2
0 = − t

6
to simplify quantities. We then verify that τ

(2)
I = d

dt
F

(1)
I

Two branchpoints case:

In the case of a parametrization of the form (5.6) x(z) = a+b
2

+ b−a
4

(
z + 1

z

)
and Y (x) =

(b−a)(z−1)(z+1)
4z

g(x(z)) (i.e. Y 2(x) = (x − a)(x − b)g(x)2) with g(x) a rational function in x not
vanishing at x = a and x = b, the formula proposed by Eynard and Orantin for F (1) in [16]reduces
to:

F (1) =
1

24
ln
(
−(b− a)4g(a)g(b)

)
(note τBerg = (b− a)

1
4 ) (I.13)

It is also in agreement with the formula presented in [8]. Then it is straightforward to compute
the values of F (1) in all six cases by inserting the values of a, b and g(x) in the previous formula.
We find:

• Painlevé 2:

F
(1)
II =

1

24
ln

(
−16θ2

(
4 +

θ

q3
0

))
and τ

(2)
II =

d

dt
F

(1)
II = − θq0

8(4q3
0 + θ)2

(I.14)

where we used t = −2q2
0 + θ

q0
to remove t from all previous quantities.

• Painlevé 3:

F
(1)
III =

1

24
ln

(
4(θ2
∞ − θ2

0)2(θ0q
6
0 − 3θ0q

4
0 + 3θ0q

2
0 − θ∞)

(θ∞ − θ0q2
0)3

)
τ

(2)
III = − d

dt
F

(1)
III = − (θ2

∞ − θ2
0)q3

0(q4
0 − 1)2

2(θ∞ − θ0q2
0)(θ0q6

0 − 3θ0q4
0 + 3θ0q2

0 − θ∞)2
(I.15)

where we used t =
q0(θ∞−θ0q2

0)

q4
0−1

to remove t from all previous quantities.

• Painlevé 4:

F
(1)
IV =

1

24
ln

(
−16(θ0 − q2

0 − tq0)2(θ0 + q2
0 + tq0)2(3q4

0 + 2q3
0t+ θ2

0)

θ2
0q

4
0

)
τ

(2)
IV = − d

dt
F

(1)
IV =

(θ0 − q2
0 − tq0)(θ0 + q2

0 + tq0)q3
0

4(3q4
0 + 2q3

0t+ θ2
0)2

(I.16)

where we used θ∞ =
3q4

0+4q3
0t+tq

2
0−θ2

0

2q2
0

to remove θ∞ from all previous quantities.
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• Painlevé 5:

F
(1)
V =

1

24
ln

[
− 4 ((θ0 − θ1 − θ∞)q2

0 + 2(t+ θ1 − θ0)q0 + θ0 − θ1 + θ∞)
2
P4(t)

(q0 − 1)2
(
(q0 − 1)4 (θ0 + θ∞ − θ1 − (θ0 − θ1 − θ∞)q0)2 − 4q2

0(q0 + 1)2t2
)2

]
(I.17)

where P4(t) = a4t
4 + a3t

3 + a2t
2 + a1t+ a0 is given by:

a4 = 16q40(6q0 + q20 + 1)
a3 = 32(q0 − 1)q30

(
(θ0 + θ∞ − θ1) + (3θ∞ + θ0 − 5θ1)q0 + (3θ∞ + θ1 − 5θ0)q20 + (−θ0 + θ1 + θ∞)q30

)
a2 = 8q20(q0 − 1)2

(
3(−θ0 − θ∞ + θ1)2 + 4(−θ0 − θ∞ + θ1)(2θ0 − θ∞ + 2θ1)q0 + (2θ20 + 2θ21 + 28θ0θ1 + 10θ2∞)q20

+(−4(2θ0 − θ∞ + 2θ1)(−θ0 + θ1 + θ∞))q30 + 3(−θ0 + θ1 + θ∞)2q40

)
a1 = 8q0(q0 − 1)3 ((θ0 + θ∞ − θ1) + (−θ0 + θ1 + θ∞)q0)

2(
(θ0 + θ∞ − θ1) + (−3θ0 − θ∞ − θ1)q0 + (−θ∞ − θ0 − 3θ1)q20 + (−θ0 + θ1 + θ∞)q30

)
a0 = (q0 − 1)6 ((θ0 + θ∞ − θ1) + (−θ0 + θ1 + θ∞)q0) (I.18)

One can verify with tedious computations and (C.5) that τ
(2)
V = − d

dt
F

(1)
V holds.

• Painlevé 6:

F
(1)
VI = − 1

12
(ln 2 + ln θ0 + ln θ1 + ln θ∞ + ln θt)

−1

9
ln t− 1

9
ln(t− 1) +

1

12
ln q0 +

1

12
ln(q0 − 1) +

1

12
ln(q0 − t)

+
1

24
ln

(
θ2
∞q

2
0 − q0

(
θ2

0t(t+ 1)

q2
0

− θ2
1t(t− 1)

(q0 − 1)2
+
θ2
t t(t− 1)

(q0 − t)2

)
+
θ2

0t
2

q2
0

)
+

1

36
ln

(∏
±

(
θ∞ ±

θ0t

q0

± θ1(t− 1)

q0 − 1

)(
θ∞ ±

θ0

q0

± θt(t− 1)

q0 − t

)(
θ∞ ±

θ1

q0 − 1
± θtt

q0 − t

))
(I.19)

where the product indexed by ± indicates that we must take all possible choice of signs. One
can verify with tedious computations and (C.7) that τ

(2)
VI = − d

dt
F

(1)
VI holds.

I.3 Higher orders

For the simplest Painlevé equations, we can compute the first orders F (2), F (3), etc. of the topo-
logical recursion depending on the complexity of the spectral curve. We find:

• Painlevé 1:

F
(2)
I = − 7

207360 q5
0

, F
(3)
I = − 245

429981696 q10
0

(I.20)

in agreement (q̇0 = − 1
12 q0

) with τ
(4)
I = 7

497664 q7
0

and τ
(6)
I = 1225

2579890176 q12
0

and d
dt
F

(g)
I = −τ (2g)

I .

• Painlevé 2:

F
(2)
II =

1

480

(2048 q0
12 + 2560 θ q0

9 + 1280 θ2q0
6 + 1020 θ3q0

3 − 45 θ4) q0
3

θ2 (4 q0
3 + θ)5

F
(3)
II = − q6

0

4032θ4 (θ + 4 q3
0)

10

(
4194304 q24

0 + 10485760 θ q21
0 + 11796480 θ2q18

0

+7864320 θ3q15
0 + 3440640 θ4q12

0 − 5694528 θ5q9
0 + 5232752 θ6q6

0 − 510412 θ7q3
0 + 3969 θ8

)
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(I.21)

We can verify (q̇0 = − q2
0

4q3
0+θ

) that d
dt
F

(g)
II = −τ (2g)

II for g = 2 and g = 3.

• Painlevé 3:

F
(2)
III =

Q30(q0)

240(θ2
0 − θ2

∞)(−θ0q6
0 + 3θ∞q4

0 − 3θ0q2
0 + θ∞)5

(I.22)

where Q30(q0) is a even polynomial in q0 of degree 30:

Q30(q0) = θ3
∞(10θ2

∞θ
2
0 + 7θ4

∞ − θ4
0) + (−15θ2

∞θ0(10θ2
∞θ

2
0 + 7θ4

∞ − θ4
0))q2

0 + 15θ∞(−8θ6
0 + 46θ4

∞θ
2
0 + 9θ6

∞ + 65θ2
∞θ

4
0)q4

0
+(−5θ2

∞θ0(205θ4
∞ + 341θ4

0 + 910θ2
∞θ

2
0))q6

0 + (−15θ∞(−195θ6
0 − 652θ2

∞θ
4
0 − 631θ4

∞θ
2
0 + 22θ6

∞))q8
0

+(−3θ0(5212θ2
∞θ

4
0 + 8837θ4

∞θ
2
0 + 1494θ6

∞ + 473θ6
0))q10

0 + 5θ∞(534θ6
∞ + 3893θ4

∞θ
2
0 + 9884θ2

∞θ
4
0 + 1705θ6

0)q12
0

+(−15θ0(13θ6
0 + 3465θ4

∞θ
2
0 + 2604θ2

∞θ
4
0 + 782θ6

∞))q14
0 + 15θ∞(3465θ2

∞θ
4
0 + 782θ6

0 + 13θ6
∞ + 2604θ4

∞θ
2
0)q16

0
+(−5θ0(1705θ6

∞ + 534θ6
0 + 3893θ2

∞θ
4
0 + 9884θ4

∞θ
2
0))q18

0 + 3θ∞(1494θ6
0 + 473θ6

∞ + 5212θ4
∞θ

2
0 + 8837θ2

∞θ
4
0)q20

0
+(−15θ0(631θ2

∞θ
4
0 + 652θ4

∞θ
2
0 − 22θ6

0 + 195θ6
∞))q22

0 + 5θ∞θ
2
0(205θ4

0 + 910θ2
∞θ

2
0 + 341θ4

∞)q24
0

+15θ0(8θ6
∞ − 65θ4

∞θ
2
0 − 9θ6

0 − 46θ2
∞θ

4
0)q26

0 + (−15θ∞θ
2
0(−10θ2

∞θ
2
0 + θ4

∞ − 7θ4
0))q28

0
+θ3

0(−10θ2
∞θ

2
0 + θ4

∞ − 7θ4
0)q30

0 (I.23)

One can verify (q̇0 =
(q4

0−1)2

θ0q6
0−3θ∞q4

0+3θ0q2
0−θ∞

) that d
dt
F

(2)
III = −τ (4)

III .

• Painlevé 4:

F
(2)
IV = − q4

0Q9(t, q0)

960θ2
0 (3q4

0 + 2tq3
0 + θ2

0)
5

((tq0 + q2
0)2 − θ2

0)
2 (I.24)

with:

Q9(t, q0) = 243q24
0 − 603q20

0 θ
2
0 + 353q4

0θ
10
0 − 16θ12

0 − 3474q16
0 θ

4
0 + 1962q12

0 θ
6
0 − 2561q8

0θ
8
0

+q3
0(1782q20

0 − 1593q16
0 θ

2
0 + 8406q8

0θ
6
0 − 4762q4

0θ
8
0 + 91θ10

0 − 16212q12
0 θ

4
0)t

+2q6
0(6690q4

0θ
6
0 + 582q12

0 θ
2
0 − 1525θ8

0 + 2889q16
0 − 16188q8

0θ
4
0)t2

−q5
0(589θ8

0 − 9569q12
0 θ

2
0 − 10872q16

0 − 10299q4
0θ

6
0 + 35655q8

0θ
4
0)t3

+3q8
0(1289θ6

0 + 5303q8
0θ

2
0 + 4361q12

0 − 7785q4
0θ

4
0)t4

+q7
0(10442q12

0 − 9120q4
0θ

4
0 + 545θ6

0 + 13365q8
0θ

2
0)t5

+4q10
0 (1382q8

0 + 1573q4
0θ

2
0 − 491θ4

0)t6 − q9
0(175θ4

0 − 1591q4
0θ

2
0 − 1872q8

0)t7

+2q12
0 (184q4

0 + 85θ2
0)t8 + 32q1

05t9 (I.25)

One can verify (q̇0 = − q3
0(t+2q0)

3q4
0+2tq3

0+θ2
0
) that d

dt
F

(2)
IV = −τ (4)

IV .

I.4 Details for the computation F
(0)
VI

I.4.1 Spectral curve

The spectral curve for (PVI) is given by

y2 =
θ2
∞(x− q0)2P (x)

4x2(x− 1)2(x− t)2
with P (x) = x2 +

(
−1− θ̃2

0t
2

q2
0

+
θ̃2

1(t− 1)2

(q0 − 1)2

)
x+

θ̃2
0t

2

q2
0

, (I.26)

where we remind the reader that the reduced monodromy parameters are θ̃i = θi
θ∞

. Note that P (x)
also admits a more symmetric formulation. Using the algebraic equation satisfied by q0, we can
reformulate:

P (x) = x2 +

(
− θ̃

2
0t(t+ 1)

q2
0

+
θ̃2

1t(t− 1)

(q0 − 1)2
− θ̃2

t t(t− 1)

(q0 − t)2

)
x+

θ̃2
0t

2

q2
0

. (I.27)
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Equivalently, it is also defined by the following 3 conditions:

P (0) =
θ̃2

0t
2

q2
0

, P (1) =
(t− 1)2θ̃2

1

(q0 − 1)2
and P (t) =

t2(t− 1)2θ̃2
t

(q0 − t)2
. (I.28)

Since the spectral curve is of genus 0, we can parametrize it globally. Let us define the following
parametrizations:

x(z) =
a+ b

2
+
b− a

4

(
z +

1

z

)
where by definition P (x) = (x− a)(x− b)

x(z) = 0 +
b− a

4z
(z − z0,+)(z − z0,−) where by definition x(z0,+) = x(z0,−) = 0

x(z) = 1 +
b− a

4z
(z − z1,+)(z − z1,−) where by definition x(z1,+) = x(z1,−) = 1

x(z) = t+
b− a

4z
(z − zt,+)(z − zt,−) where by definition x(zt,+) = x(zt,−) = t

x(z) = q0 +
b− a

4z
(z − zq0,+)(z − zq0,−) where by definition x(zq0,+) = x(zq0,−) = q0

(I.29)

Thus the branchpoints are located at z = ±1 and we can rewrite the spectral curve and the 1-form
w = ydx:

y(z) =
2θ∞(z − zq0,+)(z − zq0,−)(z2 − 1)z

(b− a)(z − z0,+)(z − z0,−)(z − z1,+)(z − z1,−)(z − zt,+)(z − zt,−)
, (I.30)

w(z) = y(z)dx(z) (I.31)

=
θ∞(z − zq0,+)(z − zq0,−)(z2 − 1)2

2z(z − z0,+)(z − z0,−)(z − z1,+)(z − z1,−)(z − zt,+)(z − zt,−)
dz.

The important point is to notice that w(z) is a meromorphic 1-form with simple poles only at
z ∈ {0, zi,±,∞} with i ∈ {0, 1, t}. Analyzing the different residues at these points and using
(D.12) we get that:

w(z) =

(
θ∞
2z
− θ0

2(z − z0,+)
+

θ0

2(z − z0,−)
+

θ1

2(z − z1,+)
− θ1

2(z − z1,−)
− θt

2(z − zt,+)
+

θt
2(z − zt,−)

)
dz.

(I.32)

Note that in particular the ambiguity between zi,+ and zi,− is settled by the choice of the sign in
the previous residues. We adopted for convenience a sign difference for θ1. In fact, one can verify
that equations (I.30) and (I.32) are equivalent to the algebraic equation for q0(t). Let us now try
to compute the first symplectic invariant F (0) for our spectral curve.

I.4.2 Computation of F
(0)
VI

Following the Eynard-Orantin framework [16], we observe that w(z) has 8 singular points: z ∈
{0,∞, z0,+, z0,−, z1,+, z1,−, zt,+, zt,−}. In the Eynard-Orantin language, z = 0 and z = ∞ are type
1 singular points since they are simple poles of x(z) (but not of y(z)). On the other hand, the
remaining six singular points fall into the type 2 category, i.e. are poles of y(z). Hence the local
coordinates are:

zα(p) =

 x(p) for z ∈ {0,∞},
1

x(p)− x(α)
for z ∈ {z0,±, z1,±, zt,±}.
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It is easy to see that there is no potential Vα(p) for any points. The temperatures are given from
(I.32):

α tα
0 θ∞

2

∞ − θ∞
2

z0,+ − θ0
2

z0,−
θ0
2

z1,+
θ1
2

z1,− − θ1
2

zt,+ − θt
2

zt,−
θt
2

In order to compute the µα’s we observe that:

∀ i ∈ {0, 1, t} :
dzαi(p)

zαi(p)
=
dp

p
− dp

p− zi,+
− dp

p− zi,−
For z = 0 :

dzα(p)

zα(p)
= −1

p
+ dp

(
ln(1 + p2 +

2(a+ b)p

b− a
)

)
For z =∞ :

dzα(p)

zα(p)
=

1

p
+ dp

(
ln(1 +

1

p2
+

2(a+ b)

(b− a)p
)

)
(I.33)

Then a tedious computation from Eynard-Orantin formula ([16, §4.2.2]) shows that we obtain:

F
(0)
VI =

θ2
0 + θ2

1 − θ2
∞ + θ2

t

8
ln

(b− a)2

16

+
1

8

[
θ2

0 ln
(z0,+ − z0,−)4

z0,+z0,−
+ θ2

1 ln
(z1,+ − z1,−)4

z1,+z1,−
+ θ2

t ln
(zt,+ − zt,−)4

zt,+zt,−

]
+

1

4

[
θ0θ∞ ln

z0,+

z0,−
− θ1θ∞ ln

z1,+

z1,−
+ θtθ∞ ln

zt,+
zt,−

]
+

1

4

[
θ0θ1 ln

(z1,+ − z0,+)(z1,− − z0,−)

(z1,+ − z0,−)(z0,+ − z1,−)
+ θ1θt ln

(z1,+ − zt,+)(z1,− − zt,−)

(z1,+ − zt,−)(zt,+ − z1,−)

−θ0θt ln
(zt,+ − z0,+)(zt,− − z0,−)

(zt,+ − z0,−)(z0,+ − zt,−)

]
(I.34)

Since ∀ i ∈ {0, 1, t} : zi,+zi,− = 1 the expression for F
(0)
VI simplifies into:

F
(0)
VI =

θ2
0 + θ2

1 − θ2
∞ + θ2

t

8
ln

(b− a)2

16

+
1

8

[
θ2

0 ln
(z2

0,+ − 1)4

z4
0,+

+ θ2
1 ln

(z2
1,+ − 1)4

z4
1,+

+ θ2
t ln

(z2
t,+ − 1)4

z4
t,+

]
+

1

4

[
θ0θ∞ ln z2

0,+ − θ1θ∞ ln z2
1,+ + θtθ∞ ln z2

t,+

]
+

1

4

[
θ0θ1 ln

(
− (z1,+ − z0,+)2

(1− z1,+z0,+)2

)
+ θ1θt ln

(
− (z1,+ − zt,+)2

(1− z1,+zt,+)2

)
−θ0θt ln

(
− (zt,+ − z0,+)2

(1− zt,+z0,+)2

)]
(I.35)
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Ingenious computations shows that we have:

ab =
θ2

0t
2

θ2
∞q

2
0

,

a+ b = 1 +
θ2

0t
2

θ2
∞q

2
0

− θ2
1(t− 1)2

θ2
∞(q0 − 1)2

= t

[
1 +

θ2
0

θ2
∞q

2
0

− θ2
t (t− 1)2

θ2
∞(q0 − t)2

]
= t+ 1 +

(t− 1)θ2
1

(q0 − 1)2θ2
∞
− t2(t− 1)θ2

t

(q0 − t)2θ2
∞

(I.36)

Consequently using (b− a)2 = (a+ b)2 − 4ab we find three equivalent expressions for (b− a)2:

(b− a)2 =
∏
±

(
1± θ0t

θ∞q0

± θ1(t− 1)

θ∞(q0 − 1)

)
= t2

∏
±

(
1± θ0

θ∞q0

± θt(t− 1)

θ∞(q0 − t)

)
= (t− 1)2

∏
±

(
1± θ1

θ∞(q0 − 1)
± θtt

θ∞(q0 − t)

)
. (I.37)

Here each product is taken over the four possibilities for the signs. We know want to define
non-ambiguously z0,+, z1,+ and zt,+, from the definition (I.29). We have:

zi,+ +
1

zi,+
=

2(2i− a− b)
b− a

for i ∈ {0, 1, t}. (I.38)

Moreover the points z0,+, z1,+ and zt,+ are defined such that:

Res
z→z0,+

w(z)dz = −θ0

2
, Res
z→z1,+

w(z)dz =
θ1

2
, Res
z→zt,+

w(z)dz = −θt
2
, (I.39)

where:

w(z) =
θ∞(x(z)− q0)(b− a)2(z2 − 1)2

32z3x(z)(x(z)− 1)(x(z)− t)
. (I.40)

Computing the various residues gives that:

z0,+ −
1

z0,+

=
4θ0t

θ∞q0(b− a)

z1,+ −
1

z1,+

=
4θ1(t− 1)

θ∞(q0 − 1)(b− a)

zt,+ −
1

zt,+
=

4θtt(t− 1)

θ∞(q0 − t)(b− a)
. (I.41)

Combining both (I.38) with (I.41) gives:

z0,+ =
1

b− a

(
2θ0t

θ∞q0

− a− b
)

z1,+ =
1

b− a

(
2θ1(t− 1)

θ∞(q0 − 1)
+ 2− a− b

)
zt,+ =

1

b− a

(
2θtt(t− 1)

θ∞(q0 − t)
+ 2t− a− b

)
(I.42)
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We can now replace a+ b using expression given in (I.36). We find the following values for zi,+:

z0,+ = − 1

b− a

(
1− θ0t

θ∞q0

− θ1(t− 1)

θ∞(q0 − 1)

)(
1− θ0t

θ∞q0

+
θ1(t− 1)

θ∞(q0 − 1)

)
z0,+ = − t

b− a

(
1− θ0

θ∞q0

− θt(t− 1)

θ∞(q0 − t)

)(
1− θ0

θ∞q0

+
θt(t− 1)

θ∞(q0 − t)

)
z1,+ =

1

b− a

(
1 +

θ0t

θ∞q0

+
θ1(t− 1)

θ∞(q0 − 1)

)(
1− θ0t

θ∞q0

+
θ1(t− 1)

θ∞(q0 − 1)

)
z1,+ = − t− 1

b− a

(
1− θ1

θ∞(q0 − 1)
+

tθt
θ∞(q0 − t)

)(
1− θ1

θ∞(q0 − 1)
− tθt
θ∞(q0 − t)

)
zt,+ =

t

b− a

(
1 +

θ0

θ∞q0

+
θt(t− 1)

θ∞(q0 − t)

)(
1− θ0

θ∞q0

+
θt(t− 1)

θ∞(q0 − t)

)
zt,+ =

t− 1

b− a

(
1 +

θ1

θ∞(q0 − 1)
+

θtt

θ∞(q0 − t)

)(
1− θ1

θ∞(q0 − 1)
+

θtt

θ∞(q0 − t)

)
(I.43)

We now regroup these results for the computation of F (0) given by (I.35). We first observe that
the terms involving θ2

i ’s are given by:

Term for θ2
0

1
8

ln

(
16 θ4

0t
4

θ4
∞q

4
0

∏
±

(
1± θ0t

θ∞q0
± θ1(t−1)
θ∞(q0−1)

)
)

Term for θ2
1

1
8

ln

(
16 θ4

1(t−1)4

θ4
∞(q0−1)4

∏
±

(
1± θ0t

θ∞q0
± θ1(t−1)
θ∞(q0−1)

)
)

Term for θ2
t

1
8

ln

(
16 θ4

t t
4(t−1)4

θ4
∞(q0−t)4

∏
±

(
1± θ0t

θ∞q0
± θ1(t−1)
θ∞(q0−1)

)
)

Term for θ2
∞ −1

8
ln

(
1
16

∏
±

(
1± θ0t

θ∞q0
± θ1(t−1)

θ∞(q0−1)

))
Additionally we can obtain the cross-terms (we looked for the expression minimizing the appearance
of θt in order to match it more easily with (I.10), and to obtain a symmetric expression in (θ0, θ1, θt),
one can easily take each contribution symmetrical relatively to these variables using (I.43)):

Term for θ0θ∞
1
4

ln

(
1− θ0t

θ∞q0
− θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
+

θ1(t−1)
θ∞(q0−1)

)
(

1+
θ0t
θ∞q0

+
θ1(t−1)
θ∞(q0−1)

)(
1+

θ0t
θ∞q0

− θ1(t−1)
θ∞(q0−1)

)
Term for θ1θ∞

1
4

ln

(
1− θ0t

θ∞q0
− θ1(t−1)
θ∞(q0−1)

)(
1+

θ0t
θ∞q0

− θ1(t−1)
θ∞(q0−1)

)
(

1+
θ0t
θ∞q0

+
θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
+

θ1(t−1)
θ∞(q0−1)

)
Term for θtθ∞

1
4

ln

(
1+

θ0
θ∞q0

+
θt(t−1)
θ∞(q0−t)

)(
1− θ0

θ∞q0
+

θt(t−1)
θ∞(q0−t)

)
(

1− θ0
θ∞q0

− θt(t−1)
θ∞(q0−t)

)(
1+

θ0
θ∞q0

− θt(t−1)
θ∞(q0−t)

)
Term for θ0θ1

1
4

ln

(
−
(

1+
θ0t
θ∞q0

− θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
+

θ1(t−1)
θ∞(q0−1)

)
(

1+
θ0t
θ∞q0

+
θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
− θ1(t−1)
θ∞(q0−1)

)
)

Term for θ0θt
1
4

ln

(
−
(

1+
θ0t
θ∞q0

+
θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
− θ1(t−1)
θ∞(q0−1)

)
(

1+
θ0t
θ∞q0

− θ1(t−1)
θ∞(q0−1)

)(
1− θ0t

θ∞q0
+

θ1(t−1)
θ∞(q0−1)

)
)

Term for θ1θt
1
4

ln

(
−
(

1+
θ1

θ∞(q0−1)
− θtt
θ∞(q0−t)

)(
1− θ1

θ∞(q0−1)
+

θtt
θ∞(q0−t)

)
(

1+
θ1

θ∞(q0−1)
+

θtt
θ∞(q0−t)

)(
1− θ1

θ∞(q0−1)
− θtt
θ∞(q0−t)

)
)

We now have all the ingredients to compute explicitly F
(0)
VI from (I.35) and we find (I.9).

It is then easy to verify that:

d

dt
F

(0)
VI (t, q0) = q̇0

∂

∂q0

F
(0)
VI (t, q0) +

∂

∂t
F

(0)
VI (t, q0) = −τ̇0 (I.44)

54



Remark I.1 Computation of F
(2)
VI follows the general topological recursion as presented in [16]

(see Definition 5.4). Computations rapidly become impossible to handle with a standard laptop to
simplify expressions. However we could verify explicitly that the following identify holds:

d

dt
F

(2)
VI (t, q0) =

∂

∂t
F

(2)
VI (t, q0) + q̇0

∂

∂q0

F
(2)
VI (t, q0) = − d

dt
τ

(4)
VI (I.45)

Unfortunately our final expression for F
(2)
VI (t, q0) is several pages long and presents no particular

interest but for the fact that its derivative recovers − d
dt
τ

(4)
VI . Hence we do not reproduce it here.
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