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Introduction

A remarkable feature of the non-relativistic [START_REF] Calogero | Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials[END_REF][START_REF] Sutherland | Exact results for a quantum many-body problem in one dimension[END_REF][START_REF] Moser | Three integrable Hamiltonian systems connected with isospectral deformations[END_REF] and relativistic [START_REF] Ruijsenaars | A new class of integrable models and their relation to solitons[END_REF] integrable many-body systems of Calogero type is their duality relation discovered by Ruijsenaars [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case[END_REF]. The phase space of a classical integrable many-body system is always equipped with two Abelian algebras of distinguished observables: the particle-positions tied to the physical interpretation and the action-variables tied to the Liouville integrability. The 'Ruijsenaars duality' between systems (i) and (ii) requires the existence of a symplectomorphism between the pertinent phase spaces that converts the particle-positions of system (i) into the action-variables of system (ii), and vice versa. One talks of self-duality if the leading Hamiltonians of systems (i) and (ii), which underlie the many-body interpretation, have the same form possibly with different coupling constants. In addition to being fascinating in itself, the duality proved useful for studying the dynamics, and it also appears at the quantum mechanical level where its manifestation is the bispectral property [START_REF] Duistermaat | Differential equations in the spectral parameter[END_REF] of the many-body Hamiltonian operators [START_REF] Ruijsenaars | Finite-dimensional soliton systems[END_REF][START_REF] Ruijsenaars | Systems of Calogero-Moser type[END_REF].

The duality relation has been established in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case[END_REF][START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] with the help of a direct method for all non-elliptic Calogero type systems associated with the A n root system. The present paper is part of the series [START_REF] Fehér | On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models[END_REF][START_REF] Fehér | Poisson-Lie interpretation of trigonometric Ruijsenaars duality[END_REF][START_REF] Fehér | Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction[END_REF] aimed at understanding all Ruijsenaars dualities by means of the reduction approach. The basic tenet of this approach, which originated from the pioneering papers [START_REF] Olshanetsky | Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature[END_REF][START_REF] Kazhdan | Hamiltonian group actions and dynamical systems of Calogero type[END_REF], is that the integrable many-body systems descend from certain natural 'free' systems that can be reduced using their large symmetries. Regarding the duality, it is envisioned [START_REF] Fock | Duality in integrable systems and gauge theories[END_REF] that the starting phase spaces to be reduced actually carry two 'free' systems that turn into a dual pair in terms of two models of a single reduced phase space. The existence of the symplectomorphism between two models (that arise in the simplest cases as two gauge slices) of a single reduced phase space is entirely automatic. In this way the reduction approach may yield considerable technical simplification over the direct method, where the proof of the symplectic character of the duality map is very laborious. However, nothing guarantees that this approach must always work; finding the correct reduction procedure relies on inspiration.

To this date, the reduction approach has been successfully implemented for describing all but two cases of the known Ruijsenaars dualities. The remaining two cases are the self-dualities of the hyperbolic and of the compactified trigonometric Ruijsenaars-Schneider systems. The physical interpretation of the latter system (also called III b system in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF], with 'b' for 'bounded') is based on its local description valid before compactification. Since it is needed subsequently, next we briefly summarize this local description.

The definition of the III b system begins with the local Hamiltonian 1

H loc y (δ, Θ) ≡ n j=1 cos p j n k =j 1 - sin 2 y sin 2 (x j -x k ) 1 2 , ( 1.1) 
where y is a real non-vanishing parameter, the δ j = e i2x j (j = 1, ..., n) are interpreted as the positions of n 'particles' moving on the circle, and the canonically conjugate momenta p j encode the compact variables Θ j = e -ip j . Here, the center of mass condition n j=1 δ j = n j=1 Θ j = 1 is also adopted. Denoting the standard maximal torus of SU(n) as ST n , the local phase space is

M loc y ≡ {(δ, Θ) | δ = (δ 1 , ..., δ n ) ∈ D y , Θ = (Θ 1 , ..., Θ n ) ∈ ST n }, (1.2) 
1 The index k in the next product n k =j runs over {1, 2, ..., n} \ {j}, and similar notation is used throughout.

where the domain D y ⊂ ST n (a so-called Weyl alcove with thick walls [START_REF] Van Diejen | The quantum dynamics of the compactified trigonometric Ruijsenaars-Schneider model[END_REF]) is chosen in such a way to guarantee that H loc y takes real values. The non-emptiness of D y is ensured by the restriction |y| < π n . The symplectic form on M loc y reads

Ω loc ≡ 1 2 tr δ -1 dδ ∧ Θ -1 dΘ = n j=1
dx j ∧ dp j .

(1.

3)

The Hamiltonian H loc y can be recast as the real part of the trace of the unitary Lax matrix L loc y :

L loc y (δ, Θ) jl ≡ e iye -iy e iy δ j δ -1

le -iy W j (δ, y)W l (δ, -y)Θ l (1.4) with the positive functions

W j (δ, y) := n k =j e iy δ j -e -iy δ k δ j -δ k 1 2
.

(1.5)

The flows generated by the spectral invariants of L loc y commute, but are not complete on M loc y . Ruijsenaars [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] has shown that one can realize (M loc y , Ω loc ) as a dense open submanifold of the complex projective space CP (n -1) equipped with a multiple of the Fubini-Study symplectic form, and thereby the commuting local flows generated by L loc y extend to complete Hamiltonian flows on the compact phase space CP (n -1). The self-duality of the resulting compactified III b system was also proved in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF].

Besides its appearance in soliton theory, the importance of the III b system resides mainly in its interpretation in terms of an appropriate symplectic reduction of the space of SU(n) connections on the torus with one boundary component (i.e. the one-holed torus). In fact, the local version of the III b system had been derived by means of such a symplectic reduction by Gorsky and his collaborators [START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF][START_REF] Fock | Duality in integrable systems and gauge theories[END_REF] who moreover conjectured that the Ruijsenaars duality originates from the geometrically natural action of the SL(2, Z) mapping class group of the torus on the reduced phase space. However, important global issues such as the compactification of the local phase space and the problem of the completeness of the Liouville flows were not addressed in their approach, and they have not proved that the Ruijsenaars self-duality symplectomorphism of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] indeed originates from the action of the standard mapping class generator S ∈ SL(2, Z).

The principal achievement of the present paper is a complete, global reduction treatment of the compactified III b system including a simple proof of its self-duality. The self-duality map will automatically arise as the composition of two Delzant symplectomorphisms, which will pave the way to also prove its conjectured relation [START_REF] Fock | Duality in integrable systems and gauge theories[END_REF] to the mapping class group. To obtain these results, we do not proceed by developing further the infinite-dimensional approach of [START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF], but shall rather work in a suitable finite-dimensional framework based on a non-trivial generalization of the Marsden-Weinstein symplectic reduction, called quasi-Hamiltonian reduction [START_REF] Alekseev | Lie group valued moment maps[END_REF].

The quasi-Hamiltonian reduction was invented [START_REF] Alekseev | Lie group valued moment maps[END_REF] as a finite-dimensional alternative for describing the symplectic structures on various moduli spaces of flat connections on Riemann surfaces whose investigation was initiated by Atiyah and Bott in the infinite-dimensional reduction context (see e.g. the book [START_REF] Khesin | The Geometry of Infinite-Dimensional Groups[END_REF] and references therein). From this angle, it is not surprising that quasi-Hamiltonian methods can be applied for finite-dimensional reduction treatment of integrable systems 2 . Nevertheless, we find it remarkable how naturally the quasi-Hamiltonian geometry together with the Delzant theorem of symplectic topology [START_REF] Delzant | Hamiltoniens périodiques et images convexes de l'application moment[END_REF] lead to an understanding of the global structure of the compactified Ruijsenaars-Schneider system. In fact, the Delzant theorem will be applied to establish the existence of two suitably equivariant symplectomorphisms, f α and f β , that both map CP (n -1) onto the quasi-Hamiltonian reduced phase space. By utilizing their main features, we also will be able to construct these Delzant symplectomorphisms explicitly, and then shall recover the Ruijsenaars self-duality symplectomorphism as the composition S = f -1 α • f β : CP (n -1) → CP (n -1). A re-phrasing of this formula will allow us to interpret the self-duality of the compactified Ruijsenaars-Schneider system as a direct consequence of the 'mapping class democracy' between the SU(n) factors of the quasi-Hamiltonian double. In fact, we shall prove the presentation S = f -1 β • S P • f β where S P stands for the natural action of S ∈ SL(2, Z) on the quasi-Hamiltonian reduced phase space. Inspired by results of Goldman [START_REF] Goldman | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF], S P itself will be decomposed into a product of three Dehn twist sympletomorphisms realized as special cases of certain Hamiltonian flows.

The paper is essentially self-contained and its organization is as follows. In Section 2, we first recall the concept of quasi-Hamiltonian dynamics and the method of quasi-Hamiltonian reduction. Then we describe the internally fused quasi-Hamiltonian double of the group SU(n) and define two torus actions on it that will descend to the reduced phase space of our interest. In Section 3, we perform the reduction, we prove that the reduced phase space is a Hamiltonian toric manifold (in two alternative but equivalent ways) and we find its topology and symplectic structure by identifying the Delzant polytope corresponding to the moment map of the torus action. In Section 4, we construct the Delzant symplectomorphisms f α and f β explicitly. The local Lax matrix (1.4) and its global extension will arise naturally as building blocks of these maps. In Section 5, we recover the compactified Ruijsenaars-Schneider system and its selfduality from our reduction. In Section 6, we demonstrate that the action of the Ruijsenaars self-duality symplectomorphism on the III b phase space is the standard action of the mapping class generator S ∈ SL(2, Z). Theorems 7, 8 of Section 5 and Theorem 9 of Section 6 are our main results representing the final outcome of our analysis. Their implications are further discussed in Section 7, together with an outlook on open problems.

Preliminaries

Quasi-Hamiltonian systems can be useful since they can be reduced to honest Hamiltonian systems by a generalization of the standard Marsden-Weinstein reduction procedure, and this can give an effective tool for studying the resulting reduced systems. Below we first recall from [START_REF] Alekseev | Lie group valued moment maps[END_REF] the relevant notions, and then describe those quasi-Hamiltonian dynamical systems that later will be shown to yield the compactified Ruijsenaars-Schneider system upon reduction.

Quasi-Hamiltonian systems and their reductions

Let G be a compact Lie group with Lie algebra G. Fix an invariant scalar product •, • on G and denote by ϑ and θ, respectively, the left-and right-invariant Maurer-Cartan forms on G. For a G-manifold M with action Ψ : G × M → M, we use Ψ g (m) := Ψ(g, m) and let ζ M denote the vector field on

M that corresponds to ζ ∈ G; we have [ζ M , η M ] = -[ζ, η] M for all ζ, η ∈ G.
The adjoint action of G on itself is given by Ad g (x) := gxg -1 , and Ad g denotes also the induced action on G.

By definition [START_REF] Alekseev | Lie group valued moment maps[END_REF], a quasi-Hamiltonian G-space (M, G, ω, µ) is a G-manifold M equipped with an invariant 2-form ω ∈ Λ(M) G and with an equivariant map µ : M → G, µ • Ψ g = Ad g • µ, in such way that the following conditions hold.

(a1) The differential of ω is given by

dω = - 1 12 µ * ϑ, [ϑ, ϑ] . (2.1) 
(a2) The infinitesimal action is related to µ and ω by

ω(ζ M , •) = 1 2 µ * ϑ + θ, ζ , ∀ζ ∈ G. (2.2) (a3) At each x ∈ M, the kernel of ω x is provided by Ker(ω x ) = {ζ M (x) | ζ ∈ Ker(Ad µ(x) + Id G )}. (2.3) 
The map µ is called the moment map.

A quasi-Hamiltonian dynamical system (M, G, ω, µ, h) is a quasi-Hamiltonian G-space with a distinguished G-invariant function h ∈ C ∞ (M) G , the Hamiltonian. It follows from the axioms that there exists a unique vector field v h on M determined by the following two requirements:

ω(v h , •) = dh, L v h µ = 0. (2.4)
The 'quasi-Hamiltonian vector field' v h is G-invariant and it preserves ω, L v h ω = 0. Thus, G-invariant Hamiltonians on a quasi-Hamiltonian G-space define evolution flows in much the same way as arbitrary Hamiltonians do on symplectic manifolds. One can also introduce an honest Poisson bracket on C ∞ (M) G . Naturally, if f and h are G-invariant functions and v f and v h the corresponding quasi-Hamiltonian vector fields, then this Poisson bracket is given by

{f, h} := ω(v f , v h ). (2.5)
Indeed, it is not difficult to check that the result {f, h} is again an invariant function and all the usual properties (including the Jacobi identity) are verified by this Poisson bracket. It is worth emphasizing that the general quasi-Hamiltonian manifold M is not symplectic and the quasi-Hamiltonian form ω does not induce a proper Poisson algebra on the smooth functions on M but just on the G-invariant smooth functions.

The quasi-Hamiltonian reduction of a quasi-Hamiltonian dynamical system (M, G, ω, µ, h) that interests us is determined by choosing an element µ 0 ∈ G. We say that µ 0 is strongly regular if it satisfies the following two conditions:

1. The subset µ -1 (µ 0 ) := {x ∈ M | µ(x) = µ 0 } is an embedded submanifold of M.
2. If G 0 ⊂ G is the isotropy group of µ 0 with respect to the adjoint action, then the quotient µ -1 (µ 0 )/G 0 is a manifold for which the canonical projection p :

µ -1 (µ 0 ) → µ -1 (µ 0 )/G 0 is a smooth submersion.
The result of the reduction based on a strongly regular element µ 0 is a standard Hamiltonian system, (P, ω, ĥ). The reduced phase space P is the manifold

P ≡ µ -1 (µ 0 )/G 0 , (2.6) 
which carries the reduced symplectic form ω and reduced Hamiltonian ĥ uniquely defined by

p * ω = ι * ω, p * ĥ = ι * h, (2.7) 
where ι : µ -1 (µ 0 ) → M is the tautological embedding.

We stress that ω is a symplectic form in the usual sense, whilst ω is neither closed nor globally non-degenerate in general. It follows from the above definitions that the Hamiltonian vector field and the flow defined by ĥ on P can be obtained by first restricting the quasi-Hamiltonian vector field v h and its flow to the 'constraint surface' µ -1 (µ 0 ) and then applying the canonical projection p. The Poisson brackets on (P, ω) are inherited from the Poisson brackets (2.5) of the G-invariant functions as in standard symplectic reduction.

Evolution flows on the internally fused double of SU (n)

Consider a quasi-Hamiltonian space M and a set of k distinguished G-invariant functions on it. In the sense of the preceding subsection, these data define a family of quasi-Hamiltonian dynamical systems. We shall speak about a 'commuting k-family' if the corresponding quasi-Hamiltonian vector fields all commute among each other.

In this paper, we shall deal with two commuting (n -1)-families of quasi-Hamiltonian dynamical systems, which both live on a single quasi-Hamiltonian G-space. The quasi-Hamiltonian G-space in question is the so-called internally fused double of the group G := SU(n) [START_REF] Alekseev | Lie group valued moment maps[END_REF], which as a manifold is provided by the direct product

D := G × G = {(A, B) | A, B ∈ G}.
(2.8)

The invariant scalar product on G := su(n) is given by

η, ζ := - 1 2 tr (ηζ), ∀η, ζ ∈ G. (2.9)
The group G acts on D by componentwise conjugation3 

Ψ g : (A, B) → (gAg -1 , gBg -1 ). (2.10) The 2-form ω of M := D reads 2ω = A -1 dA ∧ , dBB -1 + dAA -1 ∧ , B -1 dB -(AB) -1 d(AB) ∧ , (BA) -1 d(BA) , (2.11) 
and the G-valued moment map µ is defined by

µ(A, B) = ABA -1 B -1 . (2.12) Consider a real class function h ∈ C ∞ (G) G . Define the derivative ∇h ∈ C ∞ (G, G) G by the equation d dt t=0 h(e tζ g) = ζ, ∇h(g) , ∀g ∈ G, ∀ζ ∈ G. (2.

13)

Associate to h the following G-invariant functions on D,

h 1 (A, B) := h(A), h 2 (A, B) := h(B). (2.14)
The evolution flow of the quasi-Hamiltonian system (D, G, ω, µ, h 1 ) through the initial value

(A 0 , B 0 ) is furnished by (A(t), B(t)) = (A 0 , B 0 e -t∇h(A 0 ) ), (2.15) 
while the system (D, G, ω, µ, h 2 ) has the flow

(A(t), B(t)) = (A 0 e t∇h(B 0 ) , B 0 ). (2.16) 
Indeed, the evolution vector field given by the t-derivative of the flow (2.15) at the point (A(t), B(t)) of the double equals (0 ⊕ -B(t)∇h(A 0 )) and one can easily verify that it satisfies the defining relations (2.4) of the quasi-Hamiltonian vector field belonging to the function h 1 .

In order to specify the Hamiltonians of two commuting (n -1)-families of quasi-Hamiltonian dynamical systems on the double, we have to introduce the so-called spectral functions on the group G.

As a preparation, we define the alcove A by

A := (ξ 1 , ..., ξ n ) ∈ R n ξ j ≥ 0, j = 1, ..., n, n j=1 ξ j = π , (2.17) 
and the open alcove A 0 by

A 0 := (ξ 1 , ..., ξ n ) ∈ R n ξ j > 0, j = 1, ..., n, n j=1 ξ j = π . (2.18)
We then consider the injective map δ from A into the subgroup ST n of the diagonal elements of SU(n) given by

δ 11 (ξ) := e 2i n n j=1 jξ j , δ kk (ξ) := e 2i k-1 j=1 ξ j δ 11 (ξ), k = 2, ..., n. (2.19)
The image of δ is a fundamental domain for the action of the Weyl group of SU(n) (i.e. the permutation group) on ST n , which is often called a Weyl alcove. For this reason, we may also refer to A as a Weyl alcove. With the aid of the fundamental weights λ k of su(n) represented by the diagonal matrices λ k ≡ k j=1 E j,j -k n 1 n , the matrix δ(ξ) can be recast in the form

δ(ξ) = exp -2i n-1 k=1 ξ k λ k . (2.20)
Here we denoted by E j,j the n × n-matrix featuring 1 in the intersection of the j th -row with the j th -column and 0 everywhere else.

Every element A ∈ SU(n) can be written as

A = g(A) -1 δ(ξ)g(A), (2.21) 
for some g(A) ∈ SU(n) and unique ξ ∈ A. Moreover, whenever ξ ∈ A 0 , the element A is regular and g(A) is then determined up to left-multiplication by an element of ST n . By definition, the j th component of the alcove element ξ entering the decomposition (2.21) is the value of the spectral function Ξ j on A ∈ SU(n). In other words, the conjugation invariant function Ξ j on G = SU(n) is characterized by the equation

Ξ j (δ(ξ)) = ξ j , ∀ξ ∈ A, j = 1, ..., n. (2.22) 
It is easily seen that the spectral function Ξ j is smooth on G reg ⊂ G, but it develops singularities at the non-regular points of G. Note also that Ξ n = π -n-1 j=1 Ξ j according to (2.17). We are now in the position to define the 2(n -1) distinguished G-invariant Hamiltonians α j , β j on the double D as follows:

α j (A, B) := Ξ j (A), β j (A, B) := Ξ j (B), j = 1, ..., n -1.
(2.23)

We call α j and β j 'spectral Hamiltonians' and our next task is to show that they respectively define commuting (n -1)-families of quasi-Hamiltonian dynamical systems. To be more precise, it must be noted that the domain of the α j -Hamiltonians (resp.

β j -Hamiltonians) is the dense open subset D a ⊂ D (resp. D b ⊂ D) consisting of the couples (A, B) ∈ D with A ∈ G reg (resp. B ∈ G reg )
, which is stable under the corresponding flows. In order to describe the flows, we now prove the following lemma.

Lemma 1. The derivative of the spectral function

Ξ j ∈ C ∞ (G reg ) (j = 1, ..., n -1) reads ∇Ξ j (A) = g(A) -1 (i(E j+1,j+1 -E j,j ))g(A), ∀A ∈ G reg . (2.24)
Proof. The G-invariance of Ξ j implies the G-equivariance of ∇Ξ j , and therefore it is enough to calculate ∇Ξ j at the points of the open Weyl alcove. But at the points of the Weyl alcove ∇Ξ j must be a diagonal matrix, because of invariance under ST n inherited from the G-equivariance on G reg . Then (∇Ξ j )(δ(ξ)) is readily calculated to be i(E j+1,j+1 -E j,j ), which implies (2.24) on account of (2.21).

Note that ∇Ξ j (A) is well-defined by formula (2.24) since g(A) is determined up to leftmultiplication by the elements of the maximal torus, and its smoothness on G reg follows directly from the smoothness of Ξ j .

By combining the formulae (2.15), (2.16) and (2.24), we find that the following 2π-periodic curve in D a passing through (A, B) is the integral curve of the quasi-Hamiltonian vector field v α j :

A, Bg(A) -1 diag(1, 1, ..., 1, e it , e -it , 1, ..., 1)g(A) , t ∈ R, (2.25) and the following 2π-periodic curve in D b is an integral curve of the vector field v β j :

Ag(B) -1 diag(1, 1, ..., 1, e -it , e it , 1, ..., 1)g(B), B , t ∈ R. (2.26)
In particular, the formulae (2.25) and (2.26) trivially imply that the α-flows commute among themselves and so do the β-flows. In other words, the infinitesimal actions of the commuting quasi-Hamiltonian vector fields v α j integrate to a (smooth free) action of the torus

T n-1 := U(1) (n-1) (2.27)
on D a ⊂ D. The formula (2.25) gives the action of the j th U(1) factor of T n-1 , the phase e it sits in the j th place of the diagonal and g(A) is given by the decomposition (2.21). In spite of the ambiguity in the definition of g(A), the curve (2.25) is defined unambiguously. To display the action map Ψ a : T n-1 × D a → D a more explicitly, we introduce

ρ(τ ) := exp i n-1 j=1 t j (E j,j -E j+1,j+1
) for all τ = (e it 1 , ..., e it n-1 ) ∈ T n-1 .

(2.28)

Then we have Ψ a τ : (A, B) → (A, Bg(A) -1 ρ(τ )g(A)).

(2.29)

Similarly, the commuting quasi-Hamiltonian vector fields v β j generate a T n-1 -action on the dense open subset D b ⊂ D, and the corresponding action map Ψ b :

T n-1 × D b → D b reads Ψ b τ : (A, B) → (Ag(B) -1 ρ(τ ) -1 g(B), B). (2.30) 
We observe also that

{α j , α l } = 0 = {β j , β l }, (2.31) 
where the Poisson bracket of G-invariant functions was defined in Eq. (2.5). Indeed, we have

{α j , α l } ≡ ω(v α j , v α l ) ≡ L vα l α j = 0, (2.32) 
where the last equality holds since the α l -generated flow acts only on the B-component of the double (see Eq. (2.15)) leaving therefore the α j -functions invariant. The Poisson-commutativity (2.32) of the spectral Hamiltonians α j (and that of the β j ) survives any quasi-Hamiltonian reduction, and this fact will provide one of the underpinnings of our approach to the compactified Ruijsenaars-Schneider system.

Remark 1. The spectral Hamiltonians α j , β j can be viewed as the respective generators of the Poisson-commutative rings C a and C b consisting of smooth invariant functions defined with the help of Eq. (2.14):

C a := {h 1 ∈ C ∞ (D a ) G | h ∈ C ∞ (G reg ) G }, C b := {h 2 ∈ C ∞ (D b ) G | h ∈ C ∞ (G reg ) G }. (2.33)
The rings C a and C b can be of course generated also by other generators, e.g. by the invariants H m (A, B) ≡ ℜtr (A m ), H -m (A, B) ≡ ℑtr (A m ) and, respectively, by F m (A, B) ≡ ℜtr (B m ), F -m (A, B) ≡ ℑtr (B m ) for m ∈ N. Although the generators H ±m , F ±m have the apparent advantage of being globally smooth on G, it is more suited for our purpose to use the generators α j and β j since their flows are 2π-periodic (this circumstance will be crucial for our arguments in Subsections 3.3 and 3.4). It will be shown that after our quasi-Hamiltonian reduction the matrix A yields the Lax matrix of the Ruijsenaars-Schneider system, the generators H ±m become the Ruijsenaars-Schneider Hamiltonians, the α j become the action-variables and the β j will parametrize the particle-positions. We shall also establish a dual interpretation of the reduction, where B yields the Lax matrix, the generators F ±m become the Hamiltonians, the β j become the action-variables and the α j the parameters of the particle-positions.

Remark 2. We note that from the viewpoint of the corresponding moduli spaces of flat connections the flows (2.15) and (2.16) are special cases of the Goldman flows [START_REF] Goldman | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF]. The fact that the spectral functions are not smooth at the non-regular points of G will cause no problem, since we shall consider a quasi-Hamiltonian reduction for which the constraint surface µ -1 (µ 0 ) turns out to be a submanifold of G reg × G reg ⊂ D.

3 Reduction of the internally fused double of SU (n)

As we already know, the starting point of the reduction is the choice of an element µ 0 ∈ G, and the corresponding constraint surface µ -1 (µ 0 ) is the space of those (A, B) ∈ D that solve the moment map constraint4 ABA -1 B -1 = µ 0 .

The simplest non-trivial possibility is to take µ 0 from a conjugacy class of minimal but non-zero dimension. As seen from simple counting, in this case we may hope to obtain a non-trivial reduced system of dimension 2(n -1). Obviously, different choices from the same conjugacy class yield equivalent reduced systems. We here choose µ 0 diagonal of the form µ 0 = diag(e 2iy , ..., e 2iy , e 2(1-n)iy ), y ∈ R.

Anticipating its eventual identification with the parameter of the Hamiltonian (1.1), in the next subsection we restrict y to the range 0 < |y| < π n and then prove that µ 0 (3.2) leads to a smooth, compact reduced phase space P = µ -1 (µ 0 )/G 0 .

In the end, we shall identify the reduced phase space with the complex projective space CP (n -1) and shall also obtain a full characterization of the reduced spectral Hamiltonians αj and βj in terms of the standard parametrization of CP (n -1).

3.1

The reduced phase space is smooth and compact Theorem 1. Consider the diagonal matrix µ 0 = diag(e 2iy , ..., e 2iy , e 2(1-n)iy ) ∈ SU(n) with a real parameter y verifying

0 < |y| < π n . (3.3)
Any such µ 0 is a strongly regular value of the moment map µ (2.12), and the corresponding reduced phase space P = µ -1 (µ 0 )/G 0 is a smooth, compact manifold of dimension 2(n -1).

Proof. We first remark that µ -1 (µ 0 ) is non-empty since every element of any connected, compact semi-simple Lie group can be written as a commutator [START_REF] Gotô | A theorem on compact semi-simple groups[END_REF].

To continue, note that the action (2.10) of G on the double naturally descends to an action of the factor group Ḡ := G/Z n , where Z n is the center of G = SU(n). Similarly, the action of the adjoint isotropy group G 0 ⊂ G of µ 0 on the constraint surface µ -1 (µ 0 ) descends to an action of the factor group Ḡ0 := G 0 /Z n .

(3.4)

It is sufficient to prove that this latter action is free. Indeed, the free action of Ḡ0 implies the embedded nature of µ -1 (µ 0 ) by statement 3 of Proposition 4.1 of [START_REF] Alekseev | Lie group valued moment maps[END_REF] (which shows that the locally free nature of the action of the isotropy group on the constraint surface is equivalent to the regularity of the moment map value). The fact that the compact Lie group Ḡ0 acts freely on the smooth compact manifold µ -1 (µ 0 ) then ensures that

µ -1 (µ 0 )/G 0 = µ -1 (µ 0 )/ Ḡ0 (3.5) 
also becomes a smooth compact manifold. As for its dimension, we have dim( Ḡ0 ) = (n -1) 2 , since

G 0 = S(U(n -1) × U(1)), (3.6) 
and therefore dim µ -1 (µ 0 )/ Ḡ0 = (n -1)(n + 1) -(n -1) 2 = 2(n -1).

(3.7)

It remains to prove that if (A, B) ∈ µ -1 (µ 0 ) is fixed by some g ∈ SU(n), then g belongs to the central subgroup Z n . For this, suppose that (gAg -1 , gBg -1 ) = (A, B) holds for some (A, B) ∈ µ -1 (µ 0 ) and g ∈ G. This implies that both A and B belong to the centralizer subgroup

G(g) := {η ∈ SU(n) | ηgη -1 = g} ⊆ SU(n), (3.8) 
and µ 0 = ABA -1 B -1 belongs to the corresponding derivative subgroup G(g) ′ that contains the group-commutators in G(g). Now observe that if g is not central, then it is conjugate to an element g 0 of the maximal torus of SU(n) whose centralizer G(g 0 ) is a block-diagonal subgroup

G(g 0 ) = S(U(n 1 ) × U(n 2 ) × • • • × U(n k )), (3.9) 
for some k ≥ 2 and positive integers for which

n 1 + n 2 + • • • + n k = n (k = 1 occurs for g ∈ Z n ).
Accordingly, if g is not central, then µ 0 must be conjugate to an element of the commutator subgroup G(g 0 ) ′ of G(g 0 ) (3.9). It is readily seen that G(g 0 ) ′ is provided by

G(g 0 ) ′ = SU(n 1 ) × SU(n 2 ) × • • • × SU(n k ), (3.10) 
which leads to a contradiction. Indeed, it follows from (3.3) that in whatever way we partition the n eigenvalues of µ 0 into k > 1 parts, the product of the eigenvalues in at least one part (actually in each part) will not be equal to 1. Thus µ 0 cannot be conjugate to an element of G(g 0 ) ′ (3.10) for k > 1.

We remark in passing that the above arguments show also the strong regularity of any such moment map value from SU(n) which is not conjugate to a block-diagonal SU(n) matrix whose blocks themselves have determinant 1.

3.2

The images of the Hamiltonians α j , β j restricted to µ -1 (µ 0 )

Having established that the reduced phase space µ -1 (µ 0 )/G 0 is a compact smooth manifold, the next step is to determine the reduced symplectic form ω on it. Remarkably, the shortest way to this goal leads through the study of the images of the spectral Hamiltonians α j , β j (2.23) restricted to the constraint surface µ -1 (µ 0 ). Theorem 2. For µ 0 = diag(e 2iy , ..., e 2iy , e 2(1-n)iy ) with 0 < |y| < π n , the convex polytope

P y := (ξ 1 , ..., ξ n-1 ) ∈ R n-1 ξ j ≥ |y|, j = 1, ..., n -1, n-1 j=1 ξ j ≤ π -|y| (3.11)
is the common image of the vector-valued Hamiltonian functions (α 1 , ..., α n-1 ) and (β 1 , ..., β n-1 ) restricted to the constraint surface µ -1 (µ 0 ).

Proof. The formulation of Theorem 2 in terms of the convex polytope P y will play an important role in Section 3.4. However, from the technical point of view, it is more convenient to include into the analysis also the functions α n (A, B)

:= Ξ n (A), β n (A, B) := Ξ n (B) (cf. (2.22)-(2.23))
and to prove the following equivalent statement:

The common image of the vector-valued functions (α 1 , ..., α n-1 , α n ) and (β 1 , ..., β n-1 , β n ) restricted to the constraint surface µ -1 (µ 0 ) is the set

A y := (ξ 1 , ..., ξ n ) ∈ R n ξ j ≥ |y|, j = 1, ..., n, n j=1 ξ j = π . (3.12) 
The constraint ABA -1 B -1 = diag(e 2iy , ..., e 2iy , e 2(1-n)iy ) is invariant under the interchange of A and B accompanied with a simultaneous change of the sign of the parameter y. Since A y does not depend on the sign of y, it is enough to show that the image of (β 1 , ...,

β n-1 , β n ) restricted to µ -1 (µ 0 ) is A y .
Part 1: First we show that if ξ ∈ A y then there exist g(ξ) ∈ SU(n) and A(ξ) ∈ SU(n) such that A(ξ) and B(ξ) := g(ξ) -1 δ(ξ)g(ξ) solve the moment map constraint (3.1). (Recall that the map δ : A → ST n was defined in Eq. (2.19) in connection with the decomposition (2.21); below we use δ j := δ jj .)

Consider an arbitrary ξ = (ξ 1 , ..., ξ n ) ∈ A y and define

ξ kn+j := ξ j , k ∈ Z, j = 1, ..., n. (3.13) 
As an immediate consequence of Eq. (2.19), note the validity of the following relation:

δ j (ξ)δ l (ξ) -1 = exp 2i j-1 k=l ξ k , 1 ≤ l < j ≤ n. (3.14)
Moreover, using the convention (3.13), we have

cot |y| ≥ | cot( j-1 k=l ξ k )|, l = 1, ..., n; j = l + 1, ..., l + n -1, (3.15) because j-1 k=l ξ k in (3.15) always lies in the closed interval [|y|, π -|y| ].
Thus for ξ ∈ A y and l = 1, ..., n we obtain the reality and non-negativity of the quantities z l (δ(ξ), y) defined by

z l (δ(ξ), y) := e 2iy -1 e 2niy -1 n j =l δ j (ξ) -e 2iy δ l (ξ) δ j (ξ) -δ l (ξ) = (sin |y|) n sin (n|y|) l+n-1 j=l+1 cot |y| - y |y| cot( j-1 k=l ξ k ) . (3.16)
Note that the second equality in (3.16) follows from (3.14) and from the following trigonometric identity:

cot y -cot β ≡ sin (β -y) sin y sin β ≡ 2i e 2iβ -e 2iy (e 2iy -1)(e 2iβ -1) . (3.17) 
Now consider an arbitrary map v :

A y → C n such that |v l (ξ)| 2 := z l (δ(ξ), y). (3.18) 
Let us show then that

||v(ξ)|| 2 := n l=1 |v l (ξ)| 2 = 1. (3.19)
For this, we first check the equality of the following two polynomials in an auxiliary complex variable λ:

n j=1 (δ j (ξ) -λ) = n j=1 (δ j (ξ)ǫ 2iy -λ) + (e 2i(1-n)y -e 2iy ) n k=1 |v k (ξ)| 2 δ k (ξ) n j =k (δ j (ξ)e 2iy -λ) . (3.20)
Indeed, it is easy to verify (3.20) for the n (all distinct) values λ j = δ j (ξ)e 2iy , j = 1, ..., n.

Consequently, (3.20) holds true for any λ, and we obtain (3.19) by evaluating (3.20) for λ = 0.

We note that the polynomial identity (3.20) can be understood as the equality of the characteristic polynomials of the diagonal matrix δ(ξ) and of the matrix

µ v(ξ) δ(ξ), det(δ(ξ) -λ1 n ) = det(µ v(ξ) δ(ξ) -λ1 n ), (3.21) 
where the matrix µ v(ξ) reads

µ v(ξ) := e 2iy 1 n + (e 2i(1-n)y -e 2iy )v(ξ)v(ξ) † . (3.22)
Because of the normalization property (3.19), there certainly exists an SU(n) matrix g(ξ) having the vector v(ξ) as its last column, i.e., v j (ξ) = g(ξ) jn . It is then easily seen that the diagonal moment map value µ 0 (3.2) can be written as

µ 0 = g(ξ) -1 µ v(ξ) g(ξ), (3.23) 
and the determinant identity (3.21) can be therefore rewritten as

det(g(ξ) -1 δ(ξ)g(ξ) -λ1 n ) = det(µ 0 g(ξ) -1 δ(ξ)g(ξ) -λ1 n ). (3.24)
This means that the matrix B(ξ) := g(ξ) -1 δ(ξ)g(ξ) has the same spectrum as the matrix µ 0 B(ξ), which implies the existence of a matrix A(ξ) ∈ SU(n) such that

A(ξ)B(ξ)A(ξ) -1 = µ 0 B(ξ). (3.25)
Part 1 of the proof of Theorem 2 is thus complete.

Part 2: It remains to show that if (A, B) ∈ D satisfies the moment map constraint (3.1), then B can be written as

B = g -1 δ(ξ)g (3.26)
with some g ∈ SU(n) and some ξ ∈ A y (3.12). Using that any B ∈ SU(n) has the form (3.26) with uniquely determined ξ ∈ A (2.17), it will be convenient to distinguish two cases: i) ξ is in the open Weyl alcove A 0 (2.18); ii) ξ / ∈ A 0 . We consider first i) and then ii). More precisely, we shall first prove the statement:

i) If (A, B) ∈ µ -1 (µ 0 ), B = g -1 δ(ξ)g for some g ∈ SU(n) and ξ ∈ A 0 , then ξ ∈ A y .
Then we prove the statement:

ii) If ξ / ∈ A 0 then whatever is g ∈ SU(n), the matrix B = g -1 δ(ξ)g cannot be the second component of some solution (A, B) of the constraint (3.1).

Proof of statement i): Define A g and µ g as

A g := gAg -1 , µ g := gµ 0 g -1 .
(3.27)

The validity of (3.1) implies

A g δ(ξ)A -1 g = µ g δ(ξ). (3.28) 
Note that the matrix µ g depends only on the last column of the matrix g. To see this we rewrite µ 0 as

µ 0 = e 2iy 1 n + (e 2i(1-n)y -e 2iy )v 0 v † 0 , (3.29) 
where the vector v 0 ∈ C n is defined by its components (v 0

) n := 1, (v 0 ) j := 0, j = 1, ..., n -1.
This means that µ g can be written as

µ g = e 2iy 1 n + (e 2i(1-n)y -e 2iy )(gv 0 )(gv 0 ) † = e 2iy 1 n + (e 2i(1-n)y -e 2iy )vv † , (3.30) 
where v := gv 0 is the last column of the matrix g, i.e., v j = g jn .

We observe from (3.28) that the spectrum of the matrix µ g δ(ξ) must be equal to the spectrum of δ(ξ), which entails the equality of the characteristic polynomials

det(δ(ξ) -λ1 n ) = det(µ g δ(ξ) -λ1 n ). (3.31)
Both determinants in (3.31) can be easily evaluated so that (3.31) becomes

n j=1 (δ j (ξ) -λ) = n j=1 (δ j (ξ)ǫ 2iy -λ) + (e 2i(1-n)y -e 2iy ) n k=1 |v k | 2 δ k (ξ) n j =k (δ j (ξ)e 2iy -λ) . (3.32)
Due to the assumption ξ ∈ A 0 , we know that the elements of the diagonal matrix δ(ξ) have n distinct values. By evaluating the relation (3.32) for the n distinct values λ l = δ l (ξ)e 2iy , we immediately find

|v l | 2 = e 2iy -1 e 2niy -1 n j =l δ j (ξ) -e 2iy δ l (ξ) δ j (ξ) -δ l (ξ) = (sin |y|) n sin (n|y|) l+n-1 j=l+1 cot |y| - y |y| cot( j-1 k=l ξ k ) . (3.33) 
Now we have to distinguish whether y > 0 or y < 0. We start with y > 0. Then the first term in the last product in (3.33) is cot ycot ξ l . If ξ l was strictly inferior to |y| for a certain l, we would have obviously cot |y|cot ξ l < 0.

(3.34)

If we then had cot |y|cot(ξ l + ξ l+1 ) > 0, this would imply cot |y|cot(ξ l + ξ l+1 + ξ l+2 ) > 0 etc, which would give |v l | 2 < 0 by (3.33). In order to avoid such a contradiction, we see that the assumption

ξ l < |y| leads to cot |y| -cot(ξ l + ξ l+1 ) ≤ 0, (3.35) 
and hence to ξ l + ξ l+1 ≤ |y|.

(3.36)

Because ξ ∈ A 0 , we have ξ l > 0 and ξ l+1 > 0. This fact together with (3.36) gives ξ l+1 < |y|.

(3.37) Thus, we have shown that if ξ l < |y| for some l then ξ l+1 < |y|, and hence ξ j < |y| for all j = 1, ..., n. This is a contradiction since we know, respectively, from (2.17) and (3.2) that n j=1 ξ j = π and n|y| < π hold. We conclude that ξ l ≥ |y| for all l = 1, ..., n, whereby statement i) is proved for y > 0.

If y < 0, note that the last term in the last product in (3.33) is equal to cot |y|cot ξ l-1 . If ξ l-1 was strictly inferior to |y|, we would have obviously

cot |y| -cot ξ l-1 < 0. (3.38)
If moreover the next to last term, cot |y|cot(ξ l-1 + ξ l-2 ), was strictly positive, this would give |v l | 2 < 0 because all preceding terms would have to be strictly positive, too. Thus, the assumption ξ l-1 < |y| leads to cot |y|cot(ξ l-1 + ξ l-2 ) ≤ 0. This implies ξ l-2 < |y|, and consequently ξ j < |y| for all j. But this creates the same contradiction as in the case y > 0, whereby the proof of statement i) is complete.

Proof of statement ii):

To start, we note that the condition that ξ ∈ A but ξ / ∈ A 0 (2.18) means that there exists at least one index l ∈ {1, ..., n} for which ξ l = 0. We call such a configuration ξ degenerate, since it is characterized by the fact that the phases δ j (ξ) take only r < n distinct values. We find it more convenient to describe the degenerate configurations directly by their phases δ j (ξ). Since the map δ : A → ST n is injective, such a description is equivalent to the previous description in terms ξ and from now on we simply write δ j instead of δ j (ξ).

Fixing an arbitrary degenerate configuration, we partition n as a sum of 1 ≤ r < n positive integers,

n = k 1 + k 2 + ... + k r , (3.39) 
in such a way that

δ 1 = δ 2 = ... = δ k 1 , δ k 1 +1 = δ k 1 +2 = ... = δ k 1 +k 2 , . . . , δ r-1 i=1 k i +1 = δ r-1 i=1 k i +2 = ... = δ n . (3.40) Plainly, at least one integer k s (1 ≤ s ≤ r) must be superior or equal to 2.
Define the matrices A g , µ g and the vector v in the same way as in the proof of statement i). Then the assumed validity of the relation A g δA -1 g = µ g δ entails the equality of the characteristic polynomials of the matrices δ and µ g δ, which now yields

r j=1 (∆ j -λ) k j = r j=1 (∆ j e 2iy -λ) k j +(e 2i(1-n)y -e 2iy ) r m=1 Z m ∆ m (∆ m e 2iy -λ) km-1 r j =m (∆ j e 2iy -λ) k j .
(3.41) Here we introduced r distinct variables ∆ s (s = 1, ..., r),

∆ 1 := δ k 1 , ∆ 2 := δ k 1 +k 2 , . . . , ∆ r := δ k 1 +k 2 +...+kr ≡ δ n , (3.42) 
and r non-negative real variables Z s ,

Z 1 := |v 1 | 2 + |v 2 | 2 + ... + |v k 1 | 2 , . . . , Z j+1 := |v k 1 +...+k j +1 | 2 + |v k 1 +...+k j +2 | 2 + ... + |v k 1 +k 2 +...+k j+1 | 2 (3.
43) for all j = 1, ..., r -1. Due to the degeneracy of δ, the implications of (3.41) are qualitatively different from the implications of its relative (3.32) obtained in case i). To see this, we now rewrite equation (3.41) as a relation between two rational functions of λ:

Q(∆, y, λ) := r j=1 (∆ j -λ) k j (∆ j e 2iy -λ) k j -1 = r j=1 (∆ j e 2iy -λ)+(e 2i(1-n)y -e 2iy ) r m=1 Z m ∆ m r j =m (∆ j e 2iy -λ).
(3.44) Eq. (3.44) says that the variables ∆ s (3.42) must be such that the rational function Q(∆, y, λ) is a polynomial in λ. This means that all putative poles of Q(∆, y, λ) must be cancelled by appropriate monomials present in the numerator. The necessary and sufficient condition for this to occur is easily seen to be the following:

For every index m ∈ {1, ..., r} such that k m > 1, there must exist an index s ∈ {1, ..., r} such that ∆ s = ∆ m e 2iy and k s ≥ k m -1.

(*)

From now on we consider only the admissible degenerate δ-configurations that, by definition, satisfy the condition (*). (We saw that other degenerate configurations cannot occur in the spectrum of the matrix B solving the constraint (3.1).) Taking any such configuration, with ∆ in (3.42), we can find the uniquely determined quantities Z m = Z m (∆, y) (m = 1, ..., r) for which the relation (3.44) is satisfied. For this, it is sufficient to use r different values of the parameter λ given by λ m = ∆ m e 2iy , whereby we obtain Z m (∆, y) from (3.44). However, in distinction to the non-degenerate cases, here three possibilities may occur. First, if k m = 1 and there exists no such index s for which ∆ s = ∆ m e 2iy , then we find

Z m (∆, y) = e 2iy -1 e 2niy -1 r j =m ∆ j -e 2iy ∆ m ∆ j -∆ m k j = 0. (3.45) Second, if k m > 1 and k s = k m -1, then Z m (∆, y) = (-1) km+1 e 2(km-1)iy e 2iy -1 e 2niy -1 r j =m,s ∆ j -e 2iy ∆ m ∆ j -∆ m k j = 0. (3.46)
Here and below, it should not cause any confusion that we suppressed the dependence of s on m as given by the condition (*). Third, in the rest of the cases, for which either k m = 1 and there exists an index s with ∆ s = ∆ m e 2iy or k m > 1 and k s > k m -1, we obtain

Z m (∆, y) = 0. (3.47)
Let S(δ) denote the set of the integers m that occur in Eqs. (3.45) and (3.46). This set cannot be empty, since otherwise all components of the vector v = gv 0 of unit norm were zero (cf. (3.43)). We are going to finish the proof of statement ii) by showing that Eqs. (3.45) and (3.46) imply that at least one of the a priori non-negative quantities Z m (∆, y) is necessarily strictly negative, whatever is the admissible degenerate δ-configuration that we consider. To this end, we introduce a real positive parameter ǫ and associate to every admissible degenerate δ-configuration a continuous ǫ-family of configurations δ ǫ in the open Weyl alcove δ(A 0 ) ⊂ ST n : δ ǫ,p := ∆ 1 e ipǫ , p = 1, ..., k 1 ; δ ǫ,k 1 +...+k j-1 +p := ∆ j e ipǫ , p = 1, ..., k j , j = 2, ..., r,

where we use the partition (3.39). It is evident that for sufficiently small values of ǫ > 0 the configurations δ ǫ are non-degenerate, i.e., they sit in the δ-image of A 0 (defined in (2.18) and (2.19)). Consider now for l = 1, ..., n the quantities z l (δ ǫ , y),

z l (δ ǫ , y) := e 2iy -1 e 2niy -1 n j =l δ ǫ,j -e 2iy δ ǫ,l δ ǫ,j -δ ǫ,l , (3.49) 
which appeared also in the formula (3.16). From the fact that the configuration is admissible (*) it follows easily that for some l's the quantities z l (δ ǫ , y) vanish. More precisely, we first observe that

z l (δ ǫ , y) = 0 if l / ∈ {k 1 , k 1 + k 2 , ..., k 1 + ... + k r } (3.50)
and also

z k 1 +k 2 +...+km (δ ǫ , y) = 0 ∀ m for which ∃ s such that ∆ s = e 2iy ∆ m and k s ≥ k m . (3.51)
Moreover, it turns out that the limits lim ǫ→0 z l (δ ǫ , y) exist and do not vanish for all other l. That is they do not vanish for all l = k 1 + k 2 + ... + k m for which one of the following alternatives Now turning to the crux of the argument, we note that for small ǫ the configuration δ ǫ does not belong to the δ-image of A y (3.12). Indeed, whenever k j > 1 (recall that such 1 ≤ j ≤ r exists), we observe that in the ξ-parametrization (2.19) of the configuration δ ǫ we have ξ k j -1 = ǫ/2 < |y|. Following the proof of statement i), the quantity z l (δ ǫ , y) must be therefore strictly negative at least for one (in principle ǫ-dependent) value of l. As an obvious consequence, there must also exist a fixed index l and a decreasing series ǫ p → 0 such that z l (δ ǫp , y) is strictly negative for all positive integers p. From (3.50) and (3.51), we conclude the existence of an integer m * ∈ S(δ) such that the above mentioned ǫ-independent l is given by l = k 1 +k 2 +...+k m * . We know from (3.52) that the limit

lim p→∞ z k 1 +...+k m * (δ ǫp , y) = Z m * (∆, y) (3.53)
does not vanish, which implies that Z m * (∆, y) must be strictly negative. This is a contradiction with the non-negativity of the variables Z m (3.43).

The reduced phase space is a Hamiltonian toric manifold

By definition, a Hamiltonian toric manifold5 is a compact, connected symplectic manifold of dimension 2d equipped with an effective, Hamiltonian action of a torus of dimension d. We already know that the reduced phase space P = µ -1 (µ 0 )/G 0 is a compact symplectic manifold.

The following Lemmas 2 and 3 show that P is a Hamiltonian toric manifold. Lemma 2 refers to the β-generated torus action (2.30), but of course an analogous result holds also for the α-generated action (2.29); and eventually this will explain the Ruijsenaars self-duality. Thus, the statement that the torus action Ψ b (2.30) descends to a Hamiltonian torus action on the reduced phase space follows immediately from the general theory of quasi-Hamiltonian reduction [START_REF] Alekseev | Lie group valued moment maps[END_REF], which we briefly summarized around equation (2.7). In fact, the reduced torus action Ψb : T n-1 × P → P can be defined by means of the equality

Ψb τ • p = p • Ψ b τ | µ -1 (µ 0 ) , ∀τ ∈ T n-1 , (3.54) 
where p : µ -1 (µ 0 ) → P is the canonical projection. The corresponding infinitesimal torus action on P is generated by the vector fields vβ j (j = 1, ..., n -1) that are the projections of the vector fields v β j (2.26) restricted to µ -1 (µ 0 ). These projected vector fields are Hamiltonian,

ω(v βj , •) = d βj , (3.55)
where ω is the reduced symplectic form on P and the reduced Hamiltonians βj ∈ C ∞ (P ) are characterized by βj • p = β j • ι using the embedding ι : µ -1 (µ 0 ) → D. In other words, β ≡ ( β1 , ..., βn-1 ) :

P → R n-1 (3.56)
is the moment map for the T n-1 -action Ψb on P .

Suppose now that the T n-1 -action Ψb on P is not effective. We observe from (2.30) that this is equivalent to the existence of a non-unit element ρ ∈ ST n such that for all (A, B) ∈ µ -1 (µ 0 ) there exists an element h(A, B) ∈ G 0 satisfying

(Ag(B) -1 ρg(B), B) = (h(A, B)Ah(A, B) -1 , h(A, B)Bh(A, B) -1 ). (3.57)
This means that Ψb τ (p(A, B)) = p(A, B) for the element τ ∈ T n-1 for which ρ = ρ(τ ) according to (2.28). Note from (3.57) that h(A, B) must commute with B. Because (A, B) ∈ µ -1 (µ 0 ), B = g(B) -1 δ(ξ)g(B) is regular by Theorem 2 and therefore there exists some (A, B)-

dependent ζ = diag(ζ 1 , ..., ζ n ) ∈ ST n such that h(A, B) = g(B) -1 ζg(B). (3.58) 
The fact that h(A, B) ∈ G 0 then says that

g(B) -1 ζg(B)µ 0 = µ 0 g(B) -1 ζg(B), (3.59) 
or, equivalently, ζg(B)µ 0 g(B) -1 = g(B)µ 0 g(B) -1 ζ.

(3.60)

We know from the proof of Theorem 2 that the last column of the matrix g(B) is given by a vector v(ξ) verifying

|v l (ξ)| 2 = (sin |y|) n sin (n|y|) l+n-1 j=l+1 cot |y| - y |y| cot( j-1 k=l ξ k ) , ∀ l = 1, ..., n, (3.61) 
where ξ ∈ A y (3.12). If ξ belongs to the interior A 0 y of A y ,

A 0 y := (ξ 1 , ..., ξ n ) ∈ R n ξ j > |y|, j = 1, ..., n, n j=1 ξ j = π , (3.62) 
then all components of the vector v(ξ) are non-vanishing. In this case we compare the last columns of the matrices on the two sides of Eq. (3.60). By using the formula of µ 0 , this leads to the relation

ζv(ξ) = v(ξ)ζ n , (3.63) 
from which we conclude that ζ = ζ n 1 n . It then follows from (3.58) that h(A, B) = ζ n 1 n , and thereby (3.57) implies that ρ = 1 n . This contradicts our assumption that ρ is a non-unit element of ST n . Therefore the T n-1 -action Ψb on P is effective.

The statement of the following lemma can be obtained as an immediate consequence of Theorem 7.2 of [START_REF] Alekseev | Lie group valued moment maps[END_REF] (the proof of which itself is based on results of [START_REF] Meinrenken | Hamiltonian loop group actions and Verlinde factorization[END_REF]). We give here a direct proof since we shall need some details of it subsequently. Lemma 3. The reduced phase space P = µ -1 (µ 0 )/G 0 is connected.

Proof. It is enough to prove that any two points of P can be connected by a continuous path. We fix a point x ∈ P and define P x := {z ∈ P | β(z) = β(x)}, where β = ( β1 , ..., βn ) is the R n -valued function on P that descends from the R n -valued6 invariant function β on µ -1 (µ 0 ). We pick an arbitrary z ∈ P x , and next show that x can be connected to z. To begin, denote some representatives of x and z in µ -1 (µ 0 ) by (A, B) and (A ′ , B ′ ), respectively. Referring to Section 2.2, we have g(B)Bg(B) -1 = δ( β(x)) = g(B ′ )B ′ g(B ′ ) -1 for some SU(n) matrices g(B) and g(B ′ ). We see from the proof of Theorem 2 that g(B) and g(B ′ ) can be chosen to have the same last column (in fact, one may take g(B) jn = g(B ′ ) jn = z j (δ( β(x)), y)

1 2 defined in (3.16)). Then it follows that g(B)µ 0 g(B) -1 = g(B ′ )µ 0 g(B ′ ) -1 , which in turn implies that h := g(B) -1 g(B ′
) is in G 0 . This tells us that the representative of z in µ -1 (µ 0 ) can be replaced by (A ′′ , B) = (hA ′ h -1 , hB ′ h -1 ). Then, it must be true that A ′′ = AM where M = g(B) -1 ζg(B) for some ζ ∈ ST n . This holds because the moment map constraint for (A, B) and (A ′′ , B) implies that ABA -1 = A ′′ BA ′′-1 , and B is regular by Theorem 2. Next, by using the T n-1action (2.30), we can rewrite the equality (A ′′ , B) = (AM, B) as (A ′′ , B) = Ψ b η (A, B), where η ∈ T n-1 is defined by the relation ζ -1 = ρ(η) with (2.28). Finally, we choose a continuous curve [0, 1] ∋ s → τ (s) ∈ T n-1 for which τ (0) is the identity and τ (1) = η, whereby we obtain the continuous path Ψb τ (s) (x) in P that connects x to z. Notice that Ψb τ (s) (x) ∈ P x for all s, and thus we have also shown that the Ψb action (3.54) of T n-1 is transitive on P x .

We now take two arbitrary points x 0 , x 1 ∈ P for which β(x 0 ) = β(x 1 ), and prove the existence of a continuous path [0, 1] ∋ s → x(s) ∈ P for which x(0) = x 0 and x(1) = x 1 . The following argument relies on the first part of the proof of Theorem 2. We begin by choosing a continuous path ξ(s) ∈ A y in such a way that ξ(0) = β(x 0 ) and ξ(1) = β(x 1 ). Next we define the vector function v(s) by putting v l (s) := z l (δ(ξ(s)), y) 1 2 using (3.16). Since v(s) is continuous in s, we can find (actually could give explicitly) an SU(n)-valued continuous function g(s) that solves µ 0 = g(s) -1 µ v(s) g(s), where µ v(s) is obtained by replacing v(ξ) in (3.22) by v(s) (see also (3.23)). We continue by defining B(s) := g(s) -1 δ(ξ(s))g(s), and then note the existence of a continuous function A(s) ∈ SU(n) for which A(s)B(s)A(s) -1 = µ 0 B(s). Such function exists since B(s) is similar to µ 0 B(s), as can be seen from the discussion around equations (3.21)-(3.25), and the eigenvectors of B(s) and that of µ 0 B(s) can be chosen as continuous functions of s. Now the projection of the curve (A(s), B(s)) ∈ µ -1 (µ 0 ) yields a continuous curve x(s) := p(A(s), B(s)) ∈ P for which β(x(0)) = β(x 0 ) and β(x(1)) = β(x 1 ). By the previous part of the proof, it is obviously possible to find a continuous curve τ (s) ∈ T n-1 such that x(s) := Ψb τ (s) (x(s)) gives the path connecting x 0 with x 1 .

Remark 3. The main message of the present subsection is that the reduced phase space (P, ω) is naturally equipped with two effective Hamiltonian actions of the torus T n-1 . The first is the action Ψb (3.54), which we call the β-generated action since its moment map is given by β (3.56). The second is the α-generated action, which can be defined by the formula

Ψa τ • p = p • Ψ a τ | µ -1 (µ 0 ) , ∀τ ∈ T n-1 , (3.64) 
where Ψ a is given by (2.29). The corresponding moment map is α ≡ ( α1 , ..., αn-1 ) :

P → R n-1 , (3.65) 
where the functions αj descend from the spectral Hamiltonians α j introduced in (2.23). The data (P, ω, α) and (P, ω, β) both encode Hamiltonian toric manifolds, or in other words we have two completely integrable systems on the reduced phase space (P, ω). Observe from the proofs of Lemmas 2 and 3 that the Ψb action is free and transitive on P x for all x ∈ P b 0 (the transitivity holds for all x ∈ P ). Thus P b 0 is a principal T n-1 -bundle over the base P 0 y . This bundle is topologically trivial since its base is contractible. Consider now x 0 , x 1 ∈ P such that x 0 / ∈ P b 0 and x 1 ∈ P b 0 . Then x 0 can be connected to x 1 by a curve x(s) as in the proof of Lemma 3 in such a way that β(x(s)) ∈ P 0 y for all 0 < s ≤ 1 (since P y is a convex polytope). This in turn implies that P b 0 is a dense open submanifold of P . By the reasoning used below Eq. (3.27), P a 0 is a also a dense open submanifold of P and, equipped with the Ψa action, it is a principal T n-1 -bundle over P 0 y .

3.4

The global structure of the reduced systems (P, ω, α) and (P, ω, β)

We below identify the reduced systems by utilizing a celebrated result of Delzant [START_REF] Delzant | Hamiltoniens périodiques et images convexes de l'application moment[END_REF] that characterizes Hamiltonian toric manifolds in terms of the image of the moment map.

Delzant's first theorem (Th. 2.1 of [START_REF] Delzant | Hamiltoniens périodiques et images convexes de l'application moment[END_REF]). Let (M 1 , ω 1 ) and (M 2 , ω 2 ) be 2d-dimensional Hamiltonian toric manifolds with moment maps Φ 1 : M 1 → T * and Φ 2 : M 2 → T * , where T is the Lie algebra of the d-dimensional torus T acting on M 1 and on M 2 . If the images Φ 1 (M 1 ) and Φ 2 (M 2 ) coincide, then there exists a T-equivariant symplectomorphism ϕ :

M 1 → M 2 such that Φ 2 • ϕ = Φ 1 .
According to an earlier result of Atiyah, Guillemin and Sternberg, the images in question are convex polytopes. Delzant also obtained full classification of the moment polytopes associated with Hamiltonian toric manifolds, which are now routinely called Delzant polytopes [START_REF] Audin | Symplectic Geometry of Integrable Hamiltonian Systems[END_REF].

By now, we have exhibited two effective Hamiltonian actions of the torus T n-1 = U(1) n-1 on the compact connected reduced phase space (P, ω). Referring to a fixed basis7 of the Lie algebra T n-1 of T n-1 , the respective moment maps are α : P → R n-1 (3.65) and β : P → R n-1 (3.56). The Delzant polytopes are provided in both cases by P y (3.11).

Specialists of symplectic geometry can immediately recognize the Delzant polytope P y (3.11) as the one associated with a very standard Hamiltonian toric manifold: CP (n -1) equipped with a multiple of the Fubini-Study form and the familiar 'rotational action' of T n-1 . For the sake of keeping our paper self-contained, and also since we need to fix notations, we next explain how this Hamiltonian toric manifold comes about.

Let us start with the symplectic vector space C n ≃ R 2n endowed with the Darboux form

Ω C n = i n k=1 dū k ∧ du k , (3.67) 
where u k (k = 1, ..., n) are the components of the vector u that runs over C n . Then consider the Hamiltonian action ψ of the group U(1) on C n operating as

ψ e iγ (u) := e iγ u. (3.68)
This action is generated by the moment map χ :

C n → R, χ(u) ≡ n k=1 |u k | 2 , (3.69) since dχ = Ω C n (V, •) holds for the vector field V = i n k=1 (u k ∂ ∂u k -ūk ∂ ∂ ūk
) associated with the infinitesimal action. For any fixed value χ 0 > 0, usual symplectic reduction yields the reduced phase space χ -1 (χ 0 )/U(1) ≡ CP (n -1).

(3.70)

For χ 0 = 1, the reduced symplectic form is the standard Fubini-Study form ω FS of CP (n -1).

On the C n-1 chart corresponding to those u ∈ χ -1 (1) for which u n = 0, the reduced symplectic form becomes

ω FS (C n-1 ) = i n-1 k=1 dz k ∧ dz k 1 + |z| 2 -i n-1 j,k=1 z j zk dz j ∧ dz k (1 + |z| 2 ) 2 = i ∂∂ log(|z| 2 + 1), (3.71) 
where we use the 'inhomogeneous coordinates' z j :=

u j un and |z| 2 ≡ n-1 k=1 |z k | 2 .
It is wellknown that ω FS takes the form (3.71) in terms of all the n possible systems of inhomogeneous coordinates that together cover CP (n -1). For arbitrary χ 0 > 0, one has the following result.

Lemma 4. The reduced symplectic manifold χ -1 (χ 0 )/U(1) obtained from (C n , Ω C n ) as described above is the complex projective space CP (n -1) equipped with the symplectic form χ 0 ω FS .

Now focus on the action

R : T n-1 × C n → C n of the torus T n-1 on C n furnished by R τ (u 1 , ..., u n-1 , u n ) := (τ 1 u 1 , ..., τ n-1 u n-1 , u n ), ∀τ ∈ T n-1 , ∀u ∈ C n .
(3.72)

Defining J k := |u k | 2 , ∀k = 1, ..., n -1, (3.73) 
the corresponding moment map can be taken to be J = (J 1 , ..., J n-1 ) :

C n → R n-1 .
Of course, the moment map of the torus action is unique only up to a shift by an arbitrary constant, which we shall fix by convenience.

The above T n-1 -action and moment map survive the symplectic reduction by the U(1)action (3.68) and descend to the rotational T n-1 -action on (CP (n -1), χ 0 ω FS ), which thus becomes a Hamiltonian toric manifold. This means that the rotational T n-1 -action, denoted as R : T n-1 × CP (n -1) → CP (n -1), operates according to the rule

R τ • π χ 0 = π χ 0 • R τ (3.74)
where π χ 0 : χ -1 (χ 0 ) → CP (n -1) is the canonical projection. We define its moment map J = (J 1 , ..., J n-1 ) : CP (n -1) → R n-1 by the formula

J k • π χ 0 = J k + J 0 k , k = 1, ..., n -1, (3.75) 
where the J 0 k are constants. It is obvious that

0 ≤ J k and n-1 k=1 J k ≤ χ 0 . (3.76)
The point to note is that if we choose χ 0 := (π -|y|n) and J 0 k := |y|, then the Delzant polytope J (CP (n -1)) of the rotational T n-1 -action coincides with the polytope P y (3.11). Therefore we obtain the following main result of this section by combining Delzant's theorem with the statements proved previously. Theorem 3. Choose y ∈ R for which 0 < |y| < π n . Consider the Hamiltonian toric manifold (CP (n -1), (π -|y|n)ω FS , J ), where J defined by J k • π χ 0 = J k + |y| is the moment map of the rotational T n-1 -action, and consider also the Hamiltonian toric manifolds (P, ω, α) and (P, ω, β) that result from the quasi-Hamiltonian reduction according to Theorem 1 and Remark 3. Then any two of these three Hamiltonian toric manifolds are T n-1 -equivariantly symplectomorphic. More precisely, there exists a diffeomorphism φ α : P → CP (n -1) such that

φ * α ((π -|y|n)ω FS ) = ω, α = J • φ α , (3.77) 
and also a diffeomorphism φ β : P → CP (n -1) such that

φ * β ((π -|y|n)ω FS ) = ω, β = J • φ β . (3.78)
The composed diffeomorphism φ := φ -1 β • φ α : P → P converts (P, ω, α) into (P, ω, β).

Remark 5. Theorem 3 says that both completely integrable Hamiltonian systems (P, ω, α) and (P, ω, β) obtained from the quasi-Hamiltonian reduction can be identified with the system on (CP (n -1), (π -|y|n)ω FS ) provided by the simple Hamiltonians J k that generate the rotational action of T n-1 . As we shall see later, the functions J k ∈ C ∞ (CP (n-1)) play the role of particlepositions in the compactified III b system [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. It will turn out that if one converts β into the particle-positions J of the III b system by the symplectomorphism φ β , then α is converted by the same symplectomorphism into the action-variables of the system. Roughly speaking, the exchange of the roles of α and β will then explain the Ruijsenaars self-duality since the other symplectomorphism φ α converts α into the particle-positions and β into the action-variables. From now on, the symplectomorphisms φ α , φ β that appear in Theorem 3 as well as their inverses and compositions will be referred to as Delzant symplectomorphisms, or simply as Delzant maps.

In the next section, we explicitly construct the Delzant maps

f α := φ -1 α and f β := φ -1 β , (3.79) 
which will be utilized in Section 5 where the statements of this remark will be elaborated.

Construction of the Delzant symplectomorphisms

The aim of this section is to construct explicitly the Delzant maps f α , f β : CP (n-1) → P whose existence has been established by Theorem 3. We shall see that the Ruijsenaars-Schneider Lax matrix L loc y appears as a principal building block of these symplectomorphisms. This remarkable fact will be further exploited in Section 5 where the emergence of the compactified III b system as the fruit of the quasi-Hamiltonian reduction will be established and the Ruijsenaars self-duality map of the III b system will be expressed in terms of the Delzant maps.

From the technical point of view, below we first describe a local version of the map f β defined in some dense open subset of CP (n -1), and then we construct its global extension that will involve the global extension of the local Lax matrix (appearing already in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]). Finally, we shall construct f α out of f β and certain involutions. 

where P b 0 = β-1 (P 0 y ) is the dense open submanifold of P introduced in (3.66). On the subset of the constraint surface χ -1 (π -n|y|) covering CP (n-1) 0 we may impose the gauge fixing condition u n > 0, and then u j (j = 1, ..., n -1) parametrize CP (n -1) 0 . Adopting this condition, we now introduce Darboux coordinates ξ j , τ j (j = 1, ..., n -1) on CP (n -1) 0 by setting u j := τ j ξ j -|y| for j = 1, ..., n -1, where ξ ∈ P 0 y (3.11), τ ∈ T n-1 . That is we parametrize CP (n -1) 0 using the diffeomorphism

E : P 0 y × T n-1 → CP (n -1) 0 (4.2)
given by

E(ξ, τ ) := π χ 0 (τ 1 ξ 1 -|y|, ..., τ n-1 ξ n-1 -|y|, ξ n -|y|) with ξ n ≡ π - n-1 k=1 ξ k (4.3)
and π χ 0 defined in Subsection 3.4. An easy calculation shows that the Fubini-Study symplectic structure on CP (n-1) 0 takes the Darboux form in the variables ξ j , τ j . Speaking more precisely, with the parametrization τ k := e iθ k (k = 1, ..., n -1), there holds the relation

(π -n|y|)E * (ω FS ) = i n-1 k=1 dξ k ∧ dτ k τ -1 k = n-1 k=1 dθ k ∧ dξ k . (4.4)
As further pieces of preparation, recall the isomorphism ρ :

T n-1 → ST n (2.28), ρ(τ ) ≡ exp i n-1 j=1 θ j (E j,j -E j+1,j+1
) for τ = (e iθ 1 , ..., e iθ n-1 ), (4.5)

and consider the vector v j (ξ, y) := sin y sin ny

1 2 W j (δ(ξ), y), ∀ξ ∈ P y , j = 1, ..., n, (4.6) 
with W j in (1.5) where non-negative square roots are taken. Observe that if ξ ∈ P 0 y , then all v j (ξ, y) are strictly positive since their squares are the same as the right-hand side of (3.16). It is also important to notice that these are C ∞ functions on the open alcove P 0 y , but their first derivatives develop some singularities at the boundary of P 0 y . It is readily checked that the following formulae yield a unitary matrix g(v) ∈ U(n) for any vector v ∈ R n that has unit norm and component v n = -1:

g(v) jn := -g(v) nj := v j , ∀j = 1, ..., n -1, g(v) nn := v n , g(v) jl := δ jl - v j v l 1 + v n , ∀j, l = 1, ..., n -1. (4.7) 
Equations (1.5), (3.16)-(3.19) imply that the vector v(ξ, y) in (4.6) has unit norm, and using this we now introduce the unitary (actually real-orthogonal) matrix g y (ξ) ∈ U(n) by setting g y (ξ) := g(v(ξ, y)), ∀ξ ∈ P y . (4.8)

Theorem 4. We can define a map f 0 : CP (n -1) 0 → P b 0 by the formula

(f 0 • E)(ξ, τ ) := p g y (ξ) -1 L loc y (δ(ξ), ρ(τ ) -1 )g y (ξ), g y (ξ) -1 δ(ξ)g y (ξ) , (4.9) 
where L loc y is the Lax matrix given by (1.4) and p : µ -1 (µ 0 ) → P is the canonical projection. This map is a symplectic diffeomorphism with respect to the restricted symplectic forms,

f * 0 (ω) = (π -n|y|)ω FS , (4.10) 
and it intertwines the restrictions of the corresponding toric moment maps,

f * 0 ( β) = J . (4.11)
The hardest part of the proof will be the verification of Eq. (4.10), and before dealing with this we present two lemmas.

Lemma 5. The SU(n) matrix L loc y (δ(ξ), Θ) given by Eq. (1.4) verifies the relation

L loc y (δ(ξ), Θ)δ(ξ)L loc y (δ(ξ), Θ) -1 = e 2iy 1 n + (e 2i(1-n)y -e 2iy )v(ξ, y)v(ξ, y) † δ(ξ) (4.12)
for all ξ ∈ P 0 y and Θ ∈ ST n , with the vector (4.6).

Proof. We know from the proof of Theorem 2 (cf. the discussion around Eqs. (3.28) and (3.30)) that the unitary matrices δ(ξ) and e 2iy 1 n + (e 2i(1-n)ye 2iy )v(ξ, y)v(ξ, y) † δ(ξ) have the same spectra, and hence there exists a unitary matrix N(ξ, y) such that

N(ξ, y)δ(ξ)N(ξ, y) -1 = e 2iy 1 n + (e 2i(1-n)y -e 2iy )v(ξ, y)v(ξ, y) † δ(ξ). (4.13)
By conjugating the last relation by N(ξ, y) -1 we obtain δ(ξ) = e 2iy 1 n + (e 2i(1-n)ye 2iy )N(ξ, y) -1 v(ξ, y) N(ξ, y) -1 v(ξ, y) † N(ξ, y) -1 δ(ξ)N(ξ, y) (4.14) and by inverting the term in square brackets we arrive at N(ξ, y) -1 δ(ξ)N(ξ, y) = e -2iy 1 n + (e 2i(n-1)ye -2iy )N(ξ, y) -1 v(ξ, y) N(ξ, y) -1 v(ξ, y)

† δ(ξ).

(4.15) Let us rewrite Eq. (4.13) for -y as

N(ξ, -y)δ(ξ)N(ξ, -y) -1 = e -2iy 1 n + (e 2i(n-1)y -e -2iy )v(ξ, -y)v(ξ, -y) † δ(ξ). (4.16) 
We have learned in proving Theorem 2 (cf. Eq. (3.33)) that the equality of the spectra of the matrices δ(ξ) and e 2iy 1 n + (e 2i(1-n)ye 2iy )ww † δ(ξ) fixes the absolute values of the components of the vector w to be given by the right-hand side of (4.6). Comparing (4.16) with (4.15), we therefore see that the absolute values of the components of the vector N(ξ, y) -1 v(ξ, y) are the same as the (strictly positive) components of the vector v(ξ, -y). Note that the matrix N(ξ, y) verifying Eq. (4.13) is not unique because it can be multiplied from the right by any diagonal element of U(n) while keeping (4.13) valid. However, this ambiguity can be completely fixed by requiring that the vector N(ξ, y) -1 v(ξ, y) has all components real and strictly positive. We denote the unique matrix N(ξ, y) satisfying this requirement by Ñ(ξ, y). Thus we have v(ξ, y) = Ñ(ξ, y)v(ξ, -y) and hence Ñ (ξ, -y) = Ñ (ξ, y) -1 . (4.17)

By considering it for N(ξ, y) := Ñ(ξ, y), let us rewrite (4.13) as

Ñ(ξ, y)δ(ξ) -e 2iy δ(ξ) Ñ(ξ, y) = (e 2i(1-n)y -e 2iy )v(ξ, y) Ñ (ξ, y) -1 v(ξ, y) † Ñ (ξ, y) -1 δ(ξ) Ñ(ξ, y).
(4.18) With the help of (4.17), we can further rewrite the last relation as Ñ(ξ, y)δ(ξ)e 2iy δ(ξ) Ñ(ξ, y) = (e 2i(1-n)ye 2iy )v(ξ, y)v(ξ, -y) † Ñ (ξ, -y)δ(ξ) Ñ(ξ, -y) -1 . (4. [START_REF] Lyndon | Combinatorial Group Theory[END_REF] Expressing Ñ (ξ, -y)δ(ξ) Ñ(ξ, -y) -1 from Eq. (4.16) and using subsequently Eq. (3.19), we derive Ñ (ξ, y)δ(ξ)e 2iy δ(ξ) Ñ(ξ, y) = (1e 2niy )v(ξ, y)v(ξ, -y) † δ(ξ).

(4.20)

By solving this for the components of Ñ(ξ, y) we obtain the equality Ñ (ξ, y) = e i(n-1)y L loc y (δ(ξ), 1 n ). (4.21) This implies the desired relation (4.12). The above argument also shows that L loc y (δ(ξ), Θ) is unitary, and the fact that its determinant equals 1 is easily checked by the determinant formula of Cauchy matrices. Lemma 6. Every element (A, B) ∈ µ -1 (µ 0 ) such that p(A, B) belongs to P b 0 (3.66) has the form

(A, B) = Ψ (gy(ξ)η) -1 L loc y (δ(ξ), ρ(τ ) -1 ), δ(ξ) (4.22)
with ξ = β(A, B), τ ∈ T n-1 and η ∈ U(n) for which η -1 µ 0 η = µ 0 , using the notation (2.10). By this formula, the pair (ξ, τ ) ∈ P 0 y × T n-1 uniquely parametrizes the projection p(A, B) ∈ P b 0 .

Proof. Conjugating the relation (4.12) by g y (ξ) -1 , and putting Θ := ρ(τ ) -1 (4.5), we conclude by using Eq. (3.23) that the pair (4.22) belongs to the constraint surface µ -1 (µ 0 ). It follows by tracing the definitions that, after the projection p, τ parametrizes a T n-1 orbit in P b 0 under the Ψb -action. As was noted in Remark 4, this action is transitive and free on P b 0 . Hence the above solution of the constraint (3.1) projects to the most general element of the reduced phase space P for which the value of the function β equals ξ, and specifying the pair (ξ, τ ) is equivalent to specifying the projection p(A, B) ∈ P b 0 .

Proof of Theorem 4: It follows directly from Lemma 6 that the formula

(F 0 • E)(ξ, τ ) := g y (ξ) -1 L loc y (δ(ξ), ρ(τ ) -1 )g y (ξ), g y (ξ) -1 δ(ξ)g y (ξ) , (4.23) 
defines a smooth map

F 0 : CP (n -1) 0 → p -1 (P b 0 ), (4.24)
which is injective and its image intersects every gauge orbit in p -1 (P b 0 ) precisely in one point. Thus f 0 = p • F 0 : CP (n -1) 0 → P b 0 is an injective and surjective smooth map. On account of (4.10) (proved in what follows), the corresponding Jacobian determinant cannot vanish and hence f 0 is a diffeomorphism.

Since the validity of (4.11) is obvious, it remains to show that f 0 satisfies (4.10). Because of Eqs. (2.7) and (4.4), this amounts to proving that the restriction of the quasi-Hamiltonian 2-form ω on p -1 (P b 0 ) pulled back by the map F 0 • E on P 0 y × T n-1 is the Darboux 2-form:

(F 0 • E) * ω| p -1 (P b 0 ) = i n-1 k=1 dξ k ∧ dτ k τ -1 k . (4.25)
In fact, we here verify this by direct computation, by inserting the formula (4.23) into the formula (2.11):

(F 0 • E) * ω| p -1 (P b 0 ) = 1 2 A -1 ξ,τ dA ξ,τ ∧ , dB ξ B -1 ξ + 1 2 dA ξ,τ A -1 ξ,τ ∧ , B -1 ξ dB ξ (4.26)
where A ξ,τ := g y (ξ) -1 L loc y (δ(ξ), ρ(τ ) -1 )g y (ξ) and B ξ := g y (ξ) -1 δ(ξ)g y (ξ). Note that we have omitted in (4.26) the third term of the form ω displayed in (2.11). This term does not contribute since, due to the moment map constraint (3.1), we have µ 0 B ξ A ξ,τ = A ξ,τ B ξ and hence

(A ξ,τ B ξ ) -1 d(A ξ,τ B ξ ) ∧ , (B ξ A ξ,τ ) -1 d(B ξ A ξ,τ ) = (B ξ A ξ,τ ) -1 d(B ξ A ξ,τ ) ∧ , (B ξ A ξ,τ ) -1 d(B ξ A ξ,τ ), ( 4 
.27) which vanishes as the scalar product is symmetric and the wedge product is anti-symmetric.

In the following calculation, we set for simplicity g ≡ g y (ξ), L ≡ L loc y (δ(ξ), ρ(τ ) -1 ), ρ ≡ ρ(τ ) and δ ≡ δ(ξ). Thus we obtain from (4.26)

(F 0 • E) * ω| p -1 (P b 0 ) = 1 2 L -1 dL + dgg -1 -L -1 dgg -1 L ∧ , dδδ -1 + δdgg -1 δ -1 -dgg -1 -(L ↔ δ),
(4.28) where (L ↔ δ) means the first term on the r.h.s. of (4.28) with the role of L and δ interchanged. By using the invariance of the scalar product ., . and the fact that φ ∧ , ψ =ψ ∧ , φ for any su(n)-valued differential forms φ and ψ, we can rewrite Eq. (4.28) as

(F 0 • E) * ω| p -1 (P b 0 ) = 1 2 δ -1 2 (L -1 dL -L -1 dgg -1 L)δ 1 2 + δ 1 2 (dLL -1 + Ldgg -1 L -1 )δ -1 2 ∧ , κ + κ t . (4.
29) Here we have introduced the su(n)-valued differential form κ by

κ := 1 2 dδδ -1 + δ 1 2 dgg -1 δ -1 2 , (4.30) 
κ t denotes the transposed matrix, and by using (2.20) we have δ

1 2 ≡ exp -i n-1 k=1 ξ k λ k . We can write the matrix L as L ≡ L 1 (ξ)ρ(τ ) -1 . (4.31)
Thus in Eq. (4.29) the dependence of the form (F 0 • E) * ω| p -1 (P b 0 ) on the variable τ is hidden in the (diagonal) matrix ρ(τ ). It will be convenient to employ also the decomposition

(F 0 • E) * ω| p -1 (P b 0 ) ≡ V + V , (4.32) 
where V depends on ρ differentially, i.e., V collects the terms that contain dρ. The part V is easily singled out from (4.29) as

V = - 1 2 dρρ -1 ∧ , dδδ -1 + δdgg -1 δ -1 -dgg -1 + L -1 1 (dδδ -1 + dgg -1 -δ -1 dgg -1 δ)L 1 . (4.33)
For g is real orthogonal, dgg -1 is anti-symmetric. Because the trace of the product of a symmetric matrix with an anti-symmetric one vanishes, we obtain

dρρ -1 ∧ , dgg -1 = 0, (4.34)
and then V can be rewritten as

V = - 1 2 dρρ -1 ∧ , dδδ -1 + L -1 1 dgg -1 L 1 -L -1 1 dL 1 + (δL 1 ) -1 d(δL 1 ) -(δL 1 ) -1 dgg -1 (δL 1 ) . (4.35) 29 
Now note that the constraint (3.1) implies

δL 1 = ζ -1 L 1 δ, ζ := gµ 0 g -1 . (4.36)
Inserting this in the last two terms of (4.35) gives directly the Darboux form:

V = -dρρ -1 ∧ , dδδ -1 - 1 2 dρρ -1 -δdρρ -1 δ -1 ∧ , L -1 1 dζζ -1 L 1 -L -1 1 dL 1 = -dρρ -1 ∧ , dδδ -1 .
(4.37) The restricted form ω| p -1 (P b 0 ) is closed because p -1 (P b 0 ) is a subset of a level set of the moment map, and thus its pull-back (4.32) is closed as well. Moreover, the Darboux differential form V is also closed. Then we observe that the part V in (4.32) cannot depend on ρ because otherwise it would not be closed. By taking this into account, (4.29) gives

V = 1 2 δ -1 2 (L -1 1 dL 1 -L -1 1 dgg -1 L 1 )δ 1 2 + δ 1 2 (dL 1 L -1 1 + L 1 dgg -1 L -1 1 )δ -1 2 ∧ , κ + κ t . (4.38)
Now we again use the constraint (4.36) to derive

L -1 1 dL 1 -L -1 1 dgg -1 L 1 = δ L -1 1 dL 1 + L -1 1 (δ -1 dδ -δ -1 dgg -1 δ)L 1 δ -1 -dδδ -1 . (4.39)
Inserting the expression (4.39) into (4.38) yields immediately

V = 1 2 L -1 1 dL 1 + L -1 1 (δ -1 dδ -δ -1 dgg -1 δ)L 1 + dL 1 L -1 1 + L 1 dgg -1 L -1 1 ∧ , δ -1 2 (κ + κ t )δ 1 2 . (4.40)
Coming back to the formula (1.4), we notice that the unitary matrix L 1 can be cast as

L 1 = δ -1 2 Mδ 1 2 (4.41)
where M is a real orthogonal matrix. With this representation of L 1 , the expression V can be rewritten as

V = 1 2 dMM -1 + M -1 dM + MκM -1 + M -1 κ t M ∧ , κ + κ t . (4.42)
By using again that the trace of the product of a symmetric matrix with an anti-symmetric one vanishes, and using also the invariance of the scalar product and that φ ∧ , ψ = φ t ∧ , ψ t for any su(n)-valued forms, the last equation implies that V = 0. Having calculated V and V in (4.32), we finally obtain the desired equality: with the spectral functions of the Ruijsenaars-Schneider Lax matrix. The proof of Theorem 4 shows that this commutativity property of the αi can be viewed as a consequence of the Darboux form of the reduced symplectic structure. The fact that the spectral invariants of the Ruijsenaars-Schneider Lax matrix Poisson commute with respect to the Darboux structure was also proved previously by means of different methods (see [START_REF] Ruijsenaars | A new class of integrable models and their relation to solitons[END_REF][START_REF] Ruijsenaars | Systems of Calogero-Moser type[END_REF][START_REF] Nijhoff | Dynamical r-matrix for the elliptic Ruijsenaars-Schneider system[END_REF] and references therein).

(F 0 • E) * ω| p -1 (P b 0 ) = -dρρ -1 ∧ , dδδ -1 = i n-1 k=1 dξ k ∧ dτ k τ -1 k . ( 4 
It follows easily from Theorem 4 that the local Delzant map f 0 converts β into particleposition variables and converts α into action-variables of the local III b system. Consequently, the full reduced phase space P must carry a completion of the local III b system. Eventually this completion will be identified with the one introduced by Ruijsenaars, but before explaining this further effort is needed in order to work out certain details of our picture that will enable us to give precise comparison with the results of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] regarding also the self-duality of the completed III b system. In particular, we need to prove that f 0 extends to a global Delzant map.

Global extension of the Lax matrix

The local Lax matrix L loc y (δ(ξ), ρ(τ ) -1 ), viewed as a function on CP (n -1) 0 , is the crucial ingredient of the local Delzant map of Theorem 4. The global Delzant map that we shall construct later will involve an extension of (a conjugate of) this Lax matrix to a smooth function on CP (n-1). We here present this extension, which appears also in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. In order to save space, from now on we assume that y > 0. (4.44)

We continue to realize CP (n -1) as the factor space CP (n -1) = S 2n-1 as functions on CP (n -1). Regarded in this way, ξ i belongs to C ∞ (CP (n -1)), while r i is not even differentiable at its zero locus. (For i = 1, ..., n -1, the function ξ i is just another name for the moment map component J i .)

χ 0 /U(1) with S 2n-1 χ 0 = {(u 1 , ..., u n ) ∈ C n | n k=1 |u k | 2 = χ 0 }, χ 0 = π -n|y|. ( 4 
Now we give a simple technical lemma, whose proof contains the essential observation that will lead to the global Lax matrix. Its statement will be utilized also in Subsection 4.3.

Lemma 7. By combining equations (1.5), (2.19) and (4.46), with 0 < y < π n , consider the expressions W k (δ(ξ), ±y) as functions on CP (n -1). Then W k (δ(ξ), y) can be written as

W k (δ(ξ), y) = r k w y k (ξ), ( 4 

.47)

where w y k (ξ) represents a positive C ∞ function on CP (n -1) for each k = 1, ..., n. Similarly,

W k (δ(ξ), -y) = r k-1 w -y k (ξ), r 0 := r n , (4.48) 
where the function w -y k has the same properties as those mentioned for w y k .

To begin, we introduce coordinates on CP (n -1) j for each j by considering the n-tuples

u j := (u j 1 , ..., u j n ) (4.63) subject to the conditions n k =j |u j k | 2 < χ 0 , u j j := χ 0 - n k =j |u j k | 2 , χ 0 = π -n|y|. (4.64) 
Since u j j is a function of the other components of u j , we may think of u j as a variable running over the open ball B χ 0 ⊂ C n-1 defined by

B χ 0 := (z 1 , ..., z n-1 ) ∈ C n-1 | n-1 k=1 |z k | 2 < χ 0 . (4.65) 
Accordingly, we let (CP (n -1) j , B j χ 0 ) (4.66)

denote the dense open subset CP (n -1) j of CP (n -1) equipped with the coordinates u j k . For notational convenience, we also keep the component u j j , although it is a function of the true coordinates u j k (k = j) on CP (n -1) j . In this notation the formula for the change of coordinates between the charts in especially simple. For example, the n alternative coordinates u j (j = 1, ..., n) of the same point E(ξ, τ ) ∈ CP (n -1) 0 (4.3) can be written briefly as

u j k = r k τj τ k with r k = ξ k -|y|, k = 1, ..., n, τ n := 1. (4.67) 
Since it is a reduction of Ω C n (3.67), the symplectic form χ 0 ω FS is represented by the Darboux form i k =j dū j k ∧ du j k on the chart (4.66) Consider now the component v j of the vector (4.6). Notice from Lemma 7 that (since y > 0) v j (ξ, y) yields a C ∞ function on CP (n -1) j . Then, for each j = 1, ..., n, define the U(n) valued function g j y (ξ) as follows. First of all, set g n y := g y in (4.8). For 1 ≤ j < n, let T j denote the n by n transposition matrix given explicitly by

T j := 1 n -E j,j -E n,n + E j,n + E n,j . (4.68) 
Then using the formula (4.7) and the vector v(ξ, y) in (4.6) define

g j y (ξ) := T j g(T j v(ξ, y)). (4.69) 
It is clear that g j y (ξ) is actually a real-orthogonal matrix for all j. Moreover, we point out that

g j y (ξ) = g n y (ξ)η j y (ξ) with η j y (ξ) ∈ U(n) for which η j y (ξ)µ 0 η j y (ξ) -1 = µ 0 , (4.70) 
which holds simply because the matrices g j y (ξ) have the same last column for all j. As examples that illustrate well the general case, for n = 3 we display the matrices

g 1 y =    -v 3 -v 2 v 1 -v 2 v 3 d 1 (1 - v 2 2 d 1 ) v 2 (1 - v 2 3 d 1 ) -v 3 v 2 d 1 v 3    and g 2 y =    (1 - v 2 1 d 2 ) -v 1 v 3 d 2 v 1 -v 1 -v 3 v 2 -v 3 v 1 d 2 (1 - v 2 3 d 2 ) v 3    , (4.71) 
As an alternative to the above self-contained reasoning, we can also give a shorter proof of the injectivity of f β by invoking that for any Hamiltonian toric manifold and the pre-image of any moment map value there exists a certain subtorus that acts freely on that pre-image [START_REF] Audin | Symplectic Geometry of Integrable Hamiltonian Systems[END_REF]. The subtorus in question (which is the whole torus for the interior of the Delzant polytope) depends only on the moment map value, and by using this the injectivity of f β follows easily from f * β ( β) = J and (4.78).

Remark 8. It is readily seen from the above that the maps F j : CP (n-1) j → µ -1 (µ 0 ) defined by (4.75) are indeed local sections of the principal bundle in (4.59) whose base is CP (n-1) and total space is the constraint surface µ -1 (µ 0 ). We constructed the global Delzant symplectomorphism f β : CP (n -1) → P by patching together the projected maps p • F j .

The global Delzant map f α and involution properties

We here present the construction of f α in terms of f β , and establish the involution properties (4.92) and (4.118) for the maps (4.117) whose significance will become clear in Section 5.

We need some preparations. First, let us define the map ν on the unreduced double by

ν(A, B) := ( B, Ā), (4.82) 
where 'bar' means complex conjugation. This is an involution of D that enjoys the properties

ν * (ω) = -ω, ν * (µ) = μ-1 , ν • Ψ g = Ψ ḡ • ν (∀g ∈ G). (4.83) 
By using these properties and the fact that (μ 0 ) -1 = µ 0 , we see that ν maps µ -1 (µ 0 ) to itself and it induces an anti-symplectic involution, ν, of the reduced phase space P .

Second, let us define the anti-symplectic involution Γ of the symplectic vector space C n by

Γ(u 1 , ..., u n-1 , u n ) := (ū n-1 , ..., ū1 , ūn ), (4.84) 
which acts as 'reflection composed with complex conjugation' on the first (n -1) coordinates. Straightforwardly, Γ induces an anti-symplectic involution, Γ, of (CP (n -1), χ 0 ω FS ). We also need the anti-symplectic involution Ĉ : CP (n -1) → CP (n -1) that descends from componentwise complex conjugation on C n , i.e. for which

Ĉ • π χ 0 (u 1 , ..., u n-1 , u n ) = π χ 0 (ū 1 , ..., ūn-1 , ūn ) with u ∈ S 2n-1 χ 0 , (4.85) 
as well the symplectic involution σ furnished by

8 σ := Ĉ • Γ = Γ • Ĉ. (4.86)
Third, note that the spectral functions Ξ k defined in Section 2 (Eq. (2.22)) verify the identity

Ξ k ( Ā) = Ξ n-k (A) ∀k = 1, ..., n -1, Ξ n ( Ā) = Ξ n (A), ∀A ∈ G. (4.87) 
This can be checked by direct calculation starting from (2.19), and also follows from well-known group theoretic facts via the formula (2.20).

Fourth, let σ denote the involutive map on C n-1 given by

σ(x) k := x n-k , ∀x ∈ C n-1 , ∀k = 1, ..., n -1. (4.88)
As a result of (4.87), the R n-1 -valued spectral Hamiltonians, and their respective reductions, are subject to the relations

α = σ • β • ν, α = σ • β • ν. (4.89)
Fifth, the moment map J :

CP (n-1) → R n-1 of the rotational T n-1 -action used in Theorem 3 obeys J • Γ = J • σ = σ • J . (4.90) 
Now we can construct f α in terms of f β .

Theorem 6. If f β is a Delzant map in the sense of Theorem 3 (cf. also Eq. (3.79)), then

f α := ν • f β • Γ (4.91)
is also a Delzant map in the sense of Theorem 3. Equation (4.91) implies the involution property

( Γ • f -1 α • f β ) 2 = id CP (n-1) . (4.92) 
Proof. It is clear that f α as defined by (4.91) is a symplectomorphism provided that f β is a symplectomorphism. By assuming that β • f β = J , (4.91) and the previous relations entail

α • f α = α • ν • f β • Γ = σ • β • f β • Γ = σ • J • Γ = J , (4.93) 
which is the required property of the Delzant map f α . Eq. (4.92) follows directly from (4.91).

It is worth noting that we did not use the explicit formula of f β to establish Theorem 6.

Lemma 10. It follows from the local formula (4.9) of f β that the restriction of the map f α (4.91) to CP (n -1) 0 operates according to

(f α • E)(ξ, τ ) = p • Ψ g -y (ξ) -1 δ(ξ), L loc -y (δ(ξ), ρ(τ )) , (4.94) 
using the same notations as in (4.9) and Ψ in (2.10). Moreover, the following identity holds:

f -1 β • f α = Γ • (f -1 β • f α ) • Ĉ. (4.95)
Proof. For typographic reasons, in this proof we use both alternative notations

M * ≡ M (4.96)
to denote the complex conjugate of any matrix M; M t denotes transpose and M † adjoint. We begin the proof of formula (4.94) by remarking that the map E (4.3) satisfies

( Γ • E)(ξ, τ ) = E(σ(ξ), σ(τ)), ∀(ξ, τ ) ∈ P 0 y × T n-1 , (4.97) 
with Γ and σ defined earlier. Then the combination of equations (4.9), (4.91) and (4.97) gives

(f α • E)(ξ, τ ) = p • Ψ gy(σ(ξ)) -1 δ(σ(ξ)) * , L loc y δ(σ(ξ)), ρ(σ(τ )) -1 * . (4.98) 
Here, we have taken into account that g y (σ(ξ)) * = g y (σ(ξ)) holds since g y (4.7) is real. Let η 0 be the n × n matrix whose non-zero entries are (η 0 ) j,n+1-j = 1 for all j = 1, ..., n;

η 0 = η -1 0 = η t 0 . It is not difficult, although somewhat long, to check that δ(σ(ξ)) * = η 0 δ(ξ)η 0 (4.99) and L loc y δ(σ(ξ)), ρ(σ(τ )) -1 * = η 0 L loc -y (δ(ξ), ρ(τ )) η 0 . (4.100) 
In the course of deriving these relations we utilized that

W j (δ(σ(ξ)), y) = W n+1-j (ξ, -y), ∀j = 1, ..., n, (4.101) and ρ 
(σ(τ )) -1 = ρ(σ(τ )) = η 0 ρ(τ ) -1 η 0 . (4.102) 
By using (4.99) and (4.100), we can rewrite (4.98) as

(f α • E)(ξ, τ ) = p • Ψ (η 0 gy(σ(ξ))) -1 δ(ξ), L loc -y (δ(ξ), ρ(τ )) . (4.103) 
It follows from (4.101) that η 0 g y (σ(ξ)) is a unitary matrix whose last column is given by the vector v(ξ, -y) defined in (4.6). This permits to conclude that η 0 g y (σ(ξ)) = g -y (ξ)g with some (ξ and y-dependent) g ∈ U(n) for which gµ 0 g -1 = µ 0 . Taking into account that Ψ g is a gauge transformation, equation (4.103) implies the desired formula (4.94). Now are are going to prove the identity (4.95). It is enough to verify this identity on the dense open submanifold of CP (n -1) 0 whose image under the map

f -1 β • f α is also contained in CP (n -1) 0 . For any E(ξ, τ ) from this submanifold, we define (ξ ′ , τ ′ ) ∈ P 0 y × T n-1 by the equation (f -1 β • f α )(E(ξ, τ )) = E(ξ ′ , τ ′ ), (4.104) 
which can be rewritten equivalently as

f α (E(ξ, τ )) = f β (E(ξ ′ , τ ′ )). (4.105)
Then the claim (4.95) can be reformulated as the statement that the relation (4.105) is equivalent to the relation

( Γ • (f -1 β • f α ) • Ĉ)(E(ξ, τ )) = E(ξ ′ , τ ′ ), (4.106) 
which (by taking into account (4.97)) is in turn equivalent to

f α (E(ξ, τ)) = f β (E(σ(ξ ′ ), σ(τ ′ ) -1 )). (4.107)
Consequently, we have to show that (4.105) is equivalent to (4.107).

We now introduce the notation (A 1 , B 1 ) ∼ (A 2 , B 2 ) for elements of the double D for which there exists g ∈ U(n) such that gA 1 g -1 = A 2 and gB 1 g -1 = B 2 . We notice that two pairs (A 1 , B 1 ) and (A 2 , B 2 ) in µ -1 (µ 0 ) represent the same element of P if and only if (A 1 , B 1 ) ∼ (A 2 , B 2 ). Therefore, by using the local formulae (4.9) of f β and (4.94) of f α , we can reformulate the equivalence of (4.105) and (4.107) as the equivalence between the relation

δ(ξ), L loc -y (δ(ξ), ρ(τ )) ∼ L loc y (δ(ξ ′ ), ρ(τ ′ ) -1 ), δ(ξ ′ ) (4.108)
and the relation 

δ(ξ), L loc -y (δ(ξ), ρ(τ )) ∼ L loc y (δ(σ(ξ ′ )), ρ(σ(τ ′ ))), δ(σ(ξ ′ )) . ( 4 
δ(ξ), L loc -y (δ(ξ), ρ(τ )) ∼ L loc -y (δ(ξ ′ ), ρ(τ ′ )) * , δ(ξ ′ ) * . (4.110)
To finish the proof, we need the identities

L loc -y (δ(ξ ′ ), ρ(τ ′ )) * = ρ(τ ′ ) L loc y (δ(ξ ′ ), ρ(τ ′ ) -1 ) t ρ(τ ′ ) -1 , (4.111) 
L loc -y (δ(ξ), ρ(τ )) * = δ(ξ)L loc -y (δ(ξ), ρ(τ ) -1 )δ(ξ) -1 , (4.112) 
which can be readily verified. Now suppose that (4.108) holds (for some arbitrarily fixed (ξ, τ )). This assumption is equivalent to the existence of a unitary matrix g for which gδ(ξ)g -1 = L loc y (δ(ξ ′ ), ρ(τ ′ ) -1 ) and g -1 δ(ξ ′ )g = L loc -y (δ(ξ), ρ(τ )). (4.113)

Then, by means of (4.111), the validity of the first equality in (4.113) implies that

L loc -y (δ(ξ ′ ), ρ(τ ′ )) * = ρ(τ ′ )(gδ(ξ)g -1 ) t ρ(τ ′ ) -1 = [ρ(τ ′ )ḡδ(ξ)]δ(ξ)[ρ(τ ′ )ḡδ(ξ)] -1 , (4.114) 
which can be recognized as the 'first component' of the relation (4.110). By using (4.112), the second equality in (4.113) becomes

δ(ξ ′ ) * = ḡL loc -y (δ(ξ), ρ(τ )) * ḡ-1 = ḡδ(ξ)L loc -y (δ(ξ), ρ(τ ) -1 )(ḡδ(ξ)) -1 , (4.115) 
which (since δ and ρ take values in T n ) entails that The converse implication can be demonstrated by following the above equations in reverse order, whereby the proof is complete.

δ(ξ ′ ) * = [ρ(τ ′ )ḡδ(ξ)]L loc -y (δ(ξ), ρ(τ ) -1 )[ρ(τ ′ )ḡδ(ξ)] -1 . ( 4 
In Section 5, we shall identify the maps

S := f -1 α • f β and R := Ĉ • S (4.117)
as the symplectic and respectively the anti-symplectic version of Ruijsenaars' self-duality map of the compactified III b system. Then the properties (4.92) and (4.95) will reproduce certain relations established in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. The same is true regarding the following identities that can be derived easily from the above:

S 2 = σ and R 2 = id CP (n-1) . (4.118) 
As for their derivation, the first identity in (4.118) is obtained by recasting (4.92) as

id CP (n-1) = Γ • S • Γ • S = Γ • Ĉ • S 2 = σ • S 2 , (4.119) 
where we applied (4.95) to establish the second equality. Similarly, we can write

R = Ĉ • S = S • Γ = Γ • ( Γ • S) • Γ, (4.120) 
whereby the second identity in (4.118) follows from (4.119).

Finally, let us record also the following useful identities:

δ • J • Ĉ = δ • J , δ • J • Γ = δ • J • σ = η 0 (δ • J ) † η 0 , (4.121) 
L y • Ĉ = Ly , L y • Γ = η 0 (L y ) t η 0 , L y • σ = η 0 (L y ) † η 0 , (4.122) 
with η 0 defined above (4.99). The identities in (4.121) are equivalent to (4.90) and (4.99), and those in (4.122) can be verified directly by using the definition of the global Lax matrix L y .

5 Self-duality of the compactified III b system

The construction of the compactified III b system and the discovery of its self-duality properties are due to Ruijsenaars [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. Below we first recall the definition of this system from [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF], interlaced with some explanatory comments in terms of our present work. Then we establish that our reduction yields the compactified III b system, which is the message of Theorem 7. The subsequent Theorem 8 reproduces the symplectic version of Ruijsenaars' self-duality map as an automatic consequence of our construction. Finally, we briefly explain how the anti-symplectic self-duality involution of Ruijsenaars fits into our framework.

Theorems 7 and 8 represent the first main result of this paper (the second will be encapsulated in Theorem 9 of Section 6). We can be relatively brief here, since these theorems are just easy corollaries of our preceding technical results. In particular, they follow from our detailed description of the Delzant symplectomorphisms f β and f α that incorporate the Lax matrix (1.4) and its global extension (4.55). Although we gained inspiration from the seminal paper [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] with which we must compare our results, we wish to emphasize that our approach is self-contained.

The space of particle-positions D y ⊂ ST n of the local III b system can be identified with the open polytope P 0 y by means of the map δ (cf. (2.20)). Although the true particle-positions that map (CP (n -1), χ 0 ω FS ) to the reduced phase space (P, ω) as given by Theorems 5 and 6. Then, using the preceding notations, the following relations hold for f β :

ĥ1 • f β = h • L y , ĥ2 • f β = h • δ • J . (5.7)
In particular, with h = Ξ k for any k = 1, ..., n -1,

αk • f β = Ξ k • L y , βk • f β = J k . (5.8)
Regarding f α , there hold the analogous relations,

ĥ1 • f α = h • δ • J , ĥ2 • f α = h • (L y ) † , (5.9) 
and in particular αk

• f α = J k , βk • f α = Ξ n-k • L y .
(5.10)

Proof. After recalling the underlying definitions, all these relations follow in a direct and straightforward way from the formulae for the maps f α and f β . Actually it is enough to use the local formulae (4.9) for f β and (4.94) for f α , since any smooth function is determined by its restrictions to a dense open submanifold. What was non-trivial to establish is that the local formulae just mentioned represent the restrictions of global Delzant maps.

Let us discuss the meaning of Theorem 7. First note that the function δ • J (or equivalently just J ) on CP (n -1) represents the global analogue of the particle-positions, since under the embedding E : M loc y → CP (n -1) we have

(J k • E)(ξ, τ ) = ξ k .
(5.11)

According to (5.7), f β converts the reductions of the invariant functions of the form h 1 , where h 1 (A, B) = h(A) before reduction, into the respective functions of the global Lax matrix L y , and converts the reductions of the invariant functions h 2 , where h 2 (A, B) = h(B) before reduction, into the respective functions of the particle-position matrix δ • J . In particular, f β converts the reduced spectral Hamiltonian αk into the action-variable Ξ k • L y of the compactified III b system, and at the same time it converts the reduced spectral Hamiltonian βk into the global particle-position variable J k , respectively for each k = 1, ..., n -1. The formula (5.9) for the map f α works similarly, but in addition to the exchange of the subscripts 1 and 2 on the function ĥ, which goes back to the exchange of the two factors of the double, it applies the adjoint of the unitary Lax matrix L y instead of L y . This implies that, for each k = 1, ..., n -1, f α converts αk into the particle-position variable J k , and at the same time converts βk into the 'flipped action-variable' Ξ n-k • L y . Such a flip, which arises from the involutions inevitably involved in the relation (4.91) between f α and f β , is necessary in order to ensure the symplectic property of the map.

The phase space CP (n-1) of the compactified III b system is equipped with the two Abelian Poisson algebras formed by the respective functions of the form

h • δ • J and h • L y with h ∈ C ∞ (G reg ) G .
(5.12)

These Abelian algebras are generated respectively by the global particle-position variables J k and action-variables Ξ k •L y . We now describe the behaviour of these algebras under the Delzant symplectomorphism S,

S ≡ f -1 α • f β : CP (n -1) → CP (n -1) (5.13)
as introduced in (4.117). In the following theorem, we shall use the 'flip-involution'

h → h ♯ of C ∞ (G reg ) G defined by h ♯ (g) := h(g † ), ∀g ∈ G reg . (5.14) 
With this notation, the property (4.87

) of Ξ k ∈ C ∞ (G reg ) G implies Ξ ♯ k = Ξ n-k , k = 1, ..., n -1.
(5.15)

Theorem 8. The Delzant symplectomorphism S given by (5.13) satisfies the identities

(h • (δ • J )) • S = h • L y and (h • L y ) • S = h ♯ • (δ • J ) (5.16)
for every h ∈ C ∞ (G reg ) G . In particular, with h = Ξ k (k = 1, ..., n -1) this yields

J k • S = Ξ k • L y and (Ξ k • L y ) • S = J n-k . (5.17) 
In this way, S converts the particle-position variables into the action-variables and converts the action-variables into the flipped particle-position variables.

Proof. Both equalities in (5.16) follow by trivial one line calculations from our preceding results. In fact, by using the definition of S and Theorem 7 we can write

(h • δ • J ) • S = ( ĥ1 • f α ) • (f -1 α • f β ) = ĥ1 • f β = h • L y , (5.18) 
and similarly

(h • L y ) • S = (h ♯ • (L y ) † ) • (f -1 α • f β ) = (h ♯ • (L y ) † • f -1 α ) • f β = h ♯ 2 • f β = h ♯ • (δ • J ). (5.19)
The equalities in (5.17) are special cases of those in (5.16), using also (5.15).

The message of Theorem 8 is that S is the symplectic version of Ruijsenaars' self-duality map 10 of the compactified III b system. The symplectic property of this map is an automatic consequence of our construction, while it was proved in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] in a very different manner.

It is worth noting that, as follows immediately from Theorem 8, the symplectomorphism S 2 satisfies the relations

(h • (δ • J )) • S 2 = h ♯ • (δ • J ), (h • L y ) • S 2 = h ♯ • L y , (5.20 
) 10 To give a precise comparison, our map S corresponds to f = k • φ in Eq. (4.125) of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. The anti-symplectic involution R = Ĉ • S defined here in Eq. (4.117) corresponds to φ in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. The involutions Ĉ, Γ, σ that we introduced in Subsection 4.4 correspond respectively to k, k, p in Subsection 4.4 of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF], which also contains the equivalents of the relations (4.92), (4.95) and (4.118) enjoyed by S and R. The identification of k and p with time reversal and parity is further discussed in [START_REF] Ruijsenaars | Systems of Calogero-Moser type[END_REF] (page 69).

J k • S 2 = J n-k , (Ξ k • L y ) • S 2 = Ξ n-k • L y .
(5.21)

These are consistent with the fact that S 2 is equal to the symplectic involution σ of CP (n -1) according to (4.118).

Ruijsenaars focused mainly on the anti-symplectic version of his self-duality map that has somewhat simpler (but equivalent) properties as the symplectic map S. As we now explain, this map is provided in our setting by R ≡ Ĉ • S, defined already in (4.117). Our map R is obviously anti-symplectic, R * ω FS = -ω FS , and it is involutive according to (4.118). For any h ∈ C ∞ (G reg ) G , we readily derive that

(h • (δ • J )) • R = h • L y , (h • L y ) • R = h • (δ • J ), (5.22) 
which in particular implies that

J k • R = Ξ k • L y and (Ξ k • L y ) • R = J k for all k = 1, ..., n -1. 
(5.23)

These are precisely the characteristic properties of the anti-symplectic self-duality involution of Ruijsenaars [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. The derivation of the first relation in (5.22) goes simply as

h • δ • J • Ĉ • S = h • δ • J • S = h • L y , (5.24) 
by combining (5.16) with J • Ĉ = J . The second relation in (5.22) can be derived similarly using (5.16) and the equality L y • Ĉ = Ly (4.122).

The relative advantage of R over S is that it simply interchanges the respective action and particle-position variables, with the price that R is anti-symplectic while S is symplectic. The relationship between S and R is similar to that between the symplectic map (q, p) → (p, -q) and the anti-symplectic map (q, p) → (p, q) on the canonical phase space R 2n . We note that the seminal paper [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] contains further interesting properties of the maps S, R and 'discrete symmetries' (including but not exhausted by the time reversal Ĉ and the parity σ), which we could also reproduce. This, perhaps together with the investigation of open questions mentioned in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF], will be reported in a survey that we plan to write about the reduction approach to Ruijsenaars dualities in a few years.

Duality and the mapping class group

As was already mentioned, quasi-Hamiltonian geometry provides universal finite-dimensional 'master' objects by reductions of which one may obtain the symplectic moduli spaces of non-Abelian flat connections on Riemann surfaces with prescribed boundary conditions [START_REF] Alekseev | Lie group valued moment maps[END_REF]. Originally those moduli spaces were derived by infinite-dimensional reductions of infinite-dimensional symplectic manifolds A(Σ) consisting of all (suitably smooth) non-Abelian connections on the Riemann surface Σ. If Σ is a torus with an open disc removed (called 'one-holed torus'), then the relevant finite-dimensional master object is precisely the internally fused quasi-Hamiltonian double of the non-Abelian group.

The treatment of the compactified III b system by quasi-Hamiltonian reduction now permits us to establish the validity of a remarkable interpretation of this system that goes back to Gorsky and Nekrasov [START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF]. Namely, it is immediate from [START_REF] Alekseev | Lie group valued moment maps[END_REF] and our results that the compactified Ruijsenaars-Schneider system is the natural integrable system on the moduli space of flat SU(n) connections on the one-holed torus, where the holonomy around the hole is constrained to the conjugacy class of the moment map value µ 0 that we used to define our reduction. In this picture, the pair (A, B) in the double represents the holonomies of the flat connection along the standard cycles on the torus. This interpretation of the III b system was anticipated in [START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF] based on some formal, non-rigorous arguments. Utilizing the quasi-Hamiltonian framework, we here further develop this interpretation and clarify the connection (conjectured in [START_REF] Fock | Duality in integrable systems and gauge theories[END_REF]) between the mapping class group of the one-holed torus and the Ruijsenaars duality.

In the next two subsections 6.1 and 6.2 we briefly summarize necessary background material [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF], and present new results in the last two subsections 6.3 and 6.4. In the background material G can be taken to be any connected and simply connected compact Lie group, with invariant scalar product , on its Lie algebra G, but when dealing with our example it will be understood without further notice that G ≡ SU(n).

Flat connections and the quasi-Hamiltonian double

Let A(Σ) be the space of smooth G-valued connection forms on the one-holed torus Σ. The space A(Σ) carries a natural symplectic form Ω with respect to which the gauge group G(Σ) of smooth maps from Σ to G acts in the Hamiltonian way. The symplectic form reads

Ω(a, b) = Σ a ∧ , b , (6.1) 
where a and b are G-valued 1-forms on Σ interpreted as tangent vectors to A(Σ). Consider then the space A flat (Σ) of connections φ verifying the flatness condition dφ + [φ, φ] = 0 and the subgroup G res (Σ) of G(Σ) mapping a chosen point p 0 on the boundary of the hole to the unit element of the group G. The quotient A flat (Σ)/G res (Σ) can be identified with the finite-dimensional manifold G × G because every flat connection is completely determined by its (G res (Σ)-independent) holonomies along two generators of the fundamental group π 1 (Σ, p 0 ). Furthermore, as shown in [START_REF] Alekseev | Lie group valued moment maps[END_REF], the symplectic form Ω induces the quasi-Hamiltonian form (2.11) on the double G × G such that every quasi-Hamiltonian reduction of the double (G × G, ω) gives the same outcome as a corresponding symplectic reduction of (A(Σ), Ω). In particular, the quasi-Hamiltonian reduction based on the moment map value µ 0 (3.2) that we have performed in Section 3 gives the symplectic manifold P that can be also interpreted as the moduli space A flat (Σ, C)/G(Σ) consisting of flat connections with holonomies around the boundary of the hole belonging to the conjugacy class C of µ 0 modulo G(Σ) gauge transformations.

Since the concepts of quasi-Hamiltonian geometry and quasi-Hamiltonian reduction make no reference to flat connections on Riemann surfaces, the following question appears. Despite technical advantages of the quasi-Hamiltonian vantage point, are there some relevant structural insights concerning the symplectic geometry of the moduli spaces that are still more transparent in the infinite-dimensional reduction approach? The answer to this question is affirmative and this section is devoted to an important illustration of this fact. Indeed, we shall show that the symplectic version S of the Ruijsenaars duality map introduced in Section 4 is nothing but the which again turns out to be an isomorphism [START_REF] Nielsen | Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden[END_REF].

In addition to the isomorphisms N and H, there exists another isomorphism (see e.g. [START_REF] Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF])

I : GL(2, Z) → Aut(π 1 , K)/ ι K , (6.6) 
which will be especially useful for us. Here Aut(π 1 , K) denotes the subgroup of automorphisms of π 1 which take K either to K or to K -1 and ι K is the normal subgroup of Aut(π 1 , K) formed by conjugations by powers of K. The existence of the isomorphism I is based on the fact that the centralizer of K in π 1 is the infinite cyclic group K and on the result of Nielsen [START_REF] Nielsen | Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden[END_REF] stating that any automorphism of π 1 takes K to a conjugate of either K itself or to a conjugate of its inverse K -1 . Notice that as the one-holed torus has just one boundary component, which is therefore preserved by every element of Diff p 0 (Σ), in the image of N (6.4) there may occur only such elements of Out(π 1 ) that preserve the union of the conjugacy classes of K and of K -1 in π 1 . The orientation-preserving mapping classes are mapped by N into outer automorphisms respecting the conjugacy class of K alone. (For the results recalled so far, the reader may also consult the reviews [START_REF] Ivanov | Mapping class groups[END_REF][START_REF] Lyndon | Combinatorial Group Theory[END_REF].)

By composing the isomorphisms N , H and I we identify the mapping class group MCG p 0 (Σ) with the group Aut(π 1 , K)/ ι K . Four particular elements F, S, T and T of Aut(π 1 , K) will feature subsequently. We define them as follows:

F : X → Y, Y → X; S : X → Y -1 , Y → Y XY -1 ; T : X → XY, Y → Y ; T : X → X, Y → Y X -1 . (6.7) 
These elements (redundantly) generate Aut(π 1 , K) [START_REF] Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF]. Since N (6.4) is an isomorphism, there exist diffeomorphisms inducing the actions of their equivalence classes on π 1 . The diffeomorphisms (and their mapping classes) that yield [T ] and [ T ] are commonly referred to as Dehn twists around the cycles Y and X, respectively.

By an easy calculation we find

F 2 = (F S) 2 = (F ST ) 2 = Id, S 2 = (ST ) 3 , S 4 : X → K -1 XK, Y → K -1 Y K, (6.8) 
and therefore the equivalence classes

[F ], [S] and [T ] in Aut(π 1 , K)/ ι K verify [F ] 2 = ([F ][S]) 2 = ([F ][S][T ]) 2 = Id, [S] 2 = ([S][T ]) 3 , [S] 4 = Id. (6.9)
It is well-known ([4], Eq. (7.21)) that the relations in (6.9) are defining relations of the group GL(2, Z) and the last two of them define the subgroup SL(2, Z). Correspondingly, we have the identifications

SL(2, Z) ≃ Aut + (π 1 , K)/ ι K ≃ MCG + p 0 (Σ), (6.10) 
where Aut + (π 1 , K) is generated by S and T and MCG + p 0 (Σ) contains the orientation-preserving mapping classes. It is helpful to display the integer matrices associated to the classes [F ], [S] and [T ] by the isomorphism I (6.6). Following [START_REF] Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF], we obtain One readily verifies that the maps S, T and T defined by (6.13) preserve the basic structures (2.10), (2.11) and (2.12) of the double, giving automorphisms of D(G). Note that we slightly abuse the notation by using the same symbols S, T , T for the elements of Aut + (π 1 , K) and of Aut(D(G)), and later we shall use them even for corresponding elements of factor groups of Aut + (π 1 , K) and of Aut(D(G)). We believe however that the reader prefers to figure out from the context which group we have in mind rather than to remember which of several different putative notations corresponds to which group.

The similarity of the formulae (6.7) and (6.13) implies that in (6.13) we have constructed a homomorphism of Aut + (π 1 , K) into Aut(D(G)). This similarity is not accidental, of course. Indeed, the assignment of a pair of G-elements A and B to a flat connection is not unique but it is fixed by the choice of the homology cycles along which one computes the holonomies of the flat connection. It is the standard choice of homology basis which we have adopted previously. The transition from the standard homology basis to another one following the matrices (6.11) induces the automorphisms (6.13) of the double.

As we know, the fourth power S 4 in Aut + (π 1 , K) is the conjugation by the element K -1 , which belongs to the center of Aut + (π 1 , K). On the other hand, calculating S 4 (6.13) in Aut(D(G)) gives the so-called twist automorphism Q introduced in [START_REF] Alekseev | Lie group valued moment maps[END_REF]:

Q(A, B) = Ψ µ(A,B) -1 (A, B). (6.14)
It is easy to check directly that the twist automorphism is in the center of the group Aut(D(G)) (this is by the way true for any quasi-Hamiltonian manifold). The Abelian group Q generated by Q is thus a distinguished normal subgroup of Aut(D(G)), and Aut(D(G)) can be viewed as a central extension of the group Aut(D(G))/ Q . On account of (6.10), we may conclude that the orientation-preserving subgroup of the mapping class group acts on the double D(G) 'projectively'.

Turning to quasi-Hamiltonian reduction, note that the automorphisms S, T and T defined in (6.13) respect the constraint surface µ -1 (µ 0 ). Moreover, µ 0 belongs to the isotropy group G 0 and therefore the automorphism Q descends to the trivial identity map on the reduced phase space P = µ -1 (µ 0 )/G 0 . Thus S, T and T descended on P generate a true action of the Applying ideas of Goldman [START_REF] Goldman | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF] (see also [START_REF] Meusburger | Dual generators of the fundamental group and the moduli space of flat connections[END_REF]), we now show that the Dehn twist symplectomorphisms T P and TP themselves are specializations of simple Hamiltonian flows on P . More precisely, we can realize already the automorphisms T and T of D given in (6.13) by means of quasi-Hamiltonian flows as stated by the following lemma. Then it follows from equations (2.15), (2.16) and (2.24) that φ h,s (A, B) = (AB s , B), φ h,s (A, B) = (A, BA -s ), (

and comparison with (6.13) entails the claim.

The functions h and h descend to P , and when transferred to the model CP (n -1) they become functions of the global particle-positions, βk • f β , and action-variables, αk • f β . The decomposition of the Ruijsenaars duality map S implied by (6.15) and (6.21) represents a new result. This is a simple by-product of the reduction approach, which would have been difficult to notice in the direct approach [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] to the compactified III b system.

6.4

The anti-symplectomorphism R as a GL(2, Z) generator In Section 6.3, we have implemented the generators S and T of the orientation-preserving SL(2, Z) part of the full mapping class group GL(2, Z) as automorphisms of the double that descend upon reduction to the symplectomorphisms S P and T P of our reduced phase space P . We now observe that, on the one hand, the third generator [F ] of GL(2, Z) implemented, according to (6.7), as the map F D (A, B) := (B, A) is not an automorphism of the double and it does not survive the quasi-Hamiltonian reduction. On the other hand, if we consider instead of F D the related map ν : D(G) → D(G) defined by (4.82) as ν(A, B) = ( B, Ā), then ν maps µ -1 (µ 0 ) to itself and induces the anti-symplectic involution ν of the reduced phase space. Moreover, it is readily checked that under the assignment ν, S P and T P fulfil the generating relations (6.9) of GL(2, Z), and thus they induce an action of GL(2, Z) on P . Note also that GL(2, Z) can be written as the semi-direct product GL(2, Z) = Z 2 ⋉ SL(2, Z), (6.26) where the Z 2 subgroup is generated by [F ]. Correspondingly, there are two kinds of elements of GL(2, Z): (+, ρ) and (-, ρ) where ρ ∈ SL(2, Z) and ± is the sign of the determinant of the GL(2, Z) matrix. The elements (+, ρ) acting on P are symplectomorpisms and (-, ρ) are anti-symplectomorphisms. This follows from the fact that ν ≡ (-, e) reverses the sign of the symplectic form on P (since ν reverses the sign of ω on D(G)) while S P and T P preserve it.

Parametrizing our reduced phase space P as CP (n -1) by means of the Delzant symplectomorphism f β , as before, the generator ν of GL(2, Z) becomes f -1 β • ν •f β and it is directly related to the involutive Ruijsenaars anti-symplectomorphism R : CP (n -1) → CP (n -1). Indeed, we find the following identities by combining Theorem 6, which states that f α = ν • f β • Γ, the definition of the map S := f -1 α • f β (4.117) and Eq. (4.120) saying that S • Γ = R:

R = S • Γ = f -1 α • f β • Γ = f -1 α • ν • f α = S • f -1 β • ν • f β • S -1 . (6.27)
Hence, the Ruijsenaars map R can be viewed as an alternative anti-symplectic generator of the GL(2, Z) action on CP (n -1).

We have exhibited an (anti)-symplectic action of the full group GL(2, Z) on our reduced phase space. This action does not descend from the (projective) action of the full mapping class group on the double since we have replaced the generator F D by the new generator ν. It is thus natural to ask the following question: Does the GL(2, Z) generator ν has its origin in some natural (anti)-symplectomorphism of the space of connections (A(Σ), Ω)? It turns out that the answer to this question is positive. Indeed, take any orientation-reversing diffeomorphism of Σ which is in the class F of the mapping class group and compose it with the complex conjugation acting on the su(n)-valued connection 1-forms (without touching their argument). Since the complex conjugation is an automorphism of the group SU(n) and of its Lie algebra, this composed map is an anti-symplectomorphism of (A(Σ), Ω) which descends to the involutive anti-symplectomorphism ν.

Discussion

In this paper we have demonstrated that an appropriate quasi-Hamiltonian reduction [START_REF] Alekseev | Lie group valued moment maps[END_REF] of the internally fused double D = SU(n) × SU(n) yields a reduced phase space P that turns into a Hamiltonian toric manifold (i.e. a compact completely integrable system) in two different but equivariantly symplectomorphic ways. The underlying two toric moment maps on P , with respective components αk and βk , arise from the reductions of the two sets of spectral Hamiltonians on D generated by the two components of the pair (A, B) ∈ D. On the other hand, the phase space CP (n -1) also carries two distinguished toric structures, with moment maps J k and Ξ k • L y that encode, respectively, the particle-positions and the action-variables of the compactified III b system as discovered in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF]. We have explicitly constructed two 'Delzant symplectomorphisms' f α and f β from CP (n -1) to P that relate these toric moment maps according to Eqs. (5.8) and (5.10), and have identified the composed map S = f -1 α • f β as the symplectic self-duality map [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] of the compactified III b system, which satisfies Eq. (5.17). In our setting the symplectic property of the pertinent self-duality map is obvious, while in the original approach of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] it required a special proof. We have also recovered the anti-symplectic version R = Ĉ • S of Ruijsenaars' self-duality map, which satisfies Eq. (5.23).

  occurs: a) k m = 1 and there is no s such that ∆ s = e 2iy ∆ m ; b) k m > 1, ∆ s = e 2iy ∆ m and k s = k m -1. Those non-vanishing limits read lim ǫ→0 z k 1 +...+km (δ ǫ , y) = Z m (∆, y), (3.52) where Z m (∆, y) is given by Eqs. (3.45) or (3.46) for the cases a) and b), respectively. In other words, the m-values occurring in (3.52) form the set S(δ) defined after (3.47).

Lemma 2 .

 2 The β-generated T n-1 -action on the open submanifold D b of the internally fused double D, given by (2.30), descends to the reduced phase space P = µ -1 (µ 0 )/G 0 , where it becomes Hamiltonian and effective. Proof. It follows from Theorem 2 that the constraint surface µ -1 (µ 0 ) ⊂ D lies completely in the open submanifold D b ⊂ D (recall that D b is the set of pairs (A, B) ∈ D for which B is regular).

Remark 4 .

 4 Let us introduce the following open submanifolds of P : P a 0 := α-1 (P 0 y ) and P b 0 := β-1 (P 0 y ). (3.66)

4. 1

 1 Local version of the Delzant map f β Let us denote by CP (n -1) 0 the dense open submanifold of CP (n -1) = χ -1 (π -n|y|)/U(1) where none of the n homogeneous coordinates u k can vanish (cf. Eq. (3.70)). In what follows we construct a symplectomorphism f 0 : CP (n -1) 0 → P b 0 ,

.43) Remark 6 .

 6 We know from the theory of the quasi-Hamiltonian reduction that the reduced spectral Hamiltonians αi Poisson commute, and Theorem 4 permits to identify the αi on P b 0

  .45) In the subsequent arguments we identify the U(1)-invariant functions defined on S 2n-1 χ 0 by r i := |u i | and ξ i := |u i | 2 + |y|, i = 1, ..., n, (4.46)

[ 11 ) 6 . 3

 1163 We did not need all four automorphisms F, S, T and T to characterize the mapping class group, since the relation T = (T ST ) -1 is valid. Instead of F, S and T we can use as generators F, T and T , whereby [S] can be expressed as the composition of three successive Dehn twists:[S] = ([T ][ T ][T ]) -1 .(6.12) The duality map S as a mapping class symplectomorphismBy definition, an automorphism of a quasi-Hamiltonian space (M, G, ω, µ) is a diffeomorphism of M that preserves ω and µ and commutes with the G-action. We next exhibit a natural homomorphism from the group Aut + (π 1 , K) generated by S and T (6.7) into the group Aut(D(G)) of automorphisms of the double. For this purpose, we set S(A, B) := (B -1 , BAB -1 ), T (A, B) := (AB, B), T (A, B) := (A, BA -1 ).(6.13) 

Lemma 11 .α k λ k ) 2 , ( 6 . 22 )

 112622 Employing the notations of Subsection 2.2, define the functions h ∈ C ∞ (D b ) G and h ∈ C ∞ (D a ) G by h = tr ( and let φ h,s and φ h,s be the corresponding quasi-Hamiltonian flows. Then, respectively on D b and on D a , there hold the equalities T (A, B) = φ h,1 (A, B) and T (A, B) = φ h,1 (A, B). Proof. Using the definitions of Subsection 2.2, introduce arbitrary real powers of any C ∈ G reg by setting C s := g(C) -1 exp -2is n-1 k=1 Ξ k (C)λ k g(C), ∀s ∈ R. (6.23)

[

  F ] → ν, [S] → S P , [T ] → T P(6.25) 

It was remarked byOblomkov [26] that the Fock-Rosly treatment[START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF] of the complexified trigonometric Ruijsenaars-Schneider system could be replaced by quasi-Hamiltonian reduction based on GL(n, C). This is very close in spirit to our framework, but the compact case that we consider is very different technically.

Later in some equations we apply g ∈ U (n) in the formula of the action, which is harmless since only the factor group SU (n)/Z n ≃ U (n)/U (1) acts effectively.

A similar constraint equation was studied previously in a different local context[START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF][START_REF] Fock | Duality in integrable systems and gauge theories[END_REF] and in complex holomorphic settings[START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF][START_REF] Oblomkov | Double affine Hecke algebras and Calogero-Moser spaces[END_REF].

The general theory of these compact completely integrable systems is reviewed, for example, in[START_REF] Audin | Symplectic Geometry of Integrable Hamiltonian Systems[END_REF].

The fact that we here consider β and β as R n -valued functions, but elsewhere view them as R n-1 -valued functions should not lead to any confusion; we have βn ≡ π -n-1 k=1 βk and similarly for β.

Our base elements, X 1 , ..., X n-1 , correspond to a fixed product structure (2.27), and realize T n-1 as T n-1 factored by the lattice span Z {2πX 1 , ..., 2πX n-1 }, i.e., the corresponding Hamiltonian flows are 2π-periodic.

The value n = 2 is special since in this case Ĉ = Γ and σ (as well as σ in (4.88)) becomes the identity map.

Actually in[START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] (Eq. (5.50) loc. cit.) real-analytic Hamiltonians were studied, which is a negligible difference.
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Proof. First restricting to CP (n -1) 0 where r k = 0, we directly spell out W k (δ(ξ), y) in the form (4.47) with

R y k (ξ), (4.49) where, introducing the shorthand ξ i,l := l m=i ξ m for all 1 ≤ i ≤ l ≤ n, we have

sin(ξ j,k-1 + y) sin(ξ j,k-1 )

k+2≤j≤n sin(ξ k,j-1y) sin(ξ k,j-1 )

.

(4.50)

By using (4.46), it is easily checked that all arguments of the sinus-functions involved in (4.50) lie strictly in the interval (0, π) even when running over the full CP (n -1), which immediately implies that R y k (ξ) represents a positive C ∞ -function on CP (n -1). Since the function sin x/x remains smooth and positive at x = 0, and y ≤ ξ k ≤ π -(n -1)y, we then see from (4.49) that w y k (ξ) also represents a positive C ∞ function on CP (n -1). The claim about W k (δ(ξ), -y) can be verified in an analogous manner.

Next, using L loc y given in (1.4), we introduce the functions Λ y k,l (ξ) (1 ≤ k, l ≤ n) by the equations r k r l-1 Λ y k,l (ξ) ≡ L loc y (δ(ξ), 1 n ) k,l for l = k + 1, (k, l) = (n, 1), (

Λ y k,k+1 (ξ) ≡ L loc y (δ(ξ),

These equations directly define Λ y k,l as functions on CP (n -1) 0 , where all r i are non-zero. Then, by using Lemma 7 and a similar analysis for the denominators in the formula (1.4), we find that Λ y k,l (ξ) extends to a C ∞ function on CP (n -1) for each 1 ≤ k, l ≤ n. The extended function, which we denote by the same letter, vanishes nowhere on CP (n -1). The last statement follows by easy inspection, and will be utilized later. Lemma 8. By using the above functions Λ y k,l and (4.46), and setting u 0 := u n , we can define C ∞ functions L y k,l on S 2n-1 χ 0 by the formulae

.54)

The functions L y k,l are U(1)-invariant and thus yield C ∞ functions on CP (n -1) that together form an SU(n)-valued C ∞ function on CP (n -1), also denoted as L y . The restriction of this matrix function to CP (n -1) 0 satisfies the following identity: , which are obviously invariant under the U(1)-action u → e iγ u. By using (4.5) and (4.56), one readily checks that the right-hand-side of (4.55) is equal to the matrix

On account of (4.51) and (4.52), this is further equal to the matrix L y (u) at u given by on CP (n -1) 0 , L y can serve as the Lax matrix of an integrable system defined on CP (n -1).

Apart from slight differences of conventions, our L y actually coincides with the Lax matrix of the compactified III b system constructed in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] (pages 311-312 loc. cit.) relying on arguments similar to the above. It might be worth noting L y is not only C ∞ but real-analytic on CP (n-1), as follows by inspection of the above proof and established also in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF].

Construction of the global Delzant map f β

Let us remember that µ -1 (µ 0 ) is the total space of a principal bundle with projection

We established the characteristic properties (3.78) of φ β , but not yet its explicit form. Now we wish to give a construction of the inverse map f β = φ -1 β . Our plan to achieve this is as follows. We first cover CP (n -1) by n 'coordinate charts' CP (n -1) j , where CP (n -1) j ⊂ CP (n -1) (j = 1, ..., n) is by definition the set of those U(1) orbits in S 2n-1 χ 0 (4.45) for which u j = 0. By an explicit formula, we then introduce a map

which turns out to define a local section of the principal bundle over CP (n -1) j . These maps have the property that the projected maps

coincide on the overlaps of their domains, and engender the desired global symplectomorphism

We shall also see that f β extends the map f 0 : CP (n -1) 0 → P described in Theorem 4. This will be shown by using that CP (n -1) 0 = ∩ n j=1 CP (n -1) j and f 0 has the form f 0 = p • F 0 with the local section F 0 : CP (n -1) 0 → µ -1 (µ 0 ) given in equation (4.23).

where d 1 := 1 + v 1 , d 2 := 1 + v 2 and v := v(ξ, y) in (4.6). The point is that, in general, g j y contains the denominator d j = 1 + v j , which yields a C ∞ function on CP (n -1) j .

The rationale behind the definition of g j y is that using ∆ n := ∆ in (4.56) and introducing

where the entry 1 appears in the jj position, one can verify the following lemma.

Lemma 9. The U(n)-valued C ∞ function G j y defined on CP (n -1) 0 by the formula

extends to a C ∞ function on CP (n -1) j . The extended function is denoted by the same letter,

Proof. This is a simple inspection of the matrix elements of G j y based on the properties of w y j (ξ) in (4.47) and the formula (4.67). Indeed, if u j is representative of E(ξ, τ ) according to (4.67), then for j = n one finds for example that

) where the symbol ∼ means proportionality by a function of ξ that extends to a C ∞ , nowhere zero function on CP (n -1) j . The relations (4.74), and similar relations that hold for all matrix elements of G j y (u j ), including j = n, imply that G j y extends from CP (n -1) 0 to a C ∞ function on CP (n -1) j .

For any fixed j = 1, ..., n and y > 0, define the SU(n) × SU(n) valued C ∞ map F j on the chart (CP (n -1) j , B j χ 0 ) by the following formula:

where ξ i = |u j i | 2 + y for every i = 1, ..., n and L y is the global Lax matrix given in Lemma 8.

Theorem 5. The maps F j (4.75) enjoy the following properties:

3. One can define a smooth map f β : CP (n -1) → P by requiring that f β coincides with p • F j on CP (n -1) j . The so-obtained map satisfies Proof. It follows directly from the definitions that

where we use (4.23) and the definition η j y (ξ, τ ) := η j y (ξ)∆ j (τ ) with (4.70). Since η j y (ξ, τ ) belongs to the little group of µ 0 in U(n), this entails that (F j • E)(ξ, τ ) ∈ µ -1 (µ 0 ). Then we obtain property 1 since µ -1 (µ 0 ) ⊂ D is closed, the values E(ξ, τ ) cover CP (n -1) 0 which is dense in CP (n -1) j , and F j : CP (n -1) j → D is a C ∞ map as shown by its formula (4.75).

Property 2 holds since CP (n -1) 0 ⊂ CP (n -1) j ∩ CP (n -1) k is dense, and p • F j coincides with f 0 = p • F 0 on CP (n -1) 0 because of (4.77).

Property 3 is immediate from the preceding properties and the fact that f 0 is a local Delzant map satisfying (4.10) and (4.11).

To establish the surjectivity of f β , notice that equivariance with respect to the torus actions (3.74) and (3.54),

follows from (4.76). Then f * β ( β) = J and (4.78) imply that the image of f β contains each T n-1 -orbit in P . This entails the surjectivity.

Our final task it to demonstrate the injectivity of f β . To do this, we remark that if f β takes the same values on two elements of CP (n -1), then those elements must belong to the same chart CP (n -1) j at least for one j. Indeed, this is a consequence of the second equality in (4.76) and the definition of CP (n -1) j . Then, assume that f β (u j ) = f β (z j ) for two elements u j , z j ∈ B j χ 0 . By the definition of f β , this is equivalent to the existence of an element η from the little group of µ 0 in U(n) such that

where ξ is given by

We see from the second component of (4.79) that T := G j y (u j )ηG j y (z j ) -1 (4.80) must belong to the torus T n ⊂ U(n). Then the first component of (4.79) and the fact that L y k,k+1 (4.54) depends only on ξ and never vanishes for any k imply that T = λ1 n for some λ ∈ U(1). Upon re-substitution into the first component of (4.79), this gives the equality L y (u j ) = L y (z j ).

(4.81)

By using that the components of Λ y (ξ) in (4.53) are non-zero, we infer from the inspection of L y k,l (u j ) = L y k,l (z j ) for the fixed index l = j + 1 (l := 1 if j = n) that ūj k u j j = zj k z j j holds for each k. Since u j j = z j j as this component depends only on ξ, and u j j = 0, we conclude that z j = u j , whereby the injectivity of f β follows.

are the components of δ(ξ), we may (and often do) regard the equivalent ξ ∈ P 0 y as the local particle-position variable of the system. The canonical conjugates of the coordinates ξ k are the θ k that parametrize Θ = ρ(e iθ ) -1 by (4.5). By inserting these parametrizations into (1.3) one indeed obtains

Taking ξ and τ = e iθ as the basic variables, from now on we identify the local phase space as

The same variables were used in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] to describe the relative motion of the particles governed by the Hamiltonian (1.1). The local III b system of [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] is thus encapsulated by the triple

where the value of the Lax matrix L loc y at (ξ, τ ) ∈ M loc y is defined to be

with the expression (1.4). The commuting Hamiltonians of the system are provided by the functions h

→ G reg , as was shown in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] and follows also from our Theorem 2 combined with Lemma 6.

Expressed in our notations, the compactified III b system was defined in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] as the triple (CP (n -1), χ 0 ω FS , L y ),

where L y is the global Lax matrix described in Subsection 4.2. The commuting Hamiltonians of this system were identified in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] as the C ∞ functions 9 of the form h • L y for all h ∈ C ∞ (G reg ) G . In particular, it was established in [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] (and is obvious in our setting) that the functions

represent action-variables for the system (5.5), where Ξ k ∈ C ∞ (G reg ) G was defined in (2.22). The crucial fact [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals[END_REF] is that by the identification (5. Recall that the group Diff + (Σ) of orientation-preserving diffeomorphisms acts symplectically on the space of all connections (A(Σ), Ω) by simply associating to a connection 1-form φ its pull-back by the diffeomorphism. This infinite-dimensional group of symplectomorphisms has an immense 'reduction kernel' consisting of all diffeomorphisms which can be connected to the identity. This means that effectively only the corresponding discrete quotient group (known as the mapping class group) acts on the moduli space A flat (Σ, C)/G(Σ) = P . We shall explain how this symplectic action on the reduced phase space P can be understood entirely in the quasi-Hamiltonian context as well. In fact, it turns out that an appropriate central extension of the mapping class group acts by automorphisms on the quasi-Hamiltonian double, and upon quasi-Hamiltonian reduction the center factors out yielding the symplectic action of the orientationpreserving mapping classes on the reduced phase space.

Mapping class group of the one-holed torus

The diffeomorphisms considered below include also those which reverse the orientation of the Riemann surface. We shall need this generality later on in order to explain the geometrical origin of both the symplectic version S and the anti-symplectic version R of the duality map.

We recall (see e.g. [START_REF] Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF]) that the fundamental group π 1 := π 1 (Σ, p 0 ) of the one-holed torus is a free group with two generators X and Y corresponding to the pathes passing through the point p 0 and forming the standard homology basis of the torus. It admits a redundant presentation in terms of three generators X, Y, K:

where K corresponds to the generator of the boundary fundamental group π 1 (∂Σ, p 0 ). Every element from the group of diffeomorphisms Diff p 0 (Σ) preserving the point p 0 induces an automorphism of the fundamental group π 1 and two diffeomorphisms from Diff p 0 (Σ) which can be connected by a path in Diff(Σ) induce automorphisms of π 1 differing by an inner automorphism. Let Diff p 0 ,0 (Σ) be the normal subgroup of Diff p 0 (Σ) consisting of the elements connected to the identity by a path in Diff(Σ). The mapping class group can be defined as

and there exists a natural homomorphism

Nielsen [START_REF] Nielsen | Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen I[END_REF] has proved that N is actually an isomorphism identifying MCG p 0 (Σ) with Out(π 1 ). Furthermore one has the standard Hurewicz homomorphism from π 1 into the homology group

Since H 1 (Σ; Z) is Abelian, its outer automorphisms obviously form the discrete linear group GL(2, Z). Hence one obtains a homomorphism

orientation-preserving subgroup of the mapping class group, MCG + p 0 (Σ) given by (6.10). By construction, this action operates via symplectomorphisms of (P, ω).

We are now going to demonstrate that in the CP (n-1) parametrization of the reduced phase space P of our interest the mapping class generator S yields just the Ruijsenaars self-duality symplectomorphism S of CP (n -1).

Theorem 9. With the choice µ 0 in (3.2), let us denote by S P : P → P the mapping class symplectomorphism that descends from the automorphism S (6.13). Then

where f β : CP (n -1) → P is the Delzant symplectomorphism constructed in Section 4 and S : CP (n -1) → CP (n -1) is the Ruijsenaars symplectomorphism defined in (4.117).

Proof. We have obviously

where p is the projection from µ -1 (µ 0 ) to P = µ -1 (µ 0 )/G 0 . Recall the involution ν that verifies (ν • p)(A, B) = p( B, Ā) and descends from the map ν(A, B) = ( B, Ā) defined on the double in (4.82). We can thus write

Let us show that ν

where Ĉ is the complex conjugation on CP (n -1) introduced in (4.85). By continuity, it is sufficient to verify (6.18) on CP (n -1) 0 , where (thanks to the formula (4.9)) it can be rewritten as the equality

for all (ξ, τ ) ∈ P 0 y × T n-1 . But this holds simply on account of equation (4.112) applied to -y instead of y. Now we use the involutivity of ν, then Theorem 6, which states that f α = ν • f β • Γ, then also equation (4.119), rewritten as S 2 = Γ • Ĉ, and the definition of the map S := f -1 α • f β (4.117) to conclude from (6.18)

As is well-known, and is evident from (6.12), the Dehn twists T and T can be used as alternative generators of the (orientation-preserving) mapping class group instead of T and S. This directly leads to the decomposition

(6.21)

In addition, we have rigorously established the interpretation of the compactified III b system in terms of flat SU(n) connections on the one-holed torus suggested by Gorsky and Nekrasov [START_REF] Gorsky | Relativistic Calogero-Moser model as gauged WZW theory[END_REF] and, by proving the formula S = f -1 β • S P • f β (6.15), we have demonstrated that the Ruijsenaars self-duality map S represents the natural action of the mapping class generator S ∈ SL(2, Z) on CP (n -1) ≃ P . As for the map R, we have shown that it arises from a GL(2, Z) extension of the SL(2, Z) mapping class group action on our reduced phase space.

The interpretation of the Ruijsenaars self-duality as the reduction remnant of the SL(2, Z) mapping class generator S is a long-expected result that we finally succeeded to prove thanks to the quasi-Hamiltonian technique. For the sake of objectivity, we should mention that Gorsky and his collaborators were very close to establish this interpretation; formula (4.31) of their paper [START_REF] Fock | Duality in integrable systems and gauge theories[END_REF] coincides essentially with our formula (6.13). However, they remarked that their definition (4.31) of S violates the SL(2, Z) relations and they could recover a true SL(2, Z) action only for the rational Calogero limiting case of the reduced system [START_REF] Fock | Duality in integrable systems and gauge theories[END_REF]. Since they have not furnished more quantitative details we cannot extract from their paper the precise cause of the trouble, but we believe that it may be related to the fact that our formula (6.13) also defines only the action of a suitable central extension of SL(2, Z) on the double and not a true SL(2, Z) action. Our point is, however, that upon the quasi-Hamiltonian reduction this projective action descends to a true SL(2, Z) action on the reduced phase space.

Besides the coupling constant, y, a second parameter, Λ, can be introduced into the III b system by replacing the symplectic form (1.3) by Ω loc Λ := ΛΩ loc . The local Darboux variables p j and x j then parametrize δ and Θ in (1.2) as δ j = e 2ix j /Λ and Θ j = e -ip j , whereby x j becomes x j /Λ also in the Hamiltonian (1.1). The parameter Λ can be encoded in the reduction approach by choosing the invariant scalar product on su(n) to be -Λ 2 tr , which scales the 2-form ω (2.11) as well as the reduced symplectic form and the corresponding toric moment polytope. Being a mere scale parameter of the symplectic structure, Λ essentially plays no role at the classical level, and we omitted it to simplify the notations. However, this parameter is important at the quantum level (see [START_REF] Van Diejen | The quantum dynamics of the compactified trigonometric Ruijsenaars-Schneider model[END_REF]).

After the present paper, just one from the list of the known Ruijsenaars dualities remains to be derived in the reduction approach. It is the self-duality of the hyperbolic Ruijsenaars-Schneider system for which a suitable 'double' to be reduced is still to be discovered. It may appear tempting to search for distinct real forms of the complex holomorphic constructions of [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF][START_REF] Oblomkov | Double affine Hecke algebras and Calogero-Moser spaces[END_REF], but this scenario does not seem to work and the problem is wide open. An intriguing reformulation of the problem is to enquire whether the known self-duality map of the hyperbolic system [START_REF] Ruijsenaars | Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case[END_REF] can be factorized similarly to the representation S = f -1 α • f β that we obtained here in the case of the compactified III b system.

Another interesting problem for the future is to study the Ruijsenaars duality in relation to root systems different from A n . For progress in this direction, we refer to the paper [START_REF] Pusztai | Action-angle duality between the C(n)-type hyperbolic Sutherland and the rational Ruijsenaars-Schneider-van Diejen models[END_REF].