
HAL Id: hal-01267345
https://hal.science/hal-01267345v1

Preprint submitted on 4 Feb 2016 (v1), last revised 11 Oct 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient acyclic contact planner for multiped robots
Steve Tonneau, Andrea del Prete, Julien Pettré, Chonhyon Park, Dinesh

Manocha, Nicolas Mansard

To cite this version:
Steve Tonneau, Andrea del Prete, Julien Pettré, Chonhyon Park, Dinesh Manocha, et al.. An efficient
acyclic contact planner for multiped robots. 2016. �hal-01267345v1�

https://hal.science/hal-01267345v1
https://hal.archives-ouvertes.fr

An efficient acyclic contact planner for
multiped robots

The International Journal of Robotics
Research
XX(X):1–22
c©The Author(s) 2015

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
ijr.sagepub.com/

Steve Tonneau1, Andrea Del Prete1, Julien Pettré2, Chonhyon Park3, Dinesh Manocha3,
Nicolas Mansard1

Abstract
We present a framework capable of producing contact plans describing complex multiped motions (including
humanoid): standing up, climbing stairs using a handrail, crossing rubble and getting out of a car. Our framework
answers a need demonstrated at the Darpa Robotics Challenge, where the lack of an automatic acyclic contact planner
was recognized a major issue.
Our novel key idea is the reachability condition. Informally, it verifies that the root configuration of a robot is
“close, but not too close” from obstacles: close to allow contact creation, not too close to avoid collision. With this
approximation of the space of admissible root configurations we decompose the hard contact planning problem into
simpler sub-problems: first, to plan a guide path for the root without considering the whole-body configuration; then,
to generate a discrete sequence of whole-body configurations in static equilibrium along this path. The reachability
condition turns the high-dimensional computation of the guide into a collision checking problem, solved in less than
a few seconds. Then a deterministic contact selection algorithm tackles the combinatorial issue of generating of a
discrete sequence along the guide path. Several innovations make it computationally efficient: a criterion for verifying
static equilibrium, and a set of heuristics used to enforce desirable properties on the configuration.
Our approach results from the pragmatic choice of favoring efficiency over exhaustiveness, justified empirically: in a
few seconds, with satisfying success rates, we generate complex contact plans for various scenarios and robots, namely
HRP-2, HyQ, and a dexterous hand.

Keywords
Motion planning, Contact planning, Humanoid Robot, Legged Locomotion, Rough Terrain

1 Introduction

We consider the problem of planning an acyclic
sequence of contacts describing the motion of a
multiped robot in a constraining environment. Acyclic
contact planning is a particular class of motion
planning in which the robot must be in contact with
the environment at every configuration to maintain the
static equilibrium.

Most multipedal locomotion systems focus on
cyclic walking gaits (Kajita et al. 2003). However,
executing this behavior on constraining environments
is dangerous, if not impossible. In an analysis of
their participation to the Darpa Robotics Challenge,
Atkeson et al. noted: “Except for egress, no robots in
the DRC Finals used the stair railings or any form of
bracing. Even drunk people are smart enough to use
nearby supports. Full body locomotion (hand holds,
bracing, leaning against a wall or obstacles) should

be easier than our current high performance minimum
contact locomotion approaches.”

Indeed, the current approach to locomotion planning
is to avoid obstacles as much as possible, instead of
using them to facilitate locomotion. The reason for
this, as the authors state, is that “More contacts
make tasks mechanically easier, but algorithmically
more complicated for planning, and the transitions are
difficult to both plan and control[...]. We have seen very
few robot planners that are capable of generating this

1LAAS-CNRS / Université Paul Sabatier, Toulouse, France
2Inria, Rennes, France
3UNC, Chapel Hill, USA

Corresponding author:
Steve Tonneau, LAAS-CNRS 7 av. Colonel Roche,
BP 54200, 31031 Toulouse cedex 4, France.

Email: pro@stevetonneau.fr

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 The International Journal of Robotics Research XX(X)

behavior.” The difficulty of addressing such a problem
comes both in practice from the proximity to obstacles
(which makes tedious the sampling of collision-free
configurations) and in theory from the foliation of
the configuration space, where zero-measure manifolds
intersect in a combinatorial manner (Siméon et al.
2004).

Previous contributions that embrace the combina-
torial provide complete approaches, not applicable in
practice because they require hours of computations
(Bretl 2006). More recent successes use a local solution,
resulting in more reasonable computation times (still
far from real time), at the cost of dynamically inconsis-
tent behaviors (Mordatch et al. 2012). Neither global
nor local methods present satisfying performances,
because planning simultaneously the robot trajectory
and the contacts that allow its execution is a very hard
problem.

As suggested by Bouyarmane et al. (2009), we
believe that these two problems can be treated
sequentially within a global planner. We go further
and claim that this can be done at a much smaller
cost, provided we can formulate a computationally-
efficient condition for equilibrium feasibility of the root
configuration (i.e. there exists a joint configuration
such that the robot is in static equilibrium). This
paper presents a geometrical approximation of this
condition, and a concrete implementation of such a
decoupled planner. This approximation results from a
trade-off between a necessary and a sufficient condition
for equilibrium feasibility , allowing us to find solutions
extremely rapidly, while preserving a high success rate
in the demonstrated scenarios.

In the remainder of this introduction, we discuss
further the current state of the art. This allows us to
situate more precisely our contributions.

1.1 State of the art

Additionally to robotics, acyclic motion planning
is also a problem of interest in neurosciences,
biomechanics, and virtual character animation. Early
contributions in the latter field rely on local adaptation
of motion graphs (Kovar et al. 2002), or ad-hoc
construction of locomotion controllers (Pettré et al.
2003). These approaches are intrinsically not able to
adapt to new situations or discover complex behaviors
in unforeseen contexts.

The issue of planning acyclic contacts was first
completely described by Bretl et al. in their seminal
paper (Bretl 2006). The issue requires the simultaneous
handling of two problems, P1: planning a relevant
guide path for the root of the robot in SE(3);
and P2: planning a discrete sequence of acyclic

equilibrium configurations along the path. A third
nontrivial problem, P3, not addressed in this work,
then consists in interpolating a complete motion
between two postures of the contact sequence. A
key issue is to avoid combinatorial explosion when
considering at the same time the possible contacts and
the potential paths. This seminal paper proposes a first
effective algorithm, able to handle simple situations
(such as climbing scenarios), but not applicable to
arbitrary environments. Following it, several papers
have applied this approach in particular situations,
typically limiting the combinatorial by imposing a fixed
set of possible contacts (Hauser et al. 2006; Stilman
2010).

Most of the papers that followed the work of Bretl
have explored alternative formulations to handle the
combinatorial issue. Two main directions have been
explored. On one hand, local optimization of
both the root trajectory P1 and the contact
positions P2 has been used, to trade the combinatorial
of the complete problem for a differential complexity,
at the cost of local convergence. A complete example
of the potential offered by such approaches was
proposed (Mordatch et al. 2012) and successfully
applied to a real robot (Mordatch et al. 2015). To
keep reasonable computation times, the method uses
a simplified dynamic model for the avatar. Still, the
computation time is far from real-time (about 1 minute
of computation for a sequence of 20 contacts). A similar
approach has been considered for manipulation by
Gabiccini et al. (2015). Deits and Tedrake propose
to solve contact planning globally as a mixed-
integer problem, but only cyclic, bipedal locomotion
is considered. Dai et al. extend the work of Posa et al.
to discover the contact sequence for landing motions,
but need to specify the contacts manually for more
complex interactions. In addition to the practical limits
of the current implementations, a major drawback of
these optimization-based approaches is that they only
offer local convergence when applied to acyclic contact
planning.

On the other hand, the two problems P1 and
P2 might be decoupled to reduce the complexity.
The feasibility and interest of the decoupling is shown
by Escande et al. who manually set up a rough
root guide path (i.e. an ad-hoc solution to P1). P2

is addressed as the combinatorial computation of a
feasible contact sequence in the neighborhood of the
guide. A solution can then be found, but at the cost
of prohibitive computation times (up to several hours)
for constraining scenarios. This approach is suboptimal
because the quality of the motion depends on the
quality of the guide path. Bouyarmane et al. precisely

Prepared using sagej.cls

Tonneau et al. 3

focus on automatically computing a guide path with
guarantees of equilibrium feasibility , by extending key
frames of the path into whole-body configurations in
static equilibrium. Randomly-sampled configurations
are projected into the contact sub-manifold using a
inverse-kinematics solver, a computationally-expensive
process (about 15 minutes to compute a guide path
in the examples presented). Moreover this explicit
projection is insufficient to guarantee the feasibility
between two key positions in the path. Chung and
Khatib also propose a decoupled approach, with a
planning phase based on the reachable workspace of
the robot limbs, used to judge the ability to make
contact with a discretized environment. This planning
phase does not account for collisions, implying that
replanning is required in case of failure. This approach
is efficient in the demonstrated scenarios. In highly-
constraining cases such as the car egress scenario that
we address here, we believe that including collision
constraints in the planning is a requirement.

For completeness, we lastly mention a new kind of
approach, recently proposed in the computer graphics
field (Hämäläinen et al. 2015). The authors use black-
box physics simulators to perform Model Predictive
Control for the motion of a humanoid character,
and manage to obtain dynamically consistent motions
at interactive frame rates (we say that a planning
method is interactive when the computation time for
one contact switch is less than the time to execute
it). While this new approach provides an exciting
direction of research, currently the resulting motions
look unnatural, and do not seem applicable to real
robots.

As far as robotics applications are concerned,
none of the existing planners is able to solve
the problem with interactive performances. However,
recent contributions to the interpolation between
contact poses (problem P3) have brought promising
preliminary solutions (Hauser 2014; Herzog et al.
2015; Park et al. 2016; Carpentier et al. 2016).
In particular, Carpentier et al. are able to achieve
this with interactive performances on a real robot.
Therefore, a planner capable of efficiently solving
P1 and P2 could outperform all existing planners if
coupled with an interpolation method solving P3. The
main contribution of this paper is exactly this planner.

1.2 Rationale

This paper presents a pragmatic approach to break
the complexity of multi-contact planning. With that
objective in mind, we believe that the separation
between the generation of the root guide path and
the contact sequence is the most promising direction

(Escande et al. 2008). However, this direction raises
two theoretical questions that remain to be solved, or
even to be properly formulated.

Regarding P1, the guide path must guarantee the
existence of a contact sequence to actuate it. We call
this property equilibrium feasibility . This property has
not been studied yet; the only rigorous way to validate
a waypoint in the path is to explicitly compute the
contact locations and forces, which is computationally
not reasonable (Bouyarmane et al. 2009), unless the
scenario is limited to cyclic, quasi-flat cases (Zucker
et al. 2010).

Regarding P2, there are infinitely many combinations
of possible contact sequences for a given root path.
The selection of one particular contact sequence with
interesting properties (minimum number of contact
changes, robustness, efficiency or naturalness) has
been studied for cyclic cases (Hauser et al. 2006),
but has not been efficiently applied to constraining
environments (Bouyarmane and Kheddar and Escande
et al. mostly randomly picked one contact sequence,
possibly leading to very tedious transitions).

The key idea of the paper is the reachability
condition , a computationally-efficient approximation
of the equilibrium feasibility . We assume that most
of the times the reachability condition implies the
equilibrium feasibility . This assumption is not always
verified, but we provide empirical evidence that it is in
the considered class of problems, the cluttered contact
planning problems. Such problems can be solved with a
contact sequence where in every configuration at least
one contact is quasi-flat (Del Prete et al. 2016). A
contact is quasi-flat if the friction cone contains the
direction opposite to gravity.

To address P1, we first use the reachability condition
to plan the guide path. This step is fast because the
planning happens in a low-dimensional space, and does
not require explicit contact computations.

Then we address P2 by extending the path into
a sequence of whole-body configurations in static
equilibrium. This second step requires the explicit
computation of contact configurations.

This sequential approach is the key to the
efficiency of our method, though it can result in
failures because our hypothesis is not always true.
However, we demonstrate empirically the validity
of the approach: the high success rate, combined
with the low computation times, allow us to plan
(and re-plan upon failure) multi-contact sequences at
interactive rates. Similarly, in this paper we do not

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

P1 P2

Figure 1. Overview of our two-stage framework. Given a path request between start and goal positions (left image), P1 is
the problem of computing a guide path in the space of equilibrium feasible root configurations. We achieve this by defining a
geometric condition, the reachability condition (abstracted with the transparent cylinders on the middle image). P2 is then the
problem of extending the path into a discrete sequence of contact configurations using an iterative algorithm (right image).

prove that all the contact sequences produced by our
planner can be interpolated (P3), although we have
been able to do this for some of the demonstrated
sequences (Carpentier et al. 2016).

1.3 Paper contribution and organization

We propose contributions to both problems P1 and P2.

• A low-dimensional, efficient sampling-based
approach to plan guide paths.

• A very efficient and general implementation of an
acyclic contact planner, the first one compatible
with interactive applications.

• Four heuristics for contact generation. They bias
the planner towards configurations that are in
robust static equilibrium, or more efficient with
respect to the task.

• Statistical tests that empirically demonstrate
the validity of our approach in the considered
scenarios.

In Section 2, we present an overview of our method.
Section 3 and Section 4 present respectively our answer
to P1 and P2. In Section 5, we present heuristics used
for the selection of a contact configuration. Finally,
in Section 6 we propose a complete experimental
validation of the planner with three very different
kinematic chains (the HRP-2 and HyQ robots, and a
three-finger manipulator) in various scenarios.

Comparison with our previous work

The present paper is an extension of a conference
paper to appear in the proceedings of the ISRR’15
conference (Tonneau et al. 2015). The conference paper
focuses on the theoretical formulation of the problem,
and presents results obtained with virtual avatars.
This extension completes this work and brings new
contributions, resulting from the implementation of
our approach on real-world robots and problems. In
particular, a strong contribution is the introduction
of a robust equilibrium criterion, designed to ensure

the equilibrium of the robot despite bounded errors
in the contact forces, coupled with heuristics for
relevant contact selection. These two contributions
were required to apply our method to real-robot
models, namely HRP-2 and HyQ (Semini et al. 2011).
In the present paper, a complete algorithm for the
contact planner is given, and an access to the source
code of our implementation is provided. Furthermore,
our experiments are supported by an in-depth analysis
of our performances, as well as a discussion on the
influence of the parameters to the method.

2 Overview

Figure 1 illustrates our workflow. P1 and P2 are
addressed in a sequential fashion: we first plan a
root guide path with the reachability condition, before
extending it into a sequence of configurations in static
equilibrium. In this Section we describe this workflow
and give some notations used throughout the paper.
Some key concepts are introduced, whose definitions
can be found in the glossary at the end of this paper.

2.1 Computation of a guide path — P1

We first consider the problem of planning a root
guide path. Ideally we would like to sample root
configurations that are equilibrium feasible. A root
configuration is equilibrium feasible if and only if there
exists at least one joint configuration such that:

C1 : the robot is not in collision with the environment,

C2 : the robot is in static equilibrium.

Verifying C2 is computationally expensive because it
requires the projection of the whole-body configuration
into a contact posture, as well as the resolution
of a linear program to compute the contact
forces (Del Prete et al. 2016). For this reason, we
are interested in finding an approximation of the
equilibrium feasibility that is computationally efficient.
A requirement for C2 is the condition:

Prepared using sagej.cls

Tonneau et al. 5

a b c d e

Figure 2. Generation of a contact configuration for the right leg of HRP-2. (a): Selection of reachable obstacles. (b): Entries
of the limb samples database (with N = 4). (c): With a proximity query on the octree database, configurations too far from
obstacles are eliminated. (d): The best candidate according to a user-defined heuristic h is chosen. (e): The final contact is
achieved using inverse kinematics.

C0
Equil ⊂ C0

Contact ≈ C0
Reach

Figure 3. Illustration of several root configurations sets used
in this paper in a 2D scene. Obstacles are violet, and units
are in meters. To show the sets in a 2D representation, all
the rotational joints of HRP-2 are locked in the shown
configuration, such that a torso configuration is only
described by two positional parameters (x and y). The root
of the robot is indicated with a black cross. To compute the
reachable workspace, the point on the ankle indicated by a
green cross was used. C0

Equil is included in C0
Contact. C

0
Reach

approximates C0
Contact. Depending on a parametrization, we

can obtain C0
Contact ⊂ C0

Reach. Considering the
configurations around the top obstacle, we can observe a
dramatic divergence between C0

Equil and C0
Contact when the

problem is not cluttered.

C3 : at least one end-effector is in contact with the
environment.

C1 and C3 define contact feasibility , which is easier
to verify than equilibrium feasibility because it does
not require the computation of contact forces. We
make the assumption that for the cluttered contact
planning problem, most of the times contact feasible
root configurations are also equilibrium feasible. For

this reason we neglect C2 during the resolution of P1,
and we consider it only when solving P2 . However,
even verifying contact feasibility is computationally
too expensive because it requires the projection of the
whole-body configuration into a contact posture.

An intuitive description of contact feasible configura-
tions is “close, but not too close”: close, because a con-
tact surface must be partially included in the reachable
workspace of the robot (represented for the right leg
in Figure 2–a); not too close, because the robot must
avoid collision. We approximate contact feasibility with
the reachability condition, a geometrical criterion based
on this intuitive description. More precisely, a root
configuration is reachable if the root scaled by a factor
s ≥ 1 is not in collision, while the reachable workspace
is in collision with the environment. Verifying the
reachability condition is very efficient in practice. In
Section 3 we detail how we define and use the reach-
ability condition to compute a guide path with the
Reachability-Based RRT (Figure 1—P1).

Figure 3 gives an insight into the difference between
the three conditions, depicting C0

Equil, C
0
Contact and

C0
Reach, which are the sets of equilibrium feasible,

contact feasible and reachable root configurations,
respectively.

In the remainder of this paper, we use the
terms contact feasible and equilibrium feasible to
qualify either a root configuration, a whole-body
configuration, or a set of such configurations.

2.2 Generating a discrete sequence of contact
configurations — P2

The second stage extends the guide path into a
sequence of contact configurations (Figure 1–P2).
With a fixed root position, the dimensionality of
the contact generation problem is reduced to the
number of degrees of freedom of the considered limb.
We select from a database of precomputed limb
configurations (independent from the environment)

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

Figure 4. Reachable workspace and torso bounding box of
HyQ. The green shapes represent the reachable workspace
W k of each limb. The red shape is W 0.

the ones resulting in the end-effector being close to
the environment. Limiting our selection to this set
of precomputed configurations allow us to drastically
reduce the computation times. Then we select one of
these configurations based on user-defined heuristics
(Figure 2), which we present in Section 5.

From a given start configuration, the planner
proceeds in an iterative fashion along the discretized
path: given a new root configuration, an inverse-
kinematics solver is used to maintain the contacts
that were previously existing. Possibly, some of these
contacts cannot be maintained (because of joint
limits or collisions). Then the contacts are broken.
Conversely, new contacts are created to ensure the
static equilibrium of the robot. The algorithm is
designed so that only one contact can be created or
broken between two successive configurations. While
it does not provide guarantees that the interpolation
between two configurations is achievable, it appears
empirically as a reasonable heuristic. Details are
presented in Section 4.

2.3 Notation conventions and definitions

A vector x is denoted with a bold lower-case letter.
A matrix A is denoted with a bold upper-case letter.
A set C is denoted with an upper-case italic letter.
Scalar variables and functions are denoted with lower-
case italic letters, such as r or f(x).

A robot is a kinematic chain R, that we divide into
different parts: a root R0, and l limbs Rk, 1 ≤ k ≤ l,
attached to the root. The root has r ≥ 6 DOFS: for
instance, HRP-2 has two extra DOFS in the torso,
such that we have r = 8. Therefore R is fully described
by a configuration q ∈ Rr+n. We define some relevant
projections of q:

• qk denotes the configuration (a vector of joint
values) of the limb Rk;

• qk denotes the vector of joint values of R
not related to Rk. We define for convenience
q = qk ⊕ qk;

• q0 ∈ Rr denotes the world coordinates of the root
R0.

The volume encompassing R0 is denoted W 0

(Figure 4). The reachable workspace of a limb Rk is
denoted W k:

W k =
{
x ∈ R3 : ∃qk ∈ Ckjl,pk(qk) = x

}
(1)

where pk denotes the end-effector position of
Rk (translation only) for q0 = 0 being the null
displacement, and Ckjl is the space of admissible limb

joint configurations. We also define W =
⋃l
k=1W

k,
and W k(q0) (for 1 ≤ k ≤ l) as the volume W k for the
root configuration q0.

The environment O is defined as the union of the
obstacles Oi that it contains.

3 Computing a guide path in C0
reach (P1)

We consider the issue of computing an equilibrium
feasible guide path q0(t) : [0, 1] −→ C0

Equil for the root
of a multiped robot, connecting user-defined start and
goal configurations.

Again, we assume that, for cluttered problems, most
of the times contact feasibility implies equilibrium
feasibility . Under this assumption, our goal is to find a
contact feasible guide path.

To generate such a path efficiently, ideally we need to
only sample contact feasible root configurations. This
requires exhibiting a necessary and sufficient condition
for contact feasibility . By default, verifying contact
feasibility implies a constructive demonstration
by exhibiting a valid q0. This is the approach
chosen by Bouyarmane et al. (2009), which is too
computationally expensive. To formulate a cheaper
condition, we may turn our attention towards either
an only-necessary or an only-sufficient condition.

Only-necessary conditions are appealing because
they preserve the completeness of the search, while
reducing the search space: they provide an outer
approximation of C0

Contact. On the other hand, only-
sufficient conditions provide the guarantee that any
configuration that satisfies them is indeed contact
feasible: they provide an inner approximation of
C0
Contact.
In practice, the only-necessary and only-sufficient

conditions that we can provide are trivial and
give rather inaccurate approximations of C0

Contact.
Therefore, we propose a compromise between them:
the reachability condition, which is computationally
efficient and provides a rather accurate approximation
of C0

Contact.

3.1 Conditions for contact feasibility

Contact feasibility, a necessary condition: For a contact
to be possible, a volume Oi ∈ O necessarily intersects

Prepared using sagej.cls

Tonneau et al. 7

with the reachable workspace W (q0) (Figure 2–1).
Furthermore, if q0 is contact feasible, then the torso
of the robot W 0(q0) is necessarily not colliding with
the environment O.

Therefore we can define an outer approximation
C0Nec ⊃ C0

Contact defined as:

C0Nec = {q0 : W (q0) ∩O 6= ∅ and W 0(q0) ∩O = ∅}
(2)

Contact feasibility, a sufficient condition: A trivial
sufficient condition for contact feasibility can be
constructed as a variation of C0Nec, by replacing W 0

with a bounding volume BSuf encompassing the whole
robot in a given pose, except for the effector surfaces
to be in contact. We denote by C0Suf ⊂ C0

Contact the set
of root configurations corresponding to this sufficient
condition:

C0Suf = {q0 : W (q0) ∩O 6= ∅ and BSuf(q0) ∩O = ∅}
(3)

3.2 Contact feasibility: a compromise
reachability condition

The sufficient condition is not interesting in practice
since it leads the solver to lose too many interesting
paths. The necessary condition is not perfect either,
since the first stage of the planner would stop on
a guide that is not contact feasible. An ideal shape
B (with W 0 ⊂ B ⊂ BSuf) that leads to a necessary
and sufficient condition may exist—even if it seems
intuitively very unlikely in general.

However, using a shape between W 0 and BSuf leads
to a trade-off between a necessary and a sufficient
condition. We define W 0

s as the volume W 0 subject to
a scaling transformation by a factor s ∈ R+. We then
consider the spaces C0

s

C0
s = {q0 : W (q0) ∩O 6= ∅ and W 0

s (q0) ∩O = ∅}
(4)

If s = 1, then W 0
s = W 0, such that C0

1 = C0Nec. We
thus consider that s ≥ 1, since smaller values would
only worsen the approximation. By increasing s, the
condition can become sufficient. The parametrization
of s then defines a trade-off between these two
interesting extremes. We can choose s by hand,
or automatically as explained in Section 6.2.1. The
chosen value s = s∗ defines the reachability condition,
therefore we write C0

reach = C0
s∗ .

In Appendix A, we give a generic method to compute
the volumes appearing in the definition of C0

reach, with
the example of HRP-2.

3.3 Computing the guide path in C0
reach

Any sampling-based motion planner can be used to
plan a path in C0

reach. Indeed, contrary to CContact,
C0
reach has a nonzero measure in the configuration

space C. Therefore a standard uniform sampling
approach can work, in spite of a high rejection rate.
Thus, the only significant change regarding a classical
planner is to replace the collision checking with
the reachability condition when verifying the drawn
configurations and associated local paths.

However, to improve the sampling efficiency we
bias the sampling process to generate near-obstacle
configurations, similarly to Amato et al. (2000). Our
current implementation of these modifications is based
on the Bi-RRT planner (LaValle and Kuffner 1999)
provided by the HPP software.

Thanks to these modifications, the problem of
planning a contact feasible path is reduced to a
geometric collision-checking problem, of low dimension
(6 for HyQ, 8 for HRP-2 that has 2 joints in the
torso). By doing this we can solve the problem with a
sampling-based approach, in interactive computation
times.

4 From a guide path to a discrete
sequence of contact configurations (P2)

Our planner computes guide paths in C0
reach, an

approximation of C0
Equil. As an input of this stage,

we however assume an equilibrium feasible root guide
path q0(t) : [0, 1] −→ C0

Equil. If this is not the case,
our planner will fail rapidly, thus allowing replanning,
as discussed in Section 6.3. We now consider the
second problem of computing a discrete sequence of
equilibrium configurations Q0 along q0(t).

In this Section we first describe a single contact-
generation process, that is how to generate a contact
configuration for a limb, given a root location. Then,
we propose an iterative algorithm to generate a
discrete sequence of contact configurations in static
equilibrium.

Our criterion to assert efficiently the static
equilibrium of the system is described in Section 5.

4.1 Definition of a contact generator

Given a configuration qk of the root and all the limbs
but Rk, we look for a limb configuration qk such
that Rk is in contact, and not colliding (neither with
parts of the robot nor with the environment). While
exhibiting analytically a qk does not seem tractable,
we can iteratively try to generate one as follows:

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

1. Generate randomly a collision-free limb configu-
ration;

2. Project the end-effector onto the closest surface
with inverse kinematics;

3. If a valid solution is found, stop. Otherwise
repeat from step 1.

We trade the completeness of this approach for
a more efficient solution introduced in our previous
work (Tonneau et al. 2014), which we describe here
to be exhaustive.

We first define CεContact ⊃ CContact as the set of
configurations almost in contact. This means that the
minimum distance between an effector and a surface of
the environment is less than a small value ε. We then
apply the following steps:

1. Generate off-line N valid sample limb configura-
tions qki , 0 ≤ i < N ;

2. Using the end-effector positions p(qki) as indices,
store each sample in an octree data structure;

3. At runtime, when contact creation is required,
retrieve from the octree the list of samples S ⊂
CεContact close to contact (Figure 2 (b) and (c));

4. According to a user-defined heuristic h, sort the
elements of S;

5. Select the first configuration of S. Project
the configuration onto contact with inverse
kinematics. If S is empty, stop (failure case)
(Figure 2 (d) and (e));

6. If a valid solution is found, stop (success case).
Otherwise remove the element from S and go
back to step 5.

This approach has two main advantages. First, this
allows us to select a large number of candidates in
a single proximity request. Having several candidates
is interesting, because it allows to compare them
using a user-selected heuristic h, thus obtaining a
locally-optimal candidate. Furthermore, the fact that
the candidates are already close to contact increases
the odds that the inverse kinematics will converge
to a valid solution in a small number of iterations.
Regarding convergence, it is immediate to verify that
as N grows, the probability of finding a solution if it
exists converges to 1. N is a parameter that allows
us to specify the trade-off between exhaustiveness and
efficiency. The reader is invited to refer to our previous
work for an extensive discussion on the optimal value
of N (Tonneau et al. 2014).

4.2 Extension of the guide path

Using the contact generator, we define an iterative
algorithm to generate the contact sequence along

1 2 3 4

Figure 5. Contacts are maintained if joint limits and
collisions constraints are respected (2). They are broken
otherwise(3,4).

the guide path. Although we address acyclic contact
sequences, the algorithm is deterministic in the order in
which the contacts are created, allowing it to break the
combinatorial. The complete algorithm can be found in
Appendix B. In the remainder of the section we provide
an intuition of it.

As an input, we consider the guide path q0(t),
discretized into a sequence of j key configurations:

Q0 = [q0
0;q0

i ; ...,q
0
j−1]

where q0
0 and q0

j−1 respectively correspond to the
start and goal configurations. We want to extend the
configurations of Q0 in such a way that continuity is
preserved regarding the contact transitions. To do so,
we define an algorithm that, given the current root
configuration, and the previous full body configuration,
computes a full body configuration in CEquil such that
contacts are maintained if possible. The first full body
configuration of the sequence is given by the initial
state of the robot.

4.2.1 Maintaining a contact in the sequence: Figure 5
illustrates the contact-persistence strategy. If possible,
a limb in contact at step i− 1 remains in contact
at step i. The contact is broken if an inverse-
kinematics solver fails to find a collision-free limb
configuration that satisfies joint limits. The solver is
directly provided by the HPP software.

If the solver fails, the contact is broken and a
collision-free configuration is assigned to the limb. If
two or more contacts are broken in a single step, one
or more intermediate steps are added. For these steps
the root configuration is the same as for the previous
step, with the difference that one faulty contact is
repositioned, in the hope that it will not be broken
at the next step.

4.2.2 Creating contacts: Contacts are created using
three rules:

1. Only one contact creation can happen between
two consecutive steps. This increases the odds
that the interpolation between the two steps be
feasible;

Prepared using sagej.cls

Tonneau et al. 9

2. A contact is validated if and only if the resulting
configuration is in static equilibrium;

3. We use a FIFO approach: we always try first
to create a contact with the limb that has been
contact-free the longest. If the contact creation
was not successful for a limb, the limb is pushed
on top of the queue, and will only be tried again
after the others.

These three rules provide a deterministic generation
of contacts along the discretized guide path. For a given
equilibrium feasible path, our current implementation
does not guarantee that the planner will succeed,
because of the deterministic approach used to break
the combinatorial. However, in practice the planner is
successful in the large majority of cases, as discussed
in Section 6.3.

5 Heuristics for contact selection

5.1 A heuristic for robust static equilibrium

The planner is designed so that any generated contact
configuration is in static equilibrium. We are interested
in a robust criterion, that ensures that the robot
remains in equilibrium in a real-world application,
regardless of perception and control uncertainties.

We first give a linear program (LP) that verifies
whether a contact configuration allows for static
equilibrium. From this formulation we derive a new
LP that quantifies the robustness of the equilibrium to
uncertainties in the contact forces. In turn, from this
value we can either choose the most robust candidate,
or set a threshold on the required robustness. While the
presented LP is original, it is based on an analysis of the
problem that we proposed in (Del Prete et al. 2016),
where the interested reader can find more details.

5.1.1 Conditions for static equilibrium: We first define
the variables of the problem, for e contact points,
expressed in world coordinates:

• c ∈ R3 is the robot center of mass (COM);
• m ∈ R is the robot mass;
• g = [0, 0,−9.81]T is the gravity acceleration;
• µ is the friction coefficient;
• for the i-th contact point 1 ≤ i ≤ e:

– pi is the contact position;
– fi is the force applied at pi;
– ni, ti1, ti2 form a local Cartesian coordinate

system centered at pi. ni is aligned with
the contact surface normal, and the tis are
tangent vectors.

According to Coulomb’s law, the nonslipping
condition is verified if all the contact forces lie in the

friction cone defined by the surface. As classically done,
we linearize the friction cone in a conservative fashion
with a pyramid, described by four generating rays of
unit length. We choose for instance:

Vi =
[
ni + µti1 ni − µti1 ni + µti2 ni − µti2

]T
Any force belonging to the linearized cone can thus

be expressed as a positive combination of its four
generating rays.

∀i ∃βi ∈ R4 : βi ≥ 0 and fi = Viβi,

where βi contains the coefficients of the cone
generators. We can then stack all the constraints to
obtain:

∃β ∈ R4e,β ≥ 0 and f = Vβ, (5)

where V = diag({V1, . . . ,Ve}), and f = (f0, ..., fe).
From the Newton-Euler equations, to be in static

equilibrium the contact forces have to compensate the
gravitational forces:

[
I3 . . . I3
p̂1 . . . p̂e

]
V︸ ︷︷ ︸

G

β,=

[
03×3
mĝ

]
︸ ︷︷ ︸

D

c +

[
−mg
0

]
︸ ︷︷ ︸

d

(6)

where x̂ ∈ R3×3 is the cross-product matrix associated
to x.

If there exists a β∗ satisfying (5) and (6), it means
that the configuration is in static equilibrium. The
problem can then be formulated as an LP:

find β ∈ R4e

subject to Gβ = Dc + d

β ≥ 0

(7)

5.1.2 Formulation of a robust LP: Let b0 ∈ R be a
scalar value. We now define the following LP:

find β ∈ R4e, b0 ∈ R
minimize − b0
subject to Gβ = Dc + d

β ≥ b01

(8)

We observe that if b0 is positive then (7) admits
a solution, and b0 is proportional to the minimum
distance of the contact forces to the boundaries of the
friction cones. If b0 is negative, the configuration is not
in static equilibrium, and b0 indicates “how far” from
equilibrium the configuration is. We thus use b0 as a
measure of robustness.

In our implementation, rather than solving directly
(8), we solve an equivalent problem of smaller

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

dimension that we get by taking the dual of (8) and
eliminating the Lagrange multipliers associated to the
inequality constraints:

find ν ∈ R6

maximize − (Dc + d)T ν

subject to GTν ≥ 0

1TGTν = 1

(9)

Indeed, from Slater’s conditions (Boyd and Vanden-
berghe 2004), we know that the optimal values of an
LP and its dual are equal. Thus the optimal value of
the LP (9) is indeed the optimal b0.

5.2 Manipulability-based heuristics for contact
selection

This Section proposes heuristics to select a contact that
optimizes desiered capabilities. For instance, one can
be interested in configurations that allow to efficiently
exert a force in the global direction of motion, a high
velocity in a given direction, or to stay away from
singular configurations. In this section, we derive three
such heuristics from the work on manipulability by
Yoshikawa (1985), that we present first.

5.2.1 The force and velocity ellipsoids: For a limb
configuration qk, the Jacobian matrix Jk(qk) defines
the relation:

ṗk = Jk(qk)q̇k (10)

For clarity in the rest of the section we omit the k
indices and write Jk(qk) as J.

As a linear approximation of a forward-kinematics
function, J describes how small variations from the
configuration q affect the position vector p.

Now we consider the unit ball in the configuration
space C defined by the set of joint velocities for which
the norm is at most 1:

||q̇||2 ≤ 1 (11)

We assume that J is full rank (we are not interested
in singular configurations, which we discard). From
(10) we can thus obtain the following equality
(Appendix C):

ṗT (JJT)−1ṗ = q̇T q̇ (12)

We can use (12) to map the ball into an ellipsoid in
the Euclidian space Rm:

ṗT (JJT)−1ṗ ≤ 1 (13)

Velocity ellipsoid Force ellipsoid (scale 0.5)

Figure 6. Examples of velocity and force ellipsoids for a
manipulator composed of 2 dofs and 2 segments. Only the
horizontal and vertical speeds are shown (not the rotation
speeds), since it would require being able to draw in four
dimensions.

This ellipsoid is called the manipulability ellipsoid, or
velocity ellipsoid, introduced by Yoshikawa (1985). It
describes the set of end-effector velocities that can
be reached under the constraint (11) for the current
configuration. The longer the axis of the ellipsoid is,
the faster the end-effector can move along the direction
of the axis. Figure 6 - left shows the velocity ellipsoid
for different configurations of a manipulator with two
degrees of freedom.

Similarly to the velocity ellipsoid, Yoshikawa also
defines the force ellipsoid. Considering: a force vector
f expressed in the task space Rm; the equivalent joint
torque vector τ ; we can define the mechanical work in
both spaces:

q̇T τ = ṗT f

Exploiting (10), we can easily see that the set of
achievable forces in Rm subject to the constraint:

||τ ||2 ≤ 1

is the so-called force ellipsoid (Figure 6 - right):

fT (JJT)f ≤ 1 (14)

5.2.2 Manipulability-based heuristics: From these def-
initions, we can derive three useful heuristics, that
all account for the environment and the task being
performed. The first one, EFORT, was introduced by
Tonneau et al. (2014); the other two are new minor
contributions, derived from these previous works.

With EFORT, we define the efficiency of a
configuration as the ability of a limb to exert a force in
a given direction. We thus consider the force ellipsoid
as a basis for our heuristic. In a given direction m, the
length of the ellipsoid is given by the force-transmission
ratio (Chiu 1987):

fT(q,m) = [mT (JJT)m]−
1
2

Prepared using sagej.cls

Tonneau et al. 11

In our problem, to compare candidate configura-
tions, we include the quality of the contact surface, and
choose m as the direction opposite to the local motion
(thus given by the difference between two consecutive
root positions):

hEFORT(q,m) = [mT (JJT)m]−
1
2 (µnTm) (15)

where µ and n are respectively the friction coefficient
and the normal vector of the contact surface.

If the ability to generate large velocities at the
effector is considered, we define a new heuristic hvel
with a similar reasoning on the velocity ellipsoid:

hvel(q,m) = [mT (JJT)−1m]−
1
2 (µnTm) (16)

hEFORT and hvel will favor contacts that allow
large efforts or fast modifications in the velocity.
EFORT in particular is useful for tasks such as
standing up, pushing / pulling. In other less demanding
cases, manipulability can also be considered to
avoid singularities. To do so, we can consider the
manipulability measure hw, also given by Yoshikawa:

hw(q) =
√
det(JJT) (17)

hw measures the “distance” of a given configuration to
singularity. When hw is equal to 0, the configuration
is singular; the greater hw is, the further away the
configuration is from singularity.
hEFORT, hvel and hw define three kinematic

heuristics, fast to compute (indeed, thanks to our
sampling-based approach, the Jacobian and inverse
products can be precomputed off-line), that allow the
planner to select the best candidates according to user-
defined criterion.

6 Results

In this Section we present some of the results obtained
with our planner. The complete sequences computed
are shown in the companion video. Specifically, we
demonstrate the planner for two really different robots,
in a large variety of environments: the humanoid
HRP-2 and the quadruped HyQ. For each scenario
we indicate the chosen heuristics. We also provide a
performance analysis, which shows that the planner is
compatible with interactive applications, and present
the success rates obtained in each scenario. Moreover,
we demonstrate the interest of our robustness criterion
in the different computed poses. Finally, a last
example suggests possible applications to dexterous
manipulation.

Figure 7. Virtual avatars in various scenarios demonstrated
in our conference paper.

Figure 8. HRP-2 in the steep stair climbing scenario.

In our previous work (Tonneau et al. 2015)
additional results are demonstrated with various
virtual avatars (Figure 7). In this extension we choose
to focus on actual robots. We invite the interested
reader to watch the ISRR video (http://youtu.be/
LmLAHgGQJGA), and to refer to the previous paper for
a discussion on these results.

6.1 Description of the scenarios

In all the scenarios considered, the formulation of
the problem is always the same: a start and goal
root configurations are provided as an input of
the scenario. The framework computes the initial
contact configuration, and outputs a sequence of
contact configurations connecting it to the goal.
In each scenario we detail the parameters chosen:
the heuristics, and the constraints on the reachable
workspaces (for instance in all the scenarios, the
reachable workspaces of the legs of HRP-2 are always
required to intersect with the environment).

Prepared using sagej.cls

http://youtu.be/LmLAHgGQJGA
http://youtu.be/LmLAHgGQJGA

12 The International Journal of Robotics Research XX(X)

b0 = 0.23 b0 = 6.16

Figure 9. Evaluation of the robustness b0 of two contact
configurations. Although in equilibrium, the left configuration
is on the verge of slipping.

6.1.1 HRP-2 – Steep staircase (Figure 8): The goal is
to climb three 15-cm high steps. This height requires
HRP-2 to use a ramp to perform the task.
Contacts involved: Feet and right arm.
Heuristics: The manipulability hw is chosen for the
feet; hEFORT is chosen for the right arm. Regarding
equilibrium, the video demonstrates two sequences
computed for two different threshold values of b0: 0
and 2 (Figure 8).
Observations: This scenario illustrates best the
importance of the equilibrium-robustness criterion.
With a robust approach, more states are required to
reach the last step (15 rather than 13 in average).
However, when the last step is reached by both feet, in
the nonrobust case the contacts are extremely close to
the cone limits (Figure 9).

The geometry of the environment is easily addressed
by our planner, and the contact planning is several
times faster than real time in this scenario.

Again, the interpolation motion between the contact
steps is out of the scope of this paper. However
it should be noted that the computed plan in this
scenario has been executed successfully on the robot
(http://youtu.be/YjL-DBQgXwk#t=0m28s).

6.1.2 HRP-2 – Standing up (Figure 10): From a bent
configuration, a standing-up motion is computed in
a constraining environment. The resulting motion
involves using a wall as support, and climbing a 25-
cm high step.
Contacts involved: All (both feet and hands).
Heuristics: hw for the feet, hEFORT for the hands.
Observations: The scenario illustrates well the
acyclic aspect of the planning. For instance, in the four
first frames of Figure 10, we can see that the right foot
is moved twice, with the left foot in between, before
the configuration allows HRP-2 to move its hand.
Because the contacts are tried in a FIFO manner, the
fact that the output contact sequence is acyclic shows
that a cyclic approach (with a finite state machine for

Figure 10. HRP-2 in the standing scenario.

Figure 11. Selected frames from the car egress scenario.

instance) is not sufficient for the computed path. The
reason for this is not reachability, but equilibrium. The
planning is slower than for the stair scenario (because
the contact generation fails more), though it remains
compatible with interactive performances.

6.1.3 HRP-2 – Car egress (Figure 11): This scenario is
inspired from the Darpa challenge car egress scenario
(http://cpc.cx/edH). HRP-2 has to find the contact
sequence that allows it to step out of a car.

Contacts involved: All (both feet and hands).

Heuristics: hw.

Prepared using sagej.cls

http://youtu.be/YjL-DBQgXwk#t=0m28s
http://cpc.cx/edH

Tonneau et al. 13

Figure 12. Robust crossing of rubbles by HyQ (b0 > 20).

Observations: The difficulty of this scenario lies
in the strong reduction of the reachable workspace
induced by the extreme proximity of all obstacles. The
planner is able to find a sequence, that consists in many
steps. The proximity of the obstacles invalidate a large
number of contact candidates because of collisions. To
avoid breaking more than one contact between each
step, the motion has to be decomposed into a large
number of steps (61 in average). While this scenario
is the slowest to solve, the planner still computes a
solution interactively.

6.1.4 HyQ – Darpa-style rubble (Figure 12) The
quadruped robot is given the task to cross a rubble
composed of bricks rotated at different angles and
directions.

Contacts involved: All (the 4 legs).

Heuristics: hw for all legs. The robustness threshold
b0 is set to 20.

Observations: In this context, setting up a really
important minimum value for b0 is possible due to the
high stability of the HyQ robot, and results in more
contact switches, in exchange for safety. The guide
path-planning in this scenario takes a few seconds in
average, more than in any other scenarios. This is
explained by the necessity of discovering a safe way to
“climb down” the rubble. In this part of the planning,
the constraint that the 4 reachable workspaces of all
legs must collide with the environment at all times
is hard to respect, but enforces the equilibrium of

Figure 13. HyQ crossing a narrow bridge.

Figure 14. Crossing a hole contact sequence for HyQ
(b0 > 4).

HyQ. Again, the computation times remain however
interactive.

6.1.5 HyQ – Obstacle race (Figure 13 and 14): In this
long scene, HyQ is first required to cross a 55-cm large
hole; then, to cross a narrow “bridge”, only 25-cm
large.

Contacts involved: All (the 4 legs).

Heuristics: hw for all legs. The robustness threshold
b0 is set to 10.

Observations: Despite the apparent simplicity of the
scene, this scenario is a hard case for a contact planner.
While finding a guide path above the hole is easy for
the guide planner, finding a sequence of contacts that
allows for equilibrium is not trivial. Second, the narrow
bridge is hard both for the planner and the contact
generator: to make sure that equilibrium is preserved
along the traversal, the bridge must be approached
with the appropriate angle. The difficulty is illustrated
in Figure 14, where several feet rearrangements are
required to cross the hole (although the video shows

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

Figure 15. HRP-2 in the re-planning scenario. After the red
step stones are removed, a new sequence of contacts is
re-planned. Hand contacts are not presented here for
readability.

this best). The planner however succeeds in finding
a feasible sequence in the end, again with interactive
computation times.

6.1.6 HRP-2 – Path re-planning (Figure 15): In this
long scene, HRP-2 plans a path through several
obstacles. the scene is edited during the execution of
the motion: a stair is added, some stepping stones are
removed, and part of the final staircase is deleted. All
these modifications require re-planning.
Contacts involved: Feet and the right arm.
Heuristics: hw for all legs. hEFORT for the right arm.
The robustness threshold is set to 2.
Observations: This scenario is designed to illustrate
concretely the computation times of the planner. In the
video, the footsteps indicating the contact sequence
appear at the average speed of their computation
(including the guide-path planning).

6.1.7 3-fingered hand – Manipulation of a pen
(Figure 16): This scenario is proposed to illustrate the
generality of our approach: we consider a manipulation
task for a robotic hand and use our contact planner to
compute a contact sequence for the fingers, considered
as effectors (Figure 16). Although we do not address
the hard issue of accounting for rolling motions, the
planner is able to compute the shown sequences in less
than 5 seconds.
Contacts involved: Three finger-tips.
Heuristics: hEFORT for all fingers.

6.2 Influence of the parameters

This subsection discusses the several factors that
influence the outcome of our planner: the root scaling
factor s, the choice of heuristics for contact generation,
the desired value of the robustness parameter b0, and
lastly, the discretization of the guide path.

Value of s False positive False negative

1 24% 0 %
1.1 12% 4%

1.15 7% 6%

1.2 3% 7.5%
1.25 2% 8.3%

1.5 1% 9.5%

Table 1. Percentage of true and false positive in the
reachability condition, depending on the scaling value of W 0.

6.2.1 Choosing the scaling factor s: To find a
convenient value s∗ of s, we proceeded as follows. For
several values of s, we generated 10000 configurations.
We then computed the rates of false positives (i.e.
the configuration satisfies the reachability condition,
but does not belong to C0

Equil) and false negatives
(i.e. the configuration does not satisfy the reachability
condition, but belongs to C0

Equil).
The obtained results for HRP-2 are summarized in

Table 1, averaged over all scenes (except for the car
egress: in this scenario, statistical tests are not really
conclusive since we are only interested in a small area
of the environment). As it can be expected, the scaling
results in a high increase of the false negatives, while
the false positives decrease. For HRP-2 we decided
to set s∗ = 1.2, that results in less than 3 % of false
positives, and was also effective for the car egress
scenario.

6.2.2 On the choice of heuristics: In our conference
paper, the computed motions were only generated
using the EFORT heuristic. EFORT is designed for
tasks requiring to exert important forces (such as
pushing / pulling / climbing). Regarding locomotion
tasks, such as the stair scenario, one issue with EFORT
is that it tends to generate configurations close to
singularities (and joint limits). While this does not
significantly impact the generation of the plan, the
resulting interpolation on the real robot turned out to
be harder (Carpentier et al. 2016). For this reason, we
prefer to use our manipulability-based heuristic for the
legs of the robot, but we still use EFORT for the arms,
that results in less contact repositioning.

6.2.3 On the robustness equilibrium criterion: Robust-
ness is really important when considering practical
applications on the robot, to account for the various
uncertainties that result from environment and state
estimation. However, maximizing the robustness crite-
rion is often not optimal, because the resulting config-
urations may be too conservative, thus not favoring the
motion. In our experiments, we choose not to maximize
the robustness, but to empirically set a robustness
threshold value under which a configuration is not
considered to be in static equilibrium (If no candidate

Prepared using sagej.cls

Tonneau et al. 15

Figure 16. Contact sequence found for a pen manipulation in a zero gravity environment.

reaches the threshold, instead of failing, the algorithm
can eventually return the “more robust” configuration
found). Currently for HRP-2, a threshold value of 2
subjectively gives the best results in the considered
scenarios, while 10 seems to be a good choice for HyQ.
Both values do not significantly slow down the planning
times.

6.2.4 Discretization of the guide path: Currently, to
discretize the path, the user defines a fixed step size.
The step size has an influence on the output of the
planner: if too large steps are taken, the planner may
fail since we impose the constraint that only one
contact change might occur between two consecutive
steps. For instance, in most scenarios the torso of HRP-
2 moves about 15 cm between two postures, but only
3 cm for the car egress scenario, where we had to
lower the step size because of the many contact breaks
induced by the extremely constraining geometry. For
future work, we would like to automatically adapt the
size of the discretization step to the complexity of the
planning, for instance by reducing the step size when
failure occurs.

6.3 Performance analysis

To analyze performance, for each considered scenario,
we ran the planner 1000 times. We measured the
computation time spent in each aspect of the
algorithm, and also analyzed the success rate obtained
for each scenario.

6.3.1 Computation times: Table 2 summarizes the
performance measurements obtained, in terms of
computation times.

Considering the repartition of the computation time,
for HRP-2, most of the time is spent performing inverse
kinematics. This is not surprising considering the
number of calls to the methods: IK projection is used
intensively to maintain contact continuity between
two postures; it is also applied every time a new
candidate needs to be evaluated. In particular for the
car egress scenario, the kinematic constraints are very
demanding. Therefore a large number of projections
fail because of joint-limit violations.

For HyQ, there is a more uniform repartition of
the times for the rubble scenario. For the obstacle

scenario, we observe a large increase of the time spent
performing collision checking and inverse kinematics.
This is explained by the complexity of crossing the
bridge: the robot has to stand high and create contacts
close to each other because the bridge is narrow.
In many cases this results in collisions, thus a large
number of contacts have to be evaluated.

In all scenarios, one can observe that the average
computation time for one single step is largely below
one second, thus allowing to consider interactive
applications.

6.3.2 Success rates: Table 3 summarizes the success
rates obtained for each scenario. We observe
that, as expected, our planner does not succeed
systematically, because of the approximations made
in our formulation. The extreme situation of the car
egress scenario provides the less satisfying results in
terms of kinematic failure. This is not surprising
considering the narrowness of the scene. From a
pragmatic point of view, regarding the computation
times, we claim that our approach provides a satisfying
compromise between completeness and efficiency.
Indeed, the advantage of the framework is that when
the contact generation fails, it does so rapidly, which
allows us to rapidly re-plan a new contact sequence
with a reasonable chance of success. The most efficient
(and immediate) approach is probably to launch
in parallel several instances of the planner for a
given problem (our current implementation is single
threaded) and to apply any successful result.

6.4 Comparison with previous work

Comparing our method with others is not trivial.
Indeed, we focus on the contact planning aspect of
the problem, and do not address the interpolation in
this paper, nor provide a strong guarantee that our
sequences can be interpolated. Most papers in the
literature only provide the overall computation time,
without specifying how much is spent in each phase.
Moreover, there exists no off-the-shelf implementation
of the related methods. Due to their complexity, we
cannot afford the development resources required to
reimplement them.

Prepared using sagej.cls

16 The International Journal of Robotics Research XX(X)

Scenario

(nb steps)

Complete

guide

generation
(ms)

Static

equilibrium (ms)
Collision (ms)

Inverse Kinematics

(ms)

Total generation

time (ms)

Time

per

step
(ms)

Stairs
(18)

5 – 6 – 18 13 – 32 – 329 1 – 4 – 38 26 – 127 – 1345 92 – 261 – 2174 15

Standing
(24)

65 – 1086 –
5227

27 – 144 – 338 2 – 12 – 37 144 – 1046 – 2374 371 – 2257 – 7671 94

Car (61)
145 – 1055 –

15063
64 – 85 – 144 394 – 735 – 1422

3947 – 13069 –

36262

6919 – 21416 –

67031
351

Rubble

(71)

151 – 15220 –

125867
242 – 511 – 3480 233 – 505 – 4564 180 – 414 – 3518

1548 – 18058 –

13126
254

Race
(112)

267 – 966 –
2257

266 – 449 – 3956 824 – 1061 – 2130 666 – 874 – 1613 2797 – 4187 – 11292 37

Table 2. minimum, average and worst time (in ms) spent in the generation process for each scenario and each critical part
of the generation process (not all parts are timed, thus the average total computation time is higher than the sum of each
part). The last column indicates the average time necessary to compute one contact transition.

Path planning
Equilibrium
feasibility

Kinematic
failure

Equilibrium
failure

Steep stairs 100% 99.5% 0.1% 0.4%
Standing up 68% 87.8% 6.1% 6.1%
Car egress 39% 77.0% 21.0% 2.0%
Rubble 74% 97.9% 0.1% 2.0%
Obstacle race 58.0% 95.7% 1.8% 2.5%

Table 3. Success rates for each scenario, rounded to the first decimal. The first value indicates the percentage of successful
complete contact plannings for 1000 tests; The second value indicates the percentage of equilibrium feasible root
configurations: considering each limb individually, indicates the percentage of root configurations of the guide path that led
to a feasible contact. Kinematic failure is the percentage of contact generations that failed because no collision-free candidate
was found. Equilibrium failure is the percentage of contact generations that failed because no candidate respected the static
equilibrium condition.

Scenario Method Guide Path Contact sequence Interpolation

Stair 20 cm
Hauser et al. 5.42 min

Ours + Carpentier et al. 5 ms < 18 ms < 2s
Mordatch et al. 2 to 10 min

Stair 30 cm
Hauser et al. 4.08 min

Ours 5 ms < 18 ms X
Mordatch et al. 2 to 10 min

Stair 40 cm
Hauser et al. 10.08 min

Ours 5 s 3 s X
Mordatch et al. 2 to 10 min

Table (car) egress
Bouyarmane et al.; Escande et al. 10 min 3.5 hours

Ours 529 ms < 22 s X
Table 4. Comparison between the computation times obtained by our method and previous ones, for each phase of the
planning. Blue cells indicate merged times (because no precise time information is available). The X symbol indicates
scenarios where we did not address the interpolation of the contact sequence.

Furthermore, the interpolation itself is not com-
pletely solved. For instance in Escande et al. (2008), the
end-effector trajectories are computed automatically
with splines, but are manually corrected if they enter
in collision. In (Mordatch et al. 2012), internal joint
collisions can occur in the resulting motion. Recent

methods suffer from similar issues (Carpentier et al.
2016).

Nonetheless, we indicate in Table 4 what is actually
computed by each method and in how much time.
We compare motions obtained in previous works with
HRP-2 (or a humanoid avatar) with ours. The two
scenarios we selected consist in: climbing one step,

Prepared using sagej.cls

Tonneau et al. 17

of height 20, 30 or 40 centimeters; getting out of a
table, that we consider of a complexity similar to the
car egress scenario (or inferior since the feet locations
remain on the ground in the former case). For scenarios
that apply, we also indicate the interpolation time that
we obtained by feeding the plan to our interpolation
method presented in Carpentier et al. (2016).

Despite the difficulty of comparing the methods, we
believe the results presented in Table 4 indicate that
our planner holds the promise of planning complete
trajectories significantly faster than previous works.

7 Discussion and future work

In this paper we consider the cluttered contact planning
problem, formulated as two sub-problems that we
address sequentially. The first problem P1 consists
in computing an equilibrium feasible guide path for
the root of the robot; the second problem P2 is the
computation of a discrete sequence of whole-body
configurations along the root path.

Our contribution to P1 is the introduction of a
low-dimensional space Creach, an approximation of
the space of equilibrium feasible root configurations.
Thanks to the computationally efficient verification of
the reachability condition, we are able to solve P1 much
faster than previous approaches.

Our contribution to P2 is a fast contact generation
scheme that can take into account criteria to optimize
user-defined properties.

Our results demonstrate that our method allows
a pragmatic compromise between three criteria
that are hard to conciliate: generality, performance,
and quality of the solution, making it the first
acyclic contact planner compatible with interactive
applications. Regarding generality, the reachability
condition, coupled with an approach based on limb
decomposition, allows the method to address arbitrary
multiped robots in cluttered problems. The only pre-
requisite is the specification of the volumes W 0.
Regarding performance, our framework is really
efficient in addressing both P1 and P2. This results
in interactive computation times. Regarding the
quality of the paths, the reachability condition
allows us to compute equilibrium feasible paths in
all the presented scenarios, with low rejection rates.
As for Bouyarmane et al. (2009), failures can still
occur, due to the approximate condition used to
compute the guide path. The low computational
burden of our framework however allows for fast re-
planning in case of failure. Furthermore because of this
approximation, the guide search is not complete. The
choice is deliberate, because we are convinced that it
is necessary to trade completeness for efficiency at all

stages of the planner. However, one direction for future
work is to focus on a more accurate formulation of
C0
reach to improve the approximation.

Another limitation of the method is that it currently
only applies to cluttered problems. However, it should
first be noted that many problems belong to this
class: for instance all the problems at the DRC were
cluttered . Our method is thus already useful for many
cases. One way of extending its range of application,
that we consider for future work, is to include the
equilibrium criterion when solving P1. Considering
the set of obstacles intersecting with the reachable
workspace for a given root configuration as candidates
surfaces, we can use them to verify the equilibrium
criterion. This would give us a necessary condition for
equilibrium feasibility .

Regarding the interpolation between the contact
sequences (P3), we have already obtained some success
for some of the computed sequences (Carpentier
et al. 2016), but additional work is required on
the planning side to obtain a seamless workflow. To
achieve this, we are currently working on the notion
of transition certificate, i.e. formulating conditions
that guarantee that the interpolation between two
contact configurations is dynamically feasible. A last
limitation of our method is that only static equilibrium
configurations are considered for contact planning. We
aim at performing kinodynamic planning to overcome
this limitation. We believe that the most promising
direction in this regard is to integrate the notion of
Admissible Velocity Propagation in our current work
(Pham et al. 2013). Addressing these two last issues is
essential to bridge the gap between the planning and
control aspects of multiped locomotion.

Acknowledgements

This research is supported by Euroc (project under
FP7 Grant Agreement 608849); Entracte (ANR grant
agreement 13-CORD-002-01); the ARO Contract
W911NF-14-1-0437; and the NSF award 1305286.

Glossary

CContact Set of collision free full body configurations
such that at least one end-effector is in contact
with the environment. 7, 17

C0
Contact Set of contact feasible root configurations q0,

that verify ∃q0,q0 ⊕ q0 ∈ Ccontact. 6, 7, 17, 18

CEquil Set of collision free full body configurations
that are in static equilibrium. 8, 17

Prepared using sagej.cls

18 The International Journal of Robotics Research XX(X)

C0
Equil Set of equilibrium feasible root configurations

q0, that verify ∃q0,q0 ⊕ q0 ∈ CEquil. 6, 7, 14, 17

C0
reach Set of root configurations q0 that verify the

reachability condition. 7, 17

cluttered A class of contact planning problems that
admit as a solution a sequence of contact
configurations for which at least one contact
occurs with a quasi-flat surface. 3–6, 16, 17

contact feasible Refers to a root configuration that
can be extended into a collision free contact
configuration. 4–7, 17, 18

equilibrium feasible Refers to a root configuration
that can be extended into a collision free
configuration in static equilibrium. 2–7, 9, 17

interactive We say that a planning method is
interactive when the computation time for one
step is lesser than the time to execute it. We
arbitrarily approximate this time to one second.
3, 4, 7, 11–13, 15, 17

quasi-flat refers to a contact surface for which the
friction cone includes the direction opposite to
the gravity. 3, 17

reachability condition A root configuration q0 that
verifies :
W (q0) ∩O 6= ∅ and W 0

s∗(q0) ∩O = ∅, where s∗

is a user-defined value. 7, 17

References

Amato NM, Bayazit OB, Dale LK, Jones C and Vallejo

D (2000) Choosing good distance metrics and local

planners for probabilistic roadmap methods. IEEE T.

Robotics and Automation 16(4): 442–447.

Amenta N, Choi S and Kolluri RK (2001) The power crust.

In: Proc. of Sixth ACM Symposium on Solid Modeling

and Applications (SMA). Ann Arbor, Michigan, USA,

pp. 249–266.

Atkeson CG, Babu BPW, Banerjee N, Berenson D, Bove

CP, Cui X, DeDonato M, Du R, Feng S, Franklin P,

Gennert M, Graft JP, He P, Jaeger A, J Kim KK, Li L,

C Liu XL, Padir T, Polido F, Tighe GG and Xinjilefu X

(2015) What happened at the darpa robotics challenge,

and why? Technical report, Carnegie Mellon University,

Pittsburgh, USA.

Ben-Israel A and Greville TN (2003) Generalized inverses:

theory and applications, volume 15. Springer Science &

Business Media.

Bouyarmane K, Escande A, Lamiraux F and Kheddar A

(2009) Potential field guide for humanoid multicontacts

acyclic motion planning. In: Proc. of IEEE Int. Conf.

on Robot. and Auto (ICRA). Kobe, Japan, pp. 1165 –

1170.

Bouyarmane K and Kheddar A (2011) Multi-Contact

Stances Planning for Multiple Agents. In: Proc.

of IEEE Int. Conf. on Robot. and Auto (ICRA).

Shanghai, China.

Boyd S and Vandenberghe L (2004) Convex Optimization.

Cambridge University Press.

Bretl T (2006) Motion planning of multi-limbed robots

subject to equilibrium constraints: The free-climbing

robot problem. The Int. Journal of Robot. Research

(IJRR) 25(4): 317–342.

Carpentier J, Tonneau S, Naveau M, Stasse O and Mansard

N (2016) A versatile and efficient pattern generator

for generalized legged locomotion. In: To appear in

Proc. of IEEE Int. Conf. on Robot. and Auto (ICRA).

Stockholm, Sweden.

Chiu S (1987) Control of redundant manipulators for task

compatibility. In: Proc. of Int. Conf. on Robot. and

Auto (ICRA), volume 4. pp. 1718–1724.

Chung SY and Khatib O (2015) Contact-consistent

elastic strips for multi-contact locomotion planning of

humanoid robots. In: Proc. of IEEE Int. Conf. on

Robot. and Auto (ICRA). pp. 6289–6294.

Dai H, Valenzuela A and Tedrake R (2014) Whole-body

motion planning with centroidal dynamics and full

kinematics. In: Humanoid Robots (Humanoids), 14th

IEEE-RAS Int. Conf. on. Madrid, Spain, pp. 295–302.

Deits R and Tedrake R (2014) Footstep planning on uneven

terrain with mixed-integer convex optimization. In:

Humanoid Robots (Humanoids), 14th IEEE-RAS Int.

Conf. on. Madrid, Spain.

Del Prete A, Tonneau S and Mansard N (2016) Fast

Algorithms to Test Robust Static Equilibrium for

Legged Robots. In: To appear in Proc. of IEEE Int.

Conf. on Robot. and Auto (ICRA). Stockholm, Sweden.

Escande A, Kheddar A, Miossec S and Garsault S (2008)

Planning Support Contact-Points for Acyclic Motions

and Experiments on HRP-2. In: Khatib O, Kumar

V and Pappas GJ (eds.) ISER, Springer Tracts in

Advanced Robot., volume 54. Springer, pp. 293–302.

Gabiccini M, Artoni A, Pannocchia G and Gillis J (2015)

A computational framework for environment-aware

robotic manipulation planning. In: Int. Symp. Robotics

Research (ISRR). Sestri Levante, Italy.

Hämäläinen P, Rajamäki J and Liu CK (2015) Online

control of simulated humanoids using particle belief

propagation. ACM Trans. Graph. 34(4): 81:1–81:13.

Prepared using sagej.cls

Tonneau et al. 19

Hauser K (2014) Fast interpolation and time-optimization

with contact. The Int. Journal of Robot. Research

(IJRR) 33(9): 1231–1250.

Hauser K, Bretl T, Harada K and Latombe JC (2006)

Using motion primitives in probabilistic sample-based

planning for humanoid robots. In: Akella S, Amato

NM, Huang WH and Mishra B (eds.) WAFR, Springer

Tracts in Advanced Robot., volume 47. Springer, pp.

507–522.

Herzog A, Rotella N, Schaal S and Righetti L (2015)

Trajectory generation for multi-contact momentum-

control. In: Humanoid Robots (Humanoids), 15h IEEE-

RAS Int. Conf. on.

Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K,

Yokoi K and Hirukawa H (2003) Biped Walking Pattern

Generation by using Preview Control of Zero-Moment

Point. In: Proc. of IEEE Int. Conf. Robot. and Auto

(ICRA). Taipei, Taiwan.

Kovar L, Gleicher M and Pighin F (2002) Motion graphs.

In: ACM Trans. Graph., volume 21. pp. 473–482.

LaValle S and Kuffner J JJ (1999) Randomized

kinodynamic planning. In: Proc. of IEEE Int. Conf. on

Robot. and Auto (ICRA), volume 1. Detroit, Michigan,

USA, pp. 473–479 vol.1.

Mordatch I, Lowrey K and Todorov E (2015) Ensemble-

CIO: Full-Body Dynamic Motion Planning that

Transfers to Physical Humanoids. In: Proc. of IEEE

Int. Conf. on Robot. and Auto (ICRA). Seattle, USA.

Mordatch I, Todorov E and Popović Z (2012) Discovery of

complex behaviors through contact-invariant optimiza-

tion. ACM Trans. on Graph. 31(4): 43:1–43:8.

Park C, Park JS, Tonneau S, Mansard N, Multon F, Pettré

J and Manocha D (2016) Dynamically balanced and

plausible trajectory planning for human-like characters.

In: To appear in Proc. of I3D ’16. Seatle, USA.

Pettré J, Laumond JP and Siméon T (2003) A 2-stages

locomotion planner for digital actors. In: Proc. of the

2003 ACM SIGGRAPH/Eurographics symp. on Comp.

animation. Granada, Spain, pp. 258–264.

Pham Q, Caron S and Nakamura Y (2013) Kinodynamic

planning in the configuration space via admissible

velocity propagation. In: Robotics: Science and Systems

IX (RSS). Berlin, Germany.

Posa M, Cantu C and Tedrake R (2014) A direct method for

trajectory optimization of rigid bodies through contact.

The Int. Journal of Robot. Research (IJRR) 33(1): 69–

81.

Semini C, Tsagarakis NG, Guglielmino E, Focchi M,

Cannella F and Caldwell DG (2011) Design of hyq

- a hydraulically and electrically actuated quadruped

robot. IMechE Part I: Journal of Systems and Control

Engineering 225(6): 831–849.

Siméon T, Laumond J, Cortes J and Sahbani A (2004)

Manipulation planning with probabilistic roadmaps.

The Int. Journal of Robot. Research (IJRR) 23(7-8):

729–746.

Stilman M (2010) Global Manipulation Planning in Robot

Joint Space With Task Constraints. IEEE Trans. on

Robot. 26(3).

Tonneau S, Mansard N, Park C, Manocha D, Multon F

and Pettré J (2015) A reachability-based planner for

sequences of acyclic contacts in cluttered environments.

In: Int. Symp. Robotics Research (ISRR). Sestri

Levante, Italy.

Tonneau S, Pettré J and Multon F (2014) Using task

efficient contact configurations to animate creatures in

arbitrary environments. Computers & Graphics 45(0).

Yoshikawa T (1985) Manipulability of robotic mechanisms.

The Int. Journal of Robot. Research (IJRR) 4(2): 3–9.

Zucker M, Bagnell JA, Atkeson CG and Kuffner J (2010)

An optimization approach to rough terrain locomotion.

In: Proc. of IEEE Int. Conf. on Robot. and Auto

(ICRA). Anchorage, Alaska, pp. 3589–3595.

Prepared using sagej.cls

20 The International Journal of Robotics Research XX(X)

Figure 17. The W volumes computed for HRP-2. The red
shapes are W 0. The green shapes represent the W k.

A Generating the W volumes for HRP-2

In this Appendix, we detail our method to generate
the volumes W used in RB-RRT, with the example of
HRP-2.

We consider the robot HRP-2, and proceed to the
decomposition of its kinematic chain into four limbs
Rk. The arms are connected to the shoulders, and the
legs to the root. The obtained volumes W are shown
in Figure 17.

A.1 Step 1: computing the reachable
workspace W k of a limb

To generate a volume W k, we proceed as follows:

1. Generate randomly N valid limb configurations
for Rk, for N really large (say 100000);

2. For each configuration, store the 3D position of
the end effector joint relatively to the root of Rk;
then compute the convex hull of the resulting
point cloud;

3. The resulting polytope can contain a
very large number of faces. A last step
is thus to simplify it in a conservative
way with the blender decimate tool
(http://wiki.blender.org/index.php/Doc:
2.4/Manual/Modifiers/Generate/Decimate).
For HRP-2 we apply the operator with a ratio of
0.06, resulting in a polytope of 38 faces for the
arms and the legs.

Figure 18 illustrate the obtained W k for HRP-2.
Regarding the procedure, we can see that step 2 is
conservative (Figure 18–right), which is acceptable,
especially because the lost set essentially relates to
configurations close to singularity (they are close to
the boundaries of the reachable workspace, and often
not contact feasible, as illustrated in Figure 3, where
the exterior boundaries of the reachable workspace

Figure 18. Different approximations of the range of motion
of the right arm HRP-2. Left: non convex-hull, computed
with the powercrust algorithm (Amenta et al. 2001). Middle:
convex hull of the reachable workspace. Right: Simplified hull
used in our experiments.

appear red, thus not belonging to C0
Contact). We choose

again to be less complete but more efficient, regarding
the number of collision tests to be performed by RB-
RRT. In step 1 on the other hand, selecting the
convex hull (Figure 18–middle) instead of a minimum
encompassing shape (Figure 18–left) may introduce
false positives. Concretely, because the false positive
set intersects with W 0, the scaling volume of the robot
torso, the induced error is compensated, as verified by
the results shown by Table 3.

A.2 Step 2: computing the torso scaling
workspace W 0 of the robot

To define the volume W 0 of HRP-2, we proceed in
an empirical manner. First, we compute the bounding
boxes of the robot torso, head, and upper legs
(Figure 17 – red shapes). Then, we perform a scaling
of these boxes by a factor s. The higher s is, the more
likely sampled configurations are to be feasible, but
the less complete is the approach. To compute the
appropriate value of s, we proceed as described in
Section 6.2.1, and choose empirically s∗ = 1.2 as the
appropriate value for HRP-2.

B Algorithms for the discretization of a
path

First, we define an abstract structure State, that
describes a contact configuration. The use of queues
allows a FIFO approach regarding the order in
which contacts are tested: we try to replace older
contacts first when necessary. Thus the algorithm
is deterministic even though it can handle acyclic
motions.

St ruct Limb

Prepared using sagej.cls

http://wiki.blender.org/index.php/Doc:2.4/Manual/Modifiers/Generate/Decimate
http://wiki.blender.org/index.php/Doc:2.4/Manual/Modifiers/Generate/Decimate

Tonneau et al. 21

{
// Limb Conf igurat ion
Conf igurat ion qk ;
// E f f e c t o r p o s i t i o n in
// world coo rd ina t e s
vector6 pk ;

} ;

S t ruct State
{

// root l o c a t i o n
Conf igurat ion q0 ;
// L i s t o f l imbs not in contact
queue<Limb> f reeLimbs ;
// L i s t o f l imbs in contact
queue<Limb> contactLimbs ;

} ;

From the start configuration, given as an input by
the user, we create the initial state s0. Algorithm 1 is
then called with s0, as well as the discretized path Q0,
as input parameters.

Algorithm 1 Discretization of a path

1: function Interpolate(s0,Q0, MAX TRIES)
2: list <State> states = [s0]
3: nb fail = 0
4: i = 1; /*Current index in the list*/
5: while i < length(Q0) do
6: State pState = last element(states)
7: State s = GenFullBody(pState,Q0[i])
8: if s! = NULL then
9: nb fail = 0

10: i+ = 1
11: return q0

12: else
13: nb fail+ = 1
14: if nb fail == MAX TRIES then
15: return FAILURE
16: s =RepositionContacts(pState)

17: push back(states, s)

18: return states

At each step, GenFullBody is called with the
previous state as a parameter, as well as a new
root configuration. GenFullBody returns a new
contact configuration, if it succeeded in computing a
configuration with only one contact switch occurring.
If GenFullBody failed in achieving this, the method
RepositionContacts is called. It repositions one
end effector (either a free limb, or the oldest active
contact) towards a new contact position if possible.

This repositioning allows to increase the odds that the
contact can be maintained at the next step.

The pseudo code for the method GenFullBody is
given by Algorithm 2.

Algorithm 2 Full body contact generation method

1: function GenFullBody(pState,q0)
2: State newState
3: newState.q0 = q0

4: newState.freeLimbs = pState.freeLimbs
5: /*First try to maintain previous contacts*/
6: nbContactsBroken = 0
7: for each Limb k in pState.contactLimbs do
8: if !MaintainContact(pState,q0, k) then
9: nbContactsBroken+ = 1

10: if nbContactsBroken > 1 then
11: return NULL
12: push(newState.freeLimbs, k)
13: else
14: push(newState.contactLimbs, k)

15: for each Limb k in pState.freeLimbs do
16: if GenerateContact(q0, k) then
17: push(newState.contactLimbs, k)
18: remove(newState.freeLimbs, k)
19: return newState
20: if IsInStaticEquilibrium(newState) then
21: return newState
22: else
23: return NULL

The method MaintainContact(pState,q0, k) per-
forms inverse kinematics to reach the previous contact
position for the Limb. If it succeeds, the new limb
configuration is assigned to k. If it fails, a random
collision free configuration is assigned to k.

The method IsInStaticEquilibrium returns
whether a given state is in static equilibrium.

GenerateContact(q0, k) is a call to the contact
generator presented in Section 4.1. It generates a
contact configuration in static equilibrium, and assigns
the corresponding configuration to k. If it fails, k
remains unchanged if it is collision free, otherwise it
is assigned a random collision free configuration.

The pseudo code for the method RepositionCon-
tacts is given by Algorithm 3.

Prepared using sagej.cls

22 The International Journal of Robotics Research XX(X)

Algorithm 3 Performs contact repositioning for one
limb

1: function RepositionContacts(state)
2: i = 0
3: while i < length(states.freeLimbs) do
4: Limb k = pop(states.freeLimbs)
5: if GenerateContact(state.q0, k) then
6: push(newState.contactLimbs, k)
7: return
8: else
9: i+ = 1

10: push(states.freeLimbs, k)

11: i = 0
12: while i < length(states.contactLimbs) do
13: Limb k = pop(states.contactLimbs)
14: Limb copy = k
15: i+ = 1
16: if GenerateContact(state.q0, k) then
17: push(newState.contactLimbs, k)
18: return
19: else
20: push(newState.contactLimbs, copy)

/*Fails if impossible to relocate any effector*/
21: return FAILURE

C Derivation of the manipulability
ellipsoid

Again, we assume that J is full rank. We discard the k
indices, and write the pseudo-inverse of J as J†.

ṗ = Jq̇

q̇ = J†ṗ

q̇T = ṗTJ†T

q̇T q̇ = ṗTJ†TJ†ṗ

Then, the equality J†TJ† = (JJT)−1 follows from
the SVD decomposition of each term (Ben-Israel and
Greville 2003).

D Source code of our planner

Our planner is implemented using the Humanoid
Path Planner (HPP) software. HPP is an open
source motion planning framework developed by the
Gepetto team at LAAS-CNRS, that can be found
at http://projects.laas.fr/gepetto/index.php/

Software/Main. The HPP modules implement the
standard tools and algorithms used in motion planning,
such as the Bi-RRT planner from which RB-RRT is
derived.

The robot models used in our experiments are
described using the standard urdf file format, that is
compatible with HPP.

Our implementation of the planner is also open
source, and can be found at https://github.com/

stonneau/hpp-rbprm. Contrary to the mature HPP,
at the time of submitting this article, our planner is
not officially released, mostly for lack of a complete
documentation and a tutorial.

However a reader familiar with HPP should be able
to use the library. Our goal is to make our code useful
for the community, and we are working on releasing a
stable version of our planner as soon as possible.

Prepared using sagej.cls

http://projects.laas.fr/gepetto/index.php/Software/Main
http://projects.laas.fr/gepetto/index.php/Software/Main
https://github.com/stonneau/hpp-rbprm
https://github.com/stonneau/hpp-rbprm

	1 Introduction
	1.1 State of the art
	1.2 Rationale
	1.3 Paper contribution and organization

	2 Overview
	2.1 Computation of a guide path — P1
	2.2 Generating a discrete sequence of contact configurations — P2
	2.3 Notation conventions and definitions

	3 Computing a guide path in C0reach (P1)
	3.1 Conditions for contact feasibility
	3.2 Contact feasibility: a compromise reachc
	3.3 Computing the guide path in Creach0

	4 From a guide path to a discrete sequence of contact configurations (P2)
	4.1 Definition of a contact generator
	4.2 Extension of the guide path
	4.2.1 Maintaining a contact in the sequence:
	4.2.2 Creating contacts:

	5 Heuristics for contact selection
	5.1 A heuristic for robust static equilibrium
	5.1.1 Conditions for static equilibrium:
	5.1.2 Formulation of a robust LP:

	5.2 Manipulability-based heuristics for contact selection
	5.2.1 The force and velocity ellipsoids:
	5.2.2 Manipulability-based heuristics:

	6 Results
	6.1 Description of the scenarios
	6.1.1 HRP-2 – Steep staircase (Figure 8):
	6.1.2 HRP-2 – Standing up (Figure 10):
	6.1.3 HRP-2 – Car egress (Figure 11):
	6.1.4 HyQ – Darpa-style rubble (Figure 12)
	6.1.5 HyQ – Obstacle race (Figure 13 and 14):
	6.1.6 HRP-2 – Path re-planning (Figure 15):
	6.1.7 3-fingered hand – Manipulation of a pen (Figure 16):

	6.2 Influence of the parameters
	6.2.1 Choosing the scaling factor s:
	6.2.2 On the choice of heuristics:
	6.2.3 On the robustness equilibrium criterion:
	6.2.4 Discretization of the guide path:

	6.3 Performance analysis
	6.3.1 Computation times:
	6.3.2 Success rates:

	6.4 Comparison with previous work

	7 Discussion and future work
	A Generating the W volumes for HRP-2
	A.1 Step 1: computing the reachable workspace Wk of a limb
	A.2 Step 2: computing the torso scaling workspace W0 of the robot

	B Algorithms for the discretization of a path
	C Derivation of the manipulability ellipsoid
	D Source code of our planner

