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Abstract

Physics-based simulation of systems such as virtual humans has benefited from re-

cent advances in muscle actuation. However, to be manageable for motion controllers,

muscles are usually solely represented by their action line, a polyline that does not

include data on the tridimensional geometry of the muscle. This paper focuses on com-

bining, by a controllable enhancement process, a functional and biomechanical model

of musculotendon units with its high resolution geometrical counterpart. The method

was developed in order to be invariant to spatial and polygonal configurations, and to
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be scalable in both longitudinal and latitudinal directions. Results with 48 musculo-

tendon units for the lower body show a drop of 84% with respect to the number of

vertices when compared to the high resolution model, while maintaining the functional

information. A real-time simulation experiment resulted in a runtime of 135Hz.

Keywords: Multi-scale virtual human, Musculotendon unit modeling, Geometrical enhance-

ment
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1 Introduction

Physics-based animation aims at replicating real environments by modeling the physical

laws and conditions that define it. This technique has freed animators from worrying about

enforcing certain motion characteristics which come implicitly with the presence of physics,

and has granted virtual characters with a freedom of motion, that is unrestricted but physi-

cally plausible. Character models can exhibit different levels of detail in terms of the skele-

ton, actuators and tissues. Due to the computational complexity, real-time systems have been

limited to the use of simplified biomechanical models which usually represent musculoten-

don units (MTUs) as polylines without tridimensional geometry, called action lines [1, 2].

This simplification allows motion controllers to fully actuate a virtual character using ac-

tivation signals that are transformed into muscle forces applied on the body parts. As the

actual shape of the muscle is not used, the polyline routing of a MTU becomes of primary

importance to accurately represent the direction of the force, and it has indeed been shown to

play a crucial role in the control of such systems [3]. On the other hand, the active control of

human motion from fiber contraction on surface or volumetric models is a very challenging

and computationally intensive task [4] that is usually not compatible with real-time controls.

In this paper, we propose a modeling method that enhances an action line with a scalable

geometrical counterpart. Our method makes a step towards coupling muscle-based motion

control and muscle deformation, in order to improve motion realism as potentially represent-

ing much better the actual interactions in the human body, especially the change of direction
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of muscle force due to deformation. Indeed, the polyline could then be displaced accord-

ing to deformations of the muscle meshes in order to optimize the action line routing, for

instance when concerning muscle moment arms. That type of coupled approach is a newly

research trend in computer animation where only little works have been proposed but show-

ing promising results [2]. Our modeling method allows user-defined resolution of the muscle

mesh, from the simple polyline to a high resolution surface mesh. Each level is constructed

from points defined on the action line so that each level preserves at best the biomechanical

properties of the action line. This would allow muscle-based motion controllers to use mus-

cle deformations to configure the MTU routing online instead of using static polylines. We

expect the use of our method to produce more realistic simulations of virtual characters, not

limited to humans. In general, applications in real-time computer animation that use biome-

chanical models, such as wound or musculoskeletal injuries simulation, orthopedic training,

and validation of musculoskeletal pathologies for animated characters can benefit from our

method. The main contribution of this paper is a novel method to enhance the scalable

geometry of anatomical meshes, that we demonstrate for the purpose of MTU modeling.

2 Related works

Polygonal muscle models for computer graphics and animation are visualized and controlled

using different approaches to augment character movement and simulate musculoskeletal

deformation [5]. One of the first approaches to incorporate muscles into this domain used
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a free-form deformation lattice to kinematically deform skin with underlying muscle [6].

Later, Thalmann et al. [7] used meta-balls to define an underlying musculature. At specific

intermediate distances, along each bone segment, they create orthogonal cross sections to

define the shape of the combined meta-balls. This is similar to the construction presented

in our method, except here we create cross sections along the musculotendon action line

obtained from a biomechanical model. The authors also used ray casting to extract contours

in order to form the skin of the character, which is the basis of the technique used in our

method to approximate features of high resolution meshes. The work from Wilhelms and

van Gelder [8] was also an inspiration for the cylinder-based model presented here, as it

brought with it practical real-time benefits such as the radii-based deformation.

Early works showed that the Finite Element and Finite Volume Method (FEM and FVM)

could be combined with a classical biomechanical model for calculating muscle forces. This

paved the way for a new generation of FEM and FVM-based approaches [9, 10]. While our

approach does not rely on FEM, our match detection technique discussed in section 4.2.3

for sampling high resolution meshes is quite similar to the winding number concept pro-

posed by Jacobson et al. [11]. While their method uses generalized winding numbers to

segment inside space from the outside, our method samples a high resolution mesh from

specific points along the biomechanical action line, rendering the use of ray casting as a

more suitable technique for our purpose as it allows us to adaptively scale the geometry of

the cylinder-based model. Berraren et al. [12] used volumetric meshes with a modified Hill’s

model for real-time deformation analysis where contractile muscle forces operate between
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adjacent nodes of the mesh. This is one of the few recent works that shows promising real-

time performance, though the result included a single muscle. Another recent work is the

very complete approach of Si et al. [2] that includes a muscle-based swimming controller,

fluid and deformable body simulators in which MTU activation signals were used to drive

muscle contraction. However, they had to operate modeling approximations to balance com-

putational complexity, geometric resolution, biomechanical accuracy, and robustness of the

simulation (e.g. tendons were not represented and the original action lines were used to cal-

culate muscle lengths). By using our modeling method in complement to such an approach,

one could use the scalability property to adapt to computational power and complexity of al-

gorithms and use our deformed cylinder-based model to efficiently and accurately calculate

muscle length.

Other works have created volumetric meshes by mapping a template hexahedral mesh

to another target hexahedral mesh using projections and Delaunay triangulation [13]. As a

target shape for each map, two dimensional outlines of cross sections, sampled with MR

imaging were used and projected in three dimensions, which is slightly similar to the en-

hancement technique presented in section 4.2. While this approach could ultimately out-

perform classical Hill-type models, it is still considered early work that could be surpassed

by more accurate real-time classical models, which were tested against recent established

benchmarks [14].

More recently, Kohout and Kukačka proposed another template-based modeling method

for fibrous muscles [15]. In this method, the 3D model is sliced using iso-surfaces on a
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scalar field and fibers are morphed within the contour of each slice. In our method we

want to ensure that, at each scale of our muscle model, an inner point within a slice best

fits the original action line in order to preserve its physiological properties (so that, to give

an example, a unique motion controller can be used regardless of the scale). This is why

a method that enhances the action line is necessary. In addition, as we use the via-points

present in the biomechanical action line, our method allows for a better local resolution

where the muscle has the more chance to deform, modeling at best the routing and therefore

the change of direction of muscle force. This is also a reason why we preferred to use

polylines, as given by an existing biomechanical model, rather than only origin and insertion

areas that can be extracted from medical imaging. Lastly, our method provides a direct

control of the resolution of the output mesh.

To improve realism of mass-spring systems applied to fiber structures, Sanchez et al. [16]

stepped away from template-based approaches and proposed a new workflow for embedding

subject-specific fiber fields in models of musculotendons. They show that incorporating this

information into their models led to a 10%-20% difference in predicting net muscle forces

of specific patients. As these last methods and others such as Tan et al. [17] imply, the next

frontier is modeling on the scale of fibers, however it will probably take years before this

can be considered a possibility in the real-time domain. Meanwhile we aim at providing an

automatic modeling method for real-time applications that is scalable from a high resolution

cylinder-based model to a polyline-based MTU model.

The remainder of this paper is structured as follows. In sections 3 and 4, we introduce
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the input data sets and our scalable modeling method. Section 5 discusses the results and we

give concluding remarks with hints at future applications and improvements in section 6.

3 The data sets

Our method aims to develop a scalable model that approximates anatomical accuracy and is

capable of real-time or interactive performance. To help reach this goal, the following two

criteria are considered. First, the model should include at least one anatomical model and

one biomechanical model to help approximate anatomical and physical correctness. Second,

the geometrical model has to be flexible, meaning that its scalability has to be controllable

with respect to a given level of detail (LOD).

3.1 The biomechanical model

Biomechanical models of the muscle system include data that are relevant to the physical

aspects of an actuable system such as positions of attachment points of the muscles, lengths

and arrangement of muscle fibers. We used a biomechanically validated data set consist-

ing of two times (left and right) 24 MTUs from literature [18] that was developed for the

OpenSim [19] simulation tool.

The biomechanical data set is integrated automatically to the virtual character for anima-

tion by aligning the respective joint hierarchies. The virtual character is only defined by the

joint hierarchy on which a surface skinned mesh is attached. Scaling ratios were calculated
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per body part and rotational alignments were done using the shortest rotational arc between

the body parts in the respective hierarchies. The MTU properties (attachments position,

maximum isometric force etc.) were scaled to the proportions of the virtual character (see

Figure 1a).

3.2 The anatomical model

The Ultimate Human Model (UHM) data set [20] is recognized as one the most complete

and accurate set of 3D models of the human musculoskeletal system. Despite being ar-

tistically edited, its accuracy comes from anatomical texts, papers, and custom magnetic

resonance imaging scans (see Figure 1b).

The data set is unfortunately not well conditioned for a physics-based simulator and ex-

(a) (b)

Figure 1: The virtual character model augmented with MTUs (red shapes) (a), and the

artistic anatomical model of a human (b).
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hibits open areas that can pose problems for volume discretization techniques. Therefore

we manually processed the raw data using a 3D authoring software by closing the meshes

and repositioning vertices from faces that exhibited self-intersections. Finally, some meshes

were combined to fit a single MTU from the biomechanical model, while others were di-

vided for cases where the biomechanical model represents single MTUs with multiple poly-

lines.

To confirm our expectation about the necessity to create a scalable model, we have ana-

lyzed the shape of the meshes. We have calculated the isoperimetric quotient and performed

convex-concave tests of sampled slices of each muscle mesh. The isoperimetric quotient,

denoted by q, is used to calculate the ratio between the area a of an arbitrary slice USk and

the area of a circle with the same perimeter p as USk . It is calculated as q = 4πa
p2

. In order to

compare the relation between the isoperimetric quotient and the perimeter, i.e. the elonga-

tion, we normalized the area of each slide to 1, giving us what we call a normalized perime-

ter. After sorting edges of each slice, the z-component of the cross product between pairs

of consecutive edges (triplets of points) for each polygon is extracted. If all z-components

are of the same sign then the slice is tagged as convex, else as concave. The slices were also

visually inspected. We found that more convex slices appear when the normalized perime-

ter gets smaller and that 75% of the 72 slices tested are more inclined towards circular than

elongated shapes (when q > 0.5). The result also indicates a concentration of shapes with

an isoperimetric quotient of around 60%.

Although the results of the analysis show a circular tendency, highly concave slices are
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nevertheless present. While concavity is not an issue for real-time musculotendon models,

more vertices are typically required to approximate concave shapes than convex ones and

our goal is to minimize the number of vertices of the meshes since the processing and ren-

dering time depends on the number of vertices. Taking the circular tendency and real-time

performance into account, each vertex of the low dimensional model is repositioned at the

surface of its corresponding high resolution mesh in order to approximate its shape. This is

accomplished with ray-triangle intersection tests as described in section 4.2 with the goal of

having the low resolution model remaining as a simple polygonal representation of its high

resolution counterpart. Finally, because the method scales adaptively, a user can increase

the resolution in case the final model requires a better approximation.

4 Scalable MTU modeling

4.1 The geometrical model

4.1.1 Action lines and via-points

The geometrical muscle model combines muscle and tendons into a single object. The initial

shape of the MTU can be thought of as a closed cylinder with the starting point, the origin

point, lying at the center of the top cap (see Figure 2a). This point is attached relative to

a specific bone in the hierarchy, which can also contain other siblings representing other

musculotendon objects. The end point, or insertion point, at the center of the bottom cap is
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attached relative to either the same or another bone in the hierarchy. This line connecting

origin and insertion is referred to as the action line of the muscle. This is a polyline as

most of the time, the origin is not directly connected to the insertion but indirectly through

additional locations, called via-points. Not all MTUs present in the biomechanical data

set contain via-points, such as the gluteus medius, rectus femoris, and pectineus. For such

MTUs, we include additional via-points that will allow the model to approximate empirical

muscle path more closely. In this paper, the following notation is used to define an improved

action line A:

A =
{
a0, a1, ..., an−1 | ak ∈ R3

}
, |A| ≥ 2 (1)

where each ak is a position vector representing coordinates in R3. The first and last element

of A represent the origin and insertion points.

During animation, each ak is updated kinematically with relation to the body part it is

attached to, and consequently the shape of our geometrical model changes automatically.

It is worth noting that current musculoskeletal simulators allow the addition and removal

of points that are wrapping around solid primitive shapes such as cylinders and ellipsoids.

These are not included in our method as our goal is to propose an action line enhanced with

its geometrical counterpart. The deformation of the geometrical action line should then give

us a more accurate estimation of the change of direction of muscle force than wrapping

points.

12



4.1.2 Including tendons into the model

For our goal, we decided to include a geometrical representation of the tendon. Unlike

graphical representations of musculotendons [21, 9], tendons are considered as a single

piece lying on one side of the MTU in classical models such as Hill’s and Zajac’s [22].

However, like their graphical counterparts most real tendons are located on each side of a

muscle. The biomechanical data sets include parameters that would satisfy the equations

in classical models, yet they do not provide an accurate geometric representation for each

tendon as the length distribution on separate sides of musculotendons remains unknown.

In addition, the tendon slack length also combines the length of free and aponeurotic ten-

(a)

Top Cap

Bottom Cap

CT C3 C4

C2

C1

C0

a0

Triangle
Fan

Triangle
Fan

Triangle Strips
0

(b)

Figure 2: The MTU is initially represented as a closed cylinder centered on the action line

before adding cross sections, depicted here for the right sartorius. (a) It runs from the origin

point (green box) to the insertion point (yellow box) through the via-points (pink boxes).

(b) For visualization, triangle fans and strips connect the vertices of the cross sections.
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dons [18], and there is no distinction as to where the free tendon stops and the aponeurotic

tendon begins. As a result, no data set was found that included lengths for each separate

tendon and for each component of the tendon, dividing each slack length parameter into

four separate lengths.

Although anatomically incorrect, we still decided to implement just one tendon under

the assumption that, at least for the lower body, most free tendon lengths seemed to be

distributed on the insertion side. Hence, in our method, the length of the tendon is divided

by half and computed backwards, starting at the insertion and traversing along the action line

in the direction of the origin. To compute the tendon length, we first calculate the rest length

and the scaled rest length of the musculotendon. We use a total of four separate variables

for lengths, namely the length of the action line lA, the length of the scaled action line lAS ,

the rest length lR, and the scaled rest length lRS . Scaled versions of lA and lR are used in

this model because the skeleton was transformed during the alignment process that included

all of the attachment points in order to fit to the virtual character. The positions of the joints

in the musculoskeletal model and the high resolution virtual human were used to scale each

body part individually and uniformly in three dimensions. We assumed the tendon in our

model to be rigid [23], which allows its length to be set equal to its slack length, denoted by

lTs . This opened up the possibility to adapt the implemented version of the classical Zajac

model to derive the rest length lR = lTs +
(
lFo cosα

)
, where lFo represents the optimal fiber

length and α the pennation angle present in pennate muscles. The unscaled parameter values

are defined in Delp et al. [18] that the reader is invited to consult for more details about their
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definitions and calculations. To derive the scaled rest length lRS , the ratio between the |A|

and the scaled |A| in the virtual character is calculated. The generic calculation for the |A|

is given by the sum of the Euclidian length between two ak elements:

n−2∑
k=0

∣∣∣ (ak+1 − ak)T
∣∣∣ (2)

where the outcome can be assigned to lA or lAS depending on which state of A the calcula-

tion was executed. Next, lRS is given by lRS = lRlAS

lA
. With lRS assigned, the scaled tendon

slack length lTSs can also be obtained with lTSs = lRS lTs
lR

.

As stated previously, it was decided to use 1
2
lTs which gave visually correct results but

remains anatomically inaccurate. Table 1 shows the values obtained on the tibialis anterior

muscle of the right leg.

action line rest tendon

slack

scaled

action line

scaled rest scaled ten-

don slack

lA lR lTs lAS lRS lTSs

0.303 0.320 0.223 0.292 0.309 0.215

Table 1: The lengths of the MTU parameters obtained for the tibialis anterior muscle. All

values are given in meters.

The scaled tendon slack length is then used to determine which segment of A contains

the point where the tendon ends and the muscle starts, called tendon point. Let first the
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function d (k) equal a length of a negative vector between two points on A:

d (k) =
∣∣∣ (ak − ak−1)T ∣∣∣ (3)

where k is the index iterating over A in N. Starting from the insertion point n − 1, the

traveled distance dtg along A is then computed with:

dtg =
1∑

k=n−1

d (k)

[
d (k) ≤ 1

2
lTSs

]
(4)

adding only the lengths where the condition d (k) ≤ 1
2
lTSs , contained within Iverson brack-

ets, is satisfied. To return the last index j that represents the last point before the tendon

point, a final condition is required on j:

j = k for
{
d (k) ≤ 1

2
lTSs

}
(5)

To give an example, let the number of points n for a particular musculotendon be equal to

5. During a particular computation, the condition in Equation 4 returned 1 up until k = 3,

consequently leaving j = 3 as well. Because of the ≤ sign present in the condition, the

tendon point in A would lie somewhere between a2 and a3. This example is illustrated in

Figure 3.

The actual position of the tendon point tg based on 1
2
lTSs can be computed using linear

interpolation between two points on A:

tg = aj−1 + s (j) with (6)

s (j) =

(
d (j) + dtg

)
− 1

2
lTSs

d (j)
(aj − aj−1)T (7)

16



s (j) computes the ratio between the scaled tendon slack length and the distance until the

point aj−1, and then scales the magnitude of the vector between aj and aj−1. The position

of aj−1 plus this outcome is used to calculate tg.

At tg, a cross section Ct will be added to divide tendon and muscle (see section 4.2.1).

Each element of Ct is also linearly interpolated between the previous and next cross sections

as each cross section can have different shapes. To retain the assumption that the tendon is

infinitely stiff in this model, 1
2
lTSs is computed only once to fix the length of the free tendon.

This is done after the skeleton is aligned and the enhancement process presented hereafter

are completed, but prior to loading any animations.

4.2 Geometrical enhancement of MTUs

The general idea for enhancing a MTU is illustrated in Figure 4 and additional illustrations

can be found in the accompanying video.

0 1 2 3 4
tendon point

tgorigin
point

via points

insertion
point

1_
2 lTS

s

tgd

Figure 3: A schematic representation of the musculotendon model including a single tendon

point lying between a2 and a3.
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(a) Action line (black line)

and high resolution mesh

(green) are both mapped

into the virtual character

(section 3)

(b) The action line is rep-

resented as a closed cylinder

(section 4.1) and rays are cast

from the cross sections (blue

lines)

(c) After direct translation to

the intersections, not all ver-

tices are repositioned on the

high resolution mesh (sec-

tion 4.2.2)

(d) Moving the action line

towards the centroid of the

new cross sections shows

the incomplete process (sec-

tion 4.2.3)

(e) We start again with the

closed cylinder using the new

action line routing

(f) This repositioned action

line gives appropriate ray

casting (section 4.2.4)

(g) All vertices are now lo-

cated on the high resolution

mesh

(h) We obtain a scalable

MTU based on the enhance-

ment of the action line

Figure 4: Overview of the enhancing process of the action line (a) into the scalable MTU

(h) applied on the right biceps femoris.
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4.2.1 Adding volume with cross sections

We have opted to enhance the biomechanical representation towards an anatomical mesh

instead of trying to reduce the resolution until reaching real-time performance for several

reasons. Beside the former being more intuitive to control and computationally less de-

manding, our goal is to preserve biomechanical features at each level of enhancement. We

took a particular interest in preserving at best the original relative positions of the via-points

at each level and a uniform distribution of the resolution in-between these points. Indeed,

via-points are present where the direction of the force changes in the muscle and the routing

of the action line is associated with its physiological properties. If the muscle meshes were

to be decimated from a high resolution model, we would have to ensure that the decimation

process preserves the uniformity of the resolution along the action line and make certain that

the decimated mesh is still representative of the position of the via-points, which would be

complicated. By enhancing the model from the action line, we preserve these properties at

best.

To add volume to the polyline, extra vertices are needed for its surface. The initial

geometrical state of the model, a polygonal mesh constructed as a closed cylinder, already

includes two cross sections for the top and bottom caps. To also account for muscles that

contain via-points, the closed cylinder can be split into smaller segments by introducing

bisecting cross sections at each element of A (see Figure 2). The set Ck containing each

element of an arbitrary cross section that is responsible for volume, of which none are on
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the action line, is defined as:

Ck =
{
ck0, c

k
1, ..., c

k
n−1 | cki ∈ R3

}
with Ck ∩ A = ∅ (8)

The cardinality ofCk is also proposed as |Ck| ≥ 6 (i.e. hexagonal cross sections) and |Ck| =

{2a | a ∈ Z} for reasons discussed in section 4.2.3. We then need to define the direction of

the up-vector for an ak. We decided to use the approach that includes information from both

sides of ak with the vector (ak+1 − ak−1)T resulting in an approximation that is centralized

and therefore more robust when dealing with acute angles between two other cross sections

(Figure 5).

(a) Parallel to y (b) Parallel to (ak+1 − ai)
T

(c) Parallel to (ak+1 − ak−1)
T

Figure 5: Three possibilities for choosing an up-vector for bisecting cross sections. The

chosen computation is (c) which takes the up-vector (ak+1 − ak−1)T as this approximation

includes information from the point before and the point after the current point. Bisecting

cross sections are defined such that a ∈ A and k ∈ N with 0 < k < (|A| − 1).
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4.2.2 Repositioning C’s on the surface of U

The next step is to move the cross section vertices to fit at best the high resolution model U .

We proceed using a two-pass algorithm that involves ray casting and vertex translation. An

element cki for an arbitrary Ck is repositioned when an intersection point pi is found between

a surface triangle of the mesh U and a ray that has been cast from cki . For each ck, rays are

cast in two normal directions on the plane of every Ck, namely positive and negative. With

the positive direction being the normalized vector ̂(cki − ak)T and the negative direction be-

ing the normalized vector ̂(ak − cki )T . It was chosen to use the fast ray-triangle intersection

test algorithm of Möller-Trumbore [24] for computational speed as ray-casting is used more

than once in our method.

Each surface triangle of U that intersects the plane creates a Jordan curve, denoted as

UCk , in the same plane as Ck. The ray-triangle intersection tests are used to find three

possible outcomes, which are:

1. UCk lies completely outside of Ck in the plane containing Ck.

2. UCk lies completely inside of Ck in the plane containing Ck.

3. UCk lies partly outside and partly inside of Ck in the plane containing Ck.

Our method incorporates two additional preferences to cope with the two sides of each face,

i.e. when an intersected triangle is either back or front-faced. The first preference is for

choosing intersections found through rays being cast in the positive direction P above the
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negative direction N , shown schematically in Figure 6.

The second preference is that for P , the furthest pi of each back-face triangle is returned,

while for N the closest pi of each front-face triangle is returned, as illustrated in Figure 7.

The combination of these two preferences allows each cki to find its correct corresponding

pi.

4.2.3 Repositioning elements of A within the volume of U

Ck’s are constructed with algebraic radii, denoted by the set Rk, between elements of Ck

and corresponding elements ak of A. Each radius rki is obtained with
∣∣∣ (cki − ak)T ∣∣∣ or

ak
p

N

N 0 p
N

N

1
p

P 2p P
5

p

N

3p
N

4

ak
p

N

0 p
N

1

p
N

4

pN
5 p

N2

p

N

3

Figure 6: Showing ray-triangle intersection outcome number three (left) and outcome num-

ber two (right). UCk is represented by the green shapes and pi’s denote intersection points.

pi’s can be found with a ray cast in the positive direction P or in the negative direction N .

The left figure shows that here N of p5 equals p2 and N of p2 equals p5, illustrated with the

red line segment. The figure on the right illustrates a case where no P -points were found,

and instead resorted to finding N -points.
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∣∣∣ (ak − cki )T ∣∣∣. Using radii proved to be versatile as it allowed Ck to have an initial shape

that was useful for the intersection tests and allowed each deformation to be kept in memory

by storing distances as radii. This brought the benefit that a point within UCk could be

determined by checking which radii have been updated and consequently iterate the process

discussed previously to achieve a better approximation for each UCk .

To explain the approximation process visually, a key example is introduced in Figure 8.

The example uses the index k = 1 in the longitudinal direction where UC1 is a closed con-

cave shape positioned outside of C1. In the figure we show the intermediate result indicating

why locating a point within UCk (an inner point) is necessary in as the result equals a false

representation with the deformed hexagon being complex instead of simple. This is done as

follows.

ak
cik

p
P

i

ak
cik

p

N

i

Figure 7: Schematic figures showing outcome one and highlighting the second preference:

if more than one pi is found for P , choose the furthest back-face triangle. Conversely, if

more than one pi is found for N , choose the closest front-face triangle.
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Match Detection First comes the task of detecting a match between two algebraic radii

that have been updated. A match is denoted by ek and is defined as an ordered pair of indices

(i+, i−) that correspond to an index i of p where its distance is established with either a

positive or negative algebraic radius for two opposing elements of Ck. In this respect, the

or-relationship is exclusive and imposes the condition that one of the two opposing algebraic

radii has a negative sign.

In order for a pair of cast rays to be considered equal, for instance c11 and c14 in Figure 8,

c01

c11

c21
c31c0o1

c41
c1o1

c51c21o
r01

r11

r21

r31

r41

r51

a1
C1

UC1

d01

d11

d21

o

d31d0
1o

d41 d1
1o

d51
d21

D1

p0

p1

p2

p3

p4

p5

Figure 8: Showing a key example with a concave slice of a mesh, denoted as UC1 . Ap-

plying the preferences and conditions discussed previously results in the complex polygon

D1, which is a false representation due to a1 being positioned outside of the targeted cross

section UC1 .
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it is important that both c1’s are symmetrical counterparts with respect to a1. This is ensured

by requiring that the cardinality for every Ck is always even, which is the case here for the

default example that uses six vertices. It is also visible that for every Ck with even cardinal-

ity, the maximum number of matches would be always equal to 1
2
|Ck| thereby reducing the

number of lookups by half. Hence, each opposing element of cki can be deduced by taking

the opposing index io with:

io = i+
1

2
|Ck| where

{
i ∈ N

∣∣∣∣ i < 1

2
|Ck|

}
(9)

Each detected match helps to determine when a ray passed a center point ak as this suggests

the possibility that UCk lies (partly) somewhere outside of Ck. Because each surface vertex

or cki is drawn by computing its radius, a ray that surpassed ak in the negative direction

N needs a negative algebraic radius to correctly represent the intersection point’s mirrored

position. This is accomplished with the condition
∣∣∣ (pi − cki )T ∣∣∣> rki . In this case, a negative

sign is added to update the radius with the following new result: −
∣∣∣ (pi − ak)T ∣∣∣. In all

other cases, the radius remains positive. In the example of Figure 8, radii r13, r14, and r15

become negative (depicted with orange line segments) and overlap the positive radii r10, r11,

and r12 lying in the same direction.

Permuting Matches Once all matches are detected, they are stored in a single container,

denoted by the set Ek with |Ek| ≤ 1
2
|Dk|, and whereDk represents a deformed cross section

at index k. Permuting the elements of Ek is necessary for the solution to determine an inner

point and is discussed in the next paragraph. Intuitively, the result of the permutation on Ek
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is a sequence of matches so that the first term
(
0, ek0

)
represents a match at one end of UCk ,

winding along the boundary of the shape, until reaching the final term
(
n− 1, ekn − 1

)
at the

other end of UCk ; given that the number of elements is greater than one. Because relative

spatial configurations of UCk with respect to Ck have many possibilities, the intersections

tests will not necessarily return a sequence of matches in an ordered fashion when the tests

always start at ck0. One example is when UCk is intersected by rays cast from elements ck5

and ck0. Thus, without taking the sign of each algebraic radius into consideration, there is no

easy way of determining whether the first match starts with the rays cast initially through c10

or through c15.

By filtering the type of intersection that produced either a positive or negative algebraic

radius, the elements of Ek can be rearranged so that the sequence winds correctly, similar to

the concept of chain codes. Searching with index i = 0 up until i = 1
2
|Dk| − 1, a sign of the

computed radius for all dki is chosen. If the new position dki was established with a negative

algebraic radius, then its opposing element dkio is chosen such that this would contain the

correct point, i.e. i+ = io. In Table 2, we show all possible permutations with i+ using

a configuration with UCk lying outside and intersected by three pairs of rays cast from Ck

with |Ck| = 6. Note that only half of the points of Dk have to be searched to get all six

permutations. The algorithm to compute the permutation σ based on indices of Ek is given

in pseudo-code in Algorithm 1.
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input : A set Ek containing ordered pairs of matches (i+, i−).

output: A sequence 〈ekn〉 with a range of
{
ekn : 0 ≤ n < |Ek|

}
.

1 if |Ek| > 1 then

2 Ek ← SortAscending(Ek); // sort numerically from

low-high

3 〈etempn 〉 ← Ek;

4 temp match←
{
ek0
}

;

5 mindex← ek01; // note that ekn1
represents i+ for every

{
ekn
}

6 nshifts← 0; // index where to insert new term in 〈etempn 〉

7 for m← 1 to |Ek| − 1 do

8 if
(
ekm1
−mindex

)
6= 1 then

9 temp match←
{
ekm
}

;

10 〈etempn 〉 ← 〈etempn 〉 − (m, etempm );

11 〈etempn 〉 ← 〈etempn 〉+ (nshifts, temp match);

12 nshifts← nshifts+ 1;

13 end

14 mindex← temp match1;

15 end

16 〈ekn〉 ← 〈etempn 〉;

17 end

Algorithm 1: Permutation given in pseudo-code that returnsEK containing a sequence

of matches winding through from one end till the other end of UCk .
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Sign of r for
(
dk0, d

k
1, d

k
2

)
Permutation with i+ of dki Rearranged

matches

f : (+ + +)→
(
dk0, d

k
1, d

k
2

)
σ (0, 1, 2) = (0, 1, 2) 〈ek0, ek1, ek2〉

f : (+ + −)→
(
dk0, d

k
1, d

k
2o

)
σ (0, 1, 5) = (5, 0, 1) 〈ek2, ek0, ek1〉

f : (+ − −)→
(
dk0, d

k
1o , d

k
2o

)
σ (0, 4, 5) = (4, 5, 0) 〈ek1, ek2, ek0〉

f : (− − −)→
(
dk0o , d

k
1o , d

k
2o

)
σ (3, 4, 5) = (3, 4, 5) 〈ek0, ek1, ek2〉

f : (− − +)→
(
dk0o , d

k
1o , d

k
2

)
σ (3, 4, 2) = (2, 3, 4) 〈ek2, ek0, ek1〉

f : (− + +)→
(
dk0o , d

k
1, d

k
2

)
σ (3, 1, 2) = (1, 2, 3) 〈ek1, ek2, ek0〉

Table 2: Taking the sign of r into consideration allows Ek to be rearranged.

Determining an inner point When ak lies inside of UCk , the number of false positives is

presumed to be low thereby reducing the initial problem illustrated in Figure 8. Each de-

tected match therefore suggests the possibility of Dk resulting into a complex shape, which

should not be the case as polygonal meshes suited for deformation should remain simple. To

determine an inner point, a heuristic is used on the number of matches that chooses the me-

dian match-index after being permuted by σ. When the number of matches is odd, the mid

point of the middle match-index is taken as the inner point where ak should be repositioned.

When even, a single match-index cannot be chosen, thus a more complicated approach is

used. Here, the two middle matches are taken that collectively form a quadrilateral. At this

point, the quadrilateral is still in E3 representing four vertices of a particular cross section.

Each vertex of this quadrilateral gets projected into E2 on the same plane as the current
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cross section in order to calculate the centroid by averaging the projected coordinates of

the vertices of the quadrilateral. This centroid point is the inner point where ak has to be

translated to. Figure 9 shows three examples for different cardinalities of Ck.

4.2.4 Iterating the enhancement process

With ak now repositioned to aCentroidk , the enhancement process can be repeated in a second

pass in order to get a simple and accurate polygonal representation of UCk , as given in

Algorithm 2.

(a) Midpoint of medial match (uneven) (b) Same as (a) for a Dodecagon (c) Even results take the centroid of a quad

c0
1

c1
1

c2
1c3

1

c4
1

c5
1

a1

a1
inner

C1

U C1

c0
1

c1
1

c2
1

c3
1

c4
1

c5
1c6

1
c7

1

c8

1

c8
1

c9
1

c10
1 c11

1

a1

C1

a1
inner

C1

a1

a1
inner

Figure 9: An example illustrating two types of inner point determination. (a) shows the

inner point determined by the midpoint of the middle match for an odd number of matches.

(b) shows the same situation for a dodecagon. (c) shows the resulting centroid determined

with an even number of matches for a tetradecagon.
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1 foreach M do

2 k ← 0;

3 for k ← 0 to k = |A| − 1 do

4 Ck ←SetRadii(Ck); // initial configuration

5 ComputeRayTriangleTests(Ck);

6 Dk ←UpdateRadii(Ck);

7 Ek ← DetectMatches(Dk);

8 〈ekn〉 ← σ;

9 ak ← ComputeInnerPoint(〈ekn〉);

10 Ck ←ResetRadii(Dk);

11 ComputeRayTriangleTests(Ck);

12 Dk ←UpdateRadii(Ck);

13 end

14 a0 ←ResetActionPoint(a0); // origin position

15 a|A|−1 ←ResetActionPoint(a|A|−1); // insertion position

16 end

Algorithm 2: The enhancement algorithm.
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4.3 Scalability of the musculotendon model

Some MTUs in the biomechanical model contain zero via-points. This creates a problem

for leveraging the accuracy during the enhancement process discussed in section 4.2 as not

much information is present in the latitudinal and longitudinal dimension, i.e. the amount

of detail for each Ck’s at every ak of A. To solve this problem, we decided to adapt the mus-

culotendon model to be scaled independently in the longitudinal and latitudinal dimensions.

Allowing the model to be adapted in both directions satisfies the requirement to increase or

decrease the resolution of the meshes depending on the available computational power and

the targeted scenario.

As discussed in section 4.2.1, musculotendons where via-points are present can be split

into smaller segments by introducing extra bisecting cross sections that lie orthogonal to the

vector (ak+1 − ak−1)T for a ∈ A ∧ 0 < k < (|A| − 1). For the longitudinal segment scalar

(LSS) we use the number of extra segments instead of cross sections. A segment is defined

as the volume between two cross sections. When LSS = 0 this would equal one segment,

when LSS = 1 this would equal two segments, LSS = 2 equals four segments, and so forth.

Our reasoning is that when a cross section is added it actually splits an existing segment

into two, hence when this splitting pattern is repeated, the resulting expression would be

in the form of 2n. Furthermore, each newly created ak is added at exactly the mid point

between the two opposing cross sections on each side. This allows the dimension of A to

scale in a uniform fashion. The same repeating pattern is applied as well to via-points, as
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each via-point also splits an existing segment into two. Adding everything together results

in the following equation to calculate the target cardinality in the longitudinal dimension:

tLON = 2LSS (|V |+ 1) + 1 with LSS ∈ N (10)

The musculotendon model can also scale in the latitudinal dimension, denoted by tLAT,

with the number of vertices at each cross section respecting the constraint |Ck| ≥ 6∧|Ck| =

{2a | a ∈ Z}. This is used to locate inner points as discussed previously. A copy of the

polyline A, denoted as Acopy, is taken where the latitudinal dimension is scaled to a high

enough value so that every ak of Acopy gets repositioned inside the volume of a mesh U .

Once the enhancement process is finished, the repositioned ak are copied back into the

original container where ray-triangle intersections tests are executed again to get the final

approximated shape. This is done by introducing a scalar, the cross sectional scalar, denoted

as CSS to differentiate between latitudinal scales and is used as:

tLAT = CSS |Ck| with CSS ∈ N (11)

We have established a lower bound for the cardinality of Ck defining the lowest amount

of geometrical information that is reasonably achievable for the simulation. In our experi-

ments, the lower bound was chosen to be six for everyCk as this cardinality is (1) reflectively

symmetric, (2) has a reasonable perimeter to area ratio and (3) has a low number of vertices.

Illustrations of the longitudinal and latitudinal scales are given in Figure 10.
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4.4 Drawing the MTUs

Drawing the model at each simulation time step comprises of few steps. First, Ck is com-

puted with radii from the set Rk. Similar to the internal coordinate system used for the

Figure 10: The MTU can be independently scaled in the longitudinal and latitudinal dimen-

sions, here depicted on the pectineus muscle. The top row demonstrates the longitudinal

scale with LSS = 0 (left) and LSS = 1 (right) where we note the better bending in the

latter due to the additional intermediate cross sections. The bottom row demonstrates the

latitudinal scale with |Ck| = 6 (left) and |Ck| = 36 (right), and both with LSS = 2 and

CSS = 1. We note the better fit of the latter to the high resolution model (green mesh) due

to the higher number of vertices per cross section.
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relative positions of ak, the directions of rki are also computed in intervals relative to angle

θ, given as 2π
|Ck|

. Next, one tendon point is interpolated and stored separately as at and Ct.

Finally, the muscle is drawn, shaded, and textured.

Instead of using triangle lists, we opted for a combination of triangle fans and strips, as

illustrated in Figure 2b. These render types give less vertex redundancy, needing just n + 2

vertices to draw n triangles. Coupling fans and strips with vertex and index buffers results

in an efficient way to draw graphical musculotendons in real-time.

The final addition to the musculotendon model the inclusion of separate textures to in-

spect the length of tendons on the insertion side derived with the functions discussed in

section 4.1.2. Adding textures proved to be a practical way and increased the visual realism

of the model. Note that the white texture on the origin side of a muscle is solely texture

added for visualization purposes only and does not represent a separate tendon compart-

ment. Some examples are given in Figures 1a and 10.

5 Results and discussion

5.1 Geometrical enhancement

Permuting matches to locate an inner point for each UCk , and adapting the longitudinal

and latitudinal scales, proved to be a good solution to the approximation of high resolution

muscle geometries for the lower part of the human body. Table 3 lists the total number of
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vertices for 12 different scales compared to the total number of vertices used in the original

anatomical mesh. It shows a drastic reduction in the number of vertices used in our model.

For instance, at the scale of |Ck| = 12 and LSS = 2, our model uses ≈ 90% less vertices

than the original anatomical mesh. The 54723 vertices represent the total number of vertices

of the 48 original triangulated meshes.

|Ck| = 6 |Ck| = 8 |Ck| = 10 |Ck| = 12 UHM

LSS = 0 960 1248 1536 1824

54723LSS = 1 1536 2016 2496 2976

LSS = 2 2688 3552 4416 5280

Table 3: Number of vertices for a total of 48 musculotendons in 12 different scales compared

to the 48 anatomical meshes (UHM).

5.2 Latitudinal and longitudinal scalability

The permutation σ given in Algorithm 1 works for both irregular convex and irregular con-

cave polygons as far as it was tested within the configurations and parameters used in this

work. Figure 11 shows one example where adapting the latitudinal scale proved to be useful.

The shortest intersected triangle found in the positive direction was unfortunately at other

parts of the tendon resulting in misplaced cki ’s. This was remedied by increasing CSS to a

high enough value that resulted in a complete convergence for the via-points.

Figure 12 shows the approximation of the high resolution anatomical mesh of the tib-
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ialis anterior at different scales. We see that different scale combinations produce different

results before reaching convergence. The presumption here is that for thin segments, usually

ligaments and tendons, one would need enough surface vertices to cast enough rays in order

to detect enough matches. In this example, the fact that the muscle contains via-points also

increases the convergence rate. Because once via-points are repositioned to their correct

location, it prevents other bisecting cross sections from being misplaced.

In order to quantify the overall result, ray-triangle tests are carried out after the enhance-

(a) Incorrect result when CSS = 3 (b) Correct result when CSS = 6

Figure 11: Misplaced action line due to partial convergence in the tibialis posterior. The

yellow box represents the position of the insertion of the muscle, the pink boxes are the via-

points and the green object is the high resolution mesh. (a) an incorrect translation when

|Ck| = 8 and CSS = 3, however doubling in (b) the number of cross sections during

approximation with CSS = 6 resulted into a complete converged tendon.
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Figure 12: The approximation of the tibialis anterior (noted UHM) at eight different scales

of Ck. The number below each mesh represents the total number of vertices. For this

particular mesh, convergence is reached when |Ck| = 12, for both LSS = 1 and LSS = 2

while keeping CSS = 1. The convergence for LSS = 2 shows a better approximation for

the belly of the muscle.

37



ment process is completed. These tests determine whether ak is actually inside a cross

section of the anatomical mesh. Specifically, this is achieved by casting rays in two direc-

tions, namely from ak along the direction of cki − ak and ckio − ak. If all ray pairs intersect a

back-facing triangle, then it is assumed that ak lies inside the anatomical mesh. The results

are listed in Table 4. The worse case for LSS = 1 represents just 23 (or 9.58%) of the

total number of 240 cross sections, while the worse case for LSS = 2 represents just 42 (or

9.72%) of the total number of 432 cross sections. We also note that complete convergence

is reached when the number of rays cast is > 35, for both tested scales of LSS = 1 and

LSS = 2. This can be for instance when |Ck| = 6 and CSS = 6 or when |Ck| = 36 and

CSS = 1. This latter is considered the optimal choice of parameters as it contains the most

information. In this configuration, the number of vertices for all 48 musculotendons totals

8736, which is ≈ 16% of the original set of high resolution meshes.

5.3 Performance

A complete model with 48 musculotendons having |Ck| = 8 and LSS = 1, and upper

and lower body skeleton meshes, ran 181Hz on average with a walk-cycle animation on

the virtual character. This was tested on an Intel i5-3210M x64 CPU (Intel Corporation,

Santa Clara, California, United States) running at 2.50GHz with a NVIDIA GeForce GT

645M mobile graphics card. This result has been obtained without any GPU or software-

based parallelization techniques. Let us recall that our goal is to propose a geometrical
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LSS = 1 LSS = 2

|Ck| 6 8 10 12 6 8 10 12

CSS = 1 23 19 7 8 42 24 12 17

CSS = 2 8 7 7 3 17 12 10 5

CSS = 3 7 3 1 0 10 5 2 0

CSS = 4 3 2 0 0 5 3 0 0

CSS = 5 1 0 0 0 2 0 0 0

CSS = 6 0 0 0 0 0 0 0 0

Table 4: Number of ak outside the mesh.

scalable model that can be adapted at will, e.g. to the computation power, and scalable in

dimensions meaningful to the action line. The important information is given by the relative

performance between the different scales (directly readable from the number of vertices in

Table 3 or the quality of the mesh in Table 4). If the original data set had more vertices, we

expect the results to scale up and the conclusions to be identical. Nevertheless, there exists

a threshold under/above which visual quality evaluation would tell us that it is not useful to

have a lower or higher resolution. Our method spans that range because we can obtain any

visual quality from a polyline to a full resolution input model.

As reported in section 5.2, the optimal choice of parameters is with |Ck| = 36 and

CSS = 1, for which the frame rate was 135Hz. Thereby satisfying the > 60Hz requirement

of real-time simulation. Finally, the enhancement process itself takes around 10 seconds for
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48 musculotendons with LSS = 1 and |Ck| = 36, and is executed once at the beginning

of the simulation. It is important to keep in mind that the method is designed to be used in

muscle-based simulations coupled with soft body deformation. These two components can

take up a lot of computation time and a model that would be seen as visually realistic in

computer graphics will not be suitable for such simulations.

6 Conclusion

In this paper we have proposed a method to create a scalable MTU model that can be used

for musculoskeletal simulation, or any muscle-based motion controller. Due to the computa-

tional limits we imposed, our method keeps the performance in check by adapting the cardi-

nality of the model and using triangle fans and strips for the rendering of the cylinder-based

MTUs. The functional MTUs are systematically enhanced by its geometrical counterpart

while trying to preserve at best the biomechanical properties of the action line. Our en-

hancement process allows the possibility to locate points inside an arbitrary cross section of

a high resolution mesh by another separate arbitrary cross section of a low resolution mesh

such that it is invariant to the spatial and polygonal configuration between the two meshes.

This could be also useful for object reconstruction where a single polyline is needed that al-

ways lies within concave irregular meshes. We expect our approach to be used in real-time

simulators when 3D meshes of the muscles are available, offering, for example, support for

deformation simulation and better realism through a better estimation of muscle lengths,
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and therefore muscle moment arms and forces.

Improvements and future extensions are possible. For this project, the lower body was

used as a test case. A logical step would be to include both lower and upper biomechanical

models of the human body. In addition, the tendon slack length parameter currently includes

both the length of the free tendon and the length of the aponeurotic tendon as classical Hill-

type models combine the length of each separate free tendon into a single variable while

in reality most MTUs consist of at least one tendon on each side. To our knowledge, no

functional representation is available that divides the tendon length into separate lengths

for the origin and insertion, and also into its two constituents, free and aponeurotic. While

simplifications can work well for state-of-the-art polyline-based biomechanical simulators,

a combined tendon representation is not correct for applications involving geometrical or

polygonal based representations of musculotendons, as it is indispensable to allow volume

to be segmented with different material properties.

In such a scenario, the model should be able to deform in a physically accurate way and

thus physical properties such as the volume of each compartment of the model should be

accounted for. Using the current construction, this can be achieved with a tetrahedraliza-

tion approach of the volumes in-between cross sections. Using as an example a latitudinal

dimension of six with four segments for the muscle compartment, the number of tetrahe-

drons would be 72, which is around 1% of the total number of tetrahedrons used in the

demonstration of Berranen et al. [12] that had a performance result of 45Hz.

The current work has a limited support of multiple action lines and multiple heads.
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For muscles with multiples lines (e.g. adductor magnus, gluteus group of muscles), we

had to manually divide their meshes with a 3D modeling tool in order to approximate the

amount of mass (in our case represented by the geometry) used by each action line. Then

each action line was enhanced, as presented, using its respective part mesh. For muscles

with multiple heads (only the biceps femoris in the musculoskeletal model we use), the

UHM data set provided for two distinct meshes for each of the heads, so each MTU has

been enhanced using its respective mesh. The seriousness of the problem cannot easily

be determined without a proper evaluation of the simulation that will use the enhanced

model later on, but we still expect this type of manual specification to produce acceptable

results. Indeed, as the purpose would be to better estimate the paths of the action lines

during animation, associating one line to a part of a mesh should behave correctly given that

positional constraints are added between the vertices at the interface of parts of an individual

muscle mesh. If a unique muscle mesh were necessary, the enhancement process could be

adapted as well to be constructed from cross sections with multiple ’center-points’ (one

for each line or each head). We could for example add links (line segments) between the

’center-points’ of the action lines that will be meant to support and group them during the

creation of the geometry. An algorithm would have to be developed that makes sure all

connected action lines have the same number of cross sections at similar distance among

them. Then, ’center-points’ would be grouped allowing for a global contour to be created

for each cross section using ray-triangle tests as in the current enhancement process. This

process, although anatomically inaccurate, should produce models acceptable for realistic
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movements of characters, when a single mesh must be used to represent MTUs with multiple

heads.
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