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Navigating with highly precise odometry and noisy
GPS: a case study∗

Axel Barrau and Silvère Bonnabel †

Abstract

For linear systems, the Kalman filter perfectly handles rank deficiencies in the
process noise covariance matrix, i.e., deterministic information. Yet, in a nonlinear
setting this poses great challenges to the extended Kalman filter (EKF). In this
paper we consider a simplified nonlinear car model with deterministic dynamics,
i.e., perfect odometry, and noisy position measurements. Simulations evidence
the EKF, when used as a nonlinear observer, 1- fails to correctly encode the
physical implications of the deterministic dynamics 2- fails to converge even for
small initial estimation errors. On the other hand, the invariant (I)EKF, a variant
of the EKF that accounts for the symmetries of the problem 1- correctly encodes
the physical implications of the deterministic information 2- is mathematically
proved to (almost) globally converge, with explicit convergence rates, whereas the
EKF does not even locally converge in our simulations. This study more generally
suggests the IEKF is way more natural than the EKF, for high precision navigation
purposes.

1 Introduction

The extended Kalman filter (EKF) has been developed by the NASA in the 1960s for
the Appolo program. It has since been the state of the art for (industrial) navigation.
The engineers appreciate its ease of implementation, its rather easy tuning based on
the sensors’ noises, and its optimal stochastic properties up to second order terms. Yet
it is known to loose its properties when the initial errors become too large, due to the
nonlinearities. As a result, over the past decade or so we have witnessed many attempts
to derive alternative observers with asymptotic convergence properties for attitude and
pose estimation. Those important properties - reserved to the deterministic setting -
often use the Lie group structure of the state space, see, e.g., [11, 18, 3, 15, 12, 7, 17,
19, 4].
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The Invariant Extended Kalman Filter (IEKF) is a relatively recent variant of the
EKF meant to account for the invariance/symmetries properties of the state space when
devising EKFs on Lie groups, see [6, 5, 14, 2]. As such, it can be viewed as a variant of
the multiplicative extended Kalman filter (MEKF) [8] for attitude estimation, and as
an extension to it for pose estimation. It has the merit to retain all the EKF advantages
- being a variant of it - while posessing a nicer geometric structure. In [1], local guar-
anteed convergence properties are derived for a large class of systems, and simulations
indicate remarkable robustness to large initialization errors for high precision navigation
problems. However no global property of the IEKF has ever been proved. The present
paper allows to gain insight into the global IEKF properties by considering a simple
example.

We study a non-holonomic car with perfect odometry and noisy position (i.e. GPS)
measurements, where the initial position is known but not the orientation. This simpli-
fied navigation problem can be viewed as a limit case of high-accuracy navigation where
inertial sensors allow precise navigation for several minutes in the absence of measure-
ment. The degenerate situation of perfectly known dynamics poses no problem to the
linear Kalman filter, the gains being possibly large at the beginning if the prior infor-
mation is inaccurate, and then decreasing to zero. Yet, it poses great challenges to the
EKF as gains can go to zero whereas, due to nonlinearities, the estimation error has not
reduced enough, leading to a static asymptotic non-zero error, or divergence, even for
unnoisy measurements. Note that, the general local convergence proof of [13] requires
full rank process noise covariance, which is violated here. The usual remedy is either
to artificially inflate the process noise covariance matrix, known as “robust tuning” (see
[9, 16]) - but this results in degraded stochastic performance as the filter’s tuning does
not match with the true sensors’ characteristics, or to use optimization methods over
the first steps to initialize the EKF with a better guess of the true state. Note also, in
passing, that as the state conditional probability does not have a density, even particle
filters may face severe issues for the considered problem (the resampling step needs pro-
cess noise to be useful). Here we show the nice geometric structure of the IEKF allows
it to perfectly cope with the absence of process noise.

The main merit of the present paper is thus to show one can devise an EKF variant
for a simple yet instructive navigation example, which posesses global properties both in
terms of behavior and convergence. To our best knowledge this is the first time an EKF
variant with global convergence properties is derived for an example of engineering inter-
est, whereas the standard EKF does not even converge. Of course, the symmetries play
a prominent role as they bring a lot of structure into the problem. The results obtained
suggest great potential benefits of the IEKF over EKF for high precision navigation.

The contributions and organization of the paper are as follows. In Section 2 we
recall the implications of deterministic dynamics in the linear case, and how the linear
Kalman filter naturally encodes this information. We also introduce our simplified car
model and derive the standard EKF equations for it. In Section 3, we discuss the
physical implications of the choice of deterministic dynamics for the simplified car, and
prove the IEKF naturally encodes this information, reminding the linear case: This is
our main contribution. Finally, in Section 4, we leverage those results to derive some
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global convergence properties of the IEKF for this problem.

2 Filtering with perfect odometry

2.1 The linear case

Consider in Rn a deterministic continuous-time linear system ẋt = Atxt with noisy
discrete output measurements Yn = Hnxtn + Vn at times t1 < · · · < tn, where Vn is a
Gaussian variable. Assume that initially part of the state is known, that is, for some
matrix C̃ ∈ Rp×n we have C̃x0 = α with α ∈ Rp a known vector. This means that the
state is initially known to be in a subspace of dimension n − p. By propagating this
subspace through the deterministic dynamics, the state is known to be in a subspace of
dimension n − p at any time. Indeed letting Ct ∈ Rp×n be the solution of Ċt = −CtAt
with C0 = C̃, we have at all times Ctxt = α as proved by differentiation.

A Kalman filter perfectly handles this kind of singular information about the state.
Indeed, the fact that C0x0 be initially perfectly known, means in probabilistic terms that
there is no dispersion of the distribution of xt orthogonally to the subspace the state
lives in, and thus C0P0C

T
0 = 0 where Pt denotes the covariance matrix output by the

Kalman filter. This equality implies that at all times the estimate of the Kalman filter
remains in the subspace the state lives in (if initialized inside it), and Pt keeps reflecting
the absence of dispersion of the probability distribution of the state orthogonally to this
subspace, as shown by the following trivial result. Note that the result in fact directly
stems from the fact the filter computes the true probability distribution of the state
conditioned on the outputs.

Proposition 1. Consider the deterministic dynamics ẋt = Atxt with noisy measure-
ments Yn = Hnxtn + Vn. If initially we have C0x0 = α, implying Ctxt = α ∀t ≥ 0 where
Ċt = −AtCt, then the linear Kalman filter is such that Ctx̂t = α ∀t ≥ 0. Moreover, the
absence of dispersion orthogonally to the subspace the state lives in is correctly captured
by the covariance matrix as CtPtC

T
t = 0 ∀t ≥ 0.

Proof. Between two measurements the Riccati equation d
dt
Pt = AtPt + PtA

T
t implies

CtPC
T
t = 0, and when there is a measurement the covariance updates writes P+

tn = (I−
KnHn)Ptn , and thus CtnPtnC

T
tn implies CtnP

+
tnC

T
tn . Indeed, as Ptn is symmetric, we have

necessarily CtnPtn = 0 and thus CtnKn = 0. The latter equality also implies the state is
forced to remain in the subspace, as the update writes x̂+tn = x̂tn +Kn(Yn−Hnx̂tn).

2.2 Implications of perfect odometry for the nonlinear simpli-
fied car

Consider a non-holonomic car with deterministic dynamics (e.g. [10])

d

dt
θt = ωt,

d

dt
xt =

(
cos(θt)ut
sin(θt)ut

)
,

(1)
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where θt is the heading of the car, xt is the position vector, and ωt, ut are the angular
and linear velocities computed through odometry. We also consider noisy position mea-
surements. Those measurements can interpreted as GPS measurements, or some other
position measurements that arise in mobile robotics. Our goal is to understand what
happens when the odometry becomes infinitely more precise than the other sensors, a
situation that may arise in mobile robotics, and which also serves as a simplified problem
for high precision inertial navigation. We thus consider noisy position measurements

Yn = xtn + Vn, (2)

where Vn is an i.i.d. Gaussian noise with covariance matrix R. Furthermore, we assume
that the car’s inital position is known, but its heading is not. As the state initially be-
longs to a one-dimensional submanifold of the state space, and the dynamics is prefectly
known, it remains at all times in a one-dimensional submanifold one can compute.

Proposition 2. Consider the dynamics (1). Assume the initial position is known, i.e.,
x0 = 02,1. The dynamics being deterministic, at all times, the state (θt, xt) belongs to
the image of the set S1 × {0} × {0} through the flow of (1). This set being invariant to
rotations, it can be parameterized in a more concise way as follows. Let bt be defined by
the differential equation

b0 =

(
0
0

)
,

d

dt
bt = −

(
0 −ωt
ωt 0

)
bt +

(
ut
0

)
. (3)

Then at all times the state satisfies R(θt)
Txt = bt where R(θ) denotes the rotation of

angle θ.

Proof. we have: d
dt

[
R(θt)

Txt
]

= R(θt)
T

[
−ωtJxt+R(θt)

(
ut
0

)]
= −ωtJR(θt)

Txt+

(
ut
0

)
where J :=

(
0 −1
1 0

)
commutes with R(θt)

T . Thus the quantity R(θt)
Txt satisfies

(3).

The physical interpretation of the proposition is clear: Assume for the sake of sim-
plicity that ωt ≡ 0. This means the car moves along a straight line, and the condition
of Proposition 2 becomes xt = R(θt)(α(t), 0)T = R(θ0)(α(t), 0)T where α(t) =

∫ t
0
usds is

the total traveled distance according to the odometer, that is, the car belongs to a circle
centered at the inital position and of radius α(t). Let us see now whether a nonlinear
counterpart of Proposition 1 might hold for the extended Kalman filter (EKF).

2.3 EKF equations

In the latter problem, the initial position is assumed to be known but the not the heading,
so we let initially x̂0 = 02,1. The initial covariance matrix must reflect dispersion only
on the heading angle, so we let it be equal to, e.g.,

P0 =

π/2 0 0
0 0 0
0 0 0

 .
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Of course, after a few time steps the position becomes also uncertain due to the initial
heading error but Proposition 2 holds. The standard EKF equations for the continuous
time with discrete observations system considered in Section 2.2 rely on a propagation
step between two observations, and an update step at each measurement time.

Propagation:
d

dt
θ̂t = ωt,

d

dt
x̂t =

(
cos θ̂t
sin θ̂t

)
ut,

tn−1 < t < tn,

d

dt
Pt = AtPt + PtA

T
t , tn−1 < t < tn, (4)

with

At =

 0 0 0

− sin(θ̂t)ut 0 0

cos(θ̂t)ut 0 0

 .

Note that Equation (4) contains no process noise (usually denoted by Qt) due to
deterministic dynamics.

Update: The update consists of the following steps:

• Computation of the gain:

Kn = PtnH
T
(
HPtnH

T +R
)−1

,

with H =

(
0 1 0
0 0 1

)
.

• Computation of the innovation:

z = Yn − x̂tn .

• Computation of the new estimate:(
θ̂+tn
x̂+tn

)
=

(
θ̂tn
x̂tn

)
+Knz.

• Update of the covariance matrix:

P+
tn = (I −KnH)Ptn .

Due to the update, we see no reason why the EKF estimates should remain in the
submanifold defined at Proposition 2. Simulations below will confirm this indeed. But
before that, let us study what happens with the IEKF for the considered problem.
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3 Invariant filtering with perfect odometry

The considered system is left-invariant on the Lie group SE(2) [4]. A Left-invariant
IEKF for our system is based on the error variable:(

θ̂ − θ
R(θ)T (x̂t − xt)

)
, (5)

hence its name: the error variable is invariant to left multplications on SE(2) (that is
change of global frame) which write θ → θ+α, x→ R(α)x. As a result, the covariance
matrix Pt output by the IEKF is an approximation to the dispersion of this invariant
error.

3.1 IEKF equations

The IEKF equations for the considered example has already been derived in [1] and are
based on a propagation and an update step as follows:

Propagation:
d

dt
θ̂t = ωt,

d

dt
x̂t =

(
cos θ̂t
sin θ̂t

)
ut,

tn−1 < t < tn

d

dt
Pt = AtPt + PtA

T
t , tn−1 < t < tn, (6)

with

At =

 0 0 0
0 0 ωt
−ut −ωt 0

 .

Again, the equation contains no process noise.

Update: The update consists of the following steps:

• Computation of the gain:

Kn = PHT
(
HPtH

T +R
)−1

,

with H =

(
0 1 0
0 0 1

)
.

• Computation of the innovation:

z = R(θ̂tn)T (Yn − x̂tn) .

• Computation of the new estimate:(
R(θ̂+tn) x̂+tn
01×2 1

)
=

(
R(θ̂tn) x̂tn
01×2 1

)
exp(Knz) (7)
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where exp : R3 → R3 is the exponential map of the Lie group SE(2) defined
for θ ∈ R, x ∈ R2 by

exp

(
θ
x

)
=

(
R(θ) B(θ)x
01×2 1

)
,

with B(θ) = 1
θ

(
sin θ − (1− cos θ)

(1− cos θ) sin θ

)
.

• Update of the covariance matrix:

P+
tn = (I −KnH)Ptn . (8)

with initial values such as in Section 2.3. The IEKF is a left-invariant observer in the
sense of [4]: the output error and the gains are computed in the frame of the car, making
them insensitive to change of global frame (i.e. left group multiplications). However, it
has the additional property of being an EKF variant, and as such its tuning is optimal
for the noisy problem up to second order terms.

3.2 Implications of perfect odometry for the IEKF

It turns out that, quite surprisingly, a counterpart of Proposition 1 can be derived for the
IEKF. Indeed, Proposition 2 shows the true state lives in a one-dimensional manifold
defined at all times by R(θt)

Txt = bt. The following result shows that whatever the
initial heading error, the IEKF output estimate lives in this very manifold too. The
proof has been moved to the Appendix.

Theorem 1. The IEKF estimate as defined just above satisfies at all times R(θ̂t)
T x̂t = bt

with bt defined at eq (3) and thus lives in the same one-dimensional manifold as the state
space whatever the initial heading value θ̂0.

3.3 Numerical illustration of the theorem

To fix ideas, assume to car is moving along a straight line, i.e. ωt ≡ 0. In this case
the theorem implies x̂t = R(θ̂t)(α(t), 0) where α(t) =

∫ t
0
usds is the distance traveled

according to the odometer. This implies the two physically logical to expect properties
of the estimate, that are yet never met by the standard EKF:

1. Despite the updates applied by the IEKF to the state, the total distance traveled
by the estimate matches exactly the distance given by the odometer

2. The car estimated heading is always parrallel to a ray that passes through the
origin

Those properties are logical to expect since the odometer (assumed perfect) indicates
the car is necessarily travelling along a (unknown) straight line emanating from the
origin.
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Figure 1: Illustration of Theorem 1: Car with perfect odometry, with known initial
position, and unknown initial orientation. True and estimated trajectories (EKF and
IEKF). The odometry indicates ωt ≡ 0, thus both filters move along straight lines
between two updates. But the IEKF update is such that the car always moves along rays
of a circle centered at the known initial position, as evidenced by the dotted segments,
whereas this physical information is totally destroyed by the standard EKF updates.

Figure 1 displays the trajectory of the car for ωt ≡ 0 and the trajectories of the EKF
and IEKF estimates. We see the IEKF achieves property (2) above, as evidenced by the
dotted segments that prolongate the trajectory of the car between two updates.

Figure 2 displays the error between the total distance traveled by the estimate of
respectively the IEKF and the EKF and the total distance traveled by the true car.
Due to perfect odometry, the user can evaluate exactly the distance traveled by merely
integrating the odometer measurements. We see the IEKF makes no mistake on this
value whereas the EKF totally miscalculates it.

4 Implications in terms of convergence

In this section, once again for the sake of simplicity, we consider the car moves along a
straight line, i.e., ωt ≡ 0.
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Figure 2: Error between the distance traveled by the estimate for respectively IEKF
and EKF (dotted line) and the true distance traveled (according to perfect odometer).
The IEKF preserves the information delivered by the odometer whereas the IEKF loses
it completely.

4.1 Numerical evidence

The results of EKF and IEKF in terms of position error are displayed on Figure 3 with
identical covariance matrices tuning. To obtain cleaner curves, we fed the filters with
unnoisy measurements (which amounts to study their behavior when used as nonlinear
observers). We see the IEKF outperforms the EKF as

• the IEKF initialized with a 40◦ angle error, beats the EKF initialized with a 5◦

angle error (top plot) !

• All EKFs (even with a 5◦ angle initial error) totally fail to converge (bottom plot)
whereas the IEKF does.

This last feature may be explained by the fact the dynamics being deterministic, the
gains tend to 0. If the EKF has failed to reduce the error enough during the transitory
phase, it may fail to converge as observed here.

4.2 IEKF almost global convergence properties

The following theorem leverages the unexpected “physical” properties underlined by
Theorem 1, to prove almost global convergence of the IEKF used as a non-linear observer
(i.e. noise being turned off). This is a remarkable result as global convergence properties
of EKFs are in general very difficult to derive (in the present case they are impossible
to derive as they do not converge). The proof has been moved to the Appendix.
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Theorem 2. Consider deterministic dynamics (1) with noisy output (2). Assume the
observations occur at a constant rate (tn = n∆T with ∆T > 0) with noise covariance of
the form R = rI2 with r > 0. Assume that the initial position is known and equal to 02,1

and the car is moving along a straight line with constant speed i.e., ωt ≡ 0 and ut ≡ 1.
Then, for any initial orientation error such that |θ̂(0) − θ(0)| 6= π mod 2π the IEKF
used as a nonlinear observer globally converges to the true state. Moreover, we have the
following convergence rates : θ̂tn − θtn ∼ C/n3 and x̂tn − xtn ∼ C/n2 for some C > 0.
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A Proof of Theorem 1

Proposition 2 proved R(θt)
Txt = bt. Now let H̃e

t = R(θ̂t)
T [−Jbt, I2] and let

Mt := H̃e
t Pt(H̃

e
t )
T , Nt := R(θ̂t)

T x̂t − bt

Our goal is to prove Nt ≡ 0. We have M0 = 0 and N0 = 0. Assume Mtn−1 = 0,
Ntn−1 = 0. During the propagation step d

dt
Nt = 0 by mimicking the proof of Proposition

2 and thus Ntn = 0. Moreover

d

dt
Mt =

[(
d

dt
H̃e
t

)
+ H̃e

tAt

]
Pt

[(
d

dt
H̃e
t

)
+ H̃e

tAt

]T
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A simple computation shows d
dt
Mt = 0 as:

d

dt
H̃e
t = −ωtR(θ̂t)

TJ [−Jbt, I2]

+R(θ̂t)
T

[
−J2ωtbt + J

(
u
0

)
, 02

]
= R(θ̂t)

TJ

[(
u
0

)
,−ωtI2

]

H̃e
tAt = R(θ̂t)

T [−Jbt, I2]

 0 0 0
0 0 −ωt
−ut ωt 0


= R(θ̂t)

T

[
−J
(
u
0

)
, Jωt

]
and thus Mtn = 0. As Pt is symmetric this means He

tnPtn = 0, proving that [−Jbtn , I2]
T

defines a basis of the orthogonal space to Im Ptn and thus to Im Kn. This implies the

image of Kn is spanned by w :=

(
1

Jbtn

)
. Let us now focus on (7). We have just proved

Knz = αw with α ∈ R that we assume equal to 1 without loss of generality. It follows
directly from the definition of the Lie exponential map on SE(2) that θ̂+, x̂+ defined by
(7) are the solution at s = 1 to the equation

d

ds
θ̃(s) = 1,

d

ds
x̃(s) = R(θ̃(s))Jbtn , (θ̃(0), x̃(0)) = (θ̂tn , x̂tn)

Let a(s) := R(θ̃(s))T x̃(s). We have then d
ds
a(s) = −JR(θ̃(s))T x̃(s) + Jbtn = J(−a(s) +

btn). As a(0)− btn = 0 this implies a(s)− btn ≡ 0 and in particular a(1) = btn .
We have thus proved that N+

tn = Ntn = 0. To complete the induction over n, we must

check also that M+
tn = Mtn = 0. Note that Mt = 0 is equivalent to [−Jbt, I2]T Pt = 0. As

Nt is preserved by the update, so is bt. Thus (H̃e
tn)+P+

tn(H̃e
tn)+)T = 0 as [−Jbt, I2]T P+

tn =

[−Jbt, I2]T (I −KnH)Ptn = [−Jbt, I2]T Ptn · · · = 0.

B Proof of Theorem 2

The solution of the Riccati equation (6),(8) reads

Pt =

 a(t) 0 ta(t)
0 0 0

ta(t) 0 t2a(t)

 , Pt+n =

 a(t+n ) 0 tna(t+n )
0 0 0

tna(t+n ) 0 t2na(t+n )

 , (9)

with a(0) = p0,
d
dt
a(t) = 0 during the propagation (t ∈]tn−1, tn]) and

a(t+n ) = a(tn)− t2na(tn)2

r + t2na(tn)
(10)

at the update steps. Checking this value of Pt verifies (6),(8) is straightforward.
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Now we compute the value of a(t) for any t. Eq. (10) can be re-written 1
a(tn)+

=
1

a(tn)
+ ∆T 2 n2

r
, where tn has been replaced with n∆T . As we have a(t+n ) = a(tn+1) we

can apply the square pyramidal number formula to obtain:

1

a(tn)+
=

1

p0
+

∆T 2

r

n(n+ 1)(2n+ 1)

6
. (11)

In turn, let us write a recursive equation verified by the heading error θ̃t = θ̂t − θt. We
will need the update function of θ̂tn (extracted from eq. (7)):

θ̂+tn = θ̂tn +Kn(1, :)z, (12)

where we have to compute Kn(1, :) (first line of the gain matrix) and z. First, using the
expression of Pt, we can write the first line of the gain Kn:

Kn(1, :) =

(
0,

tna(tn)

t2na(tn) + r

)
. (13)

Then we write the innovation as a function of the heading error θ̃t. As we have ωt = 0 and
ut = Cste = u, Proposition 2 boils down to the relation xt = R(θt)(tu, 0)T . Following
Theorem 1 we also have at all time: x̂t = R(θ̂t)(tu, 0)T , which allows writing the
innovation as a function of θ̃t:

z = tu
(

cos(θ̃t)− 1,− sin(θ̃t)
)T

. (14)

Putting together (13) and (14) we obtain:

θ̃tn+1 = θ̃tn − αn sin(θ̃tn), (15)

with αn = t2na(tn)
t2na(tn)+r

. As a first consequence, |θ̃t| is decreasing. Thus, sin(x)
x

being

decreasing on [0, π], we have sin(θt)
θt

≥ sin(θ0)
θ0

, i.e. sin (θt) ≥ sin(θ0)
θ0

θt. Introducing

the latter inequality into (15) we obtain θ̃tn+1 ≤ θ̃tn

(
1− αn sin(θ0)

θ0

)
, i.e. log

(
θ̃+tn

)
≤

log
(
θ̃tn

)
+log

(
1− αn sin(θ0)

θ0

)
≤ log

(
θ̃tn

)
−αn sin(θ0)

θ0
. As using (11) we have αn = 3/n+

©(1/n2), this proves θtn =©
(

1/n
3
sin(θt
θt

)
. But (15) also leads to log

(
θ̃tn+1(n+ 1)3

)
−

log
(
θ̃tnn

3
)

= log
(

1− αn sin(θtn )
θtn

)
+3 log(1+1/n).Using αn

sin(θtn )
θtn

= (3/n+©(1/n2))

(
1− 1

6n
2×3

sin(θt
θt

)
we obtain

log
(
θ̃tn+1(n+ 1)3

)
− log

(
θ̃tnn

3
)

=©
(

1/n
1+2×3

sin(θt)
θt

)
thus log

(
θ̃tn+1(n+ 1)3

)
is convergent, and there exists C > 0 such that θ̃tn+1 ∼ C/(n+

1)3. And Theorem 1 implies x̂t − xt ∼ tuθ̃t which is of order C/n2 at t = tn.
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Figure 3: Influence of singular information: Position error of the EKF for GPS and
perfect odometry, with initial position known and initial heading unknown. Top plot:
We see the IEKF initialized with a large error (40◦) even beats the EKF initialized with
a small error (5◦). Bottom plot : Vertical zoom and extended running time (1 million
steps). The EKF errors stabilize at a non-zero value whereas the IEKF error goes to 0.
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