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T. Bonald and A. Proutiére

France Telecom R&D
38-40 rue du Général Leclerc, 9279/ Issy-les-Moulineauz Cedex 9, France
{Thomas .Bonald,Alexandre.Proutiere}@francetelecom.com

Abstract

We consider an open network of processor-sharing nodes with state-dependent ser-
vice capacities, i.e., the speed of each node may depend on the number of customers
at any node. We demonstrate that the stationary distribution of the network state
is insensitive to the distribution of service times if and only if the service capaci-
ties are balanced, i.e., the considered network is a Whittle network. The stationary
distribution then has a closed-form expression and the expected sojourn time of a
customer at any node is proportional to its required quantity of service. These re-
sults are extended to the cases of closed networks and state-dependent arrival rates
and routing. Two simple examples illustrate the practical interest of these results
in the context of communication networks.

Key words: Insensitivity, processor-sharing queue, Whittle networks, balance.

1 Introduction

Processor-sharing queues have traditionally been used to model so-called com-
puter multi-access systems [15]. Typical examples include the processing ca-
pacity of a central processing unit (CPU) and the storage capacity of a database.
More recently, processor-sharing queues have proved extremely successful in
evaluating the mean transfer time of documents in data networks [4,6-8,16].
The service capacity then typically represents the bandwidth of a link which
is assumed to be fairly shared between ongoing data flows [4,8,16]. More gen-
erally, networks of processor-sharing queues can be used to represent arbitrary
network topologies, not just reduced to a single link [6,7]. The service capacity
of a node then corresponds to the bandwidth allocated to ongoing flows on
a particular route of the considered data network. As these flows must share
the bandwidth of the corresponding links with all concurrent flows on this and
other routes, the service capacity of a node generally depends on the number
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of customers at each node: the corresponding model is a network of processor-
sharing queues with state-dependent service capacities, or “processor-sharing
network” for short.

A key property of the processor-sharing queue is that, assuming Poisson ar-
rivals, the stationary distribution of the number of customers does not depend
on the distribution of service times [15]. This insensitivity property presents
the practical interest in communication networks of allowing the development
of engineering rules independently of precise traffic statistics. A typical exam-
ple is the well-known insensitivity of the Erlang B formula which allows phone
companies to dimension their network independently of the precise statistical
characteristics of call durations. Similar robust dimensioning rules could be
developed for data networks based on the insensitivity results for processor-
sharing networks derived in the cited work and further extended in the present
paper. Insensitivity is a particularly desirable property in the context of the
Internet where the nature of data traffic is continually evolving as new appli-
cations gain popularity (Web, peer-to-peer,...). It becomes sufficient for the
network provider to just monitor overall load with no need to track the com-
plex traffic characteristics of a panoply of different applications.

The insensitivity of queueing networks to the distribution of service times has
received the attention of many authors [1-3,9,12,13,17,20,21,24,25]. A key re-
sult is that insensitivity is equivalent to partial balance for Markov processes
[25] and generalized semi-Markov processes (GSMP) [20]. This provides a nec-
essary and sufficient condition for closed networks to be insensitive to the ser-
vice time distribution of each customer [21]. Insensitivity to the service time
distribution at each node is not covered by this result, however. We must turn
to more general results by Schassberger [21, Theorem 3.1] and Miyazawa [17,
Theorem 4.1], who have proved the equivalence of partial balance and product-
form decomposability of the stationary distribution for general stochastic pro-
cesses referred to as “scheme with relabelling” and “reallocatable GSMP”,
respectively. In particular, partial balance implies insensitivity for these types
of process, but the converse is not true in general [17, Remark 5.1]. In the
following we give a direct proof of a stronger result in the restricted frame-
work of processor-sharing networks: insensitivity is equivalent to the balance
of service capacities in this case, which is known to imply the partial balance
of the corresponding Markov process [24]. Thus the balance of service capaci-
ties which was known to be a sufficient condition for insensitivity turns out to
be also necessary. Whittle networks are the only insensitive processor-sharing
networks.

We first describe the model and the balance property that characterizes Whit-
tle networks. We then present the insensitivity results and some key perfor-
mance results. These results are extended in the following two sections to
the cases of closed queueing networks and state-dependent arrival rates and



routing, respectively. We conclude the paper by two simple examples that il-
lustrate the practical interest of these results in the context of communication
networks.

2 Processor-sharing networks

We consider an open queueing network of N nodes. At any node 7, exogenous
arrivals form a Poisson process of intensity »; and customers require i.i.d.
exponentially distributed services of mean 1/p,. The service discipline at each
node is processor-sharing. After service completion at node ¢, a customer is
routed to node j with probability p;; and leaves the network with probability
pi = 1 — 3, pij. The effective arrival rate \; at node 7 is uniquely defined by
the equations:
)\i:Vi+Z)\jpjia 221,,N
j

We denote by p; = A\;/p; the traffic intensity at node i. The originality of the
considered network is that the capacity (or speed) ¢; of node i may depend on
the state of the system x = (xy,...,zx), where x; is the number of customers
at node i. We assume that ¢;(z) > 0 if and only if z; > 0. This queueing
network will be referred to as a processor-sharing network.

Remark 1 (Feedback at nodes) Unless otherwise specified, we always as-
sume that p;; = 0 foralli =1,...,N. If p;; > 0 for some i, the state of the net-
work is indeed the same as that of a network with service rates fi; = p;(1 — py;)
and routing probabilities p;j = p;j/(1 — pi) if i # j, and p; = 0 otherwise.

The stochastic process X = {X;,¢ > 0} that describes the evolution of the
number of customers at each node is a Markov process. Let e; be the unit vector
with 1 in component ¢ and 0 elsewhere, for i = 1,..., N. When the network is
in state x, the possible transitions are triggered by the movement of a customer
from node 7 to node 7, in which case the next state is Tijx =r—¢ t+ej,a
departure from node 4, in which case the next state is T;x = x — ¢;, and an
exogenous arrival at node 7, in which case the next state is 772 = x +e;. The
balance equations that an invariant measure m must satisfy are thus

m(2) Y (vi + dila) i) =

)

S m(Tiw)vi + Y m(T) ) (T ) pypjs + > w(T'x) i (T"x) ipi- (1)

[ 2,]

Note that, in view of Remark 1, equations (1) still hold in the presence of
feedback.



3 Whittle networks

A particular class of processor-sharing networks known as Whittle networks
is characterized by the following balance property [24].

Definition 1 (Balance property) The capacities are said to be balanced if:

QZSZ(ZE)d)J(ElL’) = d)J(ZE)d)l(T'jZL’), Z,] = ]_, .. .,N, XT; > 0, Z; > 0.

Let (z, T, z,...,T; _, ...T;,x,0) be a direct path from state x to state 0, i.e.,
a path of length n where n is the number of customers in state x. The balance

property implies that the expression

(I)(:L‘) = 1/¢i1 (I)d)lz(Tllx) s ¢Zn (ﬂnfl . 'ﬂlx)7 (2)

is independent of the considered direct path. In particular, the capacities are
uniquely characterized by the function ®, referred to as the balance function:

¢i($):®q§2§), i=1,...,N, ;> 0. (3)

Conversely, if there exists a function ® such that the capacities satisfy (3),
it can be easily verified that these capacities are balanced. We say that the
capacities are balanced by .

We have the following key result [24, Theorem 1.15].

Theorem 1 For a Whittle network, an invariant measure of X is

m(z) = @(x) _l:[pfi-

The proof simply consists in verifying that the measure 7 satifies the partial
balance equations

J

and

7T(x)z_:’/i = ZW(T%)%(T%)MP@'- (5)
Note again that, in view of Remark 1, equations (4)-(5) still hold in the pres-
ence of feedback.



4 Insensitivity

From Theorem 1, Whittle networks are insensitive to the arrival rates, service
rates and routing probabilities in that any invariant measure of X depends
on these quantities through the traffic intensities py, ..., py only. Whittle net-
works are also known to be insensitive to the distribution of service times. For
the class of Cox distributions which is known to form a dense subset within
the set of all distributions of nonnegative random variables, this property is
actually a direct consequence of the following simple result.

Proposition 2 Consider a processor-sharing network such that the total ca-
pacity of two nodes, say 1 and 2, depends on the numbers of customers present
at these nodes through their sum only and is equally shared between these cus-
tomers, that is

P1(r) _ da(x) _ di(x) + 6a(2)

T i) T +ZE2

Then ¢y, ..., ¢n are balanced by @ if and only if p1+d2, @3, . .., on are balanced
by ®, with

,  x1,T2 > 0.

Ty + 22\ =
O (x) :( lxl 2)@(&:1—{—352,31:3,...,35]\7).

Proof. The proof follows from (3). O

Consider a Whittle network such that the total capacity of two nodes, say 1
and 2, depends on the numbers of customers present at these nodes through
their sum only and is equally shared between these customers. In view of
Proposition 2 and Theorem 1, an invariant measure 7 of X is given by

T+ T2\ N
m(x) = ( ! 2><I>(I1 + 22,33, ..., an) [ P77 (6)
i=1

T

In particular, an invariant measure 7 of the numbers of customers at nodes
1+2,3,...,N is given by

N
ﬁ'(ZEl + 2,3, ... ,ZL’N) = (i)(llfl + To,T3,... ,IN)(pl + p2)x1+x2 H plxl
i=3

Now consider a Whittle network where the exponential distribution of service
times at any node i is replaced by a Cox distribution of P, phases with the
same mean. This corresponds to a processor-sharing network with P;+. ..+ Py
nodes. From Proposition 2, this is still a Whittle network. In view of the
previous property, the invariant measures of the total number of customers at
any node ¢ of the initial network remain unchanged. We conclude that Whittle
networks are indeed insensitive to the distribution of service times.



Remark 3 Though we proved the result for the class of Cox distributions only,
Whittle networks are known to be insensitive to any service time distribution.
More general stochastic processes must then be considered [17,20)].

It turns out that this insensitivity property uniquely characterizes Whittle
networks among processor-sharing networks, as shown by the following result
proved in Appendix A.

Theorem 2 A processor-sharing network is a Whittle network if and only if
the wnvariant measures of X remain unchanged when at any node i and for
any o, 0 < «o; < 1, customers require an exponentially distributed service of
mean 1/c; x 1/p; with probability o;, a null service with probability 1 — «;.

The fact that the invariant measures of X depend on the arrival rates, ser-
vice rates and routing probabilities through the traffic intensities pq, ..., px
only also characterizes Whittle networks among processor-sharing networks,
as shown by the following two corollaries of Theorem 2. Corollary 2 is proved
in Appendix B.

Corollary 1 A processor-sharing network with p;; = 0 for all i, is a Whittle
network if and only if any invariant measure of X depends on the arrival rates
and service rates through their ratios py, ..., pn only.

Proof. Consider a processor-sharing network with p;; = 0 for all 7, j. Assume
that the invariant measures of X remain unchanged when the arrival rate \;
and the service rate y; at any node i are multiplied by a constant «a;, 0 <
a; < 1. Noting that this modified network corresponds to the original network
where at node ¢, customers require an exponentially distributed service of
mean 1/q; x 1/p; with probability «;, a null service with probability 1 — a,
the proof follows from Theorem 2. O

Corollary 2 A processor-sharing network is a Whittle network iof and only if
the invariant measures of X depend on the exogenous arrival rates and the
routing probabilities through the effective arrival rates Ay, ..., Ay only.

5 Conditional expected sojourn time

Consider a processor-sharing network. In the rest of the section we assume
that the corresponding Markov process X is positive recurrent and that X is
in steady state at time ¢ = 0. Denote by S; the sojourn time in node ¢ of the
first customer arriving at node ¢. Applying Little’s formula:



where Fj; is the expectation w.r.t.the Palm probability associated with the
point process of arrivals at node 7. The equivalent capacity of node 7, defined
as the mean required quantity of service at node ¢ divided by the expected
sojourn time at node ¢, is then given by

_ 1w Pi

More generally, denote by S; the sojourn time in nodes I of the first cus-
tomer arriving at any node in I, where [ is a non-empty subset of {1,..., N}.
Applying Little’s formula:

> Elz;] = M E([S],

i€l

where Ej is the expectation w.r.t.the Palm probability associated with the
point process of arrivals at nodes I and \; is the arrival rate at nodes I:

)\] = Z(VZ + Z)\jpji)'

iel jelI

Denote by 1/u; the mean required quantity of service at nodes I, given by
A1/ = Yicr pi- Similarly, define the equivalent capacity of nodes I as the
mean required quantity of service at nodes I divided by the expected sojourn
time at nodes I, namely:

— 1/p1 _ 2icrl Pi
B[S Yier Bz

(8)

VI

Note that expressions (7)-(8) hold for general service time distributions.

Proposition 4 Consider a Whittle network such that the total capacity of
nodes I depends on the numbers of customers present at these nodes through
their sum only and is equally shared between these customers, that is

Yicr i(x) _ ¢i(z)

s 1€ [, T; > 0.
Dier T ;
Then vy = ~y; for alli € 1.
Proof. It follows from (6) that
Pi Pj -
= ) VZ, J € Ia
Elz;]  Elx]

so that vy =, for all ¢ € I.



The following result shows that for Whittle networks, the expected sojourn
time of a customer at any node is proportional to its required quantity of
service.

Proposition 5 Consider a Whittle network. Denote by o; the quantity of
service required by the first customer arriving at node i. Then,

S

i = ————, Vs>0.

Proof. We prove the result in the particular case where o; takes a finite
number of values. Replacing node 7 by a set of nodes of equally shared overall
capacity ¢;, each node corresponding to a different value of o;, we obtain
another Whittle network in view of Proposition 2. The proof then follows
from Proposition 4. O

6 Closed networks

In this section, we extend previous results to closed queueing networks, i.e.,
with a fixed total number of customers M and v; = 0 for all 7. Similar results
hold for so-called mizred queueing networks. We first consider the case where
routing is irreducible in the sense that each node is visited by the M customers.
Assume that the capacity of a particular node referred to as the “source”, say
node 0, is a function ¢y of the number of customers at this node only. We
have ¢o(z) = tho(M — |x|), where x = (z1,...,2y) denoting the numbers of
customers at any other node characterizes the system state and |z| = 2N ;.
The arrival “frequency” A; at node 7 is uniquely defined by the equations:

)\i:Z)\jpﬁ, iZO,...,N,
J

with Y-, \; = 1. We still define p; = \;/u; for each node i =0,..., N.

Consider the Markov process X = {X;,t > 0} describing the evolution of the
numbers of customers at nodes 1,..., N. As the state space of X is reduced
to those vectors = such that |z| is less than or equal to M, X is necessarily
positive recurrent. The balance equations that an invariant measure 7 must
satisfy are simply

m(2) 3 ¢i(x)us = Y- w (T 2) i (T w) i, (9)

(]

with the convention T = T for i # 0, 7] = TV for j # 0, and T is the identity
operator. As for open networks, we say that a closed processor-sharing network



is a Whittle network if the capacities ¢y, ..., ¢n are balanced by a function ®.
We have the equivalent of Theorem 1, which can also be proved by verifying
that the measure 7 satifies the partial balance equations for each node i [24].

Theorem 3 For a closed irreducible Whittle network, an invariant measure

of X is
) al T M Po

From Theorem 3, any invariant measure of X depends on the routing proba-
bilities through the arrival frequencies Aq,..., Ay only. In addition, it can be
proved as in §4 that closed Whittle networks are insensitive to the distribu-
tion of service times. As for open networks, each of these properties character-
izes Whittle networks among closed processor-sharing networks. Theorem 4 is
proved in Appendix C. The proof of Corollary 3 is similar to that of Corollary
2.

Theorem 4 A closed irreducible processor-sharing network is a Whittle net-
work if and only if the invariant measures of X remain unchanged when at
any node i # 0 and for any a;, 0 < a; < 1, customers require an exponentially
distributed service of mean 1/a; x 1/u; with probability «;, a null service with
probability 1 — «.

Corollary 3 A closed irreducible processor-sharing network is a Whittle net-
work if and only if the invariant measures of X depend on the routing proba-
bilities through the arrival frequencies A1, ..., Ay only.

Finally, the performance results of §5 also apply in the context of closed net-
works, except that the effective arrival rate at any node ¢ is now given by:

>, () Or—a

where 6, denotes the normalization constant associated with the invariant
measure 7 given in Theorem 3 in the presence of M customers.

Similar results hold when routing is reducible. Denote by ¢i,...,cx the K
subsets of nodes such that routing is irreducible on each of these subsets.
Each set ¢ is visited by a fixed number of customers M. We assume that for
each k, the capacity of a particular node 7, € ¢; is a function ¢, of the number
of customers at this node only. This node will be referred to as the “source”
of set ¢x. The arrival frequency A; at any node ¢ of ¢, is uniquely defined by
the equations:
i =Y Nipji, i€ cp,
JECk

with e, Ai = 1. We define g, = A, /pi, and p; = A\i/p,; for i € ¢ \ .



Denote by N the number of nodes other than the sources, i.e., nodes in the
set Ug{ck \ ix}. The system state z = (zq,...,2y) is uniquely characterized
by the numbers of customers at these nodes only. If the capacities ¢, ..., ¢n
are balanced by a function ®, an invariant measure 7 of X is

K M’C*Zieck\ik Ti

oIl I I s (10)

i=1 k=1 nE=1

Theorem 4 and Corollary 3 still hold in this case. The performance results of

§5 also apply, except that the effective arrival rate at any node 7 of ¢ is given
by:

T(@)@i(@) i Onry, iy, M A

P 7r(x) 9M1, WMy —1,..., Mg
where 60y, ., denotes the normalization constant associated with the invari-
ant measure 7 given by (10) in the presence of M, ..., My customers visiting
the sets ¢y, ..., ck, respectively.

7 State-dependent arrival rates and routing

Another possible extension of the model is to consider state-dependent arrival
rates v;(x) and routing probabilities p;;(z) so as to represent blocking phe-
nomena for instance. Such networks have been studied in [10,17,18,22,23]. In
the following we give a necessary and sufficient condition for these networks
to be insensitive in the general case where the service capacities may be not
balanced. To our knowledge, it covers all insensitive networks considered so
far.

Remark 6 The class of insensitive processor-sharing networks with state-
dependent arrival rates and routing includes all restrictions of Whittle net-
works with reversible routing, i.e., such that \ip;; = \jpji for all i,j. This fol-
lows from the reversibility of the corresponding Markov process X [24]. Typical
examples are so-called loss networks [14].

We consider open networks only, though similar results hold for closed net-
works. Assume that for any state z, the following equations have a unique

solution Ay (), ..., An(x):

Ai(7) +Z>\ )p;i(T?z), i=1,...,N. (11)

We refer to p;(z) = \;j(x)/p; as the traffic intensity at node ¢ in state z. The
balance equations that an invariant measure 7 of the corresponding Markov
process X must satisfy are:

10



m(z) Z( i(7) + gi(w)ps) = ZW(EI)%(TM)

i

+ Z x)¢; (17 I)M]pﬂ(T T)+ Z )i (T"x) pipi (T ).

Theorem 1 and Proposition 2 can be generalized as follows. Let 1); be the
function defined by

pi(Tix)
¢i x) = ,  x; > 0.
(z) o1(2)
Theorem 5 Ifin,..., Yy are balanced, an invariant measure of X is given by

ﬂ-(x) = ¢Zl (I)¢ZZ( ) wln( In—1 " 'ﬂlx)7 where <I7ﬂ1x""7ﬂnfl E1I70>
15 any path of length n = Y,;x; from state x to state 0.

As for Theorem 1, the proof consists in verifying that the partial balance equa-
tions are satisfied for each node ¢ = 1,..., N. When the functions ¢, ..., ¥y
are balanced, 7(z) = 0 implies w(x 4+ y) = 0 for all y > 0. We thus implicitly
restrict the analysis to those states  such that w(z) > 0. A balance function
is then given by ¥ = 7!

Remark 7 If ¢1,...,¢n are balanced by ®, 1, ...,¢¥n are balanced by ¥ if
and only if pr(T1-), ..., pn(Tn+) are balanced by ® x V.

Proposition 8 Assume that the total capacity of two nodes, say 1 and 2,
depends on the numbers of customers present at these nodes through their
sum only and is equally shared between these customers, that is

hi(@) _ :(0) _ @) ¥ dole)
T T T4+ v .

Assume moreover that p1(T1x) + po(Tox) depends on xy,xy through their sum
only and that for some constants wy, ws,

p1(T1) _ p2(Tox) _ p1(Tiz) + pa(Tow)
w1 Wo w1 + Wo

,  x1,T2 > 0.

Then 1)y, . .., YN are balanced by V if and only if p(h Cf)z i qpsz(Tz ) , U3, .., YN

are balanced by \IJ, with

_ Ty + T2 wy “twy®? ~ —1
U(z)t = U(z + 29, T3, . . ., .
07 = (") S b + anraoy

Proof. The proof follows from the fact that

pl(Tl.%‘) _ 1+ T2 % w1 x pl(TliE) + pQ(TgiE)
1 (x) 1 wi+wy  Gi(T) + go(z)

T1,xe > 0. O

11



Applying the same reasoning as in §4, it follows from Proposition 8 that if the
functions 11, ...,¢¥y are balanced, any invariant measure of X is insensitive
to the distribution of service times (at least for Cox distributions). Conversely,
this insensitivity property implies the balance of the functions vy, ..., ¥y, as
shown by the following generalization of Theorem 2 proved in Appendix D.
Corollaries 1 and 2 can be generalized in the same way.

Theorem 6 The functions )y, ...,y are balanced if and only if the invariant
measure of X remain unchanged when at any node © and for any o;, 0 < o; <
1, customers require an exponentially distributed service of mean 1/c; X 1/,
with probability «;, a null service with probability 1 — «.

Theorem 6 allows to characterize insensitive processor-sharing networks with
state-dependent arrival rates and routing probabilities. When the Markov pro-
cess X is positive recurrent, the expected sojourn time of a customer at any
node is proportional to its required quantity of service. The proof follows from
Proposition 8 as in §5.

8 Application to communication networks

Processor-sharing networks provide a very useful and powerful tool to eval-
uate flow-level performance of communication networks. The model of §2 is
sufficiently general to represent any characteristics of real traffic, including
the fact that flows are generally generated within sessions, each session being
composed of an alterning series of flows and “think-time” [4,7]. Closed net-
works are appropriate for modeling access networks where the user population
is typically limited, while open networks can be used to model backbone net-
works where the user population is so large that sessions typically arrive as
Poisson processes. Applying the results of §4-6, it is possible to characterize
those bandwidth allocations that guarantee the insensitivity of network perfor-
mance to all traffic characteristics, including the distribution of the number of
flows per session, flow size and think-time duration distributions and possible
correlations between successive flows [7]. In this section we give two exam-
ples assuming for simplicity that flows arrive as Poisson processes, though the
derived results do not depend on this assumption.

8.1 A single link with multiple rate limits

Consider a single unit capacity link shared by N types of flow. Flows of type ¢
are characterized by a rate limit a; typically representing external constraints
such as the user’s modem speed. Let © = (z1,...,2y), where z; is the number

12



of ongoing flows of type i. The bandwidth ¢;(z) allocated to flows of type i
must satisfy the constraints:

S i) <1 and ¢i(z) <agpi, i=1,...,N.

rate limit al D bottleneck link

— -

v

rate limit a2 E

ongoing transfers

~

Fig. 1. A link with two distinct rate limits

The bandwidth allocation is insensitive if and only if the functions ¢; are
balanced. It can actually been shown that there is a unique efficient insensitive
allocation, i.e., such that

N N
> ¢i(z) = max(a.z,1), ax = aw;.
i=1 1=1

This allocation is characterized by the balance function ® defined by

1
®(z) =[] 57— ifaz<l1,

=oa; !

o= 5 (S ) (e i) (o o) W

otherwise, where A(z) = {y,y < z,a.y < 1,I(y) # 0} and I(y) denotes the
set of indices {j, a; +a.y > 1}. The stationary distribution of the number of
flows of each type immediately follows in view of Theorem 1. The resulting
throughput, defined as the ratio of the flow size to the mean flow duration, is
given by (7) for each type of flow.

Note that this insensitive allocation differs from the max-min allocation [5,6]
except when there is a single type of flow. The model then corresponds to a
multi-server processor-sharing queue which is indeed known to be insensitive
[4,11]. Figure 2 compares the throughput obtained with both allocations in
case of two rate limits a; = 0.5 and a, = 0.2 with respect to the overall traffic
intensity p; + po. The traffic intensity is the same for each type of flow. The
results for the max-min allocation are obtained by simulation with Poisson
flow arrivals and i.i.d. exponentially distributed flow sizes.

13
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Traffic intensity

Fig. 2. Throughput evaluation in case of two rate limits (a; = 0.5, as = 0.2)

8.2 Parallel links with adaptive routing

Consider a set of L parallel links of respective capacities C1, ..., . Flows of
mean size 1/p arrive according to a Poisson process of intensity A, generating
a traffic intensity p = A/u. Each flow is routed to one of the L links. Let
x = (z1,...,21), where x; is the number of ongoing flows on link i. We envisage
an adaptive routing, i.e., the routing decision is performed flow by flow and
depends on the network state [19]. Denote by v;(z) the resulting flow arrival
rate at link ¢ when the network is in state x: v;(z)/\ is the probability an
arriving flow is routed over link ¢ in state z. The traffic intensity at link 7 is
then given by p;(z) = v;(z)/ .

adaptive routing :@

Fig. 3. Parallel links with adaptive routing

Assume that a maximum of N; flows can be simultaneously served by link 7, so
that a minimum rate of C;/N; is guaranteed to all flows on this link. Assume
further that the routing decision is such that a flow is rejected if and only if
all links are saturated, that is

> wvi(z)/A=1, for all x such that z; < N; for some i.

i, T;<N;

In view of Theorem 6 and Remark 7, the routing algorithm is insensitive if and

14



only if the traffic intensities are balanced. With the previous assumptions, it
can be easily shown that such an insensitive routing algorithm is unique and
is characterized by:

(@) = i
Vi\r) =
=1 (Nj = )

J=1

(12)

An invariant measure of the corresponding Markov process X is then given
by:
W(I’) _ f:l(Nj _xj)
Nl—llfl,...,NL—IL :

We obtain the blocking probability:

p— 7T(N1,...,NL) . (13)

L E:Zi:o (21, ..., 2L)

Figure 4 compares the blocking probability obtained with different routing
strategies in case of two parallel unit capacity links with Ny = N, = 10.
“Static routing” refers to a non-adaptive strategy where half of the flows are
routed to one link, half to the other link. “Insensitive routing” refers to the
adaptative strategy defined by (12). “Greedy routing” refers to an adaptive
strategy where flows are routed to that link ¢+ with the highest potential rate
C;/(z;+1), as suggested in [19]. This routing algorithm is sensitive as it differs
from (12). The corresponding results are thus obtained by simulation using
Poisson flow arrivals and i.i.d.exponentially distributed flow sizes. Figure 4
shows that expression (13) provides an accurate and conservative estimation
of the resulting blocking probability.

0.1}
2
3 0.01 |
@
Q
<
o 0.001
(o))
£
X
8 0.0001 } ]
@ Static routing ——
Insensitive routing -
1e-05 ¢ /° Greedy routing ©
1e-06 L . . ‘
0.5 1 1.5 2 25 3

Traffic intensity

Fig. 4. Blocking probability for different routing strategies
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Appendix
A Proof of Theorem 2

Consider a processor-sharing network. In view of Remark 1, we can assume
without loss of generality that there is no feedback, that is p; = 0 for all 1 =
1,..., N. When the service required at node 1 is changed into an exponentially
distributed service of mean 1/a; x 1/p; with some probability «; > 0 or
a null service with probability 1 — «;, the state of the network is that of
the processor-sharing network defined by exogenous arrival rates 7y = viaq,
Ui = v; +v1(1 — aq)py; for @ # 1, service rates fi; = piaq, fi; = p; for i # 1,
and routing probabilities ]511' = P1i, ]5“ = P10y, ﬁij = Dij + pzl(]- — a/l)plj for
i, # 1. Now assume the original network is a Whittle network. Any invariant
measure 7 satisfies the partial balance equations (4)-(5). It can then be easily
verified that 7 also satisfies the partial balance equations (4)-(5) for the new
network.

Conversely, consider a processor-sharing network such that the corresponding
invariant measures remain unchanged when at node 1 and for any oy, 0 < a; <
1, customers require an exponentially distributed service of mean 1/a; x 1/
with probability a4, a null service with probability 1 — «;. Letting oy tend to
zero in the corresponding balance equations (1), we obtain

(@) Y (i) + v3) =

i
Yom(Tx)os + Y w(Tijx)di(Tiya) b + > w(T'x) i (T ) i,
i#l i,j#1 i#1

where 7; = v; + v1p1;, ﬁij = Dij + Pi1D1j and p; = 1 — Z]‘?I:l ﬁija 1,7 # 1. This
shows that for any fixed z1, m(xy,-) is an invariant measure for the processor-
sharing network consisting of nodes 2, ..., N only with state-dependent capac-
ities ¢o(z1,+),...,dn(21,-), which corresponds to the original network when
node 1 is removed. Note that some feedback may have been generated, which
can again be eliminated in view of Remark 1.

Now consider a processor-sharing network such that the corresponding invari-
ant measures remain unchanged when at any node¢ =1,..., N—1 and for any
a;, 0 < a; < 1, customers require an exponentially distributed service of mean
1/a; x 1/p; with probability «;, a null service with probability 1—c;. Applying

successively the previous property, we conclude that for any fixed zq, ..., xn_1,
7(x1,...,ZN_1,) IS an invariant measure for the processor-sharing network
consisting of node N only with state-dependent capacity dn(z1,...,2n_1,"),
which corresponds to the original network when nodes 1,..., N —1 are re-
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moved. The balance equations for this particular network are simply

m(z)(on (@) pn + D) =
m(Tna)oy + 7(2)pn (@) pnpan + 7T 2)pn (TV )y (1 = paw),

where pyy is the probability that a customer comes back at node N after
service completion and oy = Ay(1 — pyy). These are the balance equations
of a birth and death process. In particular, 7(z)¢y(z) = m(Tyz)pn. As all
nodes are equivalent, we conclude that

Thus the capacities ¢; are balanced by the function ® defined by

m(z)

N ;"
i=1 P

d(z) =

The considered network is a Whittle network.

B Proof of Corollary 2

Consider a processor-sharing network without feedback at any node. Assume
that the corresponding invariant measures depend on the exogenous arrival
rates and the routing probabilities through the effective arrival rates Ay, ..., Ay
only. For any fixed a;, with 0 < «a; < 1, these invariant measures remain
unchanged when the exogenous arrival rates are 7, = ayvy, ¥; = v; + 11 (1 —
ay)py; for i # 1, and the routing probabilities are p;; = 1 — ay, pi; = praa
and ]51'1 = P10 for ¢ # ]_, ]51']' = Pij +pzl(1 — al)plj for Z,] 7£ 1. It can
indeed be easily verified that the effective arrival rates remain unchanged
with these new exogenous arrival rates and routing probabilities. In view of
Remark 1, this new network corresponds to the original network where at node
1, customers require an exponentially distributed service of mean 1/aq x 1/
with probability «y, a null service with probability 1 — «;. The proof then
follows from Theorem 2.

C Proof of Theorem 4

Consider a closed Whittle network. We proved as for open networks that the
invariant measures of X remain unchanged when at any node i and for any
a;, 0 < «a; < 1, customers require an exponentially distributed service of
mean 1/q; x 1/p; with probability «;, a null service with probability 1 — «;.
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Conversely, consider a processor-sharing network which satisfies this prop-
erty. As in the proof of Theorem 2, we prove that for any fixed zq,...,zy_1,
w(x1,...,TN_1,-) is an invariant measure for the closed processor-sharing
network consisting of the source and node N with state-dependent capac-
ity ¢n(x1,...,2N_1,) only, which corresponds to the original network when
nodes 1,...,N — 1 are removed. The balance equations for this particular
network are simply

7(2)(¢o(z) o (1 — Poo) + on(x)un(1 — prn)) =
m(Tyx)do(Ty)po(1 — poo) + m(T™ &) pn (TN ) pun (1 — pvw),

where pog and pyn are the feedback probabilities at nodes 0 and N, respec-
tively. These are the balance equations of a birth and death process. Noting
that A\g/Ay = (1 — pPoo)/(1 — Pnn), we conclude that

m(x)pn (x)po = T(Tna)do(Tnz)pw-

As nodes 1,..., N are equivalent, we have
m(x)¢i(x)po = m(Tyx)do(Tix)ps, i=1,...,N.

Thus the capacities ¢, ..., ¢y are balanced by the function ® defined by

r(z) M (n
ey — 1) vl

N T;

The considered network is a Whittle network.

D Proof of Theorem 6

The proof is the same as that of Theorem 2, except that when the service
required at node 1 is changed into an exponentially distributed service of mean
1/ay x 1/py with some probability c; > 0 or a null service with probability
1 —ay, the new processor-sharing network is characterized by state-dependent
arrival rates 7y(x) = aiv(z) and 7;(z) = vi(z) + vi(z)(1 — aq)p(T'z) for
i # 1, service rates fiy = ajpu; and fi; = p; for i # 1, and state-dependent
routing probabilities py;(x) = p1;(x), pi1(z) = aupi(z) and p;;(z) = pij(x) +
pir(x)(1 — ar)py;(Tix) for i, j # 1.
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