
HAL Id: hal-01267144
https://hal.science/hal-01267144

Submitted on 4 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insensitive bandwidth sharing in data networks
Thomas Bonald, Alexandre Proutière

To cite this version:
Thomas Bonald, Alexandre Proutière. Insensitive bandwidth sharing in data networks. Queueing
Systems, 2003. �hal-01267144�

https://hal.science/hal-01267144
https://hal.archives-ouvertes.fr


Insensitive bandwidth sharing in data networks∗

T. Bonald and A. Proutière
France Telecom R&D

38-40, rue du Général Leclerc
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Abstract

We represent a data network as a set of links shared by a dynamic number of competing flows.
These flows are generated within sessions and correspond to the transfer of a random volume of data
on a pre-defined network route. The evolution of the stochastic process describing the number of flows
on all routes, which determines the performance of the data transfers, depends on how link capacity
is allocated between competing flows.

We use some key properties of Whittle queueing networks to characterize the class of allocations
which are insensitive in the sense that the stationary distribution of this stochastic process does not
depend on any traffic characteristics (session structure, data volume distribution) except the traffic
intensity on each route. We show in particular that this insensitivity property does not hold in
general for well-known allocations such as max-min fairness or proportional fairness. These results are
ilustrated by several examples on a number of network topologies.

1 Introduction

The majority of traffic in current data networks is elastic. Traffic is composed of flows transporting digital
documents of one form or another and the rate of these flows adjusts with respect to the congestion
level, typically under the control of TCP [13]. In practice, the rate of a flow does not only depend on
the capacity of links on its path and the number of competing flows in progress, but on many other
parameters including the version of TCP used by the sources and the scheduling and buffer management
schemes implemented in network nodes. However, to gain insight into the performance of data networks
it is useful to make some simplifying assumptions with regard to the way bandwidth is shared.

1.1 Utility-based allocations

The way bandwidth is shared in current data networks or should be shared in future data networks
has been the subject of considerable recent research. Max-min fairness, where the rate of individual
flows is made as equal as possible [3], has long been stated as an ideal objective. Kelly, in particular,
has questioned this accepted wisdom and suggests bandwidth should be allocated in order to maximize
some overall utility, where the utility of an individual flow is a function of its rate only. The notion of
proportional fairness was introduced and shown to be realized by a certain distributed congestion control
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algorithm [16]. In line with this approach, a number of studies have identified the utility function that
corresponds to the allocation realized by TCP or some idealized version of TCP [15, 17, 18, 19, 21, 23]. It
turns out that max-min fairness may also be viewed as a utility-based allocation with a particular limit
definition of per flow utility [23].

Network utility in the above mentioned studies is determined in a static scenario, i.e., with a fixed
number of permanent flows. Flows do not last indefinitely in practice. Each flow corresponds to the
transfer of a finite volume of data (referred to as the flow size) and ceases when the transfer is completed.
The evolution of the number of flows in progress clearly depends on the way new flows are generated,
their sizes, and the way bandwidth is shared between competing flows. In particular, the fact that an
allocation is optimal in the sense of some utility function in a static scenario does not necessarily imply
that this allocation is optimal in a dynamic scenario. The allocation may well lead to a steady state
where overall utility is low. For instance, maximizing the mean flow rate in some network topologies
may lead to instability under the usual traffic conditions in the sense that the number of flows increases
indefinitely [4]. In this case, allocating link capacities to maximize the mean flow rate in a static scenario
in fact minimizes the mean flow rate in a dynamic scenario since the latter is zero in steady state. This
example illustrates the fact that bandwidth sharing objectives cannot reasonably be defined without
taking flow-level dynamics into account.

The study of flow-level dynamics in data networks proves difficult in general, even for the simplest
network topologies [11]. Prior to the present work, explicit performance results were only available for
proportional fairness in homogeneous “lines” and “grids” [4]. We prove here that, except for proportional
fairness in so-called homogeneous “hypercubes” (the multi-dimensional generalization of lines and grids),
utility-based allocations are sensitive in the sense that the steady state distribution depends on detailed
traffic characteristics. This notably explains why the analysis of flow-level dynamics is so hard for
these allocations. It also suggests that these allocations are unlikely to be optimal in any sense that
is independent of the detailed traffic characteristics such as the flow arrival process and the flow size
distribution.

1.2 Insensitive allocations

The above observation leads to the following question: is it possible to define an allocation which is
insensitive in the sense that the steady state distribution does not depend on any traffic characteristics
except the traffic intensity on each network path? Such an insensitivity property is the key to simple
and robust performance results. Network provisioning rules can then be developed based on traffic
intensity forecasts only, independently of the complex traffic structure which is continually evolving as
new applications emerge. The practical value of insensitivity is best illustrated by the enduring success
of Erlang’s loss formula in telephone networks [10]. This formula gives the proportion of calls that are
blocked as a simple function of capacity and traffic intensity, independently of the distribution of call
durations. The only required assumption is that calls arrive as a Poisson process, which is verified in
practice as calls are generated independently by a large number of users. This insensitivity property
explains why Erlang’s formula is still used for dimensioning current telephone networks, despite the fact
that telephone traffic characteristics have changed considerably since Erlang’s publication in 1917.

The first insensitivity result for elastic traffic was given in [20] for a single bottleneck whose capacity
is fairly shared between flows in progress. The underlying model is the processor-sharing queue. In
particular, assuming Poisson arrivals of flows with i.i.d. sizes, the distribution of the number of flows in
progress in steady state is insensitive to the flow size distribution. In fact, flows do not arrive as a Poisson
process in data networks. Flows form part of sessions, each session being composed of a succession of
flows separated by an interval of inactivity generally referred to as a “think-time”. A typical example
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is the succession of Web pages downloaded by a user in a period of continuous activity. The resulting
flow arrival process may be strongly correlated, depending on the number of flows in a session and the
distribution of successive flow sizes and think-time durations [6, 24]. It turns out that the steady state
distribution is in fact insensitive to this correlation, provided we assume that sessions arrive as a Poisson
process. This was proved in [2, 6] using key properties of Kelly queueing networks [14]. The Poisson
assumption is reasonable when sessions are generated by a large number of users and has indeed been
verified in practice [24]. This insensitivity result still holds when flow rates are all limited by a common
fixed constraint referred to as the access rate [2, 6]. The corresponding model is a symmetric queue [14]
for which the same arguments indeed apply.

The objective of the present paper is to extend the insensitivity result to any network topology
and any access rate contraints (not necessarily the same for all flows). Using key properties of Whittle
queueing networks [5, 25], we characterize the class of insensitive allocations and derive explicit results
which determine their performance. These allocations differ in general from utility-based allocations.
They could be used as bandwidth sharing objectives to be realized by future packet-level mechanisms.
However, it is also expected that the performance of these allocations is close to that of the allocations
realized by existing packet-level mechanisms such as the congestion control algorithms of TCP. The
derived formulas and the resulting insight could then be used to define engineering guidelines for data
networks equivalent to those developed for the telephone networks over the years since the discovery of
Erlang’s formula.

1.3 Outline

In the next section we describe the considered flow-level model. In Section 3 we characterize the class
of insensitive allocations and present key properties satisfied by these allocations. It is demonstrated
in Section 4 that this class does not contain utility-based allocations, with the notable exception of
proportional fairness in homogeneous “hypercubes”. These results are illustrated on a number of network
topologies in Section 5. Section 6 concludes the paper.

2 Flow-level modeling of data networks

In this section, we introduce a generic flow-level model of data networks. We then show how this model
can be represented by a processor-sharing queueing network with state-dependent service capacities, with
virtually any traffic characteristics.

2.1 Network model

We represent a data network as a set of links L = {1, . . . , L} where each link l ∈ L has a capacity Cl > 0.
A random number of flows compete for access to these links. Each flow is characterized by a volume of
information to be transferred (referred to as the flow size) on a route consisting of a set of links. The
flows are “elastic” in the sense that their duration depends on their rate which varies as new flows begin
and others cease. Specifically, a flow of size s arriving at time tstart on route r is completed at time tend

given by:

s =
∫ tend

tstart

c(t)dt,

where c(t) denotes the flow rate at time t, i.e., the capacity allocated to this flow on each link of route r
at time t, tstart ≤ t ≤ tend. This rate is limited by the capacity Cl of each link l ∈ r that is shared between
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all flows in progress on route r and on other routes containing link l. It may additionally be constrained
by a fixed maximum limit representing external constraints such as the user’s access line.

Capacity allocation. We consider K classes of flow in this data network. Each class k is characterized
by a route rk consisting of a non-empty set of links and a per-flow rate limit ak > 0 we refer to as the
“access rate”. We adopt the convention that either ak < minl∈rk

Cl, in which case the access rate is
limiting, or ak = ∞. We denote by x = (x1, . . . , xK) the network state, where xk is the number of flows
of class k in progress. It is assumed that the total capacity φk allocated to flows of class k is equally
shared between these flows and depends on the network state x only. The allocation must satisfy the
capacity constraints:

∑

k:l∈rk

φk(x) ≤ Cl, l = 1, . . . , L, and φk(x) ≤ xkak, k = 1, . . . , K. (1)

The allocation is said to be Pareto-efficient if for any state x and any class k such that xk > 0, there
exists a saturated link l on route rk or the rate of each flow of class k is maximum, i.e.,

∃l ∈ rk,
∑

k′:l∈rk′

φk′(x) = Cl or φk(x) = akxk. (2)

Traffic conditions. The evolution of the network state x does not only depend on the way capacity is
allocated between flows in progress but on traffic characteristics, i.e., on the way new flows are generated
and on the distribution of their size. The traffic characteristics considered in this paper are quite general
and described in detail in §2.3-2.4. It is sufficient at this stage to assume that the marked point process of
flow arrivals of each class, with marks corresponding to the flow sizes, is stationary and ergodic. Denote
by ρk the traffic intensity of class k. This corresponds to the mean volume of information offered by flows
of class k per unit of time. We refer to the usual traffic conditions as the inequalities:

∑

k:l∈rk

ρk < Cl, l ∈ L. (3)

It is worth noting that the Pareto-efficiency of an allocation is not sufficient to ensure network stability
under the usual traffic conditions. Specifically, there are Pareto-efficient allocations for which the total
number of flows tends to infinity from any initial state although the inequalities (3) are satisfied [4]. The
issue of defining stability conditions is still largely open except for some specific allocations and under
restrictive assumptions on traffic characteristics [4, 9].

User performance. Users perceive performance essentially through the mean time necessary to trans-
fer a document. In the following, we evaluate performance in terms of throughput, defined as the ratio of
the mean flow size to the mean flow duration in steady state. Assuming network stability and applying
Little’s formula [1], the throughput of flows of any class k is related to the expected number of flows of
class k in steady state through the relationship:

γk =
ρk

E[xk]
. (4)

In the simplest case where the network reduces to a single link of capacity C and a single class of traffic
intensity ρ without limiting access rate, the corresponding model is the processor-sharing queue (provided
the allocation is Pareto-efficient). For the general traffic characteristics described in §2.3-2.4 and under
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the usual traffic condition ρ < C, the number of flows has a geometric distribution of mean ρ/C in steady
state [2]. Thus the flow throughput γ is simply given by:

γ = C − ρ. (5)

2.2 A processor-sharing queueing network

We now introduce an open queueing network of processor-sharing nodes with state-dependent service
capacities. We show in §2.3-2.4 that this queueing network can represent the data network described in
§2.1 with virtually any traffic characteristics (arbitrary flow size distribution, correlated arrivals of flows
within sessions, etc). The queueing network consists of N processor-sharing nodes with state-dependent
capacities, that is, the capacity (or speed) ψi of node i depends on the state y = (y1, . . . , yN ), where yi

is the number of customers in node i. We only assume that ψi(y) > 0 if and only if yi > 0. Exogenous
arrivals at node i form a Poisson process of rate νi. The services required at node i are exponential i.i.d.
of mean 1/µi. After service completion at node i, a customer moves to node j with probability pij and
leaves the network with probability pi ≡ 1−

∑
j pij . We assume that each customer eventually leaves the

network, so that the effective arrival rate λi at node i is uniquely defined by the equations:

λi = νi +
∑

j

λjpji, i = 1, . . . , N.

We denote by ϱi = λi/µi the traffic intensity at node i. The stochastic process Y = {Yt, t ≥ 0} that
describes the evolution of the number of customers at each node is an irreducible Markov process.

2.3 Poisson flow arrivals

Consider the data network of §2.1 where flows of each class arrive as an independent Poisson process. This
may be represented by the above considered processor-sharing queueing network, where each customer
corresponds to an ongoing flow in case of exponential flow size distributions, or to a phase of an ongoing
flow in case of phase-type flow size distributions.

Exponential flow size distribution. If flows have exponential i.i.d. sizes, the corresponding processor-
sharing queueing network has N = K nodes and no routing, i.e., pij = 0 for all nodes i, j. The service
capacity ψi of node i represents the total capacity φi allocated to flows of class i, which is equally shared
between these flows. A simple example is given in Figure 1.

Figure 1: A data network represented as a processor-sharing queueing network
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Phase-type flow size distribution. Measurements of the size of flows in real data networks show
that their distribution is not exponential but typically much more variable [8]. The considered queueing
network allows phase-type distributions, which are known to form a dense subset within the set of all
distributions of nonnegative random variables. A phase-type distribution for flows of class k can be
represented simply by a set of consecutive nodes Sk ⊂ {1, . . . , N} such that νi > 0 for the first node
i ∈ Sk only, and for any node i ∈ Sk, pij = 0 for all nodes j except for j = i + 1, if i + 1 ∈ Sk (refer to
Figure 2). As each node i ∈ Sk represents a phase of flows of the same class k and the capacity φk(x)
allocated to flows of class k is fairly shared between these flows, we have

ψi(y) =
yi

xk
φk(x), with xk =

∑

i∈Sk

yi.

The traffic intensity of flows of class k is given by:

ρk =
∑

i∈Sk

ϱi.

21 3 4

Figure 2: A 4-phase distribution of flow sizes

2.4 Poisson session arrivals

As mentioned in Section 1, flows do not arrive as independent Poisson processes in data networks. They
are typically generated within sessions, each session being composed of a succession of flows separated by
an interval of inactivity which we call “think-time”. Again, the considered processor-sharing network is
sufficiently general to account for this complex structure of traffic, provided sessions arrive as a Poisson
process and think-time durations do not depend on the network state (as opposed to flow durations).

Exponential flow size and think-time duration distributions. We first consider the case where
successive flow sizes and think-time durations are all exponentially distributed. Think-times can simply
be represented by infinite-server nodes, i.e., those nodes i in the set S0 ⊂ {1, . . . , N} such that:

ψi(y) = yi. (6)

We still denote by Sk ⊂ {1, . . . , N} the set of nodes representing flows of class k, i.e., such that:

ψi(y) =
yi

xk
φk(x), xk =

∑

i∈Sk

yi. (7)

A session can then be represented as a random walk of a customer in an alterning series of nodes in the
sets Sk, k ̸= 0, and in the set S0. That is, for any node i ̸∈ S0, we have pij = 0 for all nodes j ̸∈ S0,
and for any node i ∈ S0, we have pij = 0 for all nodes j ∈ S0. We assume without loss of generality that
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νi = 0 and pi = 0 for all nodes i ∈ S0, which means that a session necessarily starts and ends with a flow
(and not a think-time). Again, the traffic intensity of flows of class k is simply given by:

ρk =
∑

i∈Sk

ϱi. (8)

1 2

543

think time

Figure 3: Example of two types of session, composed of two and three flows, respectively

It is worth noting that the distribution of the number of flows per session may be perfectly general.
Successive flow sizes and think-time durations may also be correlated. Figure 3 gives an example of
two types of session, composed of two and three flows, respectively. The mean flow sizes may well be
higher for the first type of session for instance. In fact, arbitrary correlations between successive flow
sizes and think-time durations may be represented by considering as many session types as necessary and
introducing phase-type distributions.

Phase-type flow size and think-time duration distributions. As in §2.3, assume now that each
node represents a phase of a flow or a think-time (and not the flow or the think-time itself). We still
denote by S0 the set of nodes representing think-times, satisfying (6), and Sk the set of nodes representing
flows of class k, satisfying (7). Assume without loss of generality that successive phases of the same flow
or think-time consist of consecutive nodes. A session with phase-type distributions of flow sizes and
think-time durations can be represented as a random walk such that any visit of a customer to a node
i ∈ Sk, k ̸= 0, can be followed by a visit to the node i + 1 ∈ Sk if this node corresponds to a new phase
of the same flow, or a visit to a node j ∈ S0 representing the first phase of a think-time. Similarly, any
visit to a node i ∈ S0 can be followed by a visit to the node i + 1 ∈ S0 if this node corresponds to a new
phase of the same think-time, or a visit to a node j ̸∈ S0 representing the first phase of a new flow of
the same session. The exogenous Poisson processes correspond to new sessions. Specifically, those nodes
i ̸∈ S0 such that νi > 0 correspond to the first phase of the first flow of a session. The traffic intensity of
flows of class k is still given by (8).

3 Insensitive allocations

We now characterize those capacity allocations for which the steady state is insensitive to the above
described traffic characteristics. Specifically, we prove in Theorem 1 that the insensitivity property is
equivalent to three milder forms of insensitivity, which all imply the balance property. We then give key
properties of these allocations and introduce the notion of “balanced fairness”.

3.1 Balance property

Let ek be the unit vector with 1 in component k and 0 elsewhere, for k = 1, . . . , K.

7



Definition 1 (Balance property) The capacities φ1, . . . , φK are said to be balanced if:

φk(x)φk′(x − ek) = φk′(x)φk(x − ek′), ∀k, k′ ∀x such that xk > 0 and xk′ > 0.

Let ⟨x, x−ek1 , . . . , x−ek1 − . . .−ekn−1 , 0⟩ be a direct path from state x to state 0, i.e., a path of length
n where n ≡

∑
k xk is the number of flows in state x. The balance property implies that the expression

Φ(x) =
1

φk1(x)φk2(x − ek1) . . . φkn(x − ek1 − . . . − ekn−1)
, (9)

is independent of the considered direct path. In particular, the capacities are uniquely characterized by
the positive function Φ, referred to as the balance function:

φk(x) =
Φ(x − ek)

Φ(x)
, ∀k,∀x such that xk > 0. (10)

Conversely, if there exists a positive function Φ such that the capacities satisfy (10), it can be easily
verified that these capacities are balanced. We say that the capacities are balanced by Φ.

Remark 1 The balance property may be interpreted as the fact that the relative change in the capacity
allocated to class k when a flow of class k′ is removed is the same as the relative change in the capacity
allocated to class k′ when a flow of class k is removed, i.e.,

φk(x − ek′)
φk(x)

=
φk′(x − ek)

φk′(x)
, ∀x such that xk > 0 and xk′ > 0.

3.2 Sufficient condition for insensitivity

Consider an allocation for which the balance property holds. The processor-sharing queueing network
introduced in §2.2 can represent virtually any traffic characteristics, provided session arrivals form in-
dependent Poisson processes. In view of (6) and (7), it may be readily verified that the corresponding
service capacities ψ1, . . . , ψN are balanced by the function Ψ defined by:

Ψ(y) =
∏

i∈S0

1
yi!

× Φ(x)
K∏

k=1

(
xk

yi, i ∈ Sk

)
.

The processor-sharing network is then a so-called Whittle network [25]. An invariant measure χ of the
corresponding Markov process Y is simply given by1:

χ(y) = Ψ(y)
N∏

i=1

ϱyi
i . (11)

Summing this expression over all states corresponding to xk flows of class k, we obtain in view of (8):

ϕ(x) ≡
∑

y:
∑

i∈Sk
yi=xk

χ(y) =
∏

i∈S0

eϱi × Φ(x)
K∏

k=1

ρxk
k (12)

Thus the invariant measures of the number of flows of each class are insensitive to any traffic characteristics
(flow size distribution, distribution of the number of flows per session, correlation between successive
flow sizes and think-time durations, etc) except the traffic intensities ρ1, . . . , ρK . This is actually a direct
consequence of the well-known insensitivity of Whittle networks [25]. We conclude that the balance
property indeed implies insensitivity.

1This measure may be of infinite sum, in which case the Markov process Y is transient or null recurrent.
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3.3 Necessary condition for insensitivity

A key result of the present paper is that the converse is also true: an allocation for which the invariant
measures of the number of flows of each class are insensitive to any traffic characteristics except the traffic
intensities ρ1, . . . , ρK is balanced. In fact, each of the following milder forms of insensitivity implies the
balance property:

(I1) Insensitivity to the flow size distribution: For Poisson flow arrivals and i.i.d. flow sizes, the in-
variant measures of the process describing the number of flows of each class remain unchanged when
for any class, the exponential distribution of flow sizes is replaced by any phase-type distribution
with the same mean.

(I2) Insensitivity to the flow arrival process: For exponential i.i.d. flow sizes, the invariant mea-
sures of the process describing the number of flows of each class remain unchanged when for any
class, the Poisson flow arrivals are replaced by Poisson session arrivals with the same flow arrival
rate.

(I3) Time-scale insensitivity: For Poisson flow arrivals and exponential i.i.d. flow sizes, the invariant
measures of the process describing the number of flows of each class remain unchanged when for
any class, flow inter-arrival times and flow sizes are multiplied by the same constant.

Theorem 1 Any allocation that satifies one of the properties (I1), (I2), (I3) is balanced.

The proof of Theorem 1, given in Appendix A, directly follows from the necessary condition for
insensitivity in processor-sharing networks proved in [5]. In view of §3.2, all three insensitivity properties
above are equivalent.

3.4 Properties of insensitive allocations

In view of previous results, there exists a continuum of insensitive allocations, each characterized by a
positive function Φ according to (10). In view of the capacity constraints (1), this function must satisfy
the following inequalities in any state x:

∑

k:l∈rk

Φ(x − ek)
Φ(x)

≤ Cl, l = 1, . . . , L, and
Φ(x − ek)

Φ(x)
≤ xkak, k = 1, . . . , K. (13)

From (12), the invariant measures of the number of flows of each class are insensitive to any traffic
characteristics except the traffic intensities ρ1, . . . , ρK , and proportional to:

ϕ(x) = Φ(x)
K∏

k=1

ρxk
k . (14)

This corresponds to an invariant measure of the Markov process X = {Xt, t ≥ 0} describing the evolution
of the number of flows of each class for Poisson flow arrivals and exponential i.i.d. flow sizes.

Stability. The Markov process X is positive recurrent if and only if:
∑

x

ϕ(x) < ∞, (15)
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in which case it has the stationary distribution:

π(x) ≡ lim
t→∞

Pr(Xt = x) =
ϕ(x)∑
x′ ϕ(x′)

. (16)

Proposition 1 The traffic conditions (3) are necessary for the Markov process X to be positive recurrent.

Proof. Assume that
∑

k:l∈rk
ρk > Cl for some link l. In view of the capacity constraints (13), we have:

Φ(x) ≥ 1
Cl

∑

k:l∈rk

Φ(x − ek).

Let X be the set of states x such that xk = 0 for all k such that l ̸∈ rk. It follows from the previous
inequality that for any state x ∈ X with n =

∑
k xk flows, the expression Φ(x)Cn

l is larger than the
number of paths of length n from state x to state 0, i.e.,

Φ(x) ≥
(

n

xk, l ∈ rk

)
1

Cn
l

.

Thus the invariant measure ϕ given by (14) satisfies:

∑

x∈X
ϕ(x) ≥

∞∑

n=0

(∑
k:l∈rk

ρk

Cl

)n

= ∞.

The Markov process X is not positive recurrent. ✷

We prove in §3.5 that for the insensitive allocation referred to as “balanced fairness”, the stability
condition (15) holds if and only if the usual traffic conditions (3) are satisfied.

Performance. Assume that stability condition (15) holds. The mean number of flows of class k in
steady state is then given by:

E[xk] =
∑

x

xkπ(x).

The throughput of flows of class k then follows from (4). It is worth noting that flow throughput does not
depend on any flow characteristics (position in the session, flow size, etc) except the class of the flow. This
follows from the fact that, whatever the considered subclass of flows of a given class k (e.g., the second
flows of class k of a given type of session, or those flows of class k that have a given size distribution),
which can be represented simply by a subset of nodes Sk, the flow throughput of this subclass is equal
to the flow throughput of class k:

Proposition 2 For any processor-sharing network described in §2.2 satisfying (6), (7), (8), we have:

γk ≡
∑

i∈Sk
ϱi∑

i∈Sk
E[yi]

=
∑

i∈Ik
ϱi∑

i∈Ik
E[yi]

, ∀Ik ⊂ Sk, Ik ̸= ∅.

Proof. It follows from (11) and (12) that for all i ∈ Sk:

E[yi] =
∑

y yiΨ(y)
∏

i′ ϱ
yi′
i′∑

y Ψ(y)
∏

i′ ϱ
yi′
i′

= ϱi

∑
x xkΦ(x)ρxk−1

k

∏
k′ ̸=k ρ

xk′
k′

∑
x Φ(x)

∏
k′ ρ

xk′
k′

=
ϱi

ρk
E[xk].

It is then sufficient to sum this equality over all i ∈ Ik. ✷
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Remark 2 It follows from Proposition 2 that the mean duration of a flow is proportional to its size. It
is sufficient to consider as many nodes as necessary to approximate a deterministic flow size distribution
(cf. §2.3) and to apply Proposition 2 to this subset of nodes. Equivalently, the property follows from the
fact that the mean sojourn time of a customer in any node of a Whittle network is proportional to its
service time [5, 22].

3.5 Balanced fairness: the most efficient insensitive allocation

Most insensitive allocations are inefficient in the sense that link capacities are not fully allocated. In
fact, there is a unique insensitive allocation for which in any state x ̸= 0, a network link is saturated or a
flow rate limit constraint is attained. In view of (13), the corresponding balance function Φ is recursively
defined by Φ(0) = 1 and:

∀x ̸= 0, Φ(x) = max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk,xk>0

Φ(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
Φ(x − ek)

}⎞

⎠ . (17)

We refer to this allocation as “balanced fairness”. Note that the recursive expression (17) provides a way
to evaluate numerically the corresponding balance function for any network topology. In Section 5, we
give a number of examples where the balance function has a closed-form expression.

Remark 3 Any insensitive and Pareto-efficient allocation necessarily coincides with balanced fairness.
In particular, if balanced fairness is not Pareto-efficient on a given network, this implies that there is no
insensitive and Pareto-efficient allocation for this network (cf. the example of hypercycles in §5.3).

In view of (14), an invariant measure of the number of flows of each class is given by:

ϕ(x) = Φ(x)
K∏

k=1

ρxk
k . (18)

A key property of balanced fairness is that the stability condition (15) holds if and only if the usual
traffic conditions (3) are satisfied. The proof of Theorem 2 is given in Appendix B.

Theorem 2 The stability condition (15) holds for balanced fairness if and only if the usual traffic con-
ditions (3) are satisfied.

4 Utility-based allocations

In view of Theorem 1, the insensitive allocations are those for which the balance property holds. In this
section, we prove that utility-based allocations do not satisfy the balance property, except for proportional
fairness in homogeneous “hypercubes”.

4.1 Fair allocations

As mentioned in Section 1, most allocations considered so far in the literature are based on the notion of
utility. Assume the utility of a flow is an increasing and strictly concave function U of its rate. A unique
allocation is then defined by maximizing the overall utility:

K∑

k=1

xkU

(
φk(x)

xk

)
, (19)
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under the capacity constraints (1). We say that these allocations are “fair” in the sense that the utility
function U is the same for all classes of flow. In particular, it follows from the Kuhn-Tucker Theorem
that the capacity allocated to flows that share the same “constraining” links (in the sense that the
corresponding Lagrange multipliers are positive) is fairly shared between these flows.

The allocation associated with the log utility function is known as proportional fairness [14]. Another
example is the range of allocations associated with the power functions U = (·)α, where the parameter α,
α < 1, α ̸= 0, captures the trade-off between efficiency (in terms of overall allocated capacity

∑K
k=1 φk(x))

and fairness. Specifically, the allocation maximizes the overall capacity when α → 1 and tends to max-
min fairness when α → −∞ [23]. For convenience, we also refer to max-min fairness as a utility-based
allocation.

Remark 4 Utility-based allocations are Pareto-efficient. In view of Remark 3, a utility-based allocation
which is insensitive coincides with balanced fairness.

Proportional fairness has been shown to be insensitive to the flow size distribution in homogeneous
“lines” and “grids”, for Poisson flow arrivals and i.i.d. sizes [4]. In view of Theorem 1 and Remark 4, it
thus corresponds to balanced fairness on these network topologies. More generally, proportional fairness
coincides with balanced fairness in homogeneous “hypercubes”, the multi-dimensional extension of “lines”
and “grids” (see Proposition 4 below). A key result of this paper is that this is actually the only network
topology for which there exists an insensitive utility-based allocation. The proof of Theorem 3 below is
given in Appendix C. The considered networks are implicitly assumed to be connected in the sense that
for any non-empty subset L′ of L, L′ ̸= L, there exists a route containing a link in L′ and a link in L\L′.
In addition, all links are assumed to be limiting in the sense that removing any link changes the set of
feasible allocations defined by the capacity constraints (1). A network is said to be homogeneous if all
(limiting) links have the same capacity.

Theorem 3 Consider a network for which a utility-based allocation is insensitive:

• If there is at least one limiting access rate, the network reduces to a single link and a single class.

• If there is no limiting access rate, the network is a homogeneous hypercube and the allocation is
that realized by proportional fairness.

Note that, as proportional fairness and max-min fairness differ in homogeneous hypercubes, max-min
fairness is sensitive for any network topology not reduced to a single link. If the network reduces to a
single link, all flows must have the same access rate. This corresponds to the case of a single bottleneck
with a common access rate considered in [2, 6]. All utility-based allocations coincide with balanced
fairness in this case. In the presence of different access rates, all utility-based allocations are sensitive.
Bandwidth must be shared according to balanced fairness to preserve insensitivity (cf. §5.4).

4.2 Discriminatory allocations

Assume now that a class of flows is not determined by an access rate ak and a route rk only, but also by
a fixed weight wk > 0. As the function wkU(·/wk) is increasing and strictly concave, a unique allocation
is defined by maximizing the overall utility:

K∑

k=1

xkwkU

(
φk(x)
xkwk

)
, (20)
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under the capacity constraints (1). We refer to such an allocation as “discriminatory” as soon as at least
two classes have different weigths. The allocation associated with the log utility function U is known
as weighted proportional fairness [16]. It can be shown in a very similar way to [23] that the allocation
associated with the power function U = (·)α tends to weighted max-min fairness [21] when α → −∞.
More generally, it follows from the Kuhn-Tucker Theorem that the capacity allocated to flows that share
the same “constraining” links (in the sense that the corresponding Lagrange multipliers are positive) is
shared in proportion to their weights. For a single link in the absence of access rate, the corresponding
model is the so-called discriminatory processor-sharing queue [12].

Proposition 3 Discriminatory allocations are sensitive.

Proof. Consider a link l that belongs to at least two routes, say routes r1, r2, such that the corresponding
classes have different weights, w1 ̸= w2. Denote by K the set of classes k such that route rk contains link
l. As link l is limiting, there exists a state x, with xk = 0 for all k ̸∈ K and xk > Cl/ak for all k ∈ K,
such that:

∀k ∈ K,
xkwk∑

k′∈K xk′wk′
Cl < min

l′∈rk,l′ ̸=l
Cl′ .

For any utility function U , it follows from the Kuhn-Tucker Theorem that link l is the only saturated
link in state x and:

∀k ∈ K, φk(x) =
xkwk∑

k′∈K xk′wk′
Cl.

By choosing x1 and x2 sufficiently large, we can assume that this expression still holds in states x − e1

and x − e2. In particular,

φ1(x)
φ1(x − e2)

= 1 − w2∑
k∈K xkwk

̸= 1 − w1∑
k∈K xkwk

=
φ2(x)

φ2(x − e1)

The balance property is violated. The proof then follows from Theorem 1. ✷

Discriminatory allocations are advocated as a means for realizing service differentiation [7]. Users pay
more for a higher weight and expect a better quality of service. Proposition 3 suggests, however, that
the degree of service differentiation is difficult to control since sensitive to detailed traffic characteristics.
It turns out that these allocations are approximately insensitive provided the ratio maxk wk/mink wk is
not too high [4]. But the service differentiation is then not significant. In case of priorities, i.e., when the
ratio maxk wk/mink wk tends to infinity, the sensitivity is strong and the service differentiation difficult
to control [4]. This calls into question the use of discriminatory allocations as an efficient means for
realizing service differentiation in data networks.

5 Application to specific network topologies

In this section, we give the allocation realized by balanced fairness on a number of network topologies and
compare the resulting performance with that of max-min fairness. Specifically, the balance function (17)
associated with balanced fairness is evaluated explicitly when it has a closed-form expression. Note that
the stationary distribution of the number of flows of each class follows immediately in view of (14)-(16) and
Theorem 2. The flow throughput is then given by (4). As max-min fairness is sensitive, the corresponding
performance results are obtained by simulation with Poisson flow arrivals and i.i.d. exponential flow sizes
of unit mean, unless otherwise specified. Note that the corresponding Markov process describing the
number of flows of each class is positive recurrent under the usual traffic conditions [9]. Unless otherwise
specified, we assume that there is no limiting access rate.
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5.1 Lines, grids and hypercubes

Lines and grids shown in Figure 4 have already been considered in [4]. These are actually hypercubes of
dimension n = 2, according to the following definition.

Definition 2 (Hypercube) A hypercube of dimension n is a network of n sets of route, referred to as
directions, such that the set of links is the set of intersections of n routes of different directions.

Figure 4: Examples of a line (left) and a grid (right)

Note that a hypercube of dimension n = 1 just consists of a single link. Consider a hypercube of
dimension n ≥ 2 with unit capacity links. Denoting by D1, . . . ,Dn the corresponding directions, we get:

Φ(x) =
( ∑

k xk∑
rk∈D1

xk, . . . ,
∑

rk∈Dn
xk

)
.

It may indeed be easily be verified that this function satisfies (17) in any state x.

Proposition 4 Proportional fairness coincides with balanced fairness in homogeneous hypercubes.

Proof. Let r1 ∈ D1, . . . , rn ∈ Dn. It can be easily verified that for any Pareto-efficient allocation, all
links are saturated and all routes that belong to the same direction receive the same bandwidth, so
that

∑n
i=1 φi(x) = 1 for unit capacity links. The bandwidth allocation realized by proportional fairness

maximizes the function:
n∑

i=1

∑

k∈Di

xk log
(

φi(x)
xk

)
.

We obtain for any directions i, j: ∑

k∈Di

xk

φi(x)
=

∑

k∈Dj

xk

φj(x)
,

so that

φi(x) =
∑

k∈Di
xk∑

k xk
.

The result then follows from (10). ✷

Figure 5 compares the performance results obtained with balanced fairness and max-min fairness for a
line of L = 5 unit capacity links. The traffic intensity is the same on each route. The “short” route refers
to any single link route, while the “long” route refers to the 5-link route. Note that balanced fairness
leads to better flow throughput than max-min fairness on the short route and worse flow throughput on
the long route.
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Figure 5: Comparison of balanced fairness and max-min fairness on a 5-link line

Deriving the explicit bandwidth sharing realized by balanced fairness in non-homogeneous hypercubes
is difficult in general. An exception is the line with unequal link capacities. For simplicity, we assume
without loss of generality that the minimum link capacity is equal to one. Denoting by x0 the number of
flows on the route that contains all links and by xl the number of flows on the route that contains link l
only, we have for any x such that xl > 0 for some link l:

Φ(x) =
∑

y:
∑

l:xl>0 yl≤x0

∏

l:xl>0

(
xl + yl − 1

yl

)
1

Cxl+yl
l

.

5.2 Trees

The network topology we refer to as a “tree” and illustrate in Figure 6 is practically interesting as it may
represent an access network that typically consists of several multiplexing stages.

Definition 3 (Trees) A tree is a network of K routes and L = K + 1 links such that a single link,
referred to as the trunk, belongs to all routes, and all other links, referred to as the branches, belong to a
single route.

Figure 6: A 3-branch tree
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Let rk = {0, k}, where link 0 refer to the trunk and link k to a branch, k = 1, . . . , K. We assume
without loss of generality that C0 = 1, Ck ≤ 1 for all branches k, Ck = 1 for at most one branch k, and∑K

k=1 Ck > 1. We have:

Φ(x) =
K∏

k=1

1
Cxk

k

for all states x for which the sum of the capacity of “active” branches (those branches k such that xk > 0)
is less than 1, and:

Φ(x) =
∑

z:z≤x,I(z)̸=∅

(∑
k(xk − zk) − 1∑
k ̸∈I(z)(xk − zk)

)( ∑
k ̸∈I(z)(xk − zk)

(xk − zk), k ̸∈ I(z)

)( ∑
k∈I(z)(xk − zk)

(xk − zk), k ∈ I(y)

) K∏

k=1

1
Czk

k

otherwise, where z is a K-dimensional vector of integers, z ≤ x means zk ≤ xk for all k, I(z) is the empty
set if C.1(z) ≡

∑
k:zk>0 Ck > 1 and the set of indices k such that zk = 0, xk > 0 and C.1(z) + Ck > 1

otherwise. For a 2-branch tree, this last expression reduces to:

Φ(x) =
∑

z1≤x1

(
x1 − z1 + x2 − 1

x1 − z1

)
1

Cz1
1

+
∑

z2≤x2

(
x1 + x2 − z2 − 1

x2 − z2

)
1

Cz2
2

.

In Figure 7, we compare the performance of balanced fairness and max-min fairness on a 2-branch
tree. Note that all utility-based allocations coincide with max-min fairness on trees (see Lemma 3 in
Appendix C). For max-min fairness, two sets of simulation results are given, depending on the ratio r of
the mean flow size of class 1 to the mean flow size of class 2. We know from Theorem 1 and Theorem 3
that the performance of max-min fairness is sensitive to this parameter (property (I3) does not hold). In a
homogeneous case (C1 = C2 = 0.6, ρ1 = ρ2, left plot), both allocations lead to very close performance and
max-min fairness is approximately insensitive. In a non-homogeneous case (C1 = 1, C2 = 0.5, ρ1 = 0.01,
right plot), the performance of balanced fairness and max-min fairness may differ significantly due to the
strong sensitivity of max-min fairness.
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Figure 7: Comparison of balanced fairness and max-min fairness on a 2-branch tree
(left plot: homogeneous case, right plot: non-homogeneous case)
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5.3 Triangles, pyramids and hypercycles

As illustrated Figure 8, a triangle is composed of 3 links and 3 routes, each route containing 2 links.
Similarly, a pyramid, for which we give a 2-D representation in Figure 8, is composed of 4 links and 4
routes, each route containing 3 links. More generally, we define hypercycles as follows:

Definition 4 (Hypercycles) A hypercycle is a network of L links and L routes such that the set of
links is the set of intersections of L − 1 routes.

Figure 8: The triangle and the pyramid

Even for the simplest hypercycles, it proves extremely difficult to evaluate explicitly the balance
function associated with balanced fairness. This is notably due to the fact that balanced fairness is not
Pareto-efficient on these networks (see Lemma 8 in Appendix C). The inefficiency of balanced fairness in
homogeneous hypercycles is illustrated in Figure 9, which gives the fraction of wasted bandwidth for the
triangle when x3 = 10 and for the pyramid when x3 = x4 = 10. The wasted bandwidth is here defined as
the maximum bandwidth that can be added to a route under the capacity constraints (1). By definition,
the wasted bandwidth is equal to zero for a Pareto-efficient allocation. It can be verified that for any
integer n ≥ 1, φ1(x) = (n + 1)/(3n + 1) and φ2(x) = φ3(x) = 1/2 in state x = (1, n, n) for the triangle
with unit capacity links, so that the wasted bandwidth can be as high as 1/6 for this network topology,
while φ1(x) = (2n2 + 3n + 1)/(11n2 + 6n + 1) and φ2(x) = φ3(x) = φ4(x) = 1/3 in state x = (1, n, n, n)
for the pyramid with unit capacity links, so that the wasted bandwidth can be as high as 5/33 for this
network topology.
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Figure 9: Inefficiency of balanced fairness on the triangle (left) and on the pyramid (right)
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Figure 10 presents a performance comparison of balanced fairness and max-min fairness for the
triangle with unit capacity links, when the three routes have the same traffic intensity and when the
traffic intensity of one route is fixed at 0.05 (the plot corresponds to the flow throughput on this route,
say r1). In both cases, we observe that balanced fairness and max-min fairness give very similar results.
This suggests that the inefficiency of balanced fairness does not have a strong impact on performance.
We also observe that while the performance of balanced fairness is monotonic with respect to the traffic
intensity, this is not the case of max-min fairness (cf. right plot). This can be explained by the fact that
when the load of link r2∩r3 tends to 1, the traffic generated on each route r2, r3 is “smoothed” and looks
like a fluid of constant rate 0.5. As max-min fairness is Pareto-efficient, the flow throughput on route r1

tends to that of a single link of capacity C = 0.5 and traffic intensity ρ = 0.05, that is C − ρ = 0.45 in
view of (5). This is not the case of balanced fairness which is inefficient on this network topology.
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Figure 10: Comparison of balanced fairness and max-min fairness on the triangle
(left plot: same traffic intensity on each route, right plot: traffic intensity of one route fixed at 0.05)

5.4 A single link with different access rates

Finally, we consider a single unit capacity link with different access rates a1, . . . , aK < 1. We have:

Φ(x) =
K∏

k=1

1
axk

k xk!
, if a.x ≤ 1,

and

Φ(x) =
∑

z:z≤x,I(z) ̸=∅

(∑
k(xk − zk) − 1∑
i̸∈I(z)(xk − zk)

)( ∑
k ̸∈I(z)(xk − zk)

(xk − zk), k ̸∈ I(z)

)( ∑
k∈I(z)(xk − zk)

(xk − zk), k ∈ I(z)

) K∏

k=1

1
azk

k zk!
,

otherwise, where z is a K-dimensional vector of integers, z ≤ x means zk ≤ xk for all k, I(z) is the empty
set if a.z ≡

∑
k zkak > 1, and the set of indices k such that xk > 0 and a.z + ak > 1 otherwise. Figure 11

compares the performance of balanced fairness and max-min fairness for two access rates a1 = 0.2 and
a2 = 0.5. The traffic intensity is the same for each class of flows.
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Figure 11: Comparison of balanced fairness and max-min fairness for two distinct access rates

6 Conclusion

Most allocations considered so far in the literature are based on the notion of utility, which is evaluated
on the basis of the rate allocated to each flow in a static scenario. We suggest that it is more appropriate
when defining bandwidth sharing objectives in data networks to study flow-level dynamics. In particular,
we argue that a useful and highly desirable property is that capacity allocation should lead to performance
that is insensitive to detailed traffic characteristics. Like Erlang’s loss formula for telephone networks,
sharing network resources in an insensitive way would allow the development of simple future proof
engineering rules for data networks.

We have characterized the class of insensitive allocations and proved that utility-based allocations do
not belong to this class in general. We have identified the most efficient insensitive allocation, referred
to as balanced fairness, for which explicit performance results were given for a number of practically
interesting network topologies. It remains to find how such an allocation could be realized in a distributed
way through the congestion control algorithms implemented in the sources or the scheduling and buffer
management schemes implemented in network nodes.

Appendix

A Balance property of insensitive allocations

Proof of Theorem 1. Consider the processor-sharing network introduced in §2.3 representing the data
network with Poisson flow arrivals and exponential i.i.d. flow sizes, i.e., with N = K nodes and νi/µi = ρi

for i = 1, . . . , N . We refer to this processor-sharing network as the initial network. From [5, Theorem 2],
the following insensitivity property (P) implies the balance property:

(P) The invariant measures of the Markov process describing the number of customers at each node
of the initial network remain unchanged when for any node i and for any αi, 0 < αi < 1, the
exponential i.i.d. services at node i are replaced by i.i.d. services, exponentially distributed of mean
1/αi × 1/µi with probability αi, null with probability 1 − αi.

The proof then follows from the fact that each property (I1), (I2), (I3) implies property (P):
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(I1)⇒(P) Consider the initial network where the i.i.d. exponential services are replaced by i.i.d. 2-phase
services with the same mean. This new network consists of Ñ = 2N nodes with S̃i = {i, i + N}
for each class i, i = 1, . . . , N , exogenous arrival rates ν̃i = νi and ν̃i+N = 0, routing probability
p̃i,i+N = αi for some αi, 0 < αi < 1, p̃ij = 0 otherwise, and service rates µ̃i = ω × µi and
µ̃i+N = ω/(ω−1)×αiµi, for some ω > 1. From property (I1), the invariant measures of the process
describing the number of customers at each node i of the initial network are invariant measures of
the process describing the number of customers at each pair of nodes {i, i+N} of this new network.
We deduce (P) by letting ω tend to infinity in the corresponding balance equations.

(I2)⇒(I3) Consider the initial network where the Poisson flow arrivals are replaced by Poisson session
arrivals, each session being composed of a geometrically distributed number of flows. This new
network consists of Ñ = 2N nodes with S̃i = {i} for each class i, i = 1, . . . , N , S̃0 = {N+1, . . . , 2N},
exogenous arrival rates ν̃i = αiνi for some αi, 0 < αi < 1, and ν̃i+N = 0, routing probability
p̃i,i+N = 1 − αi, p̃ij = 0 otherwise, and service rates µ̃i = µi and µ̃i+N = ω, for some ω > 0.
From property (I2), the invariant measures of the process describing the number of customers at
each node of the initial network are invariant measures of the process describing the number of
customers at each node 1, . . . , N of this new network. We deduce (I3) by letting ω tend to infinity
in the corresponding balance equations.

(I3)⇒(P) Consider the initial network where the arrival rates and service rates at any node i are
multiplied by the same constant αi, 0 < αi < 1. This also corresponds to the initial network with
the same arrival rates but where the services at node i are replaced by exponentially distributed
services of mean 1/αi × 1/µi with probability αi, null services with probability 1 − αi.

✷

B Stability condition for balanced fairness

To prove Theorem 2, we need the following result.

Lemma 1 Consider any other positive function Φ̃ such that Φ̃(0) = 1 and the inequalities (13) are
satisfied. We have:

∀x, Φ̃(x) ≥ Φ(x).

Proof. The proof is by induction on the total number of flows n =
∑K

k=1 xk. As Φ̃(0) = Φ(0) = 1, the
inequality is satisfied for n = 0. Now assume it is satisfied for n = m, m ≥ 0. Let x be any state with
n = m + 1 total number of flows. From (13) and (17), we get:

Φ̃(x) ≥ max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk

Φ̃(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
Φ̃(x − ek)

}⎞

⎠

≥ max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk

Φ(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
Φ(x − ek)

}⎞

⎠ = Φ(x).

✷
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Proof of Theorem 2. Consider the insensitive allocation characterized by the balance function:

∀x, Φ̃(x) =
∑

z∈Z

{
K∏

k=1

1
zk!

(
1
ak

)zk

×
L∏

l=1

( ∑
k:l∈rk

zkl

zkl, k : l ∈ rk

) (
1
Cl

)∑
k:l∈rk

zkl
}

,

where z = (zk, zkl, l ∈ rk)k is a vector of integers and

Z =

⎧
⎨

⎩z : ∀k, zk +
∑

l∈rk

zkl = xk

⎫
⎬

⎭ .

It may readily be verified that this function satisfies the capacity constraints (13). In fact, this follows
from the fact that Φ̃(x) is the normalization constant of the following closed Kelly queueing network. The
network consists of L processor-sharing nodes 1, . . . , L of respective capacities C1, . . . , CL and K infinite-
server nodes 1, . . . , K of respective per-server capacities a1, . . . , aK . There are K classes of customer.
Customers of class k visit the infinite-server node k and the processor-sharing nodes l ∈ rk in a cyclic
way, in a fixed but arbitrary order (each of these nodes is visited exactly once in a cycle). Services at
each node are exponential i.i.d. of unit mean. The rate at which customers of class k visit each processor-
sharing node l ∈ rk and the infinite-server node k is equal to Φ̃(x − ek)/Φ̃(x), so that the constraints
(13) are satisfied. In particular, it follows from Lemma 1 that Φ̃(x) ≥ Φ(x) for all x. From (14), an
invariant measure for the Markov process X̃ associated with this allocation for Poisson flow arrivals and
i.i.d. exponential services is given by:

∀x, ϕ̃(x) = Φ̃(x)
K∏

k=1

ρxk
k .

This corresponds to an invariant measure for the number of customers of each class in the following open
Kelly queueing network. The network is the same as the closed queueing network considered above except
that customers of class k arrive as a Poisson process of rate ρk, visit the infinite-server node k and the
processor-sharing nodes l ∈ rk, in a fixed but arbitrary order, then leave the network. In particular, we
know that X̃ is positive recurrent if and only if the usual traffic conditions (3) hold [14]. As ϕ̃(x) ≥ ϕ(x)
for all x, where ϕ is the invariant measure of the Markov process X given by (14), we conclude the proof
by summing this inequality over all states x. ✷

C Sensitivity of utility-based allocations

In this section, we prove Theorem 3. The definition of trees, hypercubes and hypercycles are given in
Section 5. We need the following lemmas.

Lemma 2 Any non-homogeneous network contains a tree.

Proof. Consider a non-homogeneous network. Denote by L′ ⊂ L the set of links l such that at least one
of the routes containing l also contains a link of capacity smaller than Cl. Note that L′ is non-empty.
We denote by l′ the link of smallest capacity that belongs to L′, and by K the set of classes such that
all routes rk, k ∈ K, contain link l′. If two of these routes, say r1 and r2, cross each other at a link of
smaller capacity than Cl′ , consider the link l′′ of smallest capacity that belongs to r1 ∩ r2. Since l′′ ̸∈ L′,
routes r1 and r2 coincide in the network restricted to the set of classes K. We conclude that the network
restricted to the set of classes K is a tree. ✷
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Lemma 3 Utility-based allocations are not balanced in trees.

Proof. Consider a tree composed of a trunk of unit capacity and K branches 1, . . . , K of respective
capacities C1 ≥ . . . ≥ CK , such that: ∑

k ̸=K

Ck ≤ 1 <
∑

k

Ck. (21)

As any tree contains a restricted tree that satisfies (21), it is sufficient to prove that utility-based alloca-
tions are not balanced under this assumption. The class of flows k is characterized by the route rk which
contains the trunk and branch k, and a per-flow rate limit ak. For any state x such that xk > 1/ak for
all k, the access rates are not limiting. It then follows from the Kuhn-Tucker theorem that the solution
of the optimisation problem (19) satisfies:

U ′
(

φk(x)
xk

)
= η0 + ηk, xk > 0.

where η0 and ηk are the Lagrange multipliers associated with the capacity constraints of the trunk and
branch k, respectively. Let K(x) ⊂ {1, . . . , K} be the set of non-saturated branches k, i.e., such that
φk(x) < Ck. We have ηk = 0 in this case, so that the capacity φk(x)/xk allocated to each flow of class k
is the same for all k ∈ K(x). We get:

φk(x) =
xk∑

k′∈K(x) xk′
(1 −

∑

k′ ̸∈K(x)

Ck′), k ∈ K(x).

In particular, any utility-based allocations coincides with max-min fairness. We now consider two cases.

• Assume C1 > CK . Noting that
∑

k ̸=1 Ck < 1,
∑

k ̸=2 Ck ≤ 1, and

1 −
∑

k ̸=2 Ck

C1
<

C2

C1
<

C2

1 −
∑

k ̸=1 Ck
,

we can choose a state x such that xk > 1/ak + 1 for all k,

x1 − 1 <
x2

C2
(1 −

∑

k ̸=1

Ck) ≤ x1,
x1

C1
(1 −

∑

k ̸=2

Ck) < x2 − 1, (22)

and
xk >

Ck

1 −
∑

k′ ̸=1,2 Ck′
(x1 + x2), k ̸= 1, 2. (23)

The access rates are not limiting in state x, nor in states x − e1, x − e2. We shall prove that
φ1(x)φ2(x − e1) ̸= φ2(x)φ1(x − e2). Let C̄ ≡ 1 −

∑
k ̸=1,2 Ck. It easily follows from (22) that:

x1

x1 + x2
C̄ <

x1

x1 + x2 − 1
C̄ < C1 and

x2 − 1
x1 + x2 − 1

C̄ <
x2

x1 + x2
C̄ ≤ C2.

Using (23), we deduce that K(x) = {1} or K(x) = {1, 2}. In addition, as branches k ̸= 1, 2 are
not saturated in state x, they are not saturated in states x − e1, x − e2. It then follows from
previous inequalities that K(x − e2) = {1, 2} and from (22) that K(x − e1) = {1}. Thus, we have
φ1(x− e2) = C̄x1/(x1 + x2 − 1) and φ2(x− e1) = C2. If K(x) = {1}, we have φ1(x) = 1−

∑
k ̸=1 Ck

and φ2(x) = C2. If K(x) = {1, 2}, we have φ1(x)/φ2(x) = x1/x2. In both cases, the balance
property is violated in view of (22).
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• Assume C1 = CK . Consider the state x = ne + me1 where e = (1, . . . , 1), n is an integer such
that n > 1/ak + 1 for all k and m ≥ 1 is the smallest integer such that branch 1 is saturated,
i.e., φ1(x) = C1 and φ1(x − e1) < C1. Note that the access rates are not limiting in state x,
nor in states x − e1, x − e2. As branch 1 is saturated in state x, it is saturated in state x − e2:
φ1(x) = φ1(x − e2) = C1. As φ2(x) = . . . = φK(x), branches 2, . . . , K are not saturated in state x
and φ2(x) = (1−C1)/(K−1). Similarly, as φ2(x−e1) = . . . = φK(x−e1) and φ2(x−e1) ≤ φ1(x−e1),
no branch is not saturated in state x − e1:

φ1(x − e1) =
n + m − 1

Kn + m − 1
< C1 and φ2(x − e1) =

n

Kn + m − 1
.

We conclude that φ1(x)φ2(x − e1) > φ1(x − e2)φ2(x). The capacities are not balanced.

✷

Lemma 4 Utility-based allocations are not balanced in homogeneous networks with at least two different
access rates.

Proof. Any network with unit capacity links and at least two different access rates contains a link
shared by two classes of flow with different access rates. Consider the restriction of the network to these
two classes, say classes 1,2, with a1 < a2. Let x = (x1, 1) where x1 is the smallest integer such that
x1a1 + a2 > 1 if a2 < 1, x1 = 1 otherwise. Any utility-based allocation gives φ1(x) = φ1(x − e2) = x1a1

and φ2(x) = 1 − x1a1, φ2(x − e1) = a2 if a2 < 1, φ2(x − e1) = 1 otherwise. The balance property would
imply x1a1 + a2 = 1 if a2 < 1, a1 = 1 otherwise, a contradiction. ✷

Lemma 5 Utility-based allocations are not balanced in homogeneous 2-link lines with at least one limiting
access rate.

Proof. Consider a homogeneous line of two unit capacity links. Route r1 contains both links while routes
r2, r3 contain a single link. We know from Lemma 4 that utility-based allocations are not balanced in
the presence of at least two different access rates. Assume that a utility-based allocation satisfies the
balance property in the presence of a common limiting access rate a < 1, i.e., there are K = 3 classes of
flow and a1 = a2 = a3 = a. Let x = (x1, x2, 1) where x1a ≥ 1 and x2 is the smallest integer such that
(1 − a)x2 ≥ ax1. Link r1 ∩ r3 is not saturated in state x, so that:

φ1(x) =
x1

x1 + x2
, φ2(x) =

x2

x1 + x2
, φ3(x) = a.

As φ2(x − e3) = φ2(x), the balance property implies that φ3(x − e2) = a. Noting that link r1 ∩ r3 is
saturated in state x − e2, we get φ1(x − e2) = 1 − a. It then follows from the balance property that:

φ2(x − e1) = φ1(x − e2)
φ2(x)
φ1(x)

= (1 − a)
x2

x1
.

But, as link r1 ∩ r3 is not saturated in state x, it is not saturated in state x − e1 and:

φ2(x − e1) =
x2

x1 + x2 − 1
.

This implies (1 − a)(x2 − 1) = ax1, a contradiction. ✷
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Definition 5 (Incomplete line) An incomplete line is a network of five routes r1, r2, r3, r4, r5 and three
links, r1 ∩ r2 ∩ r3, r1 ∩ r2 ∩ r4 and r1 ∩ r5.

Lemma 6 Utility-based allocations are not balanced in homogeneous incomplete lines.

Proof. Consider a homogeneous incomplete line, with three links r1 ∩ r2 ∩ r3, r1 ∩ r2 ∩ r4 and r1 ∩ r5.
As this network contains a homogeneous 2-link line, it follows from Lemmas 4 and 5 that utility-based
allocations are not balanced in the presence of at least one limiting access rate. We thus consider the
case where there is no limiting access rate. If there exists an insensitive utility-based allocation, it
must coincide with balanced fairness in view of Remark 4. For x = (1, 1, 1, 1, 1), balanced fairness gives
φ1(x) = φ5(x) = 1/2 in view of (17). This is clearly not the allocation realized by max-min fairness. In
addition, it follows from the Kuhn-Tucker theorem that the solution of the optimisation problem (19)
gives for x = (1, 1, 1, 1, 1),

U ′(φ1(x)) = U ′(φ3(x)) + U ′(φ4(x)) + U ′(φ5(x)).

If φ1(x) = φ5(x), we get U ′(φ3(x)) + U ′(φ4(x)) = 0, that is φ3(x) = φ4(x) = 0 and φ1(x) = φ2(x) =
φ5(x) = 1/2. But the allocation φ2(x) = 0 and φ1(x) = φ3(x) = φ4(x) = φ5(x) = 1/2 leads to a strictly
higher overall utility. ✷

Definition 6 (Incomplete square) An incomplete square is a network of four routes r1, r2, r3, r4 and
three links, r1 ∩ r2, r2 ∩ r3 and r3 ∩ r4.

Lemma 7 Utility-based allocations are not balanced in homogeneous incomplete squares.

Proof. Consider a homogeneous incomplete square, with three links r1 ∩ r2, r2 ∩ r3 and r3 ∩ r4. As
this network contains a homogeneous 2-link line, it follows from Lemmas 4 and 5 that utility-based al-
locations are not balanced in the presence of at least one limiting access rate. We thus consider the
case where there is no limiting access rate. If there exists an insensitive utility-based allocation, it
must coincide with balanced fairness in view of Remark 4. For x = (1, 1, 1, 1), balanced fairness gives
φ1(x) = φ2(x) = 2/5 and φ3(x) = φ4(x) = 3/5 in view of (17), whereas any utility-based allocation gives
φ1(x) = φ2(x) = φ3(x) = φ4(x) = 1/2. ✷

Lemma 8 Utility-based allocations are not balanced in homogeneous hypercycles.

Proof. Consider a hypercycle of L unit capacity links, L ≥ 3. In view of Lemma 4, it is sufficient to
prove that utility-based allocations are not balanced in the presence of a common access rate a, i.e., there
are K = L classes of flow with a1 = . . . = aK = a. We consider two cases.

• Assume that a(K − 1) ≥ 1. Note that this includes the case a = ∞ where the access rate is not
limiting. We prove that the allocation realized by balanced fairness is not Pareto-efficient. This
implies that utility-based allocations are not balanced in view of Remark 4. Let x = (1, 2, . . . , 2) and
c = 1/(K−1). As φ2(x) = . . . = φK(x), it follows from the capacity constraints (1) that φK(x) ≤ c.
The Pareto-efficiency would imply φ1(x) ≥ c as a ≥ c. But, as the network reduces to a single link
in state x − e1, we know that φK(x − e1) = c. Thus φK(x − e1) ≥ φK(x) and it follows from the
balance property that φ1(x − eK) ≥ φ1(x) ≥ c. By symmetry, we have φ1(x − e2) ≥ c. Now as
φ1(x− e2) = φ2(x− e2) and φ3(x− e2) = . . . = φK(x− e2), it follows from the capacity constraints
(1) that φK(x − e2) ≤ c. Applying successively the same reasoning, we get φK(y) ≤ c in state
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y = (1, . . . , 1, 2). Again, the Pareto-efficiency would imply φ1(y) ≥ c. But, as the network reduces
to a single link in state y− e1, we know that φK(y− e1) = 2/K > c. Thus φK(y− e1) > φK(y) and
it follows from the balance property that φ1(y − eK) > φ1(y) ≥ c. By symmetry, we get φk(e) > c
for all k in state e ≡ y − e1 = (1, . . . , 1). The capacity constraints (1) are violated.

• Assume that a(K − 1) < 1. Let x = (1, n, m, . . . , m) where m ≥ n ≥ 1/a and n is the smallest
integer such that n(1 − a) ≥ ma(K − 2). As link r2 ∩ . . . ∩ rK is the only saturated link in states
x and x − e1, we have φ2(x) = φ2(x − e1) and φ1(x) = a for any utility-based allocation. The
balance property would imply that φ1(x − e2) = a. Now as φ3(x − e2) = . . . = φK(x − e2), it
follows from the capacity constraints (1) that φ3(x − e2) ≤ (1 − a)/(K − 2). But, as the network
reduces to a single link in state x− e2 − e1, we have φ3(x− e2 − e1) = m/(n− 1+m(K − 2)). Thus
φ3(x−e2) < φ3(x−e2−e1) and the balance property would imply that φ1(x−e2) < φ1(x−e2−e3).
Hence φ1(x − e2 − e3) > a and the capacity constraints (1) are violated.

✷

Lemma 9 A homogeneous network which does not contain a hypercycle, an incomplete line nor an
incomplete square is a hypercube.

Proof. The proof is by induction on the number of distinct routes N . The result holds for N = 1 and
N = 3 (note that N ̸= 2). A homogeneous network of three routes is indeed either a line or a triangle.
Assume that the result holds for N ≤ M , with M ≥ 3. Consider a homogeneous network of M +1 routes
N0 = {r0, r1, . . . , rM} which does not contain a hypercycle, an incomplete line nor an incomplete square.
Denote by L0 the set of links of N0. We can choose a route, say r0, such that N = N0 \ r0 is a connected
network. Denote by L ⊂ L0 the set of limiting links of N . By assumption, N is a hypercube. We denote
by n the dimension of this hypercube and D1, . . . ,Dn the corresponding directions.

We first show that we can choose r0 such that n ≥ 2. Assume that for any k such that N0 \ rk is
connected, this network reduces to a single link. If there is a route, say r1, such that N0 \ r1 is not
connected, this network has two limiting links, r1 ∩ r0 and r1 ∩ . . . ∩ rM . But this implies r2 = r3, a
contradiction. Thus for any k, the network N0 \ rk is connected. This network reduces to a single link,
which is the intersection of all routes except rk. We conclude that N0 is a hypercycle, a contradiction.

We can thus assume that n ≥ 2. We first consider the case where a direction of N contains a single
route, say D1 = {r1}.

• Assume n = 2. Then L0 ̸= L, otherwise N0 would be an incomplete line. Any link of L0 \ L is the
intersection of r0 and r1 or r0 and a single route r2 of D2. Otherwise, one would obtain a triangle.
In the former case, N0 is a hypercube of directions D1 and D2 ∪ r0. In the latter case, L0 \ L is the
set of all intersections r0 ∩ r2, r2 ∈ D2. Otherwise, N0 would contain an incomplete square. Thus
N0 is a hypercube of directions D1 ∪ r0 and D2.

• Assume n ≥ 3. Then N \ r1 is a hypercube of dimension n − 1. The network N0 \ r1 is connected.
Otherwise, N0 would contain an incomplete line. By assumption, N0\r1 is a hypercube, of dimension
n − 1 or n. If N0 \ r1 is of dimension n, the corresponding directions are r0,D2, . . . ,DK . Since
r0 ̸= r1, there exists r2 ∈ D2, . . . , rn ∈ Dn such that r0 ∩ r2 ∩ . . . ∩ rn ̸= r1 ∩ r2 ∩ . . . ∩ rn. We
conclude that routes r0 and r1 do not cross each other, otherwise they would form a triangle with
one of the routes r2, . . . , rn. Thus N0 is a hypercube of directions D1 ∪ r0,D2, . . . ,Dn. If N0 \ r1 is
of dimension n− 1, there exists a direction of N , say D2, such that the directions of this hypercube
are D2 ∪ r0,D3, . . . ,Dn. In particular, all directions of N0 \ r1 contain at least two routes.

25



We can thus restrict the analysis to the case where all directions of N contain at least two routes.
We consider two cases.

• Assume L ̸= L0. Let l ∈ L0\L. There exists a direction of N , say D1, such that any route r1 of this
direction does not contain link l. Assume that two routes of the same direction contain link l, say
r2, r′2 ∈ D2, r2 ̸= r′2. Since r1 crosses r2 and r′2, these three routes form a triangle, a contradiction.
The link l is thus the intersection of r0 and at most one route of each direction D2, . . . ,Dn. In
addition, the network N \ r1 is a hypercube of dimension n. As the network N0 \ r1 is connected,
it is a hypercube of dimension n or n + 1. But link l belongs to n routes of N0 \ r1. Thus N0 \ r1

is a hypercube of dimension n. The directions of this hypercube are {D1 \ r1} ∪ r0,D2, . . . ,Dn.
Since this result holds for any route r1 ∈ D1, N0 is a hypercube of dimension n, with directions
D1 ∪ r0,D2, . . . ,Dn.

• Assume L = L0. Let l ∈ r0. Assume there exists a link l′ ∈ L such that l′ ̸∈ r0. There exists a
direction of N , say D1, such that l ∈ r1 and l′ ∈ r′1, r1, r′1 ∈ D1, r1 ̸= r′1. The network N \ r1 is a
hypercube of dimension n. As the network N0 \ r1 is connected, it is a hypercube of dimension n or
n + 1. But link l′ belongs to n routes of N0 \ r1. Thus N0 \ r1 is a hypercube of dimension n. Since
link l belongs to r0 and to one route of each direction D2, . . . ,Dn, the directions of this hypercube
are {D1 \ r1} ∪ r0,D2, . . . ,Dn. Since r0 contains links of L only, these links are r1 ∩ r2 ∩ . . . ∩ rn,
with r2 ∈ D2, . . . , rn ∈ Dn. Thus r0 = r1, a contradiction. We conclude that r0 contains all links of
L, thus N0 is a hypercube of dimension n + 1, with directions r0,D1,D2, . . . ,Dn.

✷

Proof of Theorem 3. Consider a network for which a utility-based allocation is insensitive. In view of
Theorem 1, the allocation is balanced. It then follows from Lemmas 2-3 that the network is homogeneous,
and from Lemmas 6-7-8-9 that the network is a hypercube. In view of Lemma 4, there is at most one
limiting access rate. If there is one limiting access rate, the network reduces to a single link in view of
Lemma 5 and the fact that any hypercube not reduced to a single link contains a 2-link line. If there is
no limiting access rate, the allocation coincides with proportional fairness in view of Proposition 4 and
Remark 3. ✷
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