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Limit theorems for decomposable branching processes in a random environment

Introduction

The multitype branching processes in random environment we consider here can be viewed as a discrete-time stochastic model for the sizes of a geographically structured population occupying islands labelled 0, 1, ..., N. One unit of time represents a generation of particles (individuals). Particles located on island 0 give birth under influence of a randomly changing environment. They may migrate to one of the islands 1, 2, ..., N immediately after birth, with probabilities again depending upon the current environmental state. Particles of island i ∈ {1, 2, ..., N -1} either stay at the same island or migrate to the islands i + 1, 2, ..., N and their reproduction laws are not influenced by any changing environment. Finally, particles of island N do not migrate and evolve in a constant environment.

The goal of this paper is to investigate the asymptotic behavior of the survival probability of the whole process and the distribution of the number of particles in the population given its survival or survival of particles of type 1.

Let m ij be the mean number of type j particles produced by a type i particle at her death.

We formulate our main assumptions as Hypothesis A0 :

• particles of type 0 form (on their own) a critical branching process in a random environment;

• particles of any type i ∈ {1, 2, ..., N } form (on their own) a critical branching process in a constant environment, i.e., m ii = 1;

• particles of any type i are able to produce descendants of all the next in order types (may be not as the direct descendants) but not any preceding ones. In particular, m ij = 0 for 1 ≤ j < i ≤ N and m i,i+1 > 0 for i = 1, ..., N -1.

Let X n be the number of particles of type 0 and Z n = (Z n1 , ..., Z nN ) be the vector of the numbers of particles type 1, 2, ..., N , respectively, present at time n. Throughout of this paper considering the (N + 1)-type branching process it is assumed (unless otherwise specified) that X 0 = 1 and Z 0 = (0..., 0) = 0.

We investigate asymptotics of the survival probability of this process as n → ∞ and the distribution of the number of particles in the process at moment n given Z n1 > 0 or Z n = 0. Note that the asymptotic behavior of the survival probability for the case N = 1 has been investigated in [START_REF] Vatutin | A Decomposable Branching Process in a Markovian Environment[END_REF] under stronger assumptions than those imposed in the present paper. The essential novelty of this paper are Yaglom-type limit theorems for the population vector Z n (see Theorem 2 below).

The structure of the remaining part of this paper is as follows. In Section 2 we recall known facts for decomposable branching processes in constant environments and show some preliminary results. Section 3 deals with the (N + 1)-type decomposable branching processes in random environment. Here we study the asymptotic behavior of the survival probability and prove a Yaglom-type conditional limit theorem for the number of particles in the process given Z n1 > 0. In Section 4 we consider a 3-type decomposable branching process in random environment and, proving a Yaglom-type conditional limit theorem under the condition Z n1 + Z n2 > 0, show the essential difference of such processes with the decomposable processes evolving in constant environment.

Multitype decomposable branching processes in a constant environment

The aim of this section is to present a number of known results about the decomposable branching processes we are interesting in the case of a constant environment and, therefore, we do not deal with particles of type 0.

If Hypothesis A0 is valid then the mean matrix of our process has the form

M = (m ij ) =               1 m 12 ... ... m 1N 0 1 m 23 ... m 2N 0 0 1 ... ... ... ... ... ... ... ... ... ... ... m N -1,N 0 0 ... 0 1               , (1) 
where

m i,i+1 > 0, i = 1, 2, ..., N -1. (2) 
Under conditions (1) and ( 2) one obtains a complete ordering 1

-→ 2 -→ ... -→ N of types.
Observe that according to the classification given in [START_REF] Foster | Limit Laws for Decomposable Critical Branching Processes[END_REF] the process we consider is strongly critical.

In the sequel we need some results from [START_REF] Foster | Decomposable critical multi-type branching processes[END_REF] and [START_REF] Foster | Limit Laws for Decomposable Critical Branching Processes[END_REF]. To this aim we introduce additional notation.

1) For any vector s = (s 1 , ..., s p ) (the dimension will usually be clear from the context), and integer valued vector k = (k 1 .....k p ) define

s k = s k 1 1 ...s k p p .
Further, let 1 = (1, ..., 1) be a vector of units and let e i be a vector whose i-th component is equal to one while the remaining are zeros.

2) The first and second moments of the components of the population vector Z n = (Z n1 , ..., Z nN ) will be denoted as

m il (n) := E [Z nl |Z 0 = e i ] , m il := m il (1), b ikl (n) := E [Z nk Z nl -δ kl Z nl |Z 0 = e i ] , b ikl := b ikl (1). (3) 
To go further we introduce probability generating functions

h (i,N ) (s) := E N k=i s η ik k , 0 ≤ i ≤ N, ( 4 
)
where η ij represents the number of daughters of type j of a mother of type i ∈ {1, 2, ..., N }. Let

H (i,N ) n (s) := E N k=i s Z nk k |Z 0 = e i , 0 ≤ i ≤ N, (5) 
be the probability generating functions for the vector of the number of particles at moment n given the process is initiated at time 0 by a singly particle of type i ∈ {1, 2, ..., N } . Clearly,

H (i,N ) 1 (s) = h (i,N ) (s). Denote H n (s) : = H (1,N ) n (s), ..., H (N,N ) n (s) , Q n (s) : = Q (1,N ) n (s), ..., Q (N,N ) n (s) = 1 -H (1,N ) n (s), ..., 1 -H (N,N ) n (s) .
The following theorem is a simplified combination of the respective results from [START_REF] Foster | Decomposable critical multi-type branching processes[END_REF] and [START_REF] Foster | Limit Laws for Decomposable Critical Branching Processes[END_REF]:

Theorem 1. Let {Z n , n = 0, 1, ...} be a strongly critical multitype branching process satisfying [START_REF] Afanasyev | On the maximum of a critical branching process in a random environment[END_REF] and [START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF]. Then, as n → ∞

m il (n) ∼ c il n l-i , i ≤ l, ( 6 
)
where c il are positive constants known explicitly (see [START_REF] Foster | Limit Laws for Decomposable Critical Branching Processes[END_REF], Theorem 1);

2) if b ikl < ∞, i, k, l = 1, ..., N then b ikl (n) ∼ c ikl n k+l-2i+1 , ( 7 
)
where c ikl are constants known explicitly (see [START_REF] Foster | Limit Laws for Decomposable Critical Branching Processes[END_REF], Theorem 1) and

Q (i,N ) n (0) = 1 -H (i,N ) n (0) = P(Z n = 0|Z 0 = e i ) ∼ c i n -2 -(N -i) , c i > 0. ( 8 
)
Let H(s 1 , ..., s p ) = H(s) be a multivariate probability generating function with

m l := ∂H(s) ∂s l | s=1 , b kl := ∂ 2 H(s) ∂s k ∂s l | s=1 < ∞.
Lemma 1. (see formula [START_REF] Afanasyev | On the maximum of a critical branching process in a random environment[END_REF], page 189, in [START_REF] Athreya | Branching processes[END_REF]) For any s = (s 1 , ..., s p ) ∈ [0, 1] p we have

p l=1 m l (1 -s l ) - 1 2 p k,l=1 b kl (1 -s k ) (1 -s l ) ≤ 1 -H(s) ≤ p l=1 m l (1 -s l ) .
From now on we agree to denote by C, C 0 , C 1 , ... positive constants which may be different in different formulas.

For s = (s 1 , ..., s N ) put

M i (n; s) := N l=i m il (n) (1 -s l ) , B i (n; s) := 1 2 N k,l=i b ikl (n) (1 -s k ) (1 -s l ) . ( 9 
)
Lemma 2. Let the conditions of Theorem 1 be valid. Then for any tuple t 1 , ..., t N of positive numbers and

1 -s l = n -t l , l = 1, 2, ..., N
there exists C + < ∞ such that, for all n = 1, 2, ...

Q (i,N ) n (s) ≤ C + min n -2 -(N -i) , n -min i≤l≤N (t l -l+i) .
If, in addition,

min i≤l≤N (t l -l + i) ≥ 1 (10)
then there exists a positive constant C -such that, for all n = 1, 2, ...

C -n -min i≤l≤N (t l -l+i) ≤ Q (i,N ) n (s) ≤ C + n -min i≤l≤N (t l -l+i) . ( 11 
)
Proof. Take ε ∈ (0, 1] and denote

s(ε) = (1 -εn -t 1 , ..., 1 -εn -t N ). By Lemma 1 and monotonicity of Q (i,N ) n (s(ε)) in ε, we have M i (n; s(ε)) -B i (n; s(ε)) ≤ Q (i,N ) n (s(ε)) ≤ Q (i,N ) n (s) ≤ M i (n; s). (12) 
In view of ( 6) -( 7) there exist positive constants C j , j = 1, 2, 3, 4 such that

εC 1 n -min i≤l≤N (t l -l+i) ≤ εC 1 N l=i n l-i n t l ≤ M i (n; s(ε)) = ε N l=i m il (n)n -t l ≤ M i (n; s) ≤ C 2 N l=i n l-i n t l ≤ C 3 n -min i≤l≤N (t l -l+i) (13) and 0 ≤ B i (n; s(ε)) ≤ ε 2 C 4 N k,l=i n k-i+1+l-i n t k n t l . If now min i≤k≤N (t k -k + i -1) ≥ 0, then for sufficiently small but fixed ε > 0 0 ≤ B i (n; s(ε)) ≤ ε 2 C 4 N k,l=i 1 n t l -(l-i) n t k -(k-i+1) ≤ 2 -1 εC 2 n -min i≤l≤N (t l -l+i) . (14)
The estimates ( 12)-( 14), the inequality

Q (i,N ) n (s) ≤ min{Q (i,N ) n (0), M i (n; s)} and (8)
give the desired result.

Write 0 (r) = (0, 0, ..., 0) and 1 (r) = (1, 1, ..., 1) for the r-dimensional vectors all whose components are zeros and ones, respectively; set s r = (s r , s r+1 , ..., s N ) and denote by I {A} the indicator of the event A.

The next lemma, in which we assume that Z 0 = e 1 gives an approximation for the function Q

(1,N ) n (0 (r) , s r+1 ). Lemma 3. If min r+1≤l≤N (t l -l + 1) > 2 -(r-1) and 1 -s l = n -t l , l = r + 1, r + 2, ..., N, then, as n → ∞ Q (1,N ) n (0 (r) , s r+1 ) ∼ P (Z nr > 0) ∼ c r n -2 -(r-1) .
Proof. In view of (8) we have for s r+1 ∈ [0, 1] N -r :

P (Z nr > 0) ≤ P ∪ r j=1 {Z nj > 0} = Q (1,N ) n (0 (r) , 1 (N -r) ) ≤ Q (1,N ) n (0 (r) , s r+1 ) = E 1 -s Z n,r+1 r+1 ...s Z nN N I ∩ r j=1 {Z nj = 0} ≤ P ∪ r j=1 {Z nj > 0} + E 1 -s Zn,r+1 r+1 ...s Z nN N ≤ r j=1 P (Z nj > 0) + E 1 -s Zn,r+1 r+1 ...s Z nN N = (1 + o(1)) P (Z nr > 0) + Q (1,N ) n 1 (r) , s r+1 .
Further, by the conditions of the lemma we deduce

Q (1,N ) n 1 (r) , s r+1 ≤ N l=r+1 m 1l (n)n -t l ≤ Cn -min r+1≤l≤N (t l -l+1) n -2 -(r-1) ,
where for two sequences a n , b n the relationship a n b n means that lim n→∞ a n /b n = 0.

Hence the statement of the lemma follows.

The case of two types

Here we consider the situation of two types and investigate the behavior of the

function 1 -H (1,2) n (s 1 , s 2 ) as n → ∞ assuming that1 -s i = n -ti , i = 1, 2.
Lemma 4. If the conditions of Theorem 1 are valid for N = 2, then

1 -H (1,2) n (s 1 , s 2 )                n -1/2 if t 1 ∈ (0, ∞), 0 < t 2 ≤ 1; n -t2/2 if t 1 ∈ (0, ∞), 1 < t 2 < 2; n -1 if 0 < t 1 < 1, t 2 ≥ 2; n -1-min(t 1 -1,t 2 -2) if t 1 ≥ 1, t 2 ≥ 2,
where for two sequences a n , b n we write a n b n if and only if

0 < lim inf n→∞ a n /b n ≤ lim sup n→∞ a n /b n < ∞.
Proof. Observe that for any 0 ≤ s 1 ≤ s 1 ≤ 1

H (1,2) n (s 1 , s 2 ) -H (1,2) n (s 1 , s 2 ) = E (s 1 ) Z n1 -s Zn1 1 s Zn2 2 ≤ E 1 -s Z n1 1 = 1 -H (1,1) n (s 1 ) ≤ P (Z n1 > 0|Z 0 = e 1 ) ≤ Cn -1 . ( 15 
)
Let now m = m(s 2 ) be specified by the inequalities

Q (2,2) m (0) ≤ 1 -s 2 = n -t2 ≤ Q (2,2) m-1 (0) . ( 16 
)
In view of

Q (2,2) m (0) = 1 -H (2,2) m (0) = P (Z m2 > 0|Z 0 = e 2 ) ∼ 2 mV arη 22 ,
it follows that m ∼ 2n t2 /V arη 22 . Using this fact, estimate (15) and the branching property

H (1,2) n H (1,2) m (s) , H (2,2) m (s 2 ) = H (1,2) n+m (s) ,
we conclude by ( 8) that

1 -H (1,2) n (s 1 , s 2 ) ≥ 1 -H (1,2) n s 1 , H (2,2) m (0) = 1 -H (1,2) n H (1,2) m (0), H (2,2) m (0) + O(n -1 ) = Q (1,2) n+m (0) + O(n -1 ) = (1 + o(1)) c 1 (n + m) -1/2 + O(n -1 ).
Clearly, the result remains valid when ≥ is replaced by ≤ with m replaced by m -1.

Therefore, 1 -

H (1,2) n (s 1 , s 2 ) n -1/2 if t 2 ∈ (0, 1] and 1 -H (1,2) n (s 1 , s 2 ) n -t2/2 , if t 2 ∈ (1, 2)
. This proves the first two relationships of the lemma.

Consider now the case t 2 ≥ 2. In view of ( 6)

1 -H (1,1) n (s 1 ) = 1 -H (1,2) n (s 1 , 1) ≤ 1 -H (1,2) n (s 1 , s 2 ) ≤ 1 -H (1,1) n (s 1 ) + n -t2 E [Z n2 |Z 0 = e 1 ] = 1 -H (1,1) n (s 1 ) + (1 + o(1)) c 12 n 1-t 2 .
Recalling that 1 -s 1 = n -t 1 and selecting m = m (s 1 ) similar to (16) we get

1 -H (1,1) n (s 1 ) ∼ 1 -H (1,1) n+m (0) 1 n t1 + n . ( 17 
) Hence, if t 1 < 1 then 1 -H (1,2) n (s 1 , s 2 ) n -1 as claimed.
The statement for t 1 ≥ 1, t 2 ≥ 2 follows from (11).

Decomposable branching processes in random environment

The model of branching processes in random environment which we are dealing with is a combination of the processes introduced by Smith and Wilkinson [START_REF] Smith | On branching processes in random environments[END_REF] and the ordinary decomposable multitype Galton-Watson processes. To give a formal description of the model denote by M the space of probability measures on

N N +1 0 ,
where N 0 := {0, 1, 2, ...} and let e be a random variable with values in M. An infinite sequence E = (e 1 , e 2 , . . .) of i.i.d. copies of e is said to form a random environment.

We associate with e and e n , n = 1, 2, ... random vectors (ξ 0 , ..., ξ N ) and ξ

(n) 0 , ..., ξ (n) N such that for k ∈ N N +1 0 P ((ξ 0 , ..., ξ N ) = k|e) = e ({k}) , P ξ (n) 0 , ..., ξ (n) N = k|e n = e n ({k}) .
We now specify a branching process (X n , Z n ) = (X n , Z n1 , ..., Z nN ) in random environment E with types 0, 1, ..., N as follows.

1) (X 0 , Z 0 ) = (1, 0) .

2) Given E= (e 1 , e 2 , ...) and (X n-1 , Z n-1 ) , n ≥ 1

X n = X n-1 k=1 ξ (n-1) k0 , Z nj = X n-1 k=1 ξ (n-1) kj + j i=1 Z (n-1)i k=1 η (n-1) k,ij , j = 1, ..., N
where the tuples ξ

(n-1) k0 
, ξ

(n-1) k1

, . . . , ξ Informally, ξ

(n-1) kj
is the number of type j children produced by the k-th particle of type 0 of generation n -1, while η

(n-1) k,ij
is the number of type j children produced by the k-th particle of type i of generation n -1.

We denote by P and E the corresponding probability measure and expectation on the underlying probability space to distinguish them from the probability measure and expectation in constant environment specified by the symbols P and E.

Thus, in our model particles of type 0 belonging to the (n -1)-th generation give birth in total to X n particles of their own type and to the tuple

Y n = (Y n1 , ..., Y nN )
of daughter particles of types 1, 2, ..., N, where

Y nj = Xn-1 k=1 ξ (n-1) kj . ( 18 
)
In particular,

Y 1 = (Y 11 , ..., Y 1N ) = ξ (0) 1 , ..., ξ (0) N = Z 1 .
Finally, each particle of type i = 1, 2, ..., N generates its own (decomposable, if i < N ) process with N -i + 1 types evolving in a constant environment.

Let

µ 1 = E [ξ 0 |e] , µ 2 = E [ξ 0 (ξ 0 -1) |e] ,
and

θ i = E [ξ i |e] , i = 1, 2, ..., N, Θ 1 := N l=1 θ l .
Our assumptions on the characteristics of the process we consider are formulated as Hypothesis A:

• The initial state of the process is (X 0 , Z 0 ) = (1, 0) ;

• particles of type 0 form (on their own) a critical branching process in a random environment, such that

E log µ 1 = 0, E log 2 µ 1 ∈ (0, ∞); ( 19 
)
• particles of type 0 produce particles of type 1 with a positive probability and

P (θ 1 > 0) = 1;
• particles of each type form (on their own) critical branching processes which are independent of the environment, i.e. m ii = Eη ii = 1, i = 1, 2, ..., N ;

• particles of type i = 1, 2, ..., N -1 produce particles of type i + 1 with a positive probability, i.e., m i,i+1 = Eη i,i+1 > 0, i = 1, 2, ..., N -1;

• The second moments of the offspring numbers are finite

Eη 2 ij < ∞, 1 ≤ i ≤ j ≤ N with b i = 1 2 V ar η ii ∈ (0, ∞) .
The following theorem is the main result of the paper:

Theorem 2. If Hypothesis A is valid and

E µ -1 1 < ∞, E µ 2 µ -2 1 (1 + max (0, log µ 1 )) < ∞, ( 20 
)
then there exists a positive constant K 0 such that

P (Z n = 0|X 0 = 1, Z 0 = 0) ∼ 2 N -1 K 0 log n (21)
and for any positive t 1 , t 2 , ..., t N

lim n→∞ P log Z ni log n ≤ t i , i = 1, ..., N | Z n1 > 0 = G (t 1 , ..., t N ) = 1 - 1 1 + max(0, min 1≤l≤N (t l -l)) . ( 22 
)
The proof of the theorem is divided into several stages.

Let T = min{n ≥ 0 : X n = 0}.

According to [7, Theorem 1], if conditions (19) and (20) are valid then for a positive constant c

P (X n > 0) = P (T > n) ∼ c √ n , n → ∞. ( 23 
)
Set S n := n-1 k=0 X k and A n = max 0≤k≤n-1 X k , so that S T and A T give the total number ever born of type 0 particles and the maximal generation size of type 0 particles.

Lemma 5. (see [1]) If conditions (19) and (20) are valid then there exists a constant

K 0 ∈ (0, ∞) such that P (S T > x) ∼ P (A T > x) ∼ K 0 log x , x → ∞. ( 24 
)
In fact, the representation (24) has been proved in [START_REF] Afanasyev | On the maximum of a critical branching process in a random environment[END_REF] under conditions (20) and

(19) only for the case when the probability generating functions f n s, 1 (N ) are linearfractional with probability 1. However, this restriction is easily removed using the results established later on for the general case in [START_REF] Geiger | The survival probability of a critical branching process in random environment[END_REF] and [START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF].

Let now Y n = Y n1 + ... + Y nN , ζ (n) k = ξ (n-1) k1 + . . . + ξ (n-1) kN
and

L nj = n l=1 Y lj = n l=1 X l-1 k=1 ξ (l-1) kj , B nj = max 1≤l≤n Y lj , L n = n l=1 Y l = n l=1 X l-1 k=1 ζ (l-1) k , B n = max 1≤l≤n Y l .
In particular, L T gives the total number of daughter particles of types 1, ..., N produced by type 0 particles during the evolution of the process.

Lemma 6. If conditions ( 19) and ( 20) are valid and P (Θ 1 > 0) = 1 then

P (B T > x) ∼ P (L T > x) ∼ K 0 log x , x → ∞. ( 25 
)
If conditions ( 20), ( 19) are valid and P (θ j > 0) = 1 for some j ∈ {1, ..., N } then

P (B Tj > x) ∼ P (L Tj > x) ∼ K 0 log x , x → ∞. ( 26 
)
Proof. For any ε ∈ (0, 1) we have

P (A T > x) ≤ P B T > x 1-ε + P A T > x; B T ≤ x 1-ε . Let T x = min {k : X k > x}. Then P A T > x; B T ≤ x 1-ε ≤ ∞ l=1 P T x = l; Y l+1 ≤ x 1-ε = ∞ l=1 P T x = l; X l k=1 ζ (l) k ≤ x 1-ε ≤ P (A T > x) P   [x] k=1 ζ (0) k ≤ x 1-ε   . Since P (Θ 1 > 0) = 1 and Θ 1 = E ζ (0)
k |e , k = 1, 2, ..., the law of large numbers gives

lim x→∞ P   1 xΘ 1 [x] k=1 ζ (0) k ≤ 1 x ε Θ 1 e   = 0 P -a.s.. Thus lim sup x→∞ P   [x] k=1 ζ (0) k ≤ x 1-ε   ≤ E   lim sup x→∞ P   [x] k=1 ζ (0) k ≤ x 1-ε e     = 0.
As a result, for any δ > 0 and all x ≥ x 0 (δ) we get

(1 -δ) P (A T > x) ≤ P B T > x 1-ε . ( 27 
)
To deduce for P (B T > x) an estimate from above we write

P (B T > x) ≤ P A T > x 1-ε + P B T > x; A T ≤ x 1-ε . ( 28 
)
Further, letting Tx = min {k : Y k > x} we have

P B T > x; A T ≤ x 1-ε ≤ P T > x ε/2 + 1≤l≤x ε/2 P Tx = l; A T ≤ x 1-ε .
By Markov inequality we see that

1≤l≤x ε/2 P Tx = l; A T ≤ x 1-ε ≤ 1≤l≤x ε/2 P X l-1 ≤ x 1-ε ; Y l > x ≤ x ε/2 P    [x 1-ε ] k=1 ζ (0) k > x    ≤ x -ε/2 E [ Y 1 ] .
Hence, recalling (23) we obtain P B T > x; A T ≤ x 1-ε = O x -ε/4 implying in view of ( 28)

P (B T > x) ≤ P A T > x 1-ε + O x -ε/4 . ( 29 
)
Combining ( 27) and ( 29) and letting first x → ∞ and then ε → 0 justify by Lemma 5 the equivalence

P (B T > x) ∼ P (A T > x) ∼ K 0 log x .
Finally,

P (B T > x) ≤ P (L T > x) ≤ P (TB T > x) ≤ P B T > x 1-ε + P (T > x ε ) ,
and applying (23) and Lemma 5 proves the first equivalence in (25).

To check (26) one should use similar arguments.

Corollary 1. If conditions ( 19) and ( 20) are valid and P (θ

1 > 0) = 1, then, as n → ∞ F (n) := E 1 -exp - N i=1 L Ti Q (i,N ) n (0) ∼ 2 N -1 K 0 log n .
Proof. Clearly,

L T1 Q (1,N ) n (0) ≤ N i=1 L Ti Q (i,N ) n (0) ≤ L T N i=1 Q (i,N ) n (0)
and, by ( 8)

N i=1 Q (i,N ) n (0) ∼ Q (1,N ) n (0) ∼ c 1 n -1/2 (N -1) .
To finish the proof of the corollary it is remains to observe that

E 1 -e -λLT ∼ E 1 -e -λLT1 ∼ K 0 log(1/λ) , λ → +0, (30) 
due to Lemma 6 and the Tauberian theorem [4, Ch. XIII.5, Theorem 4] applied, for instance, to the right hand side of

λ -1 E 1 -e -λL T = ∞ 0 P (L T > x) e -λx dx,
and to use the inequalities

E 1 -exp -L T1 Q (1,N ) n (0) ≤ F (n) ≤ E 1 -exp -L T N i=1 Q (i,N ) n (0) .
Proof. of Theorem 2. We first check (21). Notice that each particle of type i of generation n has either a mother of type 0 (of generation n -1), or an ancestor of generation k, 1 ≤ k < n whose mother is of type 0; recall that the number of particles of type i of generation k having a mother of type 0 is denoted by Y ki . By a decomposition of Z ni based on this fact and using the branching property, we get:

E 1 -s Z n1 1 ...s Z nN N = E 1 - n k=1 N i=1 H (i,N ) n-k (s) Y ki = E 1 -e R(n;s) ,
where

H (i,N ) 0 (s) = s i by convention, and 
R(n; s) = n k=1 N i=1 Y ki log H (i,N ) n-k (s).
In particular,

P (Z n = 0) = E 1 -e R(n;0) ; T ≤ √ n + O P T > √ n .
Since log(1 -x) ∼ -x as x → +0 and for k ≤ √ n and n → ∞

Q (i,N ) n (0) = 1 -H (i,N ) n (0) ≤ Q (i,N ) n-k (0) ≤ Q (i,N ) n- √ n (0) = (1 + o(1)) Q (i,N ) n (0),
we obtain

E e R(n;0) ; T ≤ √ n = E exp -(1 + o(1)) N i=1 L ni Q (i,N ) n (0) ; T ≤ √ n = E exp -(1 + o(1)) N i=1 L Ti Q (i,N ) n (0) ; T ≤ √ n = E exp -(1 + o(1)) N i=1 L Ti Q (i,N ) n (0) -O P T > √ n .
Thus,

P (Z n = 0) = E 1 -exp -(1 + o(1)) N i=1 L Ti Q (i,N ) n (0) + O P T > √ n , (31) 
and ( 21) follows from Corollary 1 and (23).

Now we prove (22)

. Recall that we always take X 0 = 1, Z 0 = 0.

Consider first the case

N = 1. Writing for simplicity Y k = Y k1 , Z n = Z n1 , s = s 1 and H n (s) = H (1,1) n (s) = E s Z n |Z 0 = 1 we have E s Zn |Z n > 0 = E s Z n -E (Z n = 0) P (Z n > 0) = 1 - E 1 -s Z n P (Z n > 0) ,
and by (31)

E 1 -s Zn = E 1 -exp n k=1 Y k log H n-k (s) . By the criticality condition 1 -H n (0) ∼ (b 1 n) -1 . Thus, if s = e -λ/(b 1 n t ) , then 1 -s ∼ λ/ b 1 n t ∼ 1 -H [n t /λ] (0),
where [x] denotes the integral part of x. Hence it follows that for any t > 1 as n → ∞

1 -H n e λ/n t ∼ 1 -H n H [n t /λ] (0) = 1 -H n+[n t /λ] (0) ∼ λ/ b 1 n t .
This, similar to the previous estimates for the survival probability of the (N + 1)-type branching process gives (recall that (X 0 , Z 0 ) = (1, 0))

E 1 -exp -λZ n / b 1 n t ∼ E 1 -exp -λcn -t L T1 ∼ K 0 t log n .
Since P(Z n > 0) ∼ K 0 / log n, it follows that for any fixed t > 1 and λ > 0

lim n→∞ E exp -λZ n / b 1 n t |Z n > 0 = 1 - 1 t .
This implies that the conditional law of Z n /(b 1 n t ) given Z n > 0 converges to the law of a random variable X with P(X = 0) = 1 -t -1 and P(X = +∞) = t -1 . Therefore, for any t > 1

G(t) = lim n→∞ P n -t Z n ≤ b 1 |Z n > 0 = lim n→∞ P log Z n log n ≤ t Z n > 0 = 1 - 1 t . ( 32 
)
Since lim t↓1 G(t) = 0 we may rewrite (32) for any t > 0 as

lim n→∞ P log Z n log n ≤ t Z n > 0 = 1 - 1 1 + max (0, t -1) , ( 33 
)
as desired.

Now we consider the case N ≥ 2 and use the equality

E s Z n1 1 ...s Z nN N |Z n1 > 0 = E 1 -s Z n2 2 ...s Z nN N I {Z n1 = 0} P (Z n1 > 0) - E 1 -s Z n1 1 ...s Z nN N P (Z n1 > 0) . ( 34 
)
We study each term at the right-hand side of (34) separately. By (31) and log(1 -

x) ∼ -x, x → +0 we see that, as n → ∞ E 1 -s Zn1 1 ...s Z nN N = E [1 -exp {-(1 + o(1))R N (n, s)}] (35) 
where

R N (n, s) := n k=1 N i=1 Y ki Q (i,N ) n-k (s).
Let now t 1 , ...t N be a tuple of positive numbers satisfying (10). It follows from Lemma 2 that, for 1 -

s l = n -t l , l = 1, ..., N Q (i,N ) n (s) n -min i≤l≤N (t l -l+i) = n -i-min i≤l≤N (t l -l) (36) Since min 1≤i≤N min i≤l≤N (t l -l + i) = min 1≤l≤N (t l -l + 1) > 1 ( 37 
)
by our conditions, we have as n → ∞:

Q (i,N ) n (s) Q (1,N ) n (s) n -min 1≤l≤N (t l -l+1) .
Thus, there exist constants C j , j = 1, 2, 3, 4 such that, on the set T ≤ √ n the estimates

C 1 L T1 Q (1,N ) n (s) ≤ R N (n, s) ≤ n k=1 N i=1 Y ki Q (i,N ) n-k (s) ≤ C 2 L T N i=1 Q (i,N ) n (s)
are valid for all sufficiently large n. This, in turn, implies

C 3 L T1 n -min 1≤l≤N (t l -l+1) ≤ R N (n, s) ≤ C 4 n -min 1≤l≤N (t l -l+1) L T . ( 38 
)
Using the estimates above and (30) we get for the selected t 1 , ..., t N , as n → ∞

E 1 -exp {-R N (n, s)} ; T ≤ √ n = 1 log n (1 + o(1)) K 0 1 + min 1≤l≤N (t l -l) + O P T > √ n ,
which leads on account of (23) to

lim n→∞ (log n) E 1 -s Z n1 1 ...s Z nN N = K 0 1 + min 1≤l≤N (t l -l) . (39) 
Thus,

lim n→∞ E 1 -s Z n1 1 ...s Z nN N P (Z n1 > 0) = 1 1 + min 1≤l≤N (t l -l) < 1.
Further,

E 1 -s Zn2 2 ...s Z nN N I {Z n1 = 0} = E 1 -exp n k=1 N i=1 Y ki log H (i,N ) n-k (0, s 2 )
.

By definitions of H

(i,N ) n (s), estimates (36) and the choice of s i , i = 2, ..., N we have

1 -H (i,N ) n (0, s 2 ) = 1 -H (i,N ) n (s) = Q (i,N ) n (s) n -min i≤l≤N (t l -l+i) = o n -1 . Besides, as n → ∞ 1 -H (1,N ) n (0, s 2 ) = Q (1,N ) n (0, s 2 ) ∼ c 1 n -1 (40)
by Lemma 3. Hence it follows that on the set T ≤

√ n T -1 k=0 N i=1 Y ki log H (i,N ) n-k (0, s 2 ) = -(1 + o(1)) T -1 k=0 N i=1 Y ki Q (i,N ) n-k (0, s 2 ) = -(1 + o(1)) N i=1 L Ti Q (i,N ) n (0, s 2 )
and, moreover,

Q (1,N ) n (0, s 2 )L T1 ≤ N i=1 L Ti Q (i,N ) n (0, s 2 ) ≤ C 2 Q (1,N ) n (0, s 2 )L T .
Using now the same line of arguments as earlier one may show that

lim n→∞ E 1 -s Z n2 2 ...s Z nN N I {Z n1 = 0} log n = K 0 implying by (21) with N = 1 that lim n→∞ E 1 -s Zn2 2 ...s Z nN N I {Z n1 = 0} P (Z n1 > 0) = 1.
As a result, given (10) we have

G(t 1 , ..., t N ) = lim n→∞ E s Z n1 1 ...s Z nN N |Z n1 > 0 = 1 - 1 1 + min 1≤l≤N (t l -l) .
Since lim min 1≤l≤N (t l -l)↓0 G(t 1 , ..., t N ) = 0 we conclude by the same arguments that have been used to derive (32) and (33) that

lim n→∞ E s Z n1 1 ...s Z nN N |Z n1 > 0 = 1 - 1 1 + max(0, min 1≤l≤N (t l -l))
for all positive t 1 , ..., t N , completing the proof of Theorem 2.

The case of three types

It follows from ( 8) that for a strongly critical N -type decomposable branching process in a constant environment

P (Z n = 0 | Z 0 = e 1 ) ∼ P (Z n1 + ... + Z n,N -1 = 0, Z nN > 0 | Z 0 = e 1 ) .
Thus, given the condition {Z n = 0} we observe in the limit, as n → ∞ only type N particles. This is not the case for the strongly critical (N + 1)-type decomposable branching process in a random environment. We justify this claim by considering a strongly critical branching process with three types and prove the following statement.

Theorem 3. Let N = 2. If hypothesis A is valid then lim n→∞ P log Z n1 log n ≤ t 1 , log Z n2 log n ≤ t 2 Z n = 0, X 0 = 1, Z 0 = 0 = A(t 1 , t 2 ), (41) 
where

A(t 1 , t 2 ) =                0, if t 1 ∈ [0, ∞), 0 ≤ t 2 ≤ 1; 1 -t -1 2 , if t 1 ∈ [0, ∞), 1 < t 2 < 2; 1/2, if 0 ≤ t 1 < 1, t 2 ≥ 2; 1 -1 2 1 1+min(t1-1,t2-2) , if t 1 ≥ 1, t 2 ≥ 2.
Remark 1. Since the survival probability of particles of type 0 up to moment n is of order n -1/2 , particles of this type are absent in the limit.

Remark 2. Since lim min(t 1 ,t 2 -1)↓0 A(t 1 , t 2 ) = 0, Theorem 3 gives a complete description of the limiting distribution for the left-hand side of (41).

Proof. of Theorem 3. We have This, in turn, yields for T ≤ √ n

E s Z n1 1 s Z n2 2 |Z n = 0 = 1 - E 1 -
C 1 Q (1,2) n (s 1 , s 2 )L T1 ≤ R 2 (n, s) ≤ C 2 Q (1,2) n (s 1 , s 2 )L T .
From this estimate, (30) and Lemma 4 we get as n → ∞

E 1 -s Z n1 1 s Z n2 2 ∼ K 0 C(t 1 , t 2 ) log n,
where

C(t 1 , t 2 ) =                1/2 if t 1 ∈ (0, ∞) , 0 < t 2 ≤ 1; t 2 /2 if t 1 ∈ (0, ∞) , 1 < t 2 < 2; 1 if 0 < t 1 < 1, t 2 ≥ 2; 1 + min (t 1 -1, t 2 -2) if t 1 ≥ 1, t 2 ≥ 2.
Since P (Z n = 0) ∼ 2K 0 (log n) -1 for N = 2, we conclude that for positive t 1 and t 2 Hence the statement of Theorem 3 follows in an ordinary way.

(n- 1 )

 1 kN, k = 1, 2, ..., X n-1 are i.i.d. random vectors with distribution e n-1 i.e., given e n-1 = e n-1 distributed as ξ kiN are independent random vectors distributed as (η ii , η i,i+1 , . . . , η iN ) for i = 1, 2, ...N, i.e., in accordance with the respective probability generating function h (i,N ) (s) in (4).

2 ZE 1 -s Zn1 1 s Zn2 2 P

 212 n = 0, X 0 = 1, Z 0 = 0 = 1 -lim n→∞ (Z n = 0) = 1 -1 2C(t 1 , t 2 ) = A (t 1 , t 2 ) .

  Zn1 , t 2 ) = 1/2, and, therefore, contrary to the case P (Z n1 > 0) we need to analyze the case of positivet 1 , t 2 meeting the condition min (t 1 -1, t 2 -2) < 0 in more detail.The same as in the proof of Theorem 2, it is necessary to obtain estimates from above and below for R 2 (n, s) =

	we have				
	1 -H (1,2) n	(s 1 , s 2 ) + 1 -H (2,2) n	(s 2 ) 1 -H (1,2) n	(s 1 , s 2 ) = Q (1,2)
			1 s Zn2 2 P (Z n = 0)	= 1 -	1 2	1 1 + min (t 1 -1, t 2 -2)	,
	proving Theorem 3 for min (t 1 -1, t 2 -2) ≥ 0. Observe that
			lim min(t1-1,t2-2)↓0 A(t 1 n 2 Y ki Q (i,2) n-k (s)
	given T ≤	k=1 √ n. Observe that in view of Lemma 4 and the representation i=1
			Q (2,2)	n	(s 2 )	1 n t 2 + n	,

s Zn1 1 s Zn2 2 P (Z n = 0)

,

where

E 1 -s Zn1 1 s Zn2 2 = E 1 -exp n k=1 2 i=1 Y ki log H (i,N ) n-k (s) .

Let now 1 -s i = n -t i . If t 1 ≥ 1 and t 2 ≥ 2 then by (21) (with N = 2) and (39) we have

A(t 1 , t 2 ) = 1 -lim n→∞ E 1 -s n (s 2 ) = 1 -H (2,2)

n (s 1 , s 2 ).
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