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Abstract

In this paper, two new algorithms to sample from possibly non-smooth log-concave prob-
ability measures are introduced. These algorithms use Moreau-Yosida envelope combined
with the Euler-Maruyama discretization of Langevin diffusions. They are applied to a de-
convolution problem in image processing, which shows that they can be practically used in a
high dimensional setting. Finally, non-asymptotic bounds for one of the proposed methods
are derived. These bounds follow from non-asymptotic results for ULA applied to prob-
ability measures with a convex continuously differentiable log-density with respect to the
Lebesgue measure.

1 Introduction

Sampling for high-dimensional distribution, known up to a normalizing constant, is the crux
for Bayesian inference. Assume that we are willing to sample a distribution with density π
with respect to the Lebesgue measure on Rd of the form x 7→ e−U(x)/

∫
Rd e−U(y)dy, for some

measurable function U : Rd → (−∞,+∞], which satisfies the following condition.

H 1. U = f + g, where f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded, convex
functions satisfying:

(i) f is continuously differentiable and gradient Lipschitz with Lipschitz constant Lf , i.e. for
all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ . (1)

(ii) g is lower semi-continuous and
∫
Rd e−g(y)dy ∈ (0,+∞).
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In the Bayesian setting, f is the opposite of the log-likelihood. A typical example is the
regression model where f(x) = ‖y −Mx‖2, where y ∈ RN are the responses (N being the number
of observations), M ∈ Rd×N is a known regression matrix, and x are the regression parameters.
The function g is the potential of a prior distribution. Since we willing to cover classes of prior
which favors sparsity, we do not assume that g is differentiable. For example, taking a Laplace
prior g(x) = ‖x‖1 in a regression problem leads to the Bayesian LASSO regression; see Park and
Casella [2008].

If U is continuously differentiable on Rd, the Langevin stochastic differential equations (SDE)
associated with π is given by

dXL
t = −∇U(XL

t )dt+
√

2dBdt , (2)

where (Bdt )t≥0 is a d-dimensional Brownian motion. Under mild assumptions, this equation has
a unique strong solution; the semi-group associated with the Langevin SDE is reversible and
ergodic with respect to π which is hence stationary, see Khas’minskii [1960]. To sample π, this
suggests to consider the Markov chain given by the Euler-Maruyama discretization of (2), defined
given the current state Xk by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2Zk+1 , (3)

where (γk)k≥1 is a nonincreasing sequence of stepsizes and (Zk)k≥1 is a sequence of i.i.d. d-
dimensional standard Gaussian random variables. This scheme has been first introduced in
molecular dynamics by Ermak [1975] and Parisi [1981], and then popularized in the machine
learning community by Grenander [1983], Grenander and Miller [1994] and computational statis-
tics by Neal [1993] and Roberts and Tweedie [1996]. Following Roberts and Tweedie [1996], this
algorithm is referred to as the Unadjusted Langevin Algorithm (ULA). Under additional assump-
tions on U and if limk→+∞ γk = 0,

∑∞
k=0 γk = +∞, it has been shown in Lamberton and Pagès

[2002], Lemaire [2005] that for all h in an appropriately defined class of functions

lim
n→+∞

(
n∑
i=1

γi

)−1 n∑
k=0

γk+1h(Xk) =

∫
Rd
h(y)dπ(y) .

This result was later extended in Durmus and Moulines [2015], which provides non-asymptotic
deviation bounds. Under weak additional conditions, a central limit theorem can be obtained.

For constant stepsizes γk = γ for all k, the Markov chain associated to the Euler-Maruyama
discretization also converges (under weak additional technical conditions) to a probability mea-
sure πγ , which is different from π. Dalalyan [2014] and Durmus and Moulines [2015] give non-
asymptotic bounds for the total variation between these two probability measures with explicit
dependence on the stepsize γ and the dimension d. To get a reversible Markov chain with respect
to π, and therefore drop the asymptotic bias, Rossky et al. [1978] and Roberts and Tweedie [1996]
have suggested to include the one-step transition kernel of the Euler-Maruyama discretization
(3) as a proposal kernel in a Metropolis-Hastings algorithm. Because π is this time the target
distribution, this algorithm is called the Metropolis Adjusted Langevin Algorithm (MALA), a
term coined by Roberts and Tweedie [1996].

As mentioned earlier, the main motivation of this paper is to provide efficient methods to
sample high-dimensional regression model with sparsity inducing prior g, which satisfies H1-(ii).
In the Bayesian linear regression with Laplace prior for example, U is differentiable almost every-
where, and being a proper convex function, has subgradient everywhere. Therefore, whereas U is
not differentiable, the ULA and MALA algorithms could still be formally applied. This solution
is not satisfactory. First, some technical difficulties arise however when defining the associated
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SDE, which no longer has strong solutions. Second, experimental evidence shows however that
the MALA algorithm mixes poorly, see [Pereyra, 2015, Figure 4]. In some applications, ∇U is not
even well defined on a subset of Rd with non null Lebesgue measure. This problem occurs when
sampling a distribution supported on on a bounded convex set K. In such case, the potential g
is bounded on K and infinite outside K.

On the other hand, new efficient first-order optimization algorithms have been recently in-
troduced in the convex optimization literature to compute a Maximum a posteriori of such
non-smooth convex potential; see Parikh and Boyd [2013] and the references therein. These
optimisation algorithms use gradient descent for the smooth part of the the potential combined
with a proximal step for the non-smooth part.

In this paper, we introduce two new algorithms designed to sample from π = e−U where the
potential U satisfies H1. The idea is to construct an convex and smooth distribution using the
Moreau-Yosida proximal operator, and then apply either the ULA or MALA algorithm to these
approximations. Second, to compute expectation under the target distribution π, an importance
sampling step is introduced.

The paper is organized as follows. In Section 3, the Moreau-Yosida regularization is in-
troduced and the properties of the regularized target distribution is presented. In Section 3
non-asymptotic bounds in total variation for the ULA algorithms are presented, since it is the
first step of one of our algorithms. To illustrate our findings, a limited Monte Carlo experiment
is presented in Section 4. We consider a high-dimensional Bayesian linear inverse problem to
illustrate the practical feasibility and validity of the proposed algorithms in a realistic context.

Notations and Conventions

Denote by B(Rd) the Borel σ-field of Rd. For all A ∈ B(Rd), denote by Vol(A) its Lebesgue
measure. Denote by M(Rd) the set of all Borel measurable functions on Rd and for f ∈M(Rd),
‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and f ∈ M(Rd) a µ-
integrable function, denote by µ(f) the integral of f w.r.t. µ. For two probability measures µ
and ν on (Rd,B(Rd)), the total variation of µ and ν is defined as

‖µ− ν‖TV = sup
f∈M(Rd),‖f‖∞≤1

∣∣∣∣∫
Rd
f(x)dµ(x)−

∫
Rd
f(x)dν(x)

∣∣∣∣ (4)

Let f : Rd → (−∞,+∞] be a proper function, denote by ∂f(x) the subdifferential of f at
x ∈ Rd. If f is a Lipschitz function, namely there exists C ≥ 0 such that for all x, y ∈ Rd,
|f(x)− f(y)| ≤ C ‖x− y‖, then denote ‖f‖Lip = inf{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈ Rd, x 6= y}.
For k ≥ 0, denote by Ck(Rd), the set of k-times continuously differentiable functions. For
f ∈ C2(Rd), denote by ∆f the Laplacian of f . Denote for all q ≥ 1, the `q norm |·|q on Rd by

for all x ∈ Rd, ‖x‖q = (
∑d
i=1 |xi|

q
)1/q. For all x ∈ Rd and M > 0, denote by B(x,M), the ball

centered at x of radius M . For a closed convex K ⊂ Rd, denote by projK (·), the projection onto
K, and ιK the convex indicator of K defined by ιK(x) = 0 if x ∈ K, and ιK(x) = +∞ otherwise.
For all subsets E1,E2 ⊂ Rd, denote by E1 + E1 = {x + y | x ∈ E1, y ∈ E2}. In the sequel, we
take the convention that inf ∅ =∞, 1/∞ = 0 and for n, p ∈ N, n < p then

∑n
p = 0 and

∏n
p = 1.

Denote by Φ and Φ−1 the cumulative distribution function and the quantile function of the a
standard Gaussian variable.
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2 Moreau-Yosida Regularized Langevin Algorithms: MYULA
and MYMALA

The key tools in this work are proximal operators and Moreau-Yosida envelopes; see Parikh and
Boyd [2013] and Polson et al. [2015]. Let h : Rd → (−∞,+∞] be a l.s.c convex function and
λ > 0. The λ-Moreau-Yosida envelope hλ : Rd → R and the proximal operator proxλh : Rd → Rd
associated with h (see [Rockafellar and Wets, 1998, Chapter 1 Section G]) are defined for all
x ∈ Rd by

hλ(x) = inf
y∈Rd

{
h(y) + (2λ)−1 ‖x− y‖2

}
≤ h(x) , (5)

For every x ∈ Rd, the minimum is achieved at a unique point, proxλh(x), which is characterized
by the inclusion

x− proxλh(x) ∈ γ∂h(proxλh(x)) . (6)

The Moreau-Yosida envelope is a regularized version of g, which approximates g from below. The
proximal (or proximity) operator specifies the (unique) point solving the optimization problem.
The parameter λ defines a trade-off between the two objectives of minimizing g and staying

close to x. Since for 0 < λ < λ′,
{

h(y) + (2λ′)−1 ‖x− y‖2
}
≤
{

h(y) + (2λ)−1 ‖x− y‖2
}

for all

x, y ∈ Rd, we get hλ
′
(x) ≤ hλ(x). In addition, as λ ↓ 0, converges hλ converges pointwise h, i.e.

for all x ∈ Rd,
hλ(x) ↑ h(x) , as λ ↓ 0 . (7)

Furthermore, the function hλ is convex and continuously differentiable with gradient given by

∇hλ(x) = λ−1(x− proxλh(x)) . (8)

The proximal operator behaves like a gradient-descent step for the function h in the sense that
proxλh(x) = x− λ∇hλ(x). The proximal operator is a monotone operator [Rockafellar and Wets,
1998, Proposition 12.19], i.e. for all x, y ∈ Rd,〈

proxλh(x)− proxλh(y), x− y
〉
≥ 0 , (9)

which implies that the Moreau-Yosida envelope is smooth in the sense that its gradient is Lipshitz:∥∥∇hλ(x)−∇hλ(y)
∥∥ ≤ λ−1 ‖x− y‖, for all x, y ∈ Rd.

For example, the proximal operator associated with the `1-norm and the parameter λ on Rd
is the soft thresholding operator defined by for all x ∈ Rd, proxλ|·|1

(x) is the d-dimensional vector

whose component i ∈ {1, · · · , d} is equal to sign(xi)×max(|xi|−λ, 0) (see e.g. [Parikh and Boyd,
2013, Section 6.5.2]). In the case where g = ιK for a closed convex subset K ⊂ Rd, the proximal
operator is simply the projection onto K for all λ > 0.

Under H1, if g is not differentiable, but the proximal operator associated with g is available,
its λ-Moreau Yosida envelope gλ can be considered. This leads to the approximation of the
potential Uλ : Rd → R defined for all x ∈ Rd by

Uλ(x) = f(x) + gλ(x) .

The following proposition implies that the function e−U
λ

can be renormalized to define a density
of a probability measure πλ on Rd.

Proposition 1. Assume H1. Then for all λ > 0, it holds 0 <
∫
Rd e−U

λ(y)dy < +∞.

Proof. The proof is postponed to Section 5.1.
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Under H1 and using (5), Uλ is continuously differentiable and gradient Lipschitz. Given a
regularization parameter λ > 0 and a sequence of stepsizes {γk, k ∈ N∗}, the algorithm produces
the Markov chain {XM

k , k ∈ N}: for all k ≥ 0

XM
k+1 = XM

k − γk+1

{
∇f(XM

k ) + λ−1(XM
k − proxλg (XM

k ))
}

+
√

2γk+1Zk+1 , (10)

where {Zk, k ∈ N∗} is a sequence of i.i.d. d dimensional standard Gaussian random variables.
Since, as shown in Durmus and Moulines [2015], the ULA algorithm can be used to target πλ

(provided that the sequence of stepsize {γk, k ∈ N} decreases to zero at an appropriate rate),
the algorithm (10) target the smoothed distribution πλ. Hence, to compute the expectation of a
function h : Rd → R under π from {XM

k ; 0 ≤ k ≤ n}, an importance sampling scheme is used to
correct the smoothing. This step amounts to approximate

∫
Rd h(x)π(x)dx by the weighted sum

Shn =

n∑
k=0

ωk,nh(Xk) , with ωk,n =

{
n∑
k=0

γkeḡ
λ(XM

k )

}−1

γkeḡ
λ(XM

k ) , (11)

where for all x ∈ Rd

ḡλ(x) = gλ(x)− g(x) = g(proxλg (x))− g(x) + (2λ)−1
∥∥x− proxλg (x)

∥∥2
.

This algorithm will be called the Moreau-Yosida Unadjusted Langevin Algorithm (MYULA).
Note that if the stepsize γk = γ is constant, the ULA sequence {XM

k , k ∈ N} does not longer
target πλ, but a distribution πλγ which depends on the stepsize (note that the approximation

error ‖πλ−πλγ‖TV = O(γ1/2) - see Proposition 5). To remove this bias, we can add an Hastings-

Metropolis step, which will produce a Markov chain {X̃λ
k , k ∈ N} which is reversible this

time with respect to πλ and use similarly an importance sampling step to correct for the bias
introduced by smoothing. This algorithm will be called the Moreau-Yosida Regularized Metropolis
Adjusted Langevin Algorithm (MYMALA).

To justify, the importance sampling step, we give in the following some results and bounds
on the behaviour of ‖πλ − π‖TV in function of λ.

Proposition 2. Assume H1.

(a) Then, limλ→0 ‖πλ − π‖TV = 0.

(b) Assume in addition that g is Lipschitz. Then for all λ > 0,

‖πλ − π‖TV ≤ λ ‖g‖2Lip .

(c) If g = ιK where K is a convex body of Rd. Then for all λ > 0 we have

‖πλ − π‖TV ≤ 2 (1 + D(K, λ))
−1

, (12)

where D(K, λ) is explicit in the proof, and is of order O(λ−1) as λ goes to 0.

Proof. The proof is postponed to Section 5.2.
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3 Main results

In this section, we fix the regularization parameter λ > 0 and for ease of notation denote by V
and µ, Uλ and πλ respectively. We apply in MYULA, a ULA step to sample from the distribution
µ having a potential V which satisfies the following conditions.

H2 (V ). i) The function V : Rd → R is continuously differentiable, convex and gradient
Lipschitz with constant Lc.

ii) There exist ρc > 0 and Rc ≥ 0 such that for all x ∈ Rd, ‖x− x?‖ ≥ Rc,

V (x)− V (x?) ≥ ρc ‖x− x?‖ , (13)

where x? is a minimizer of V .

It has been observed that gλ is λ−1-gradient Lipschitz, which implies that a upper bound
for Lc is Lf + λ−1. However, this bound strongly depends on the decomposition of U , which is
arbitrary, so can be pessimistic. For instance, if U is continuously differentiable, g can be chosen
to be 0 which implies V = U and Lc = Lf . Furthermore, H2-ii) holds for V since by Lemma 6
and Proposition 1 there exists C1, C2 > 0 such that V (x) ≥ C1 ‖x‖−C2, which easily implies (13)
with ρc ← C1/2 and Rc ← 2(C2 + ‖x?‖+ V (x?))/C1. But these constants are non-quantitative
and that is why we assume they can be estimated. To get non-asymptotic bounds for MYULA,
we are interested in this part to get non-asymptotic to ULA applied to the probability measure
µ.

For γ > 0, consider the Markov kernel Rγ associated to the Euler-Maruyama discretization
(10) is given, for all A ∈ B(Rd) and x ∈ Rd by

Rγ(x,A) = (4πγ)−d/2
∫
A

exp
(
−(4γ)−1 ‖y − x+ γ∇V (x)‖2

)
dy . (14)

The sequence {XM
n , n ∈ N} is an inhomogeneous Markov chain associated with the sequence of

kernel {Rγn , n ≥ 1}. Denote for 1 ≤ n ≤ p,

Qn,pγ = Rγn · · ·Rγp , Qnγ = Q1,n
γ . (15)

By convention for n > p ≥ 0, we set Qn,pγ = Id where Id is the identity kernel. Denote for
n, p ∈ N by

Γn,p =

p∑
k=n

γk , Γn = Γ1,n . (16)

In this section we derive non-asymptotic bounds on the difference between µ0Q
n
γ and µ in total

variation. Such bounds have been obtained in Dalalyan [2014] and Durmus and Moulines [2015],
but the assumptions considered here are weaker. Similar to what is done in Durmus and Moulines
[2015], we consider the following decomposition: for all n ≥ 0, p ≥ 1 and n < p,

‖µ0Q
p
γ − µ‖TV ≤ ‖µ0Q

n
γPL

Γn+1,p
− µ‖TV + ‖µ0Q

n
γQ

n+1,p
γ − µ0Q

n
γPL

Γn+1,p
‖TV , (17)

where (PL
t )t≥0 is the Markov semigroup of the Langevin SDE associated with V . The first

term will be bounded using new quantitative results on the convergence of (PL
t )t≥0 to π in total

variation, given in Section 7. On the other hand, the second term will be bounded using the
Pinsker inequality allowing to compare the total variation distance with the relative entropy
combined with the Girsanov theorem; see Dalalyan [2014] and Durmus and Moulines [2015]. To
complete this step, it is required to control some moments of the gradient of the potential, which
is achieved by using establishing a drift conditions for Rγ with γ > 0; see Section 8.
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Theorem 3. Assume H2(V ). Let {γk, k ∈ N∗} be a nonincreasing sequence with γ1 ≤ L−1
c .

Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ Rd

‖δxQpγ − µ‖TV ≤ Ccκ
Γn+1,p
c

{
βcθ
−1
c + λ

Γ1,n
c Wc(x) + cc(1− λ

Γ1,n
c )/(1− λ

γ1
c )
}

+An,p(x; γ) ,

where Cc, κc, θc, βc are given in Theorem 12, λc in (53), cc in (57), Wc : Rd → R is defined for
all x ∈ Rd by

Wc(x) = exp
(
ρc {‖x− x?‖+ 1}1/2

)
, (18)

(An,p(x; γ))2 = 2−1L2
c

p−1∑
k=n

{
(γ3
k+1/3)L2

c

(
4ρ−1

c

{
1 + log

{
Wc(x) + cc (1− λ

γ1
c )
−1
}})2

+dγ2
k+1

}
.

Proof. The proof is postponed to Section 8.1.

More precise bounds can be obtained under more stringent assumption on V . We consider
the case where V is strongly convex outside some ball; see Eberle [2015].

H3 (V ). There exist Rs ≥ 1 and ms > 0, such that for all x, y ∈ Rd, ‖x− y‖ ≥ Rs,

〈∇V (x)−∇V (y), x− y〉 ≥ 2ms ‖x− y‖2 .

Note that in the case where g = ιK, where K is a convex body, then by (9) and the Cauchy-

Schwarz inequality, we have
〈
∇gλ(x)−∇gλ(y), x− y

〉
≥ λ−1(‖x− y‖2−2 {supz∈K ‖z‖} ‖x− y‖),

which implies H3(V ).

Theorem 4. Assume H2(V ) and H3(V ). Let {γk, k ∈ N∗} be a nonincreasing sequence with
γ1 ≤ 4msL

−1
c . Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ Rd

‖δxQpγ − µ‖TV ≤ Csκ
2Γn+1,p
s Bn,p(x; γ) + Cn,p(x; γ) ,

where Cs, κs are given in Theorem 13, λs in (59), cs in (61),

Bn,p(x; γ) =

1 +

(
d

2ms
+ Rs

)1/2

+

(
λ

Γ1,n
s ‖x− x?‖2 + cs

1− λ
Γ1,n
s

1− λ
γ1
s

)1/2


(Cn,p(x; γ))2 = 2−1L2
c

p−1∑
k=n

{
(γ3
k+1/3)L2

c

{
‖x− x?‖2 + cs(1− λ

γ1
s )−1

}
+ dγ2

k+1

}
.

Proof. The proof is postponed to Section 8.2.

In the case of constant stepsizes γk = γ for all k ≥ 0, we can achieve a level of precision
ε > 0, i.e. ‖δxQpγ − π‖TV ≤ ε, setting n = 0 and carefully choosing γ and p ≥ 1 in the bounds
given by Theorem 3 and Theorem 4. We summarise the dependence of γ and p in function of
the dimension d, the precision ε and the other parameters of V in Table 1. The following result
gives also the order in the stepsize γ of the asymptotic bias.

Proposition 5. Assume H2(V ) and let γ ≤ Lc. Then Rγ has a unique invariant probability
measure µγ , which satisfies ‖µ− µγ‖TV = O((γ log(γ))1/2).

Proof. The proof is postponed to 8.3.
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d ε Lc

γ O(d−4) O(ε2/ log(ε−1)) O(L−2
c )

p O(d7) O(ε−2 log2(ε−1)) O(L2
c)

Table 1: For constant stepsizes, dependence of γ and p in d, ε and parameters of V to get
‖δxQpγ − π‖TV ≤ ε using Theorem 3

d ε Lc ms Rs

γ O(d−1) O(ε2/ log(ε−1)) O(L−2
c ) O(ms) O(R−4

s )

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2
c) O(m−2

s ) O(R8
s )

Table 2: For constant stepsizes, dependence of γ and p in d, ε and parameters of V to get
‖δxQpγ − π‖TV ≤ ε using Theorem 4

4 Numerical illustrations

In this section, the behavior of the MYULA algorithm is demonstrated on a Bayesian image
deconvolution model with a total-variation prior. This is a challenging high-dimensional and
non-smooth model that is widely used in statistical image processing and for which the state-of-
the-art MCMC algorithms are inefficient.

In image deconvolution or deblurring problems, the goal is to recover an original image x ∈ Rn
from a blurred and noisy observed image y ∈ Rn related to x by the linear observation model
y = Hx + w, where H is a linear operator representing the blur point spread function and w is
a Gaussian vector with zero-mean and covariance matrix σ2In. This inverse problem is usually
ill-posed or ill-conditioned, i.e., either H does not admit an inverse or it is nearly singular, thus
yielding highly noise-sensitive solutions. Bayesian image deconvolution methods address this
difficulty by exploiting prior knowledge about x in order to obtain more robust estimates. One
of the most widely used image prior for deconvolution problems is the improper total-variation
norm prior, π(x) ∝ exp (−α‖∇dx‖1), where ∇d denotes the discrete gradient operator that
computes the vertical and horizontal differences between neighbour pixels. This prior encodes
the fact that differences between neighbour image pixels are often very small and occasionally
take large values (i.e., image gradients are nearly sparse). Based on this prior and on the linear
observation model described above, the posterior distribution for x is given by

π(x|y) ∝ exp
[
−‖y −Hx‖2/2σ2 − α‖∇dx‖1

]
. (19)

Image processing methods using (19) are almost exclusively based on MAP estimates of x that
can be efficiency computed using proximal optimisation algorithms [Green et al., 2015]. Here we
consider the problem of computing credibility regions for x, which we use to assess the confidence
in the restored image. Precisely, we use MYULA to compute approximately the marginal 90%
credibility interval for each image pixel, where we note that (19) is log-concave and admits
the decomposition U(x) = f(x) + g(x), with f(x) = −‖y − Hx‖2/2σ2 convex and Lipschitz
differentiable, and g(x) = −α‖∇dx‖1 convex and with computationally tractable proximity
mapping that can be compute efficiently by using a parallel implementation of Chambolle [2004]).

Figure 1 presents an experiment with the Boat image, which is a standard image to assess
deconvolution methods [Green et al., 2015]. Figure 1(a) and (b) show the original image x0 of
size 256×256 and a blurred and noisy observation y, which we produced by convoluting x0 with
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a uniform blur of size 9× 9 and adding white Gaussian noise to achieve a blurred signal-to-noise
ratio (BSNR) of 40dB (BRSN = 10 log10{var(Hx0)/σ2}). The MAP estimate of x obtained by
maximising (19) is depicted in Figure 1(c). This estimate has been computed with the proximal
optimisation algorithm of Afonso et al. [2011], and by using the technique of Oliveira et al. [2009]
to determine the value of α. By comparing Figures 1(a) and 1(c) we observe that this image
restoration process has produced a remarkably sharp image with very noticeable fine detail.

(a) (b) (c)

Figure 1: (a) Original Boat image (256 × 256 pixels), (b) Blurred image, (c) MAP estimate computed
with [Afonso et al., 2011].

Moreover, Section 4 shows the magnitude of the marginal 90% credibility regions for each
pixels, as measured by the distance between the 95% and 5% quantile estimates. For benchmark
purpose, Section 4(a) shows the estimates obtained by using the proximal MALA Pereyra [2015].
These estimates where computed from a 10 000-sample chain generated with a thinning factor
of 1 000 to reduce the algorithm’s memory foot-print, and by setting λ = γ/2 and adjusting
γ = 0.004 to achieve an acceptance rate of approximate 50%. Figures 4(b) and Figure 4(c)
show respectively the approximate estimates obtained from 10 000-sample chains generated with
MYULA using γ = 0.02 and a thinning factor of 100, and γ = 0.2 a thinning factor of 10
(notice that from the viewpoint of the diffusion process, the chains generated with MYULA and
proximal MALA have evolved during the same “diffusion time”). Computing these estimates
required approximated 35 hours for proximal MALA, 3.5 hours for MYULA with λ = 0.01,
γ = 0.02 and 100-thinning, and 20 minutes for MYULA with λ = 0.1, γ = 0.2 and 10-thinning.
By comparing Figures 4(a)-(c) we observe that the approximate estimates delivered by MYULA
are in good agreement with the estimations obtained with proximal MALA, and with a reduction
in computing time of a factor of 10 and 100.

5 Proofs of Section 2

5.1 Proof of Proposition 1

We preface the proof by a Lemma.

Lemma 6. Let h : Rd → (−∞,+∞] be a lower bounded, l.s.c convex function satisfying 0 <∫
Rd e−h(y)dy < +∞. Then there exists xh ∈ Rd, Rh, ρh > 0 such that for all x ∈ Rd, x 6∈

B(xh, Rh), h(x)− h(xh) ≥ ρh ‖x− xh‖.

Proof. The proof is a simple extension of the one of [Bakry et al., 2008, Theorem 2.2.2], where
h is assumed to be continuously differentiable.

9



(a) (b) (c)

Figure 2: (a) Pixel-wise 90% credibility intervals computed with proximal MALA (computing
time 35 hours), (b) Approximate intervals estimated with MYULA using λ = 0.01 (computing
time 3.5 hours), (c) Approximate intervals estimated with MYULA using λ = 0.1 (computing
time 20 minutes).

We first show that h is finite on a non-empty open set of Rd. Note since
∫
Rd e−h(y)dy > 0,

the set {h < ∞} can not be contained in a k-dimensional hyperplane, for k ∈ {0, · · · , d − 1}.
Then, there exists d + 1 points {vi}0≤i≤d ⊂ {h < ∞} such that the vectors {vi − v0}1≤i≤d are
linearly independent. Denote by co(v0, · · · , vd) the convex hull of {vi}0≤i≤d defined by

co(v0, · · · , vd) =

{
d∑
i=0

αivi |
d∑
i=0

αi = 1 ,∀i ∈ {0, · · · , d} , αi ≥ 0

}
.

Since h is convex, co(v0, · · · , vd) ⊂ {h <∞} and we have

sup
y∈co(v0,··· ,vd)

|h(y)| ≤Mco = max
i∈{0,··· ,d}

{|h(vi)|} . (20)

It follows from {vi}0≤i≤d ⊂ {h < ∞} and h is lower bounded that Mco is finite. Finally by
[Florenzano and Le Van, 2001, Lemma 1.2.1], co(v0, · · · , vd) has non empty interior.

Consider now the set {h ≤Mco +1}. We prove by contradiction that it is a bounded subset of
Rd. Assume that for all R ≥ 0, there exists xR ∈ {h ≤Mco + 1} and xR 6∈ B(v0, R). Then since
{h ≤Mco +1} is convex, it contains the convex hull of {v0, · · · , vd, xR}. Since co(v0, · · · , vd) has
non empty interior, the volume of co(v0, · · · , vd, xR) grows at least linearly in R and the volume
corresponding to {h ≤Mco + 1} is infinite taking the limit as R goes to ∞. On the other hand,
by assumption since {v0, · · · , vd, xR} ⊂ {h ≤Mco + 1}, we have using the Markov inequality

Vol ({h ≤Mco + 1}) ≤ eMco+1

∫
{h≤Mco+1}

e−h(y)dy < +∞ ,

which is leads to a contradiction. Then there exists Rh ≥ 0, such that {h ≤Mco+1} ⊂ B(v0, Rh).

For all x 6∈ B(v0, Rh), consider y = Rh(x − v0) ‖x− v0‖−1
+ v0. Note that y 6∈ {h ≤ Mco + 1},

so h(y) ≥Mco + 1. Now using the convexity of h, we have for all x 6∈ B(v0, Rh),

Mco + 1 ≤ h(y) ≤ Rh ‖x− v0‖−1
(h(x)− h(v0)) + h(v0) .

Since h(v0) ≤Mco, we get
(h(x)− h(v0)) ≥ R−1

h ‖x− v0‖

and the proof is concluded setting xh = v0.

10



Proof of Proposition 1. By (5), U ≥ Uλ and therefore 0 <
∫
Rd e−U(y)dy <

∫
Rd e−U

λ(y)dy. We

now prove e−g
λ

is integrable with respect to the Lebesgue measure, which implies y 7→ e−U
λ(y)

is integrable as well since f is assumed to be lower bounded. By H1 and Lemma 6, there exist
ρg > 0, xg ∈ Rd and M1 ∈ R such that for all x ∈ Rd, g(x)− g(xg) ≥ M1 + ρg ‖x− xg‖. Thus,
for all x ∈ Rd, we have

gλ(x)− g(xg) ≥M1 + ρg
∥∥proxλg (x)− xg

∥∥+ (2λ)−1
∥∥x− proxλg (x)

∥∥2

≥M1 + inf
y∈Rd
{ρg ‖y − xg‖+ (2λ)−1 ‖x− y‖2} ≥M1 + hλ(x) , (21)

where hλ(x) is the λ-Moreau Yosida envelope of h(x) = ρg ‖x− xg‖. By [Parikh and Boyd, 2013,
Section 6.5.1], the proximal operator associated with the norm is the block soft thresholding
given for all λ > 0 and x ∈ Rd \ {0} by proxλh(x) = max(0, 1 − λ/ ‖x‖)x and proxλh(0) = 0.
Therefore, it follows that there exists M2 such that for all x ∈ Rd,

hλ(y) ≥ ρg ‖y − xg‖+M2 .

Combining this inequality with (21) concludes the proof.

5.2 Proof of Proposition 2

(a) For ease of notation we also denote by πλ the density of πλ with respect to the Lebesgue
measure. Since π has also a density with respect to the Lebesgue measure and Uλ(x) ≤ U(x)
for all x ∈ Rd, we have for all λ > 0

‖πλ − π‖TV =

∫
Rd

∣∣πλ(x)− π(x)
∣∣dx ≤ 2Aλ , (22)

where

Aλ =

∫
Rd
{1− eg

λ(x)−g(x)}πλ(x)dx = 1−
{∫

Rd
e−U

λ(x)dx

}−1 ∫
Rd

e−U(x)dx .

By (7), for all x ∈ Rd, we get limλ↓0 ↑ Uλ(x) = U(x). We conclude by applying the monotone
convergence theorem.

(b) Using that for all x ∈ Rd, gλ(x) ≤ g(x) and 1− e−u ≤ u for all u ≥ 0, (22) shows that

‖πλ − π‖TV ≤ 2

∫
Rd
{g(x)− gλ(x)}πλ(x)dx .

Next, we show that supx∈Rd{g(x) − gλ(x)} ≤ λ ‖g‖2Lip /2, which will conclude the proof. Using

that g is Lipschitz, we have by (5), for all x ∈ Rd

g(x)− gλ(x) = g(x)− inf
y∈Rd

{
g(y) + (2λ)−1 ‖x− y‖2

}
= sup
y∈Rd

{
g(x)− g(y)− (2λ)−1 ‖x− y‖2

}
≤ sup
y∈Rd

{
‖g‖Lip ‖x− y‖ − (2λ)−1 ‖x− y‖2

}
≤ λ ‖g‖2Lip /2 ,

where we have used that the maximum of u 7→ au− bu2, for a, b ≥ 0, is given by a2/(4b).
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(c) Consider the intrinsic volumes {Vi(K)}0≤i≤d of K, which can be defined by Steiner’s
formula, which states that for all M ≥ 0,

Vol(K + B(0,M)) =

d∑
i=0

Md−i
π

(d−i)/2Γ−1(1 + (d− i)/2)Vi(K) , (23)

where Γ : R∗+ → R∗+ is the Gamma function. We refer to [Schneider, 2013, Chapter 4.2] for this
result and an introduction to this topic. By definition of the projection onto a closed convex
subset of Rd, gλ is given for all x ∈ Rd by gλ(x) = (2λ)−1 ‖x− projK (x)‖2. Then by a direct
calculation, we get

‖πλ − π‖TV =

∫
Rd

∣∣π(x)− πλ(x)
∣∣dx = 2

(
1 +

{∫
Kc

e−U
λ(x)dx

}−1 ∫
K

e−f(x)dx

)−1

≤ 2

(
1 + exp

(
min
Kc

(f)−max
K

(f)
){

Vol(K)
/∫
Kc

e−(2λ)−1‖x−projK(x)‖2dx

})−1

. (24)

In addition using [Kampf, 2009, Proposition 3], we get∫
Kc

e−(2λ)−1‖x−projK(x)‖2dx =

∫
R+

Vol (K + B(0, t)) e−t
2/(2λ)dt . (25)

Combining (24)-(25) and Steiner’s formula (23) implies that (12) holds with

D(K, λ) = exp
(

min
Kc

(f)−max
K

(f)
)

Vol(K)

{
d−1∑
i=0

(λ/2π)(d−i)/2Vi(K)

}−1

.

6 Proof of Section 3

7 Quantitative convergence bounds in total variation for
diffusions

In this part, we are interested in quantitative convergence results in total variation norm for
d-dimensional SDEs of the form

dXt = b(Xt)dt+ dBdt , (26)

started at X0, where (Bdt )t≥0 is a d-dimensional standard Brownian motion and b : Rd → Rd
satisfies the following assumptions.

G1 (b). b is Lipschitz and for all x, y ∈ Rd, 〈b(x)− b(y), x− y〉 ≤ 0.

Under G1(b), [Ikeda and Watanabe, 1989, Theorems 2.4-3.1-6.1, Chapter IV] imply that there
exists a unique solution (Xt)t≥0 to (26) for all initial distribution ξ0 on Rd, which is strongly
Markovian. Denote by (Pt)t≥0 the transition semigroup associated with (26). To derive explicit
bound for ‖Pt(x, ·)−Pt(y, ·)‖TV, we use the coupling by reflection, introduced in Lindvall and
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Rogers [1986]. This coupling is defined as (see [Chen and Li, 1989, Example 3.7]) the unique
strong Markovian process (Xt,Yt)t≥0 on R2d, solving the SDE:{

dXt = b(Xt)dt+ dBdt
dYt = b(Yt)dt+ (Id−2ete

T
t )dBdt ,

where et = e(Xt −Yt) (27)

with e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise. Define the coupling time

τc = inf{s ≥ 0 | Xs 6= Ys} . (28)

By construction Xt = Yt for t ≥ τc. We denote in the sequel by P̃(x,y) and Ẽ(x,y) the probability

and the expectation associated with the SDE (27) started at (x, y) ∈ R2d on the canonical space

of continuous function from R+ to R2d. We denote by (F̃t)t≥0 the canonical filtration. Since

B̄dt =
∫ t

0
(Id−21{s<τc}ese

T
s )dBds is a d-dimensional Brownian motion, the marginal processes

(Xt)t≥0 and (Yt)t≥0 are weak solutions to (26) started at x and y respectively. Coupling by
reflection was introduced in Lindvall and Rogers [1986] to show convergence in total variation
norm for solution of SDE, and recently used by Eberle [2015] to obtain exponential convergence
in the Wasserstein distance of order 1. The result in Lindvall and Rogers [1986] are derived
under less stringent conditions than G1(b), but do not provide quantitative estimates.

Proposition 7 ([Lindvall and Rogers, 1986, Example 5]). Assume G1(b) and let (Xt,Yt)t≥0

be the solution of (27). Then for all t ≥ 0 and x, y ∈ Rd, we have

P̃(x,y) (τc ≥ t) = P̃(x,y) (Xt 6= Yt) ≤ 2

(
Φ

{(
2t1/2

)−1

‖x− y‖
}
− 1/2

)
.

Proof. For t < τc, Xt −Yt is the solution of the SDE

Xt −Yt = {b(Xt)− b(Yt)} dt+ 2etdB
1
t ,

where (B1
t )t≥0 is the one-dimensional Brownian motion given by B1

t =
∫ t

0
1{s<τc}e

T
s dBds . Using

the Itô’s formula and G1, we have for all t < τc,

‖Xt −Yt‖ = ‖x− y‖+

∫ t

0

〈b(Xs)− b(Ys), es〉ds+ 2B1
t ≤ ‖x− y‖+ 2B1

t . (29)

Therefore, for all x, y ∈ Rd and t ≥ 0, we get

P̃(x,y) (τc > t) ≤ P̃(x,y)

(
min

0≤s≤t
B1
s ≥ ‖x− y‖ /2

)
= P̃(x,y)

(
max

0≤s≤t
B1
s ≤ ‖x− y‖ /2

)
= P̃(x,y)

(
|B1
t | ≤ ‖x− y‖ /2

)
.

where we have used the reflection principle in the last identity.

Define the set
∆R = {x, y ∈ Rd | ‖x− y‖ ≤ R} (30)

for R > 0 and the function ω : (0, 1)× R∗+ → R+ by

ω(ε, R) = R2/
{

2Φ−1(1− ε/2)
}2

. (31)
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Proposition 7 and Lindvall’s inequality give that, for all ε ∈ (0, 1),

sup
(x,y)∈∆R

‖Pt(x, ·)−Pt(y, ·)‖TV ≤ (1− ε) , for any t ≥ ω(ε, R) , (32)

To obtain quantitative exponential bounds in total variation for any x, y ∈ Rd, it is required to
control some exponential moments of the return times to ∆R. This is first achieved by using a
drift condition for the generator A associated with the SDE (26) defined for all f ∈ C2(Rd) by

A f = 〈b,∇f〉+ (1/2)∆f . (33)

Consider the following assumption:

G2 (W, θ, β). (i) There exist W ∈ C2(Rd), W ≥ 1, and θ > 0, β ≥ 0 such that

A W ≤ −θW + β . (34)

(ii) There exists δ > 0 and R > 0 such that Θδ ⊂ ∆R where

Θ = {(x, y) ∈ R2d | W(x) + W(y) ≤ 2θ−1β + δ} . (35)

For t > 0, and G a closed subset of R2d, let TG,t1 be the first return time to G delayed by t
defined by

TG,t1 = inf {s > t | (Xs,Ys) ∈ G} . (36)

For j ≥ 2; define recursively the j-th return times to G delayed by t by

TG,tj = inf
{
s ≥ TG,tj−1 + t | (Xs,Ys) ∈ G

}
= TG,tj−1 + TG,t1 ◦ STG,tj−1

, (37)

where S is the shift operator on the canonical space. By [Ethier and Kurtz, 1986, Proposition

1.5 Chapter 2], the sequence (TG,tj )j≥1 is a sequence of stopping time with respect to (F̃t)t≥0.
For all j ≥ 1 and ε ∈ (0, 1), set

Tj = T
Θ,ω(ε,R)
j , (38)

where δ, R are given in G2(W, θ, β), ω in (31) and Θ in (35).

Proposition 8. Assume G1(b) and G2(W, θ, β). For all x, y ∈ Rd, ε ∈ (0, 1) and j ≥ 1, we
have

Ẽ(x,y)

[
eθ̃Tj

]
≤ Kj−1

{
(1/2)(W(x) + W(y)) + eθ̃ω(ε,R)θ̃−1β

}
,

where
θ̃ = θ2δ(2β + θδ)−1 , K = θ̃−1β

(
1 + eθ̃ω(ε,R)

)
+ δ/2 . (39)

Proof. Note that for all x, y ∈ Rd,

A W(x) + A W(y) ≤ −θ̃(W(x) + W(y)) + 2β1Θ(x, y) (40)

Then by the Dynkin formula (see e.g. [Meyn and Tweedie, 1993, Eq. (8)]) the process

t 7→ (1/2) exp
(
θ̃ (T1 ∧ t)

)
{W (XT1∧t) + W (YT1∧t)}

is a positive supermartingale. Using the optional stopping theorem and the Markov property,
we have

Ẽ(x,y)

[
eθ̃T1

]
≤ (1/2)(W(x) + W(y)) + eθ̃ω(ε,R)θ̃−1β .

The result then follows from this inequality and the strong Markov property.
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Theorem 9. Assume G1(b) and G2(W, θ, β). Then for all ε ∈ (0, 1), t ≥ 0 and x, y ∈ Rd,

‖Pt(x, ·)−Pt(y, ·)‖TV ≤ ((1− ε)−2 + (1/2) {W(x) + W(y)})κt ,

where ω are defined in (31), θ̃,K in (39) and

log(κ) = θ̃ log(1− ε)(log(K)− log(1− ε))−1 .

Proof. Let x, y ∈ Rd and t ≥ 0. For all m ≥ 1 and ε ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tm ≤ t) + P̃(x,y) (Tm > t) , (41)

where Tm is defined in (38). We now bound the two term in the right hand side of this equation.

For the first term, since Θ ⊂ ∆R, by (32), we have conditioning successively on F̃Tj , for j =
m, . . . , 1, and using the strong Markov property,

P̃(x,y) (τc > t,Tm ≤ t) ≤ (1− ε)m . (42)

For the second term, using Proposition 8 and the Markov inequality, we get

P̃(x,y) (Tm > t) ≤ e−θ̃tKm−1
{

(1/2)(W(x) + W(y)) + eθ̃ω(ε,R)θ̃−1β
}

(43)

Combining (42)-(43) in (41) and taking m =
⌊
θ̃t
/

(log(K)− log(1− ε))
⌋

concludes the proof.

More precise bounds can be obtained under more stringent assumption on the drift b. We
consider the case where b is strongly convex outside some ball; see Eberle [2015].

G3 (b). There exist R̄s ≥ 1 and m̄s > 0, such that for all x, y ∈ Rd, ‖x− y‖ ≥ R̄s,

〈b(x)− b(y), x− y〉 ≤ −m̄s ‖x− y‖2 .

For all j ≥ 1 and ε ∈ (0, 1), set Tj = T
∆R̄s

,ω(ε,R̄s)

j where T
∆R̄s

,ω(ε,R̄s)

j is defined in (36)-(37).

Proposition 10. Assume G1(b) and G3(b).

a) For all x, y ∈ Rd and ε ∈ (0, 1)

Ẽ(x,y) [exp ((m̄s/2) (τc ∧ T1))] ≤ 1 + ‖x− y‖+ (1 + R̄s)e
m̄sω(ε,R̄s)/2 .

b) For all x, y ∈ Rd, ε ∈ (0, 1) and j ≥ 1

Ẽ(x,y) [exp ((m̄s/2) (τc ∧ Tj))] ≤ Dj−1
{

1 + ‖x− y‖+ (1 + R̄s)e
m̄sω(ε,R̄s)/2

}
,

where D is defined in (47).

Proof. a) Consider the sequence of increasing stopping time τk = inf{t > 0 | k−1 ≤ ‖Xt −Yt‖ ≤
k}, for k ≥ 1 and set ηk = τk∧T1. We derive a bound on Ẽ(x,y)[exp{(m̄s/2)ηk}] independent on k.
Since limk→+∞ ↑ τk = τc almost surely, the monotone convergence theorem implies that the same
bound holds for Ẽ(x,y)[exp{(m̄s/2)(τc∧T1)}]. Set now Ws(x, y) = 1+‖x− y‖. Since Ws ≥ 1 and
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τc <∞ a.s by Proposition 7, it suffices to give a bound on Ẽ(x,y)[exp{(m̄s/2)ηk}Ws(Xηk ,Yηk)].
By Itô’s formula, we have for all v, t ≤ τc, v ≤ t

em̄st/2Ws(Xt,Yt) = em̄sv/2Ws(Xs,Ys) + (m̄s/2)

∫ t

v

em̄su/2Ws(Xu,Yu)du

+

∫ t

v

em̄su/2 〈b(Xu)− b(Yu), eu〉du+ 2

∫ t

v

em̄su/2dB1
u . (44)

By (44) and G3(b), we have for all k ≥ 1 and v, t ≥ 0, ω(ε, R̄s) ≤ v ≤ t

e(m̄s/2)(ηk∧t)Ws(Xηk∧t,Yηk∧t) ≤ e(m̄s/2)(ηk∧v)Ws(Xηk∧v,Yηk∧v) + 2

∫ ηk∧t

ηk∧v
em̄su/2dB1

u .

So the process
{exp ((m̄s/2)(ηk ∧ t)) Ws(Xηk∧t,Yηk∧t)}t≥ω(ε,R̄s)

,

is a positive supermartingale and by the optional stopping theorem, we get

Ẽ(x,y)

[
e(m̄s/2)ηkWs(Xηk ,Yηk)

]
≤ Ẽ(x,y)

[
e(m̄s/2)(τk∧ω(ε,R̄s))Ws(Xτk∧ω(ε,R̄s),Yτk∧ω(ε,R̄s))

]
,

(45)
where we used that ηk ∧ ω(ε, R̄s) = τk ∧ ω(ε, R̄s). By (44), G1(b) and G3(b), we have

Ẽ(x,y)

[
e(m̄s/2)(τk∧ω(ε,R̄s))Ws(Xτk∧ω(ε,R̄s),Yτk∧ω(ε,R̄s))

]
≤Ws(x, y) + (1 + R̄s)e

m̄sω(ε,R̄s)/2 ,

and (45) becomes

Ẽ(x,y)

[
e(m̄s/2)ηkWs(Xηk ,Yηk)

]
≤Ws(x, y) + (1 + R̄s)e

m̄sω(ε,R̄s)/2 ,

which concludes the proof of the first point.

b) The proof is by induction. For j = 1, it is the first point. Now let j ≥ 2. Since on the
event {τc > Tj−1}, we have

τc ∧ Tj = Tj−1 + (τc ∧ T1) ◦ STj−1 ,

where S is the shift operator, we have conditioning on F̃Tj−1
, using the strong Markov property,

Proposition 7 and the first part,

Ẽ(x,y)

[
1τc>Tj−1 exp ((m̄s/2) (τc ∧ Tj))

]
≤ D Ẽ(x,y)

[
1τc>Tj−1 exp ((m̄s/2)Tj−1)

]
,

Then the proof follows since D ≥ 1.

Theorem 11. Assume G1(b) and G3(b). Then for all ε ∈ (0, 1), t ≥ 0 and x, y ∈ Rd,

‖Pt(x, ·)−Pt(y, ·)‖TV ≤
{

(1− ε)−2 + 1 + ‖x− y‖
}
κts ,

where ω is defined in (31) and

log(κs) = (m̄s/2) log(1− ε)(log(D)− log(1− ε))−1 , (46)

D = (1 + em̄sω(ε,R̄s)/2)(1 + R̄s) . (47)
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Proof. The proof follows the same line as the proof of Theorem 9. Let x, y ∈ Rd and t ≥ 0. For
all m ≥ 1 and ε ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tm ≤ t) + P̃(x,y) (Tm ∧ τc > t) . (48)

For the first term, by (32) we have conditioning successively on F̃Tj , for j = m, · · · , 1, and using
the strong Markov property,

P̃(x,y) (τc > t,Tm ≤ t) ≤ (1− ε)m . (49)

For the second term, using Proposition 10-b) and the Markov inequality, we get

P̃(x,y) (Tm ∧ τc > t) ≤ e−(m̄st/2)Dm−1
{

1 + ‖x− y‖+ (1 + R̄s)e
m̄sω(ε,R̄s)/2

}
. (50)

Combining (49)-(50) in (48) and taking m =
⌊
(m̄st/2)

/
(log(D)− log(1− ε))

⌋
concludes the

proof.

Application to the Langevin SDE

Recall that (PL
t )t≥0 is the Markov semigroup of the Langevin equation associated with and let

A L be the corresponding generator. Since (PL
t )t≥0 is reversible with respect to µ, we deduce

from Theorem 9 quantitative bounds for the exponential convergence of (PL
t )t≥0 to µ in total

variation noting that if (XL
t )t≥0 is a solution of (2), then (XL

t/2)t≥0 is a solution of the rescaled
Langevin diffusion:

dX̃L
t = −(1/2)∇U(X̃L

t )dt+ dBdt .

Theorem 12. Assume H2(V ). Then for all t ≥ 0, x, y ∈ Rd, we have

‖PL
t (x, ·)−PL

t (y, ·)‖TV ≤ Ccκ
t
c {Wc(x) + Wc(y)} , (51)

‖PL
t (x, ·)− µ‖TV ≤ Ccκ

t
c

{
Wc(x) + βcθ

−1
c

}
(52)

where R, ρ is given in (13), Wc in (18),

log(κc) = −2 log(2)θc

(
log
(
βc

{
2 + 2θ−1

c e2θ−1
c ωc

})
+ log(2)

)−1

, Cc = 5/4 ,

βc = (ρ/4)(ρ/4 + d+ sup{y∈B(x?,ac)}{‖∇U(y)‖})

×max
{

1, (a2
c + 1)−1/2 exp(ρ(a2

c + 1)1/2/4)
}
,

ac = max(R, 4d/ρ, 1) , θc = ρ2/8 , ωc = ω(2−1, (8/ρ) log(4θ−1
c βc)) .

Proof. Under H2(V ), [Durmus and Moulines, 2015, Proposition 1] shows that (34) holds for
Wc with constants θc and βc. Using that for all a1, a2 ∈ R, e(a1+a2)/2 ≤ (1/2)(ea1 + ea2), G
2-(ii) holds for δ = 2θ−1

c βc and R = (8/ρ) log(4θ−1
c βc). As a consequence (51) follows from

Theorem 9 with ε = 1/2. In addition, [Meyn and Tweedie, 1993, Theorem 4.3-(ii)], (34) implies
that

∫
Rd Wc(y)µ(dy) ≤ βcθ

−1
c . The proof of (52) is then concluded using this bound and (51).

Theorem 13. Assume H2(V ) and H3(V ). Then for all t ≥ 0, x, y ∈ Rd we have

‖PL
t (x, ·)−PL

t (y, ·)‖TV ≤ Cs {1 + ‖x− x?‖+ ‖y − x?‖}κ2t
s

‖PL
t (x, ·)− µ‖TV ≤ Cs

{
1 + ‖x− x?‖+ (d/(2ms) + Rs)

1/2
}
κ2t

s ,

where κs is defined by (46) and Cs = 5/4.
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Proof. The first bound is straightforward application of Theorem 11 and the triangle inequality.
For the second one, integrating with respect to µ implies that

‖PL
t (x, ·)− µ‖TV ≤

{
5/4 + ‖x− x?‖+

∫
Rd
‖y − x?‖ dµ(y) + (1 + Rs)e

msω(2−1,Rs)/2

}
κ2t

s .

It remains to show that
∫
Rd ‖y − x

?‖ dµ(y) ≤ ((d/2ms) + Rs)
1/2. For this, we establish a drift

inequality for the generator A L of the Langevin SDE associated with . Consider the function
Ws(x) = ‖x− x?‖2. For all x ∈ Rd, we have using ∇F (x?) = 0,

A LWs(x) = −〈∇U(x)−∇U(x?), x− x?〉+ d .

Therefore by G3, for all x ∈ Rd, ‖x− x?‖ ≥ Rs, we get

A LWs(x) = −2msWs(x) + d ,

and for all x ∈ Rd,
A LWs(x) = −2msWs(x) + d+ 2msRs .

By [Meyn and Tweedie, 1993, Theorem 4.3-(ii)], we get
∫
Rd Ws(y)dµ(y) ≤ d + msRs, and the

Cauchy-Schwarz inequality concludes the proof.

8 Drift inequalities for ULA

We now study the stability of {XM
k , k ∈ N} defined by (3) under H2(V ). For this purpose, we

establish a geometric drift condition for Rγ with γ > 0.

Proposition 14. Assume H2(V ). Then for all γ ∈
(
0, L−1

c

]
and x ∈ Rd,

RγWc(x) ≤ λ
γ
c Wc(x) +

(
e(ρcγ/4)(d+(ρc/8)) − λ

γ
c

)
eρc(M2

c +1)1/2/41B(x?,Mc)(x) ,

where Mc = max(1, 2d/ρc,Rc) and

λc = e−2−4ρ2
c(21/2−1) . (53)

Proof. Set α = ρc/4 and for all x ∈ Rd, f(x) = (‖x− x?‖2 + 1)1/2 . Since f is 1-Lipschitz, we
have by the log-Sobolev inequality [Boucheron et al., 2013, Theorem 5.5] for all x ∈ Rd,

RγWc(x) ≤ eαRγ f(x)+α2γ ≤ eα
√
‖x−γ∇V (x)−x?‖2+2γd+1+α2γ . (54)

Under H2 since x? is a minimizer of V , [Nesterov, 2004, Theorem 2.1.5 Equation (2.1.7)] shows
that for all x ∈ Rd,

〈∇V (x), x− x?〉 ≥ (2Lc)−1 ‖∇V (x)‖2 + ρc ‖x− x?‖1{‖x−x?‖≥Rc} ,

which implies that for all x ∈ Rd and γ ∈
(
0, L−1

c

)
, we have

‖x− γ∇V (x)− x?‖2 ≤ ‖x− x?‖2 − 2γρc ‖x− x?‖1{‖x−x?‖≥Rc} . (55)
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Using this inequality and for all u ∈ [0, 1], (1 − u)1/2 − 1 ≤ −u/2, we have for all x ∈ Rd,
satisfying ‖x− x?‖ ≥Mc = max(1, 2dρ−1

c ,Rc),

(
‖x− γ∇V (x)− x?‖2 + 2γd+ 1

)1/2

− f(x) ≤ f(x)
{(

1− 2γf−2(x)(ρc ‖x− x?‖ − d)
)1/2 − 1

}
≤ −γf−1(x)(ρc ‖x− x?‖ − d) ≤ −(ρcγ/2) ‖x− x?‖ f−1(x) ≤ −2−3/2ρcγ .

Combining this inequality and (54), we get for all x ∈ Rd, ‖x− x?‖ ≥Mc,

RγWc(x)/Wc(x) ≤ eγα(α−2−3/2ρc) = λc .

By (55) and and the inequality for all a, b ≥ 0,
√
a+ 1 + b−

√
1 + b ≤ a/2, we get for all x ∈ Rd,√

‖x− γ∇V (x)− x?‖2 + 2γd+ 1− f(x) ≤ γd .

Then using this inequality in (54) concludes the proof.

Corollary 15. Assume H2(V ). Let {γk, k ∈ N∗} be a nonincreasing sequence with γ1 ≤ L−1
c .

a) For all n ≥ 0 and x ∈ Rd

QnγWc(x) ≤ λ
Γ1,n
c Wc(x) + cc(1− λ

Γ1,n
c )/(1− λ

γ1
c ) , (56)

where

cc = γ1 {(ρc/4)(d+ (ρcγ1/4))− log(λc)} eρc(Mc+1)/4+(ρcγ1/4)(d+(ρcγ1/4)) . (57)

b) For all n ≥ 0 and x ∈ Rd,

∫
Rd
‖y − x?‖2Qnγ (x, dy) ≤

{
4ρ−1

c

(
1 + log

{
λ

Γ1,n
c Wc(x) + cc

1− λ
Γ1,n
c

1− λ
γ1
c

})}2

,

Proof. a) By Proposition 14 and the inequality for all t ≥ 0, et − 1 ≤ tet, we have that for
all x ∈ Rd and γ ≤ γ1,

RγWc(x) ≤ λ
γ
c Wc(x) + ccγ .

By a straightforward induction, we get for all n ≥ 0 and x ∈ Rd,

QnγWc(x) ≤ λ
Γ1,n
c Wc(x) + cc

n∑
i=1

γiλ
Γi+1,n
c . (58)

Note that for all n ≥ 1, we have

(1− λ
γ1
c )

n∑
i=1

γiλ
Γi+1,n
c =

n∑
i=1

γiλ
Γi+1,n
c −

n∑
i=1

γiλ
Γi,n
c ≤ γ1

n∑
i=1

(λ
Γi+1,n
c − λ

Γi,n
c ) ≤ γ1(1− λ

Γ1,n
c ) .

The proof is then completed using this inequality in (58).
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b) Let n ≥ 0 and x ∈ Rd. Consider the function h : R → R defined by for all t ∈ R,
h(t) = exp

{
(ρ/4)(t+ (4/ρ)2)1/2

}
. Since this function is convex on R+, we have by the Jensen

inequality and the inequality for all t ≥ 0, h(t) ≤ e1+(ρ/4)(t+1)1/2

,

h

(∫
Rd
‖y − x?‖2Qnγ (x,dy)

)
≤ e1QnγWc(x) .

The proof is then completed using (56) and that h is ono-to-one with for all t ≥ 1, h−1(t) ≤(
4ρ−1 log(t)

)2
.

Assuming the additional assumption H 3(V ), an other drift inequality is derived in the
following Proposition.

Proposition 16. Assume H2(V ) and H3(V ). Then for all γ ∈
(
0, 4msL

−1
c

)
and x ∈ Rd,∫

Rd
‖y − x?‖2Rγ(x,dy) ≤ λs ‖x− x?‖2 + (2γd+ (RsγLc)2) ,

where
λs = (1− γ(2ms − γLc)) . (59)

Proof. For all x ∈ Rd, we have by ∇V (x?) = 0 and H2(V ) and H3(V )∫
Rd
‖y − x?‖2Rγ(x,dy) = ‖x− x? + γ(∇V (x?)−∇V (x))‖2 + 2γd

≤ (1 + (Lcγ)2) ‖x− x?‖2 − 2γ 〈∇V (x)−∇V (x?), x− x?〉+ 2γd . (60)

Then for all x ∈ Rd, ‖x− x?‖ ≥ Rs, we get∫
Rd
‖y − x?‖2Rγ(x, dy) ≤ λs ‖x− x?‖2 + 2γd .

Using again (60) and H2(V ), it yields for all x ∈ Rd, ‖x− x?‖ ≤ Rs,∫
Rd
‖y − x?‖2Rγ(x, dy) ≤ cs ,

which concludes the proof.

Corollary 17. Assume H 2(V ). Let {γk, k ∈ N∗} be a nonincreasing sequence with γ1 <
4msL

−1
c . For all n ≥ 0 and x ∈ Rd,∫

Rd
‖y − x?‖2Qnγ (x, dy) ≤ λ

Γ1,n
s ‖x− x?‖2 + cs(1− λ

Γ1,n
s )/(1− λ

γ1
s ) ,

where
cs = γ1(2d+ γ1(RsLc)2) . (61)

Proof. The proof is the same as the one of Corollary 15 and is omitted.
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8.1 Proof of Theorem 3

We bound the two terms of the decomposition given in (17). By Theorem 12 and Corollary 15-a),
we get

‖µ0Q
n
γPL

Γn+1,p
− µ‖TV ≤ Ccκ

Γn+1,p
c

{
βcθ
−1
c + λ

Γ1,n
c Wc(x) + cc(1− λ

Γ1,n
c )/(1− λ

γ1
c )
}
.

It remains to bound the second term. Using [Durmus and Moulines, 2015, Section 3, Eq. 24], it
holds

‖δxQn+1,p
γ − δxPΓn+1,p‖2TV

≤ 2−1L2
c

p−1∑
k=n

{
(γ3
k+1/3)

∫
Rd
‖∇V (y)‖2Qkγ(x,dy) + dγ2

k+1

}
. (62)

Using ∇V (x?) = 0, H2(V ) and Corollary 15-b), we have for all k ∈ {n, . . . , p},∫
Rd
‖∇V (y)‖2Qkγ(x, dy) ≤ L2

c

(
4ρ−1

c

{
1 + log

{
Wc(x) + cc (1− λ

γ1
c )
−1
}})2

.

Using this inequality in (62) concludes the proof.

8.2 Proof of Theorem 4

The proof is the same as the one of Theorem 3 using Theorem 13 instead of Theorem 12 and
Corollary 17 instead of Corollary 15.

8.3 Proof of Proposition 5

Under H2, Rγ is irreducible with respect to the Lebesgue measure and weak Feller, which implies
by [Meyn and Tweedie, 2009, Proposition 6.2.8] that every compact set is small. Using [Meyn and
Tweedie, 2009, Theorem 14.0.1] and Proposition 14, Rγ admits a unique invariant probability
measure πγ . By Theorem 3, there exists some constant C1 and C2 such that

‖Rpγ − πγ‖TV ≤ (C1κ
γp
c + C2γp

1/2)Wc(x) . (63)

Using again [Meyn and Tweedie, 2009, Theorem 14.0.1] and Proposition 14, πγ(Wc) < +∞. So
integrating (63) with respect to πγ and choosing p = max(1,− log(γ)/γ) concludes the proof.
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