Multiple recurrence and convergence for sequences related to the prime numbers - Archive ouverte HAL Access content directly
Journal Articles Journal für die reine und angewandte Mathematik Year : 2007

Multiple recurrence and convergence for sequences related to the prime numbers

Abstract

For any measure preserving system $(X,\mathcal{X},\mu,T)$ and $A\in\mathcal{X}$ with $\mu(A)>0$, we show that there exist infinitely many primes $p$ such that $\mu\bigl(A\cap T^{-(p-1)}A\cap T^{-2(p-1)}A\bigr) > 0$. Furthermore, we show the existence of the limit in $L^2(\mu)$ of the associated double average over the primes. A key ingredient is a recent result of Green and Tao on the von Mangoldt function. A combinatorial consequence is that every subset of the integers with positive upper density contains an arithmetic progression of length three and common difference of the form $p-1$ for some prime $p$.
Not file

Dates and versions

hal-01267074 , version 1 (03-02-2016)

Identifiers

  • HAL Id : hal-01267074 , version 1

Cite

Nikos Frantzikinakis, Bernard Host, Bryna Kra. Multiple recurrence and convergence for sequences related to the prime numbers. Journal für die reine und angewandte Mathematik, 2007, 611, pp.131-144. ⟨hal-01267074⟩
58 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More