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On the tactical and strategic behaviour of MCTS

when biasing random simulations

Fabien Teytaud∗ Julien Dehos†

Abstract

Over the last few years, many new algorithms have been proposed to solve combinatorial problems. In
this field, Monte-Carlo Tree Search (MCTS) is a generic method which performs really well on several
applications; for instance, it has been used with notable results in the game of Go. To find the most
promising decision, MCTS builds a search tree where the new nodes are selected by sampling the search
space randomly (i.e., by Monte-Carlo simulations). However, efficient Monte-Carlo policies are generally
difficult to learn. Even if an improved Monte-Carlo policy performs adequately in some games, it can
become useless or harmful in other games depending on how the algorithm takes into account the tactical
and the strategic elements of the game.

In this article, we address this problem by studying when and why a learned Monte-Carlo policy works.
To this end, we use (1) two known Monte-Carlo policy improvements (PoolRave and Last-Good-Reply)
and (2) two connection games (Hex and Havannah). We aim to understand how the benefit is related (a)
to the number of random simulations and (b) to the various game rules (within them, tactical and strategic
elements of the game). Our results indicate that improved Monte-Carlo policies, such as PoolRave or
Last-Good-Reply, work better for games with a strong tactical element for small numbers of random
simulations, whereas more general policies seem to be more suited for games with a strong strategic
element for higher numbers of random simulations.

1 Introduction

Monte-Carlo Tree Search (MCTS) algorithms have had a huge impact on Artificial Intelligence [KS06, Cou07,
CSB+06]. They are now generally used for decision-making problems such as games [GS07, Lor08, Caz09,
AHH10, TT09, Stu15, HS14] and planning problems [KS06, NM09]. One of the most interesting advantages
of the MCTS algorithms is generality. Indeed, since they use Monte-Carlo simulations, they do not require an
evaluation function (see Section 3). This makes them well-suited to applications for which expert knowledge
is difficult to obtain [Fin12, WM14]. A second advantage is that MCTS algorithms are anytime, meaning
they can be stopped at any moment and return the best decision found so far [KS06]. However, they can be
costly for some applications. Furthermore, increasing the number of simulations (i.e., giving more time to
compute the search) does not guarantee to obtain better results [BCC+10].

The principle of MCTS is to build a subtree of possible future states of a problem, and to perform many
random simulations, called “playouts”, in order to evaluate these states. Numerous improvements have been
proposed. Well-known examples involve biasing the decisions made to traverse the subtree; for instance, by
using the Rapid Action Value Estimate (RAVE) [GS07] or adding expert knowledge [CFH+10, CHTT09].
Improvements on the Monte-Carlo policy (used for performing playouts) are often more complicated. Indeed,
a great deal of studies have been performed with a general success, in trying to learn such a policy. However,
the difficulty is that improving the Monte-Carlo policy does not guarantee that the general behaviour of the
resulting MCTS will be better.
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Figure 1: Winning Hex: white player wins (left); black player wins (right).

In this article, we aim at understanding why and when a random simulation biasing technique works. To
this end, we study two known Monte-Carlo policy improvements (PoolRave and Last-Good-Reply) using two
games (Hex and Havannah). Whereas these games have many similarities (they both belong to the family of
connection games), they are still differently suited to the Monte-Carlo policy improvements. Therefore, we
perform a large number of experiments and analyze a variety of algorithmic parameters and game rules to
explain the gain (or loss) that the improvements of the Monte-Carlo policy can bring to MCTS.

The article is organised as follows. Section 2 presents the two application games used in this study (Hex
and Havannah). Section 3 presents the MCTS algorithm and three of its well-known improvements (RAVE,
PoolRave, Last-Good-Reply). Section 4 contains experiments and results of MCTS on the two application
games. In Section 5, we modify one of the applications in order to study the tactical and strategic behaviour
of the Monte-Carlo learnings. Section 6 provides our conclusions and points to a future research direction.

2 Games of Hex and Havannah

Below we briefly describe the two application games used (Sections 2.1 and 2.2). In Section 2.3 we distinguish
the tactical and strategic elements in these games.

2.1 Hex

The game of Hex is a 2-player board game. It has been created independently by Piet Hein and John Nash
during the 1940s. It is played on a hexagonal grid, traditionally on a 11x11 or 14x14 rhombus. Both players
put alternately a stone in an empty location on the board. Players must form a chain of stones of their
colour between the two board sides of their colour (see Fig. 1). It is proved that there is no possible draw,
thus one player must win [Ber76, Gal79]. Moreover, for this game we know that the first player must have
a winning strategy. A way to prove this is to use a strategy stealing argument: the game is finite with
perfect information, and draws are not possible, so one of the two players must have a winning strategy. It is
important to add that having a stone on the board cannot be a drawback. Then, if the second player has a
winning strategy, the first player can play a random move and steal the strategy of the second player. This
ensures a first player win.

Many studies have been performed using artificial intelligence for the game of Hex. Currently, the best
algorithms for this game combine a Monte-Carlo Tree Search algorithm and a solver [AHH10, AHH09].
Because Hex is played and studied by many people, expert knowledge exists and can been use: for instance,
with patterns or opening books [Maa05]. All this is beyond the scope of this article. Here, we are only
interested in the Monte-Carlo Tree Search itself, and in particular in the possible learning of the Monte-Carlo
part.
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Figure 2: The three winning shapes of Havannah (for the white player): ring (left), bridge (middle) and fork
(right).

2.2 Havannah

The game of Havannah is a 2-player board game created by Christian Freeling [Sch92]. It is played on an
hexagonal board of hexagonal cells. There are 6 corners and 6 edges, but an important point is that corner
stones do not belong to edges. Both players play alternately a stone in an empty location on the board. If
there is no more empty location and if no player wins then it is a draw. In order to win, a player has to
realise one of these three shapes (see Fig. 2).

• A ring, which is a loop around one or more cells (empty or not, occupied by black or white stones).

• A bridge, which is a continuous string of stones connecting two corners.

• A fork, which is a continuous string of stones connecting three edges (edges exclude corners).

Havannah is known to be a difficult game for artificial intelligence, especially because there is no intuitive
evaluation function and because of the large state space. Previous studies on this game include using
Monte-Carlo Tree Search algorithms [TT09, Lor10, Ewa12].

2.3 Tactical and strategic elements in games

As far as we know, the notions of tactic and strategy first appeared in a military context. In this context, a
strategy corresponds to the definition of a global plan (or objectives) that will lead to the victory. A tactic
corresponds to the different decisions and threats used to gain this plan (or these objectives).

The notions of tactic and strategy also appear in games and have a similar definition. They are notably
important for a human player to improve his or her playing. In games, we often talk about long-term plan
(strategy) and short-term decisions (tactics). For instance, in Chess, a strategic plan could be to have a better
pawn structure in the middle-game or in the end-game. Tactics are short-term decisions in order to achieve
this previous plan (for instance, by threatening a piece of higher value).

In this paper, we focus on these notions in the game of Havannah: expert players state that rings
correspond to tactical aspects (it is really rare to win with a ring, but rings can be used as local threats)
whereas forks are generally considered as the strategic aspect (experts tend to build a global winning plan
thanks to a fork).

3 Monte-Carlo Tree Search based methods

In this section we give a general outline of MCTS in 3.1. Then in 3.2 to 3.4 we briefly discuss three policy
improvements, viz. Rapid Action Value Estimate (RAVE), PoolRave, and Last-Good-Reply.
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Figure 3: The MCTS algorithm iteratively builds a subtree of the possible next states (circles) of the current
problem. This figure illustrates one iteration of the algorithm. Starting from the root node s0 (current state
of the problem), a node s1 is selected and a new node s2 is created. A random simulation is computed (until
a final state s3 is reached) and the subtree is updated.

3.1 Monte-Carlo Tree Search

Below, we present the Monte-Carlo Tree Search algorithm (MCTS) and some of its enhancements. MCTS is
currently a state-of-the-art algorithm for decision making problems [KS06, Cou07, CSB+06]. It is particularly
relevant in games [GS07, Lor08, Caz09, AHH10, TT09].

From the current state s0 of a problem, the MCTS algorithm computes the best possible following state to
choose. To estimate this best choice, the algorithm iteratively constructs a subtree of possible futures of the
problem (i.e., successive possible states, starting from s0), using random simulations. Each iteration of the
construction of the subtree is done in four steps, namely: selection, expansion, simulation and backpropagation
(see Fig. 3 from [BPW+12]). The four steps are given in pseudo code in Algorithm 1.

The selection step consists in choosing the first node found with untried child actions in the subtree. In
the most common implementation of MCTS, called Upper Confidence Tree (UCT), the subtree is traversed,
from the root node to a leaf node, using a bandit formula:

s1 ← arg max
j∈Cs1

[
r̄j + C

√
ln(ns1)

nj

]
,

where Cs1 is the set of child nodes of the node s1, r̄j is the average reward for the node j (the ratio of the
number of wins over the number of simulations), nj is the number of simulations for the node j, and ns1 is
the number of simulations for the node s1 (ns1 =

∑
j nj). C is called the exploration parameter and is used

to tune the trade-off between exploitation and exploration.
Once a leaf node s1 is selected (i.e., a node of which all possible decisions have not been considered, in

child nodes), the next step (expansion) consists in creating a new child node s2 corresponding to a possible
decision of s1 which has not been considered yet.

The next step (simulation) consists in performing a random game (i.e., each player plays randomly until
a final state s3 is reached), leading to a reward r (win, loss or possibly draw).

Finally (backpropagation), r is used to update the reward in the newly created node and in all the nodes
which have been encountered during the selection (see Algorithm 1):

r̄s4 ←
r̄s4 × (ns4 − 1) + r

ns4
,

where s4 is the node to update, ns4 is the number of simulations for s4 and r̄s4 is the average reward for s4.
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Algorithm 1 : Monte-Carlo Tree Search

{initialization}
s0 ← create root node from the current state of the problem

while there is some time left do

{selection}
s1 ← s0

while all possible decisions of s1 have been considered do
Cs1 ← child nodes of s1

s1 ← arg max
j∈Cs1

[
r̄j + C

√
ln(ns1

)

nj

]
{expansion}
s2 ← create a child node of s1 from a possible decision of s1 not yet considered

{simulation}
s3 ← s2

while s3 is not a terminal state for the problem do
s3 ← randomly choose next state from s3

{backpropagation}
r ← reward of the terminal state s3

s4 ← s2

while s4 6= s0 do
ns4 ← ns4 + 1

r̄s4 ←
r̄s4×(ns4

−1)+r

ns4

s4 ← parent node of s4

return best child of s0

3.2 Rapid Action Value Estimate

The Rapid Action Value Estimate (RAVE) improvement [GS07] is based on the idea of permutation of moves.
If a move is good in a certain situation, then it may be good in another one. Thus, to make a decision in the
subtree, a RAVE score is added to the bandit formula defined in Section 3.1. For this improvement, it is
necessary to keep more information for each node in the subtree. Let us define m = f → s, meaning the move
m played in situation f leads to situation s. For each node it is necessary to store the following four numbers.

• The number of wins by playing m in f (already needed for the bandit formula).

• The number of losses by playing m in f (already needed for the bandit formula).

• The number of wins when m is played after the situation f (but not necessarily in f), called RAVE
wins.

• The number of losses when m is played after the situation f (but not necessarily in f), called RAVE
losses.

The numbers of RAVE wins/losses for a move m are large compared to their classic numbers of wins/losses.
The variance for estimating the move m will then be lower, but the bias will be higher (as this is an
approximation: the move is not played in f). The idea is to use especially the RAVE score when the number
of simulations is small. Its influence progressively decreases as the number of simulations increases.
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Figure 4: The RAVE improvement consists in biasing the selection step of the MCTS algorithm by adding a
RAVE score in the bandit formula. The RAVE score of a move is the win ratio of the move played in other
simulations of the subtree. For example, selecting the move c3 using RAVE (top left circle), is biased with
the win ratio of c3 in the other branches of the subtree (diamonds).

In order to select a move in the subtree, the bandit formula is replaced by:

s1 ← arg max
j∈Cs1

[
(1− β) r̄j + β r̄ RAV E

s1,j + C

√
ln(ns1)

nj

]
,

where β is a parameter which tends to 0 as the number of simulations increases. According to [GS07], we can

use β =
√

R
R+3nj

where R is a parameter to tune (see Fig. 4).

3.3 PoolRave

The PoolRave enhancement [RTT10] is based on the RAVE improvement. The idea is the same as the RAVE
idea, except that instead of using the RAVE values to bias the selection step (tree policy), it is used to bias
the simulation step (Monte-Carlo policy). It can easily be combined with the RAVE improvement.

To compute a simulation step for a node n, with the PoolRave improvement, a pool of possible moves
is built first, using the RAVE scores of n: for each possible move m of the node n, m is added to the pool
if its RAVE score is meaningful (i.e., the number of RAVE simulations of m is greater than a threshold);
then the pool is sorted according to the RAVE score and only the N best moves of the pool are kept. Thus,
the pool contains the N moves of n which seem to be the best moves according to RAVE (i.e., moves that
have the best ratios of RAVE wins over RAVE losses). Once the pool is built, the simulation step consists in
playing moves chosen preferably in the pool: a move is chosen in the pool with a probability p, otherwise
(with probability 1− p) a random move is played as in the classic MCTS algorithm. The size of the pool (N)
and the probability of playing a PoolRave move (p) are parameters to be tuned.
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Figure 5: The LGRF-1 improvement (simulation step biasing). For black replies: during a first playout,
replies C to the move B, E to the move D and G to the move F are learned. During the next simulation,
the replies C to B and E to D are played. These two replies are deleted because the simulation is a loss,
then, only the reply G is kept. During the third simulation new replies are learned and added to the reply G.
Learning is the same for white replies.

3.4 Last-Good-Reply

The Last-Good-Reply improvement [BD10] is similar to a plain PoolRave: the goal is to try to have a kind
of learning in the playouts. Here, the RAVE moves are not used, but instead, the principle is to learn how
to reply to a previous move. During the simulation, each reply to a move for a player is kept in memory.
The reply is considered as a success if the simulation is a win. The Last-Good-Reply improvement can be
improved with the addition of forgetting: all stored replies made by a losing simulation are deleted. This
modification is called the Last-Good-Reply Forgetting -1 (LGRF-1, see Fig. 5).

There exist other versions of the Last-Good-Reply improvement, namely LGRF-2, LGR-1 and LGR-2.
LGRF-2 is the same as LGRF-1 excepted that it considers the last two previous moves. LGR-1 and LGR-2
correspond to LGRF-1 and LGRF-2 with no forgetting. In this study, we only use LGRF-1 in our experiments
because it works better for our player. This result is similar to the results found in [SWU12].

4 Comparison of MCTS-based methods

As seen in the previous section, RAVE improves the efficiency of MCTS by introducing some bias in the
selection step. PoolRave and LGRF-1 extend this idea by introducing some bias in the simulation step,
i.e., the Monte-Carlo part. In this section, we introduce a protocol (4.1), and we evaluate the efficiency of
PoolRave and LGRF-1 for the application games, Hex and Havannah (4.2 and 4.3).

4.1 Protocol

To evaluate the efficiency of PoolRave/LGRF-1, we compare two algorithms (MCTS+RAVE+PoolRave and
MCTS+RAVE+LGRF-1) to a baseline. The baseline is a MCTS player with the RAVE improvement. We
have chosen this baseline (and not just a vanilla MCTS) because MCTS+RAVE is now considered as the
standard algorithm, particularly for the game of Hex and for the game of Havannah. Thus the difference
between the baseline and the improved algorithms is only the Monte-Carlo policy. In order to have a low
standard deviation, we run many games (600 games at least for each experiment) and compute the win rate

7



Table 1: Hex: PoolRave/LGRF-1 vs Baseline. Results with board size = 11, R = 90 and C = 0.4.
player playouts pool proba pool sim pool size win rate std dev nb games

PoolRave

1,000

0.1 10 30 48.25% ±1.11
0.1 5 30 46.85% ±1.11
0.5 10 30 46.85% ±1.11
0.5 5 30 43.9% ±1.10
0.9 10 30 46.7% ±1.11
0.9 5 30 48.85% ±1.11

2,000

10,000
0.1 10 30 44.2% ±1.11
0.5 10 30 41.95% ±1.10
0.9 10 30 43.95% ±1.10

600

LGRF-1
1,000 - - - 51.9% ±1.11 2,000
10,000 - - - 53.33% ±2.03 600

Table 2: Havannah: PoolRave/LGRF-1 vs Baseline. Results with board size = 8, R = 90 and C = 0.4.
player playouts pool proba pool sim pool size win rate std dev nb games

PoolRave

1,000

0.1 10 30 69.15% ±1.03
0.1 5 30 69.3% ±1.03
0.5 10 30 68.95% ±1.03
0.5 5 30 68.6% ±1.03
0.9 10 30 59.75% ±1.09
0.9 5 30 59.7% ±1.09

2,000

10,000
0.1 10 10 40.66% ±2.00
0.5 10 10 37.5% ±1.97
0.9 10 10 36.66% ±1.96

600

LGRF-1
1,000 - - - 57.95% ±1.11 2,000
10,000 - - - 48.83% ±2.03 600

of the PoolRave/LGRF-1 player. Since playing the first move can be an advantage, we run half the games
with PoolRave/LGRF-1 as the first player and the other games with PoolRave/LGRF-1 as the second player.

4.2 Hex

We have applied the previous protocol to the game of Hex and obtained the results depicted in Table 1. With
the various parameter values we have tested, the probability that PoolRave wins against the baseline stands
between 41% and 49%, i.e., PoolRave performs worse than the baseline. For LGRF-1, the win rate stands
between 51% and 54%, i.e., LGRF-1 performs slightly better than the baseline. This indicates that, for a
game such as Hex, biasing the Monte-Carlo policy step tends to be difficult.

4.3 Havannah

The results for the game of Havannah are depicted in Table 2. With a small number of random simulations
(1, 000 playouts), biasing the simulation step is very interesting: PoolRave wins 59% to 69% of the games
against the baseline, and LGRF-1 about 58%. However, with a higher number of random simulations (10, 000
playouts), biasing is not as interesting: PoolRave’s win rate drops below 41% and LGRF-1’s win rate below
49%. In fact, the number of playouts has a huge importance on the efficiency of the improvement, as shown
in Fig. 6. We may notice that the advantage of the PoolRave enhancement decreases as the number of
simulations increases. It even becomes negative above roughly 1, 500 simulations, which is quite small.
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Figure 6: Havannah: PoolRave vs Baseline using different number of playouts. Results with nb games = 2000,
board size = 8, R = 90, C = 0.4 , pool proba = 0.1, pool sim = 10 and pool size = 10. With a small number
of playouts, PoolRave is beneficial, but for 1, 500 playouts or more it becomes harmful.

5 Influence of game rules

Both Hex and Havannah belong to the family of connection games. They are quite related, and generally, a
good human player at one of these games is also good at the other one. In this section, we try to understand
why an improvement such as PoolRave works on Havannah but not on Hex. In 5.1 we discuss winning shapes
that win effectively. In 5.2 we modify the rules of the game of Havannah. In 5.3 we perform new experiments
for studying the behaviour of PoolRave/LGRF-1 on the modified games. The game of Havannah is interesting
because it has both tactical and strategic elements. Therefore, as described in 5.4, modyfing the Havannah
rules brings an interesting range of new games (some of them are even close to the game of Hex). Indeed, in
the game of Havannah, the tactical short-term threats (rings) allow a win but forks are considered by experts
as a more strategic long-term win.

5.1 Winning shapes that win effectively

As seen previously, to win a game of Havannah, a player has to realise a winning shape: ring, fork or bridge.
In the previous section, we show that PoolRave plays better than the baseline when the number of playouts
is small but not when the number of playouts is high (see Fig. 6).

To develop this analysis, we detail which winning shape the winner realised effectively (see Fig. 7). When
the number of playouts is small, both PoolRave and the baseline mostly win by realising rings. This can be
explained by the fact that, when the number of playouts is small, it is difficult for MCTS-based algorithms to
detect that a ring is about to be realised. Since a ring can be realised with a few moves, such algorithms tend
to play these moves.

When the number of playouts is high, PoolRave and the baseline win most of the time by realising forks.
Indeed, the algorithms have now more “time” to evaluate moves. Thus, they can detect that the opponent
player is about to realise a ring and they can evaluate more accurately the benefit of forks.

9



500 1000 1500 2000 2500 3000 3500 4000
number of playouts

0

25

50

75

100

cu
m
u
la
te
d
 w
in
 r
a
te
 (
%
)

Baseline wins with fork
Baseline wins with bridge
Baseline wins with ring
PoolRave wins with fork
PoolRave wins with bridge
PoolRave wins with ring

Figure 7: Havannah: PoolRave vs Baseline. Results with nb games = 2, 000, board size = 8, R = 90, C = 0.4,
pool proba = 0.1, pool sim = 10 and pool size = 10. With only few playouts, both the baseline and PoolRave
win with ring, which is far from a real game. When the number of playouts increases, wins are mainly forks.

These results confirm the classic observations made by Havannah experts:

• forks are the most interesting strategies (long-term victories), and

• rings are interesting to do tactical threats (short-term profits).

This may also explain why the algorithms with a biased playout policy, such as PoolRave, become worse
than the baseline when the number of simulations is large. Since these algorithms tend to make tactical
threads, with a small number of playouts some of these threads are successful (they are not detected by the
baseline). With a large number of playouts, the baseline can easily detect the threads so the biased playouts
are not beneficial anymore. However, the biased algorithms still try to make tactical threads so they dedicate
less playouts to elaborate a strategy than the baseline, hence the worse results.

5.2 Combining the winning shapes

Below, we design seven new games in order to find a relation between the winning shapes of Havannah and
the benefits of an improvement of the Monte-Carlo policy. Indeed, we can easily change the rules by deleting
the possibility of winning with one (or two) of the shapes. Thus, we have defined the following games:

• RBF (Ring, Bridge and Fork), which corresponds to the game of Havannah: a player has to realise a
ring, a bridge or a fork in order to win,

• R, which corresponds to the game of Havannah without bridge and fork: a player has to realise a ring
in order to win,

• B: a player has to realise a bridge,

• F: a player has to realise a fork,

• RF: a player has to realise a ring or a fork,

• RB: a player has to realise a ring or a bridge, and
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Figure 8: PoolRave/LGRF-1 vs Baseline on various Havannah-based games. Results with board size = 8,
R = 90, C = 0.4, pool proba ∈ {0.1, 0.5, 0.9}, pool sim = 10 and pool size = 10. Top: nb playouts = 1, 000
and nb games = 2, 000. Bottom: nb playouts = 10, 000 and nb games = 600. The colors indicate the type
of the games: tactical (red), strategic (green), tactical and strategic (yellow).

• BF: a player has to realise a bridge or a fork.

All other rules remain the same.

5.3 Experiments and results

We performed a set of experiments by using all these “new games” in order to evaluate the benefits of two
Monte-Carlo policy improvements (PoolRave and LGRF-1). The goal is to see whether we can find some
similarities or logic among these games. Since the benefits of Monte-Carlo policy improvements really depend
on the number of playouts, we run experiments with both a small and a large number of playouts (see Fig. 8).

With 1, 000 playouts (see Fig. 8, top), the PoolRave player is better than the baseline on the games
RBF and RF (PoolRave 0.5 win rate > 65%). Indeed, PoolRave plays short-term tactics (rings) and the
baseline does not have sufficient time to detect them since it also investigates long-term strategies (forks).
On strategy-oriented games such as F and BF, the benefits of PoolRave are smaller (win rate about 60%).
Here, it turns out that there is no short-term tactics to find, but a biased Monte-Carlo policy makes the
algorithm find a quite good strategy sooner. On purely tactical games such as R (and maybe RB and B), it
is not easy to find a long-term strategy, which makes both players look for short-term tactics in such a way
that no one has a real advantage (most win rates between 45% and 55%).

With 10, 000 playouts (see Fig. 8, bottom), PoolRave plays worse than the baseline but this depends
on the game. On RBF and RF (both tactical and strategic games), PoolRave still spends time to evaluate
tactical threats (rings) but the baseline has now sufficient playouts to detect them. Since the baseline is
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more strategy-oriented (which is most promising for such Havannah-like games), biasing the Monte-Carlo
policy brings no benefit (PoolRave 0.5 win rate about 40%). On strategy-oriented games such as F and BF,
PoolRave does not lose time to evaluate useless short-term tactic (ring), therefore it is almost as good as
the baseline. On tactical games (R, RB and B), PoolRave is really inefficient (on R, PoolRave 0.5 win rate
< 25% and draw rate = 25%) because it favours exploitation over exploration, which is not interesting for
such short-term games.

We may notice that LGRF-1 is more robust to the various games and to the number of playouts, thanks
to its forgetting trend. Thus, its gain with 1, 000 playouts is smaller but its loss with 10, 000 playouts is also
smaller. However, like PoolRave, LGRF-1 is inefficient on R (with 1, 000 playouts: win rate ≈ 40%; with
10, 000 playouts: win rate ≈ 45% and draw rate ≈ 30%) since the baseline performs quite well on this new
game, for which tactical goals are essential.

5.4 Discussion

Our results show that improving the Monte-Carlo policy can yield benefits for small numbers of playouts;
this is consistent with previous results obtained for Havannah [SWU12] and for Go [BD10]. However, our
results also show that improving the Monte-Carlo policy is beneficial only if the game can be won with both
a short-term tactic and a long-term strategy. Indeed, when the number of playouts is large, the tactical
threads favoured by biased Monte-Carlo policies are not beneficial anymore since they can easily be detected.
Moreover, if the game has only strategic elements (or only tactical elements), there is no choice to make
between a tactical or a strategic move, which reduces the possible benefit of the biased Monte-Carlo policies.

This seems to confirm our insight that the biased Monte-Carlo policies do not perform very well in Hex
because there are no obvious tactical short-term goals, but only long-term wins, involving longer (global)
chains in complex configurations. In Havannah, the rings tend to involve smaller, simpler (local) chains which
correspond to tactical threats, and those are more likely to be picked up correctly by the biased versions of
MCTS.

Finally, we may notice that it is difficult to classify a game as “tactical” or “strategic” (or both), since
these notions are more appropriate to characterise a player. The games RBF and RF can be classified as
tactical and strategic since a player can effectively make tactical or strategic moves. With the games F and
BF, there are no obvious tactical moves leading to a short-term win, so these games can be classified as
strategic. However, the games R, RB and B are more difficult to classify because rings and bridges, which
were previously seen as tactical threads, are now the only possible winning shapes; so, they can be considered
here as “short-term strategies”. This may also explain the great variability of the results for these games, in
our experiments.

6 Conclusion

In this article, we studied the impact of biasing the Monte-Carlo policy of the Monte-Carlo Tree Search. To
this end, we compared an MCTS algorithm with an unbiased Monte-Carlo policy and an MCTS algorithm
with a biased Monte-Carlo policy. We used the classic RAVE improvement (biased tree policy) for all
algorithms. For the MCTS algorithm with a biased Monte-Carlo policy, we applied two biasing techniques:
PoolRave and LGRF-1.

We did experiments with these algorithms on two connection games, the game of Hex and the game of
Havannah. First, we noticed that the algorithms with a biased Monte-Carlo policy (especially the PoolRave
improvement) are more efficient on Havannah than on Hex. Subsequently, we studied for Havannah, how the
benefits of the biased algorithms are related to the number of random simulations (playouts).

Then, we compared the ability of the algorithms to achieve short-term tactical goals and long-term
strategic goals, by modifying the game of Havannah. We found that, when the number of playouts is small,
the biased algorithms are beneficial and generally win by realising a ring, which corresponds to a short-term
tactic. However, when the number of playouts is high, they become harmful and the most interesting shape
is a fork, corresponding to a long-term strategy. Indeed, the (unbiased) opponent has then sufficient playouts
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to detect short-term tactics. So, dedicating playouts to find tactics is not only useless but also reduces the
number of playouts to find interesting strategies.

It is really hard to make general conclusions, with experiments based on only two games. Still, we hope
that our study will form a basis for new insights into MCTS and its enhancements. For example, since all the
improvements presented in this article have been experimented in the game of Go, it would be interesting to
do an analogous study in order to understand why one improvement is better than another one for this game.

Further work is needed to investigate the claim stated in the paper, viz. that improving the MC policy
can yield benefits for a small number of playouts. In particular further work is needed to investigate whether
biasing the Monte-Carlo policy increases the exploitation of tactical moves, which is beneficial when the
(unbiased) opponent does not have sufficient playouts to detect them. We remark that with a higher number
of playouts, such moves are easy to detect, so it is more fruitful to explore the area for strategic moves.

It would also be interesting to study the “decisive moves” improvement proposed in [TT10]. There it was
shown that the improvement would detect the biggest tactical threats, making biased policies more effective.

As a second future work, it would be interesting to compare the biased algorithms mentioned above with
non MCTS-based algorithms, or expert human players to avoid the possible negative effects of self-playing.
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[Cou07] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search. In 5th
Computers and Games Conference, Turin, Italy, volume 4630, pages 72–83. Springer, Heidelberg,
2007.

13



[CSB+06] GMJB Chaslot, Jahn-Takeshi Saito, Bruno Bouzy, JWHM Uiterwijk, and H Jaap Van den Herik.
Monte-Carlo strategies for computer Go. In BeNeLux Conference on Artificial Intelligence, pages
83–91, 2006.

[Ewa12] Timo Ewalds. Playing and solving Havannah. Master’s thesis, University of Alberta, 2012.

[Fin12] Hilmar Finnsson. Generalized monte-carlo tree search extensions for general game playing. In
AAAI Conference on Artificial Intelligence, 2012.

[Gal79] David Gale. The game of Hex and the Brouwer Fixed-Point theorem. The American Mathematical
Monthly, 86(10):818–827, 1979.

[GS07] Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In International
Conference on Machine Learning, pages 273–280, 2007.

[HS14] Johannes Heinrich and David Silver. Self-play monte-carlo tree search in computer poker. In
Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.
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