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Abstract

This paper is concerned with the shape sensitivity analysis of the solution to the Helmholtz transmission
problem for three dimensional sound-soft or sound-hard obstacles coated by a thin layer. This problem can
be asymptotically approached by exterior problems with an improved condition on the exterior boundary of
the coated obstacle, called Generalised Impedance Boundary Condition (GIBC). Using a series expansion
of the Laplacian operator in the neighborhood of the exterior boundary, we retrieve the first order GIBCs
characterizing the presence of an interior thin layer with either a constant or a variable thickness. The
first shape derivative of the solution to the original Helmholtz transmission problem solves a new thin layer
transmission problem with non vanishing jumps across the exterior and the interior boundary of the thin
layer. In the special case of thin layers with a constant thickness, we show that we can interchange the first
order differentiation with respect to the shape of the exterior boundary and the asymptotic approximation
of the solution. Numerical experiments are presented to highlight the various theoretical results.

1 Introduction
This paper is devoted to the shape sensitivity analysis of the solution to time-harmonic acoustic scattering
problems in the special case where the scattering object is a three-dimensional sound-soft or a sound-hard
obstacle coated by a thin layer whose width ε tends to zero. It is well known that the use of boundary
and finite elements methods for solving this scattering problems fail since some numerical instabilities arise.
Indeed, we face two kind of scalings : a big scale for the exterior of the obstacle and a very small one
which corresponds to the thin layer. To avoid the phenomenon, we are led to approximate the original
model by a new exterior boundary value problem with high order boundary conditions in terms of surface
derivatives, called generalized impedance boundary conditions (GIBC). The exact solution is given through
an asymptotic expansion in terms of the thickness parameter ε where each coefficient function is the solution
of a boundary value problem set on a geometry independent on ε. In practice, we are only interested by a
finite number of terms in the asymptotic expansion. The GIBC satisfied by the approximate solution leads
to an error estimate up to O(εN+1), where N is the order of truncation in the asymptotic expansion of the
exact solution. These conditions have been first derived by Bendali and Lemrabet in [4] in the case of thin
layer with a constant thickness and more recently they were generalised to the 2D case of thin layer with a
variable thickness in [3].

The work finds its motivation in the recent study of inverse scattering problems (see [7, 8, 9, 11]) or shape
optimization problems (see [15]). The authors take the approximation of order 1 of the original problem
and present a theoretical analysis based on the shape derivative of the approximate solution. Our natural
question is the following : what happens if we compute first the shape derivative of the original problem
(with the coated context) and then take the corresponding GIBC of order 1. The purpose of the paper is to
give here a general result about the norm of the difference of the shape derivatives for an approximation of
order N . We show that the error is up to O(εN+1).

Let consider a simply connected bounded domain Ω in R3, with a closed orientable boundary Γ, as
smooth as we need, representing a sound-soft or a sound-hard scatterrer Ωε coated by a thin layer denoted
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Ωεint. Let ε > 0 and h be a positive smooth function defined on Γ. The thin layer with variable thickness
surrounding the acoustic object is defined by:

Ωεint = {x+ δh(x)n(x) | x ∈ Γ and − ε < δ < 0} .

Ωεint

Ωext

Γ

Γε

κi

κe

n

εhnε

Ωε

We set Γε = ∂Ωε so that we have Ω = Ωεint ∪ Γε ∪ Ωε. We denote by n and nε the outward unit normal
vectors to Γ and Γε, respectively, and by Ωext = R3\Ω the unbounded exterior domain. Throughout the
paper we denote by Ht(Ωεint), Ht

loc(Ωext) and Ht(Γ) the standard (local in the case of the exterior domain)
complex valued, Hilbertian Sobolev space of order t ∈ R defined on Ωεint, Ωext, Γ and Γε respectively (with
the convention H0 = L2.) The exterior wavenumber κe, the interior wavenumber κi and the density ratio
ρ are given positive constants. We are concerned with the following transmission problem : Given any
densities fext ∈ H

1
2 (Γ) and gext ∈ H−

1
2 (Γ), find the solution (uεint, u

ε
ext) ∈ H1(Ωεint)×H1

loc(Ωext) satisfying
∆uεint + κ2

iu
ε
int = 0 in Ωεint

∆uεext + κ2
eu
ε
ext = 0 in Ωext

uεint − uεext = fext on Γ
ρ∂nu

ε
int − ∂nuεext = gext on Γ ,

(1.1)

and either a Dirichlet boundary condition on Γε

uεint = fεint , (1.2)

or a Neumann boundary condition on Γε

∂nεu
ε
int = nε · (∇uεint)|Γε = gεint . (1.3)

To ensure the uniqueness of the solution to either the problem (1.1)-(1.2) or (1.1)-(1.3), the scattered field
uεext is assumed to solve the Sommerfield radiation condition lim

|x|→+∞
|x| |∂nu(x)− iκu(x)| = 0 uniformly in

all directions x/|x|. Following the proof of Theorem 2.1 in [25], one can prove that the thin-layer transmission
problem has at most one solution. Existence of a solution can be proved using boundary integral equation
methods [25, 34]. More details can be found in the Appendix. The radiation condition implies that the
scattered field uext has an asymptotic behavior of the form uεext(x) = eiκ|x|

|x| u
ε
∞(x̂) + O

(
1
|x|

)
, |x| → ∞,

uniformly in all directions x̂ = x
|x| . The far-field pattern uε∞ is a scalar function defined on the unit sphere

S2 of R3 and is always analytic.
The scattering problem of time-harmonic waves by the coated obstacle Ω leads to special cases of the above

transmission problems where the given densities fext and gext are the boundary data of an incident plane
wave uinc(x) = eiκed·x, d ∈ S2. The total displacement field uεext + uinc is then given by the superposition
of the incident field uinc, which is an entire solution of the Helmholtz equation, and the scattered field uεext,
which solves the Helmholtz equation in Ωext and the Sommerfield radiation condition. In this cases, we
assume fεint = 0 and gεint = 0. In Section 3, for small positive real values of ε, we approach the solution uεext
of (1.1) by the solution vε[N ] of some exterior boundary value problems of the form

∆vε[N ] + κ2
ev
ε
[N ] = 0 in Ωext

C
(
ε, ∂n(vε[N ] + uinc), (vε[N ] + uinc)

)
= 0 on Γ

lim
|x|→+∞

|x|
∣∣∂nvε[N ](x)− iκvε[N ](x)

∣∣ = 0 ,
(1.4)
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where the linear condition on the boundary C
(
ε, ∂n(vε[N ]+u

inc), (vε[N ]+u
inc)

)
= 0 is the so-called Generalised

Impedance Boundary Condition (GIBC). To construct the GIBCs, we extend to R3 the approach developed
in [3] to model the 2D case of thin layers with variable thickness. The technique originates from the
PhD thesis [33] and is based on an asymptotic expansion of the Helmholtz equation in Ωεint in terms of
ε and surface derivatives on Γ presented in Section 2. We introduce a rapid variable S and thanks to the
transformation of the thin layer into a band of thickness h we get uεint as a solution to a Sturm-Liouville type
problem of variable S . Once the differential equation is solved, then thanks to boundary conditions and
jump condition, we get the corresponding boundary condition corresponding to the exterior domain. The
existence and uniqueness of a solution to these problems can be found in [12] for N = 1, 2. This approach
leads first to estimate ||uεext − vε[N ]||

H
1
2 (Γ)

= O(εN+1) and we deduce ||uεext − vε[N ]||H1(Ωext∩BR) = O(εN+1)

for every ball BR of radius R and ||uε∞ − vε∞,[N ]||L2(S2) = O(εN+1) where vε∞,[N ] is the far-field pattern of
the approximate solution vε[N ].

Then, assuming the thin layer having a constant thickness, we analyze the dependence of the solution, or
equivalently its far-field pattern, to the transmission problem (1.1) with respect to the shape of the exterior
boundary Γ. The first shape derivative u̇εext solve the transmission problem (1.1) with non vanishing jumps
accross the exterior and the interior boundaries. On one hand, the shape derivative u̇εext is approached in
Section 4 by the solution wε[N ] of some exterior boundary value problems of the form

∆wε[N ] + κ2
ew

ε
[N ] = 0 in Ωext

C
(
ε, ∂nw

ε
[N ], w

ε
[N ]

)
= F ε,1[N ] on Γ

lim
|x|→+∞

|x|
∣∣∂nwε[N ](x)− iκwε[N ](x)

∣∣ = 0 ,

where the right-hand side F ε,1[N ] can be expressed in terms of the boundary data of the exterior total field
vε[N ] + uinc. In this case we naturally obtain ||u̇ε∞ − wε∞,[N ]||L2(S2) = O(εN+1) where wε∞,[N ] is the far-field
pattern of the approximate derivative wε[N ]. On the other hand, we provide in Section 5 the characterisation
of the first shape derivative v̇ε[N ] of the solution vε[N ] to the exterior problem (1.4) of the form

∆v̇ε[N ] + κ2
ev̇
ε
[N ] = 0 in Ωext

C
(
ε, ∂nv̇

ε
[N ], v̇

ε
[N ]

)
= F ε,2[N ] on Γ

lim
|x|→+∞

|x|
∣∣∂nv̇ε[N ](x)− iκv̇ε[N ](x)

∣∣ = 0 ,

where the right-hand side F ε,2[N ] can be expressed in terms of the boundary data of the exterior total field
vε[N ] + uinc. In Section 6, we prove for N = 0, 1, 2 that the two approaches are equivalent, which means
||v̇ε[N ]−wε[N ]||

H
1
2 (Γ)

= O(εN+1) and ||v̇ε∞,[N ]−wε∞,[N ]||L2(S2) = O(εN+1) where v̇ε∞,[N ] is the far-field pattern

of the derivative v̇ε[N ]. The various theoretical results are illustrated by some numerical experiments in
Section 7. The transmission problem and the exterior boundary value problems are solved using boundary
integral equation methods [13, 34] (see the Appendix) and the high order spectral method [18]. Finally, we
draw concluding remarks and we discuss possible research lines in Section 8.

2 Elementary differential geometry and asymptotic expansions
In this section, we derive the asymptotic expansion of the Laplacian operator in the neighborhood of Γ using
the high-order material derivatives of some surface differential operators and Taylor-Young expansions. We
use the surface differential operators: The tangential gradient ∇Γ, the surface divergence divΓ and the scalar
Laplace-Beltrami operator ∆Γ. For their definitions we refer to Nedelec’s book [27] (pp. 68-75). We use the
notations of [27] and quote some usefull results from [27] (pp. 67-78) and [14].

Since Γ is a smooth closed orientable boundary, there exists a tubular neighbourhood Γ̊s0 of Γ in which
any point y admits the unique expansion

y = x+ sn(x) , with x ∈ Γ , and s ∈ ]− s0; s0[ with s0 > 0 .

For any s ∈ ] − s0; s0[, we set Γs := {y = x + sn(x) | x ∈ Γ}. We denote ∇Γs and divΓs the tangential
gradient and the surface divergence on Γs , respectively, and we denote by ns the outward unit normal vector
to Γs. For any scalar function u and vector function w defined in Γ̊s0 , the following expansions hold on Γs:

∇u = ∇Γsu+ ns ∂su ,
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and
divw = divΓs w + (ns · ∂sw) .

We denote by τs the transformation that maps the restriction u|Γs of u to Γs to the function defined on
Γ by (τsu|Γs)(x) = u|Γs(x + sn(x)). Setting (τsu|Γs)(x) = ū(x, s), we define an isomorphism between Γ̊s0
and Γ× ]− s0; s0[. The outward unit normal vector ns to the boundary Γs satisfies ns = τ−1

s n. Using this
change of coordinate system we can write for y ∈ Γs:

(∇u)(y) = (τs∇u)(x) = τs∇Γsτ
−1
s ū(x, s) + n ∂sū(x, s) ,

and
(divw)(y) = τs(divw)(x) = τs divΓs τ

−1
s w̄(x, s) + n · ∂sw̄(x, s) .

The material derivatives of the surface differential operators has been analysed in [14, Section 5] and we
obtain the following result.

Proposition 2.1. The functions defined by s ∈ ] − s0; s0[ 7→ τs∇Γsτ
−1
s ∈ L

(
C 1(Γ),C 0(Γ,R3)

)
and s ∈

]−s0; s0[ 7→ τs divΓs τ
−1
s ∈ L

(
C 1(Γ,R3),C 0(Γ)

)
are infinitely differentiable and we have for any u0 ∈ C 1(Γ)

and w0 ∈ C 1(Γ,R3):
∂s
(
τs∇Γsτ

−1
s

)
u0 = −τsRs∇Γsτ

−1
s u0 (2.1)

and
∂s
(
τs divΓs τ

−1
s

)
w0 = −τs divΓs Rsτ

−1
s w0 + τs∇ΓsHs ·w0 − Trace[τsR2

s](n ·w0) (2.2)

where Rs = ∇Γsn and Hs = Trace[Rs].
The first order material derivatives corresponds to the commutators given in [27, Eqs. (2.5.228) and

(2.5.229)]. To obtain the high order derivatives, it suffices to use the chain rule since we have [27, Eq
(2.5.154) and (2.5.155)]

∂s(τsRs) = −τsR2
s and ∂s(τsHs) = −Trace[τsR2

s] .

Further, we will use the gaussian curvature denoted by Gs which satisfies

Trace[R2
s] + 2Gs = H2

s . (2.3)

and if we set Π3 = I3 − n⊗ n, then the Cayley Hamilton’s theorem implies

R2
s −HsRs + GsΠ3 = 0 . (2.4)

Using the Taylor-Young formula in the neighbourhood of s = 0 and (2.1), we can expand the gradient
operator in the coordinate system (x, s) ∈ Γ× ]− s0; s0[ and we obtain for any N ∈ N

(∇u)(x+ sn(x)) = n(x)∂sū(x, s) +∇Γū(x, s)

+

N∑
`=0

s`
1

`!
∂`s(τs∇Γsτ

−1
s )|s=0ū(x, s) +O(sN+1) ,

(2.5)

with
1

`!
∂`s(τs∇Γsτ

−1
s )|s=0 = (−1)`R`∇Γ. In the same way, we write

(divw)(x+ sn(x)) = n(x) · ∂sw̄(x, s) + divΓ w̄(x, s)

+

N∑
`=1

s`
1

`!
∂`s(τs divΓs τ

−1
s )|s=0w̄(x, s) +O(sN+1) ,

(2.6)

with
∂s(τs divΓs τ

−1
s )|s=0w̄ = − divΓRw̄ +∇ΓH · w̄ − Trace[R2](n · w̄)

= −
(
divΓ(R−H)Π3w̄ +H divΓ Π3w̄ + (H2 − 2G)(n · w̄)

)
,

where Π3 = I3 − n⊗ n and using the chain rules we obtain the following high order terms

1

2!
∂2
s (τs divΓs τ

−1
s )|s=0w̄ = H divΓ(R−H)Π3w̄ + (H2 − G) divΓ Π3w̄

+ (H3 − 3HG)(n · w̄) ,

and
1

3!
∂3
s (τs divΓs τ

−1
s )|s=0w̄ =−

[
(H2 − G) divΓ(R−H)Π3w̄ + (H3 − 2GH) divΓ Π3w̄

]
− Trace[R4](n · w̄).
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The formula (2.5) is in accordance with the formula (2.5.182) in [27]

τs∇Γsτ
−1
s ū(x, s) = (I + sR(x))−1∇Γū(x, s) .

Indeed, the Neumann series of (I + sR(x))−1 yields the infinite series given in (2.5). We deduce that the
gradient operator is equal to its Taylor series in the tubular Γ̊s0 . Since we have divw = Trace[∇w], we also
deduce that the divergence operator is equal to its Taylor series in Γ̊s0 . However, the high-order terms are
easier to obtain by computing the material derivatives than taking the trace of [R`∇Γw] for any ` ∈ N.

Assuming ∀x ∈ Γ, 0 < εh(x) < s0, then we use the change of variable s = −εS with S ∈ [0 ;h(x)]. We
set ū(x, s) = ū(x,−εS) = U(x, S) and we have

∂sū(x, s) = −1

ε
∂SU(x, S).

Combining (2.5) and (2.6), we obtain the asymptotic expansion of the Laplacian ∆ = div∇

∆ =
1

ε2

(
∂2
S +

N∑
`=1

ε`Λ` +O(εN+1)

)
,

where
Λ1 = −H∂S , Λ2 = ∆Γ − S(H2 − 2G)∂S ,

Λ3 = S
(

divΓ(2R−H)∇Γ +H∆Γ

)
− S2(H3 − 3HG)∂S ,

Λ4 = S2(divΓ(2R2 −HR)∇Γ +H divΓ(2R−H)∇Γ + (H2 − G)∆Γ

)
− S3Trace[R4]∂S .

The following proposition gives an expression of the outward unit normal vector to the interior boundary
Γε = {y = x− εh(x)n(x) | x ∈ Γ} for any function h.

Proposition 2.2. The outward unit normal vector to Γε is given by

nε =
(1− εhH+ ε2h2G)n+ ε(I3 + εh(R−H))∇Γh√

(1− εhH+ ε2h2G)2 + ε2‖(I3 + εh(R−H))∇Γh‖2
.

Proof. Assume that the tangent plane to Γ at the point x is generated by the unit vectors e1(x) and e2(x)
such that the outward unit normal vector to Γ is defined by n = e1 × e2. The cotangent vectors are given
by e1 = e2 ×n and e2 = n× e1. We have ei · ej = δji where δji is the kronecker symbol. The tangent plane
to Γε at the point y = x − εh(x)n(x) is generated by the vectors e1(x, ε) = D[I − εh(x)n(x)]e1(x) and
D[I− εh(x)n(x)]e2(x) and the outward unit normal vector to Γε is given by

nε(y) =
e1(x, ε)× e2(x, ε)

‖e1(x, ε)× e2(x, ε)‖ .

It remains to compute Nε
h(x) = e1(x, ε)× e2(x, ε). We have

Nε
h = e1 × e2 − ε

(
[D(hn)]e1 × e2 + e1 × [D(hn)]e2

)
+ ε2([D(hn)]e1 × [D(hn)]e2

)
= n− εh (Re1 × e2 + e1 ×Re2)− ε ((∇Γh · e1)n× e2 + (∇Γh · e2)e1 × n)

+ ε2h2Re1 ×Re2 + ε2h ((∇Γh · e1)n×Re2 + (∇Γh · e2)Re1 × n) .

To conclude we use the following equalities

Re1 × e2 + e1 ×Re2 = (H−R) e1 × e2 = (H−R)n = Hn ,

(∇Γh · e1)n× e2 + (∇Γh · e2)e1 × n = −(∇Γh · e1)e1 − (∇Γh · e2)e2 = −∇Γh ,

Re1 ×Re2 = cof[R](e1 × e2) = Gn ,
n×Re2 = n×Re2 +Rn× e2 = − (H−R) e1 ,

Re1 × n = Re1 × n+ e1 ×Rn = − (H−R) e2 .
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3 Construction of the GIBCs
The construction of the GIBC is based on the assumption that the interior and exterior fields admits the
following expansion when ε tends zero :

uεint(y) = Uε
int(x, S) =

∑
`≥0

εnU`
int(x, S) in Γ× [0, h(x)] ,

uεext(y) =
∑
`≥0

εnu`ext(y) in Ωext.

The problem (1.1) can be rewritten as follows:

∑̀
≥0

ε`
(
∆u`ext + κ2

eu
`
ext

)
= 0 in Ωext∑̀

≥0

ε`∂2
SU

`
int = −

∑̀
≥1

ε`Λ1U
`−1
int −

∑̀
≥2

ε`(Λ2 + κ2
ih

2I)U`−2
int

−
∑
k≥3

∑̀
≥k
ε`Λ`U

`−k
int in Γ× (0, h)∑̀

≥0

εnU`
int(x, 0) = uinc(x) +

∑̀
≥0

ε`u`ext(x) on Γ× {0}

∑̀
≥0

ε`∂SU
`
int(x, 0) = − 1

ρ

(
ε∂nu

inc(x) +
∑̀
≥1

ε`∂nu
`−1
ext (x)

)
on Γ× {0} ,

(3.1)

and the interior field satisfies either a Dirichlet boundary condition on Γ× {h}∑
`≥0

ε`U`
int = 0 ,

or a Neumann boundary condition on Γ× {h} that can be rewritten using Proposition 2.2 as follows∑
`≥0

ε`∂SU
`
int = hH

∑
`≥1

ε`∂SU
`−1
int

− h2G
∑
`≥2

ε`∂SU
`−2
int +

∑
`≥2

ε`∇Γh · ∇ΓU
`−2
int

+
∑
k≥3

hk−2
∑
`≥k

ε`∇Γh · (2R−H)Rk−3∇ΓU
`−k
int .

We identify the right and left hand sides of each equations in (3.1) according to the power ` ≥ 0 of ε and we
solve iteratively the new systems - that can be split into two systems of unknowns U`

int and u`ext respectively
- to compute first U`

int and then recover the boundary condition satisfied by u`ext. From these results we

deduce the GIBC satisfied by vε[N ], which is an approximation of
N∑̀
=0

ε`u`ext up to O(εN+1). The final results

are stated in the following two propositions. We obtain similar results than in the 2D case [3].

Proposition 3.1. The GIBCs modeling sound-soft obstacles coated by thin layers with a variable thickness
are given for N = 0, 1, 2, 3 by

(vεh[N ] + uinc) +Bεh,N∂n(vεh[N ] + uinc) = 0

where
Bεh,0 = 0 , Bεh,1 = − 1

ρ
(εh)I , Bεh,2 = − 1

ρ
(εh)

(
1 +

(εh)

2
H
)

I and

Bεh,3 = − 1
ρ
εh

(
I +

εh

2
HI− (εh)2

6
∆Γ +

[
εh

2
∆Γ +

εh

3
(κ2
i +H2 − G)I

]
εh

)
.

Proof. Collecting the equations when ` = 0, we obtain the two systems
∂2
SU

0
int = 0 in Γ× (0, h(x))

∂SU
0
int = 0 on Γ× {0}

U0
int = 0 on Γ× {h(x)}

and
{

∆u0
ext + κ2

eu
0
ext = 0 in Ωext

u0
ext + uinc = U0

int on Γ .

6



The first equation implies that U0
int(x, S) is a polynomial function of degre 1 in the variable S. The second

equation implies that the leading coefficient is 0 and the third equation gives the constant term. We conclude

U0
int(x, S) = 0 .

In this case we approach uεext by the function vε[0] = uext0 and then uεext−vε[0] = O(ε). When ` = 1, we obtain
the two systems

∂2
SU

1
int = −Λ1U

0
int in Γ× (0, h(x))

∂SU
1
int = − 1

ρ
∂n
(
u0
ext + uinc

)
on Γ× {0}

U1
int = 0 on Γ× {h(x)}

and
{

∆u1
ext + κ2

eu
1
ext = 0 in Ωext

u1
ext = U1

int on Γ ,

We conclude with similar arguments that

U1
int( · , S) = −(S − h(x)) 1

ρ
∂n
(
u0
ext + uinc

)
.

We compute uinc +
1∑̀
=0

ε`u`ext = 1
ρ
εh∂n

(
u0
ext + uinc

)
on Γ. In this case we approach the solution uεext

by the function vε[1] that satisfies the Helmholtz equation and the boundary condition (uinc + vε[1]) =

εh 1
ρ
∂n
(
uinc + vε[1]

)
and we get uεext − vε[1] = O(ε2). When ` = 2, we obtain the two systems

∂2
SU

2
int = −Λ1U

1
int − (Λ2 + κ2

i )U
0
int in Γ× (0, h(x))

∂SU
2
int = − 1

ρ
∂nu

1
ext on Γ× {0}

U2
int = 0 on Γ× {h(x)} .

and
{

∆u2
ext + κ2

eu
2
ext = 0 in Ωext

u2
ext = U2

int on Γ .

We compute
∂2
SU

2
int = −H 1

ρ
∂n
(
u0
ext + uinc

)
,

and we conclude

U2
int( · , S) = −

(
S2 − h2(x)

2

)
Hρ−1∂n

(
u0
ext + uinc

)
− (S − h(x))ρ−1∂nu

1
ext .

We compute uinc +
2∑̀
=0

ε`u`ext = 1
2
(εh)2H 1

ρ
∂n
(
u0
ext + uinc

)
+ εh 1

ρ
∂n

(
uinc +

1∑̀
=0

ε`u`ext

)
on Γ. In this case

we approach the solution uεext by the function vε[2] that satisfies the Helmholtz equation and the boundary

condition uinc + vε[2] = (εh)

(
1 +

εh

2
H
)

1
ρ
∂n
(
uinc + vε[2]

)
and we get uεext − vε[2] = O(ε3). When ` = 3, we

obtain the two systems
∂2
SU

3
int = −Λ1U

2
int − (Λ2 + κ2

i )U
1
int in Γ× (0, h(x))

∂SU
3
int = − 1

ρ
∂nu

2
ext on Γ× {0}

U3
int = 0 on Γ× {h(x)}

and
{

∆u3
ext + κ2

eu
3
ext = 0 in Ωext

u3
ext = U3

int on Γ .

We compute

∂2
SU

3
int = −S(2H2 − 2G) 1

ρ
∂n
(
u0
ext + uinc

)
−H 1

ρ
∂nu

1
ext + (∆Γ + κ2

i )(S − h(x)) 1
ρ
∂n
(
u0
ext + uinc

)
,

and we conclude

U3
int( · , S) =−

(
S3 − h3(x)

6

)[(
2H2 − 2G

)
ρ−1∂n

(
u0
ext + uinc

)
− (∆Γ + κ2

i )ρ
−1∂n

(
u0
ext + uinc

)]
−
(
S2 − h2(x)

2

)[
Hρ−1∂nu

1
ext|Γ + (∆Γ + κ2

i )hρ
−1∂n

(
u0
ext + uinc

)]
− (S − h(x)) ρ−1∂nu

2
ext .

We compute uinc +
3∑̀
=0

ε`u`ext = (εh)2
[

1
3
(εh)(κ2

i +H2 − G)I + 1
2
(εh)∆Γ − 1

6
∆Γ(εh)

]
1
ρ
∂n
(
u0
ext + uinc

)
+

1
2
(εh)2H 1

ρ
∂n

(
uinc +

1∑̀
=0

ε`u`ext

)
+ εh 1

ρ
∂n

(
uinc +

2∑̀
=0

ε`u`ext

)
on Γ. In this case we approach the solution

uεext by the function vε[3] that satisfies the Helmholtz equation and the boundary condition uinc + vε[3] =[
εh

(
1 +

εh

2
H+ (εh)2

3
(κ2
i +H2 − G)

)
I + (εh)3

2
∆Γ − (εh)2

6
∆Γ(εh)

]
1
ρ
∂n
(
uinc + vε[3]

)
and we get uεext−vε[3] =

O(ε4).
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Proposition 3.2. The GIBCs modeling sound-hard obstacles coated by thin layers with a variable thikness
are given for N = 0, 1, 2 by

∂n(vεh[N ] + uinc) +Bεh,N (vεh[N ] + uinc) = 0

where
Bεh,0 = 0 , Bεh,1 = ρ

[
divΓ(εh)∇Γ + (εh)κ2

i I
]
,

Bεh,2 = ρ
[
divΓ(εh)

(
1 + (εh)(R− 1

2
H)
)
∇Γ + (εh)

(
1− 1

2
(εh)H

)
κ2
i I
]
,

Bεh,3 = divΓ εh
(

1 +
εh

2
(2R−H) +

(εh)2

3
(2R2 −HR)

)
∇Γ + εh

(
1− εh

2
H+

(εh)2

3
G
)
κ2
i I

− (εh)3

6
[∆Γ + κ2

i I]
2 +

(εh)2

2
[∆Γ + κ2

i I]
[

divΓ(εh)∇Γ + κ2
i (εh)I

]
+

1

2
∇Γ(εh) · ∇Γ

[
divΓ(εh)2∇Γ + κ2

i (εh)2I
]
.

Proof. The rank ` = 0 allows us to compute U0
int only. We obtain the system

∂2
SU

0
int = 0 in Γ× (0, h(x))

∂SU
0
int = 0 on Γ× {h(x)}

U0
int = (uinc + u0

ext) on Γ× {0} .

The first equation implies that U0
ext(x, S) is a polynomial function of degre 1 in the variable S. The second

equation implies that the leading coefficient is 0 and the third equation gives the constant term. We conclude
that

U0
int( · , S) = (uinc + u0

ext).

When ` = 1, we obtain the two systems
∂2
SU

1
int = −Λ1U

0
int = 0 in Γ× (0, h(x))

∂SU
1
int = H∂SU0

int = 0 on Γ× {h(x)}
U1
int = u1

ext on Γ× {0} .
and

{
∆u0

ext + κ2
eu

0
ext = 0 in Ωext

∂n(uinc + u0
ext) = −ρ∂SU1

int on Γ .

We conclude with similar arguments that

U1
int(·, S) = u1

ext.

We compute ∂n(uinc + u0
ext) = 0 on Γ. In this case we approach uεext by the function vε[0] = uext0 and then

∂n(uεext − vε[0]) = O(ε). When ` = 2, we obtain the two systems
∂2
SU

2
int = −Λ1U

1
int − (Λ2 + κ2

i )U
0
int in Γ× (0, h(x))

∂SU
2
int = ∇Γh · ∇Γ(uinc(x) + u0

ext(x)) on Γ× {h(x)}
U2
int = u2

ext on Γ× {0} .
and

{
∆u1

ext + κ2
eu

1
ext = 0 in Ωext

∂nu
1
ext = −ρ∂SU2

int on Γ .

We compute
∂2
SU

2
int = −(∆Γ + κ2

i )(u
inc + u0

ext),

and we conclude

U2
int( · , S) = −

(
S2

2
− Sh(x)

)
(∆Γ + κ2

i )(u
inc + u0

ext) + S∇Γh · ∇Γ(uinc + u0
ext) + u2

ext ,

We compute ∂n
(
uinc +

1∑̀
=0

ε`u`ext

)
= −ρ

(
divΓ(εh)∇Γ + (εh)κ2

i

)
(uinc+u0

ext) on Γ. In this case we approach

the solution uεext by the function vε[1] that satisfies the Helmholtz equation and the boundary condition
∂n(uinc + vε[1]) = −ρ

(
divΓ(εh)∇Γ + (εh)κ2

i

) (
uinc + vε[1]

)
and we get ∂n(uεext − vε[1]) = O(ε2). When ` = 3,

we obtain the two systems
∂2
SU

3
int = −Λ1U

2
int − (Λ2 + κ2

i )U
1
int − Λ3U

0
int in Γ× (0, h(x))

∂SU
3
int = hH∂SU2

int − h2G∂SU1
int +∇Γh · ∇ΓU

1
int

+h∇Γh · (2R−H)∇ΓU
0
int on Γ× {h(x)}

U3
int = u3

ext on Γ× {0} .
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and {
∆u2

ext + κ2
eu

2
ext = 0 in Ωext

∂nu
2
ext = −ρ∂SU3

int on Γ .

We compute

∂2
SU

3
int( · , S) =− (S − h(x))H(∆Γ + κ2

i )(u
inc + u0

ext) +H∇Γh · ∇Γ(uinc + u0
ext)

−
(
∆Γ + κ2

i

)
u1
ext|Γ − S

(
divΓ(2R−H)∇Γ +H∆Γ

)
(uinc + u0

ext) ,

and

∂SU
3
int( · , h(x)) = hH∇Γh · ∇Γ(uinc + u0

ext) +∇Γh · ∇Γu
1
ext|Γ + h∇Γh · (2R−H)∇Γ(uinc + u0

ext) .

We conclude

U3
int( · , S) =−

(
S3

6
− Sh2(x)

2

)[
H(∆Γ + κ2

i )(u
inc + u0

ext) +
(

divΓ(2R−H)∇Γ +H∆Γ

)
(uinc + u0

ext)
]

+

(
S2

2
− Sh(x)

)[
hH(∆Γ + κ2

i )(u
inc + u0

ext) +H∇Γh · ∇Γ(uinc + u0
ext)−

(
∆Γ + κ2

i

)
u1
ext|Γ

]
+ S

[
∇Γh · ∇Γu

1
ext|Γ + h∇Γh · 2R∇Γ(uinc + u0

ext)
]

+ u3
ext .

We compute ∂n
(
uinc +

2∑̀
=0

ε`u`ext

)
= − 1

2
ρ
[
divΓ(εh)2(2R−HI )∇Γ − (εh)2Hκ2

i I
] (
u0
ext + uinc

)
− ρ

(
divΓ(εh)∇Γ + (εh)κ2

i

)(
uinc +

1∑̀
=0

ε`u`ext

)
. In this case we approach the solution uεext by the function

vε[2] that satisfies the Helmholtz equation and the boundary condition
∂n(uinc + vε[2]) = −ρ

(
ε
[
∆Γ + κ2

i I
]
− 1

2
ε2
[
divΓ(2R−HI )∇Γ −Hκ2

i I
]) (

uinc + vε[2]

)
and we get ∂n(uεext −

vε[2]) = O(ε3).
When ` = 4, we obtain the two systems

∂2
SU

4
int = −Λ1U

3
int − (Λ2 + κ2

i )U
2
int − Λ3U

1
int − Λ4U

0
int in Γ× (0, h)

∂SU
4
int = hH∂SU3

int − h2G∂SU2
int +∇Γh · ∇ΓU

2
int

+h∇Γh · (2R−H)∇ΓU
1
int + h2∇Γh · (2R2 −HR)∇ΓU

0
int on Γ× {h}

U4
int = u4

ext on Γ× {0} .

and {
∆u3

ext + κ2
eu

3
ext = 0 in Ωext

∂nu
3
ext = −ρ∂SU4

int on Γ .

We obtain

∂SU
4
int( · , S)

=−H
(

1
6
(S3 − h3)− 1

2
(S − h)h2) [H(∆Γ + κ2

i )(u
inc + u0

ext) +
(

divΓ(2R−H)∇Γ +H∆Γ

)
(uinc + u0

ext)
]

+H 1
2
(S − h)2

[
hH(∆Γ + κ2

i )(u
inc + u0

ext) +H∇Γh · ∇Γ(uinc + u0
ext)−

(
∆Γ + κ2

i

)
u1
ext|Γ

]
+ (S − h)H

[
∇Γh · ∇Γu

1
ext|Γ + h∇Γh · 2R∇Γ(uinc + u0

ext)
]
− (S − h)(∆Γ + κ2

i )u
2
ext

+
(S3 − h3)

6
(∆Γ + κ2

i )(∆Γ + κ2
i )(u

inc + u0
ext)− 1

2
(S2 − h2)

(
divΓ(2R−H)∇Γ +H∆Γ

)
u1
ext|Γ

− (S2 − h2)

2
(∆Γ + κ2

i )
[
h(∆Γ + κ2

i )(u
inc + u0

ext) +∇Γh · ∇Γ(uinc + u0
ext)

]
− (H2 − 2G)

[(
1
3
(S3 − h3)− 1

2
(S2 − h2)h

)
(∆Γ + κ2

i )(u
inc + u0

ext)− 1
2
(S2 − h2)∇Γh · ∇Γ(uinc + u0

ext)
]

− 1
3
(S3 − h3)

(
divΓ(2R2 −HR)∇Γ +H divΓ(2R−H)∇Γ + (H2 − G)∆Γ

)
(uinc + u0

ext)

+ hH
[
∇Γh · ∇Γu

1
ext|Γ + h∇Γh · 2R∇Γ(uinc + u0

ext)
]
− h2G∇Γh · ∇Γ(uinc + u0

ext)

+∇Γh · ∇Γ

[
1
2
h2(∆Γ + κ2

i )(u
inc + u0

ext) + h∇Γh · ∇Γ(uinc + u0
ext) + u2

ext

]
+ h∇Γh · (2R−H)∇Γu

1
ext + h2∇Γh · (2R2 −HR)∇Γ(uinc + u0

ext) .
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We compute ∂nu3
ext = −ρ∂SU4

int( · , 0) and obtain on Γ

∂nu
3
ext = −ρ

(
divΓ h∇Γ + hκ2

i

)
u2
ext − ρ

[
divΓ h

2(R− 1
2
H)∇Γ − 1

2
h2Hκ2

i

]
u1
ext

− ρ
3

divΓ h
3(2R2 −HR)∇Γ(uinc + u0

ext)− ρ
3
h3Gκ2

i (u
inc + u0

ext)

+ ρh3

6
[∆Γ + κ2

i ]
2(uinc + u0

ext)− ρh2

2
[∆Γ + κ2

i ][divΓ h∇Γ + κ2
ih](uinc + u0

ext)
− ρ

2
∇Γh · ∇Γ[divΓ h

2∇Γ + κ2
ih

2](uinc + u0
ext) .

We construct the approximate solution vε[3] in the same way as previously and we get ∂n(uεext − vε[3]) =

O(ε4).

4 Construction of GIBCs for the shape derivatives
In the remaining of the paper, we assume that the layer Ωεint has a constant thickness ε > 0 which means
∀x ∈ Γ, h(x) = 1. This section is devoted to the shape derivative analysis of the solution to the thin layer
transmission problem. In paragraph 4.1 we give a characterisation of the shape derivative as a solution to a
new transmission problem with non vanishing jumps. In paragraph 4.2 we construct the GIBC statisfied by
the approximate shape derivative wε[N ] for N = 0, 1, 2.

4.1 Characterization of the shape derivative
From now on, we choose a fixed reference domain Ω with a closed and orientable boundary Γ of class C k, with
k as great as we need, and we consider variations generated by transformations of the form x 7→ x+θ(x) of
point x in the space R3, where θ is a smooth vector function defined in a neighborhood of Γ. The functions
θ are assumed to be sufficiently small elements in an open subset O of the Banach space C k(Γ,R3) in order
that (I + θ) is a diffeomorphism from Γ to Γθ := {xθ = x+ θ(x);x ∈ Γ} . By nθ we denote the outward
unit normal vector to Γθ and we set

Γεθ := {yθ = xθ − εnθ(xθ) | xθ ∈ Γθ} .

The transformation τ−1
ε maps the restriction θ|Γ of θ to Γ to the function defined on Γε by (τ−1

ε θ|Γ)(x +
εn(x)) = θ|Γ(x). We have Γθ = (I +θ)Γ but in general Γεθ 6= (I + τ−1

ε θ)Γε. Indeed, let yθ ∈ Γεθ and y ∈ Γε,
then

yθ − y = xθ − εnθ(xθ)− (x− εn(x)) = θ(x)− ε
(
nθ(x+ θ(x))− n(x)

)
= θ(x) + ε[∇Γθ(x)]n(x) +O(‖θ‖2Ck ) .

The following theorem is a direct consequence of the Theorem 4.2 in [24] (see also [1, 20, 21]).

Theorem 4.1. Assume that (uε,θint, u
ε,θ
ext) is the solution to the transmission problem (1.1) where fext and

gext are the boundary data of uinc(x) = eiκed·x on Γθ and fint = 0 = gint on Γεθ. Then the mappings
θ 7→ uε,θint and θ 7→ uε,θext are Fréchet differentiable at θ = 0 and the derivative (u̇εint, u̇

ε
ext) in the direction

θ ∈ C k(Γ,R3) is the radiating solution to the transmission problem
∆u̇εint + κ2

i u̇
ε
int = 0 in Ωεint

∆u̇εext + κ2
eu̇
ε
ext = 0 in Ωext

ρ∂nu̇
ε
int − ∂nu̇εext =

[
(ρ− 1) divΓ(θ · n)∇Γ + (θ · n)(ρκ2

i − κ2
e)
] (
uinc + uεext

)
on Γ

u̇εint − u̇εext = −(θ · n)( 1
ρ
− 1)∂n

(
uinc + uεext

)
on Γ ,

(4.1)

with either a non vanishing Dirichlet boundary condition on Γε

u̇εint = −(τ−1
ε (θ · n))∂nεu

ε
int ,

or a non vanishing Neumann boundary condition on Γε

∂nε u̇
ε
int =

[
divΓε(τ

−1
ε (θ · n))∇Γε + (τ−1

ε (θ · n))κ2
i I
]
uεint .

Proof. Among all the already existing techniques to prove the Fréchet differentiability of the solution we
can consider the boundary integral equation approach. Using the results detailed in the Appendix and the
material derivative analysis of boundary integral operators presented in [14, 31, 30] we deduce the Fréchet
differentiability of the solution. It remains to compute the boundary condition satisfied by the solution. The
boundary conditions fullfilled by the derivative on Γ are given in Theorem 4.2 in [24]. It remains to compute
the boundary data of the derivative on Γε.
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• In the case of a Dirichlet boundary condition on Γε, we have

uε,θint(x+ θ(x)− εnθ(x+ θ(x)) = 0 , for all x ∈ Γ and for all θ ∈ O .

The material derivative of the normal vector is given in [14, Lemma 4.3 ] by ∂ξ{nξ◦(I+ξ)}|ξ=0θ = −[∇Γθ]n.
By differentiation with respect to the boundary parametrization, we have

0 = u̇εint(x+ εn(x)) + (θ(x) + ε[τε∇Γετ
−1
ε θ(x)]n(x)) · (∇uεint)∣∣Γε(x+ εn(x))

= u̇εint(x+ εn(x)) + (θ(x) · n(x))∂nεu
ε
int(x+ εn(x))

+ (θ(x) + ε[τε∇Γετ
−1
ε θ(x)]n(x)) · (∇Γεu

ε
int)(x+ εn(x))

= u̇εint(x+ εn(x)) + (θ(x) · n(x))∂nεu
ε
int(x+ εn(x)) ,

since uεint(x+ εn(x)) = 0 for all x ∈ Γ.
• In the case of a Neumann boundary condition on Γε, we have

∂nε
θ
uε,θint(x+ θ(x)− εnθ(x+ θ(x)) = 0 , for all x ∈ Γ and for all θ ∈ O .

By differentiation with respect to the boundary parametrization, we have

0 = ∂nε u̇
ε
int(x+ εn(x))−

[
τε∇Γετ

−1
ε

(
θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)

)]
n(x) · (∇uεint)∣∣Γε(x+ εn(x))

+ n(x) ·
[
(θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)) · ∇(∇uεint)∣∣Γε(x+ εn(x))

]
= ∂nε u̇

ε
int(x+ εn(x))−

[
τε∇Γετ

−1
ε

(
θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)

)]
n(x) · (∇Γεu

ε
int)
∣∣Γε(x+ εn(x))

+ (θ(x) · n(x))(n(x) · ∂nε∇uεint)∣∣Γε(x+ εn(x))

+ n(x) ·
[
(θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)) · ∇Γε(∇uεint)∣∣Γε(x+ εn(x))

]
= ∂nεu.

ε
int(x+ εn(x))−

[
τε∇Γετ

−1
ε

(
θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)

)]
n(x) · (∇Γεu

ε
int)
∣∣Γε(x+ εn(x))

+ (θ(x) · n(x))(−κ2
iu
ε
int −∆Γεu

ε
int)
∣∣Γε(x+ εn(x))

− (∇εΓuεint)∣∣Γε(x+ εn(x)) ·
[
(θ(x) + ε[τε∇Γετ

−1
ε θ(x)]n(x)) · ∇Γεn(x)

]
= ∂nε u̇

ε
int(x+ εn(x))−

[
τε∇Γετ

−1
ε

(
θ(x) · n(x)

)]
· (∇Γεu

ε
int)
∣∣Γε(x+ εn(x))

+ (θ(x) · n(x))(−κ2
iu
ε
int −∆Γεu

ε
int)
∣∣Γε(x+ εn(x))

= ∂nε u̇
ε
int(x+ εn(x))− κ2

i (θ(x) · n(x))uεint(x+ εn(x))

− divΓε τ
−1
ε (θ · n)τε(∇Γεu

ε
int)
∣∣Γε(x+ εn(x)).

Now, we assume u̇εint(y) = U̇ε
int(x, S) =

∑̀
≥0

ε`U.
`
int(x, S) in Γ × [0, 1] and u̇εext(y) =

∑̀
≥0

ε`u.
`
ext(y) in

Ωext. If we use the asymptotic expansions of the gradient (2.5) and the divergence (2.6) we obtain

(τε divΓε τ
−1
ε )(θ · n)(τε∇Γετ

−1
ε ) = divΓ(θ · n)∇Γ +

∑
k≥1

εkBkt ,

with
B1
t = divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ .

and

B2
t = divΓ(θ · n)(2R2 −HR)∇Γ +H divΓ(θ · n)(2R−H)∇Γ + (H2 − G) divΓ(θ · n)∇Γ .
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The transmission problem (4.1) can be rewritten as follows:

∑̀
≥0

ε`(∆u̇`ext + κ2
eu̇
`
ext) = 0 in Ωext∑̀

≥0

ε`∂2
SU.

`
int = −

∑̀
≥1

ε`Λ1U.
`−1
int −

∑̀
≥2

ε`(Λ2 + κ2
i )U.

`−2
int

−
∑
k≥3

∑̀
≥k
ε`ΛkU.

`−k
int in Γ× (0, 1)∑̀

≥0

ε`U.
`
int =

∑̀
≥0

ε`u.
`
ext

−(θ · n)( 1
ρ
− 1)

(
∂n(u0

ext + uinc) +
∑̀
≥1

ε`∂nu
`
ext

)
on Γ× {0}∑̀

≥0

ε`∂SU.
`
int = − 1

ρ

∑̀
≥1

ε`∂nu.
`−1
ext

−ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(uinc + u0
ext)

−
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
] ∑̀
≥2

ε`u`−1
ext on Γ× {0} ,

with either the Dirichlet condition on Γ× {1} that can be written∑
`≥1

ε`U.
`−1
int ( · , 1) = (θ · n)

∑
`≥0

ε`∂SU
`
int( · , 1)

or the Neumann condition on Γ× {1} that can be written∑
`≥0

ε`∂SU.
`
int( · , 1) = −

∑
`≥1

ε`[divΓ(θ · n)∇Γ + (θ · n)κ2
i ]U

`−1
int ( · , 1)−

∑
`≥2

ε`B1
tU

`−2
int ( · , 1) + · · ·

4.2 Construction of the GIBC for the shape derivative
The following two theorems give the GIBCs satisfied by the function wε[N ], for N = 0, 1, 2, which is an
approximation of u̇εext up to O(εN+1).

Theorem 4.2. The GIBCs associated to the transmission problem characterising the first shape derivative
of the solution in the Dirichlet case can be written for N = 0, 1, 2 as follows

wε[N ] +Bε,N∂nw
ε
[N ] = Sε,N1 (vε[N ] + uinc) + Sε,N2 ∂n(vε[N ] + uinc)

where
Sε,01 = 0 and Sε,02 = −(θ · n)I ,

Sε,11 = ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)I
]
and Sε,12 = −(θ · n)

(
1 + ε 1

ρ
H
)

I

and
Sε,21 = ε(1 + 1

2
εH)

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)I
]
,

Sε,22 = −(θ · n)
(

1 + ε 1
ρ
H+ ε2 1

ρ
(H2 − G)

)
I− 1

2ρ
ε2[∆Γ + κ2

i I]
(
(θ · n)I

)
− 1

2ρ
ε2(θ · n)[∆Γ + κ2

i I]

Proof. When ` = 0, we obtain the following equations that can be split into two systems
∂2
SU.

0
int = 0 in Γ× (0, 1)

∂SU.
0
int = 0 on Γ× {0}

U.
0
int = (θ · n)∂SU

1
int on Γ× {1}

and {
∆u.

0
ext + κ2

eu.
0
ext = 0 in Ωext

u.
0
ext = U.

0
int + (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc) on Γ .

We deduce
U.

0
int(x, S) = −(θ · n) 1

ρ
∂n(u0

ext + uinc)
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and u.
0
ext = −(θ ·n)∂n(u0

ext +uinc) on Γ. In this case we approach u̇εext by the function wε[0] = u.
0
ext and then

u̇εext − wε[0] = O(ε). When ` = 1, we obtain the two systems
∂2
SU.

1
int = −Λ1U.

0
int = 0 in Γ× (0, 1)

∂SU.
1
int = − 1

ρ
∂nu.

0
ext

−
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc) on Γ× {0}

U.
1
int = (θ · n)∂SU

2
int on Γ× {1} .

and {
∆u.

1
ext + κ2

eu.
1
ext = 0 in Ωext

u.
1
ext = U.

1
int + (θ · n)( 1

ρ
− 1)∂nu

1
ext on Γ ,

We compute U.
1
int( · , 1) = −(θ · n) 1

ρ

(
∂nu

1
ext +H∂n(u0

ext + uinc)
)
and we deduce

U.
1
int( · , S) = − (S − 1)

[
1
ρ
∂nu.

0
ext|Γ +

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc)

]
− (θ · n) 1

ρ

(
∂nu

1
ext +H∂n(u0

ext + uinc)
)
.

We have on Γ

u.
1
ext − 1

ρ
∂nu.

0
ext = −(θ · n)

(
∂nu

1
ext +H 1

ρ
∂n(u0

ext + uinc)
)

+
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc).

and

1∑̀
=0

ε`u.
`
ext − 1

ρ
ε∂nu.

0
ext = −(θ · n)

(
∂n

(
uinc +

1∑̀
=0

ε`u`ext

)
+H 1

ρ
ε∂n(u0

ext + uinc)

)
+ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc).

In this case we approach u̇εext by the function wε[1] which solves the Helmholtz equation and the boundary
condition

wε[1] +Bε,1∂nw
ε
[1] = −(θ · n)

(
∂n
(
uinc + vε[1]

)
+H 1

ρ
ε∂n(vε[1] + uinc)

)
+ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(vε[1] + uinc).

and then u̇εext − wε[1] = O(ε2) on Γ.
When ` = 2, we obtain the two systems

∂2
SU.

2
int = −Λ1U.

1
int − (Λ2 + κ2

i )U.
0
int in Γ× (0, 1)

∂SU.
2
int = − 1

ρ
∂nu.

1
ext

−
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]
u1
ext on Γ× {0}

U.
2
int = (θ · n)∂SU

3
int on Γ× {1} .

and {
∆u.

2
ext + κ2

eu.
2
ext = 0 in Ωext

u.
2
ext = U.

2
int + (θ · n)( 1

ρ
− 1)∂nu

2
ext on Γ ,

We compute

∂2
SU.

2
int( · , S) =−H

[
1
ρ
∂nu.

0
ext +

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc)

]
+ (∆Γ + κ2

i )(θ · n) 1
ρ
∂n(u0

ext + uinc) ,

U.
2
int( · , 1) =− 1

2
(θ · n)

[(
2H2 − 2G

)
1
ρ
∂n(u0

ext + uinc) + (∆Γ + κ2
i )

1
ρ
∂n(u0

ext + uinc)
]

− (θ · n)H 1
ρ
∂nu

1
ext − (θ · n) 1

ρ
∂nu

2
ext .
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and we conclude

U.
2
int( · , S) =−

(
S2 − 1

2

)
H
[

1
ρ
∂nu.

0
ext +

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc)

]
+

(
S2 − 1

2

)
(∆Γ + κ2

i )(θ · n) 1
ρ
∂n(u0

ext + uinc)

+ (S − 1)
[
− 1

ρ
∂nu.

1
ext −

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]
u1
ext

]
− 1

2
(θ · n)

[(
2H2 − 2G

)
1
ρ
∂n(u0

ext + uinc) + (∆Γ + κ2
i )

1
ρ
∂n(u0

ext + uinc)
]

− (θ · n)H 1
ρ
∂nu

1
ext − (θ · n) 1

ρ
∂nu

2
ext .

We have on Γ

u.
2
ext − 1

ρ
∂nu.

1
ext −

1

2
1
ρ
H∂nu.

0
ext

=− (θ · n)
(
∂nu

2
ext +H 1

ρ
∂nu

1
ext

)
+
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]
u1
ext

− 1
2
[∆Γ + κ2

i ](θ · n) 1
ρ
∂n(u0

ext + uinc)− 1
2
(θ · n)[∆Γ + κ2

i ]
1
ρ
∂n(u0

ext + uinc)

+ 1
2
H
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc)

− (θ · n)(H2 − G) 1
ρ
∂n(u0

ext + uinc) on Γ .

and
2∑
`=0

ε`u.
`
ext − ε 1

ρ
∂n

2∑
`=0

ε`u.
`
ext −

1

2
1
ρ
H∂nu.

0
ext

=− (θ · n)

(
∂n

(
uinc +

2∑
`=0

ε`u`ext

)
+ εH 1

ρ
∂n

(
uinc +

1∑
`=0

ε`u`ext

))

+ ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
](

uinc +

1∑
`=0

ε`u`ext

)
− 1

2
ε2[∆Γ + κ2

i ](θ · n) 1
ρ
∂n(u0

ext + uinc)− 1
2
ε2(θ · n)[∆Γ + κ2

i ]
1
ρ
∂n(u0

ext + uinc)

+ 1
2
ε2H

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(u0
ext + uinc)

− ε2(θ · n)(H2 − G) 1
ρ
∂n(u0

ext + uinc) on Γ .

In this case we approach u̇εext by the function wε[2] which solves the Helmholtz equation and the boundary
condition

wε[2] +Bε,2∂nw
ε
[2] = −(θ · n)

(
∂n
(
uinc + vε[2]

)
+H 1

ρ
ε∂n(vε[2] + uinc)

)
+ε
[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(vε[2] + uinc)

− 1
2
ε2[∆Γ + κ2

i ](θ · n) 1
ρ
∂n(u0

ext + uinc)− 1
2
ε2(θ · n)[∆Γ + κ2

i ]
1
ρ
∂n(vε[2] + uinc)

+ 1
2
ε2H

[
(1− 1

ρ
) divΓ(θ · n)∇Γ + (θ · n)(κ2

i − 1
ρ
κ2
e)
]

(vε[2] + uinc)

−ε2(θ · n)(H2 − G) 1
ρ
∂n(vε[2] + uinc) on Γ .

and then u̇εext − wε[2] = O(ε3) on Γ.

Theorem 4.3. The GIBCs associated to the transmission problem characterising the first shape derivative
of the solution in the Neumann case can be written for N = 0, 1, 2 as follows

∂nw
ε
[N ] +Bε,Nwε[N ] = Sε,N1 (vε[N ] + uinc) + Sε,N2 ∂n(vε[N ] + uinc)

where
Sε,01 = [divΓ(θ · n)∇Γ + (θ · n)κ2

eI] and Sε,02 = 0 ,

Sε,11 = [divΓ(θ ·n)
(
1 +ρε(2R−H)

)
∇Γ + (θ ·n)κ2

eI]− (θ ·n)ρεHκ2
i I and Sε,12 = ε(1−ρ)[∆Γ +κ2

i I]
(
(θ ·n)I

)
14



and

Sε,21 = [divΓ(θ · n)
(
1 + ρε(2R−H) + ρε2(2R2 −HR])

)
∇Γ + (θ · n)κ2

eI]− (θ · n)ρε(H− εG)κ2
i I

+ ρ
2
ε2[∆Γ + κ2

i I][divΓ(θ · n)∇Γ + (θ · n)κ2
i I] + ρ

2
ε2[divΓ(θ · n)∇Γ + (θ · n)κ2

i I][∆Γ + κ2
i I] ,

Sε,22 = ε(1− ρ)
[
divΓ

(
1 + ε(R− 1

2
H)
)
∇Γ + (1− 1

2
εH)κ2

i I
] (

(θ · n)I
)
.

Proof. We detail the computations of the functions u.
`
ext only. The rank ` = 0 allows us to compute U.

0
int

only. We obtain the system
∂2
SU.

0
int = 0 in Γ× (0, 1)

∂SU.
0
int = 0 on Γ× {1}

U.
0
int = u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc) on Γ× {0} .

We conclude that
U.

0
int( · , S) = u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc) .

When ` = 1, we obtain the two systems
∂2
SU.

1
int = −Λ1U.

0
int = 0 in Γ× (0, 1)

∂SU.
1
int = −[divΓ(θ · n)∇Γ + (θ · n)κ2

i ]U
0
int on Γ× {1}

U.
1
int = u.

1
ext − (θ · n)( 1

ρ
− 1)∂nu

1
ext on Γ× {0} ,

and{
∆u.

1
ext + κ2

eu.
1
ext = 0 in Ωext

∂nu.
1
ext = −ρ∂SU. 1

int +
[
(1− ρ) divΓ(θ · n)∇Γ + (θ · n)(κ2

e − ρκ2
i )
]

(u0
ext + uinc) on Γ .

We deduce

U.
1
int( · , S) = −S[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](u
0
ext + uinc) + u.

1
ext − (θ · n)( 1

ρ
− 1)∂nu

1
ext .

and
∂nu.

0
ext = [divΓ(θ · n)∇Γ + (θ · n)κ2

e](u
0
ext + uinc) on Γ .

When ` = 2, we obtain the two systems
∂2
SU.

2
int = −Λ1U.

1
int − (Λ2 + κ2

i )U.
0
int in Γ× (0, 1)

∂SU.
2
int = −[divΓ(θ · n)∇Γ + (θ · n)κ2

i ]U
1
int

−[divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ]U0
int on Γ× {1}

U.
2
int = w2

ext − (θ · n)( 1
ρ
− 1)∂nu

2
ext on Γ× {0} .

and {
∆u.

2
ext + κ2

eu.
2
ext = 0 in Ωext

∂nu.
2
ext = −ρ∂SU. 2

int +
[
(1− ρ) divΓ(θ · n)∇Γ + (θ · n)(κ2

e − ρκ2
i )
]
u1
ext on Γ .

We compute
∂2
SU.

2
int( · , S) =−H[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](u
0
ext + uinc)

− (∆Γ + κ2
i )
[
u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc)
]

and
∂SU.

2
int( · , 1) =− [divΓ(θ · n)∇Γ + (θ · n)κ2

i ]u
1
ext

− [divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ](u0
ext + uinc) .

We deduce

U.
2
int( · , S) = −

(
S2

2
− S

)
H[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](u
0
ext + uinc)

−
(
S2

2
− S

)
(∆Γ + κ2

i )
(
u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc)
)

− S[divΓ(θ · n)∇Γ + (θ · n)κ2
i ]u

1
ext

− S
[

divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ

]
(u0
ext + uinc)

+ u.
2
ext(x)− (θ · n)( 1

ρ
− 1)∂nu

2
ext ,
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and

∂nu.
1
ext + ρ

(
∆Γ + κ2

i

)
u.

0
ext|Γ = [divΓ(θ · n)∇Γ + (θ · n)κ2

e]u
1
ext

+ρ[divΓ(θ · n)(2R−H)∇Γ − (θ · n)Hκ2
i ](u

0
ext + uinc)

+(∆Γ + κ2
i )(θ · n)(1− ρ)∂n(u0

ext + uinc) on Γ .

When ` = 3, we obtain the two systems

∂2
SU.

3
ext = −Λ1U.

2
int − (Λ2 + κ2

i )U.
1
int( · , S)− Λ3U.

0
int in Γ× (0, 1)

∂SU.
3
int = −[divΓ(θ · n)∇Γ + (θ · n)κ2

i ]U
2
int

−
[

divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ

]
U1
int

− divΓ(θ · n)(2R2 −HR)∇ΓU
0
int

−
[
H divΓ(θ · n)(2R−H)∇Γ + (H2 − G) divΓ(θ · n)∇Γ

]
U0
int on Γ× {1}

U.
3
int = u.

3
ext − (θ · n)( 1

ρ
− 1)∂nu

3
ext on Γ× {0} ,

and {
∆u.

3
ext + κ2

eu.
3
ext = 0 in Ωext

∂nu.
3
ext = −ρ∂SU. 3

int +
[
(1− ρ) divΓ(θ · n)∇Γ + (θ · n)(κ2

e − ρκ2
i )
]
u2
ext on Γ .

We deduce

U.
3
int( · , S) =−

(
S3

6
− S

2
− S2

2
+ S

)
H
[
H[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](u
0
ext + uinc)

]
−
(
S3

6
− S

2
− S2

2
+ S

)
H
[
(∆Γ + κ2

i )
(
u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc)
) ]

−
(
S2

2
− S

)
H[divΓ(θ · n)∇Γ + (θ · n)κ2

i ]u
1
ext

−
(
S2

2
− S

)
H
[

divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ

]
(u0
ext + uinc)

+

(
S3

6
− S

2

)
(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ](u

0
ext + uinc)

−
(
S2

2
− S

)
(∆Γ + κ2

i )
[
u.

1
ext(x)− (θ · n)( 1

ρ
− 1)∂nu

1
ext

]
−
(
S3

6
− S

2

)
(H2 − 2G)[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](u
0
ext + uinc)

−
(
S3

6
− S

2

)(
divΓ(2R−H)∇Γ +H∆Γ

) [
u.

0
ext − (θ · n)( 1

ρ
− 1)∂n(u0

ext + uinc)
]

− S[divΓ(θ · n)∇Γ + (θ · n)κ2
i ]
(

1
2
(∆Γ + κ2

i )(u
0
ext + uinc) + u2

ext

)
− S

[
divΓ(θ · n)(2R−H)∇Γ +H divΓ(θ · n)∇Γ

]
u1
ext(x)

− S divΓ(θ · n)(2R2 −HR)∇Γ(u0
ext + uinc)

− S
[
H divΓ(θ · n)(2R−H)∇Γ + (H2 − G) divΓ(θ · n)∇Γ

]
(u0
ext + uinc)

+ u.
3
ext − (θ · n)( 1

ρ
− 1)∂nu

3
ext .

and
∂nu.

2
ext + ρ

(
∆Γ + κ2

i

)
u.

1
ext + ρ

[
divΓ(R− 1

2
H)∇Γ − 1

2
Hκ2

i

]
u.

0
ext = f on Γ ,

with
f = [divΓ(θ · n)∇Γ + (θ · n)κ2

e]u
2
ext + ρ[divΓ(θ · n)(2R−H)∇Γ − (θ · n)Hκ2

i ]u
1
ext

+ (∆Γ + κ2
i )(θ · n)(1− ρ)∂nu

1
ext(x) + ρG(θ · n)κ2

i (u
0
ext + uinc)

+ ρ divΓ(θ · n)(2R2 −HR)∇Γ(u0
ext + uinc)

+
[
divΓ(R− 1

2
H)∇Γ − 1

2
Hκ2

i

]
(θ · n)(1− ρ)∂n(u0

ext + uinc)

+ 1
2
ρ(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ](u

0
ext + uinc)

+ 1
2
ρ[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](∆Γ + κ2
i )(u

0
ext + uinc) .
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5 Shape derivatives of the approximate solution
This section is devoted to the shape derivative analysis of the approximate solution vε[N ] of u

ε
ext. It provides a

second way to compute an approximation of the shape derivative of uεext. It suffices to determine the exterior

boundary value problem characterising the shape derivative v̇ε[N ] of v
ε
[N ]. Since v

ε
[N ] ' (u0

ext+u
inc)+

N∑̀
=1

ε`u`ext,

it is equivalent to determine, in a first step, the equations satisfied by every derivatives u̇`ext of the functions
occurring in the sum. In a second step, we obtain the equation satisfied by the desired approximation v̇ε[N ]

for N = 0, 1, 2 as in the proofs of Propositions 3.1 and 3.2. This is realized in the following two theorems.
Theorem 5.1. The boundary conditions characterising the first shape derivative of the approximate solution
vε[N ], for N = 0, 1, 2, to the transmission problem with a Dirichlet condition on the interior boundary can be
written as follows

v̇ε[N ] +Bε,N∂nv̇
ε
[N ] = T ε,N1 (vε[N ] + uinc) + T ε,N2 ∂n(vε[N ] + uinc)

where
T ε,01 = 0 and T ε,02 = −(θ · n)I ,

T ε,11 = − 1
ρ
ε
[
divΓ(θ · n)∇Γ + (θ · n)κ2

eI
]

and T ε,12 = −(θ · n)
(

1 + ε 1
ρ
H
)

I

and
T ε,21 = − 1

ρ
ε(1 + 1

2
εH)

[
divΓ(θ · n)∇Γ + (θ · n)κ2

eI
]
,

T ε,22 = −(θ · n)
(

1 + ε 1
ρ
H+ ε2 1

ρ
(H2 − G)

)
I− 1

2ρ
ε2[∆Γ(θ · n)]I .

Proof. The result for the order N = 0 is well-known [30, 22, 13]{
∆u̇0

ext + κ2
eu̇

0
ext = 0 in Ωext

u̇0
ext = −(θ · n)∂n(u0

ext + uinc) on Γ .

and using straightforward calculation we obtain the characterisation at the order N = 1

∆u̇1
ext + κ2

eu̇
1
ext = 0, in Ωext

with, on Γ, the boundary condition

u̇1
ext − 1

ρ
∂nu̇

0
ext = −(θ · n)

(
∂nu

1
ext +H 1

ρ
∂n(u0

ext + uinc)
)

− 1
ρ

[
divΓ(θ · n)∇Γ + (θ · n)κ2

eI
]

(u0
ext + uinc).

Let us detail the computations for the order N = 2 only. We know that the derivative u̇2
ext satisfies

∆u̇2
ext + κ2

eu̇
2
ext = 0, in Ωext .

We essentially need to differentiate the boundary condition. We have for all x ∈ Γ and for all θ ∈ O

u2,θ
ext(x+ θ(x))− 1

ρ
∂nθu

1,θ
ext(x+ θ(x))− 1

2
1
ρ
Hθ∂nθ (u0,θ

ext + uinc)(x+ θ(x)) = 0 .

We use Ḣ = −∆Γ(θ · n) = 0 [15] and we obtain

0 = u̇2
ext + θ · (∇u2

ext)
∣∣Γ − 1

ρ
∂nu̇

1
ext + 1

ρ
[∇Γθ · n] · ∇Γu

1
ext − 1

ρ
θ · ∇(∂nu

1
ext)

− 1
2

1
ρ
H∂nu̇0

ext + 1
2

1
ρ
∆Γ(θ · n)∂n(u0

ext + uinc) + 1
2

1
ρ
H[∇Γθ · n] · ∇Γ(u0

ext + uinc)

− 1
2

1
ρ
θ · ∇

(
H∂n(u0

ext + uinc)
)

= u̇2
ext + (θ · n)∂nu

2
ext − 1

ρ
∂nu̇

1
ext + 1

ρ
[∇Γθ · n] · ∇Γu

1
ext − 1

ρ
(θ · n)(∂2

nu
1
ext)

− 1
2

1
ρ
H∂nu̇0

ext + 1
2

1
ρ
∆Γ(θ · n)∂n(u0

ext + uinc) + 1
2

1
ρ
H[∇Γθ · n] · ∇Γ(u0

ext + uinc)

− 1
2

1
ρ
(θ · n)(∂nH)∂n(u0

ext + uinc)− 1
2

1
ρ
(θ · n)H∂2

n(u0
ext + uinc)

We use [27] ∂2
n = ∆−∆Γ −H∂n and ∂nH = −Trace[R2] = (H2 − 2G) to conclude

u̇2
ext − 1

ρ
∂nu̇

1
ext − 1

2
1
ρ
H∂nu̇0

ext

= −(θ · n)
(
∂nu

2
ext +H 1

ρ
∂nu

1
ext

)
− 1

ρ

[
divΓ(θ · n)∇Γ + (θ · n)κ2

eI
]
u1
ext

−(θ · n)(H2 − G) 1
ρ
∂n(u0

ext + uinc)− 1
2ρ

[∆Γ(θ · n)]∂n(u0
ext + uinc)

− 1
2ρ
H
[
divΓ(θ · n)∇Γ + (θ · n)κ2

eI
]

(u0
ext + uinc).
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Theorem 5.2. The boundary conditions characterising the first shape derivative of the approximate solution
vε[N ], for N = 0, 1, 2, to the transmission problem with a Neumann condition on the interior boundary can
be written as follows

∂nv̇
ε
[N ] +Bε,N v̇ε[N ] = T ε,N1 (vε[N ] + uinc) + T ε,N2 ∂n(vε[N ] + uinc)

T ε,01 = [divΓ(θ · n)∇Γ + (θ · n)κ2
eI] and T ε,02 = 0 ,

T ε,11 = [divΓ(θ · n)
(
1 + ρε(2R−H)

)
∇Γ + (θ · n)κ2

eI]− (θ · n)ρεHκ2
i I and T ε,12 = −ρε[∆Γ + κ2

i I]
(
(θ · n)I

)
and

T ε,21 = [divΓ(θ · n)
(
1 + ρε(2R−H) + ρε2(2R2 −HR])

)
∇Γ + (θ · n)κ2

eI]− (θ · n)ρε(H− εG)κ2
i I

+ ρ
2
ε2 divΓ(2D2

Γ(θ · n)− [∆Γ(θ · n)]I)∇Γ − ρ
2
ε2κ2

i [∆Γ(θ · n)]I ,

T ε,22 = −ρε
[
divΓ

(
1 + ε(R− 1

2
H)
)
∇Γ + (1− 1

2
εH)κ2

i I
] (

(θ · n)I
)
.

Proof. The results for the order N = 0 is well-known [22, 31, 13]{
∆u̇0

ext + κ2
eu̇

0
ext = 0 in Ωext

∂nu̇
0
ext = divΓ(θ · n)∇Γ(u0

ext + uinc) + κ2
e(θ · n)(u0

ext + uinc) on Γ .

and the characterisation at the order N = 1 is obtained in [15]. We have

∆u̇1
ext + κ2

eu̇
1
ext = 0, in Ωext

with, on Γ, the boundary condition

∂nu̇
1
ext + ρ[∆Γ + κ2

i I ]u̇0
ext =

[
divΓ((θ · n)∇Γ) + κ2

e(θ · n)I
]
u1
ext

−ρ
[

divΓ(θ · n)(H− 2R)∇Γ + κ2
i (θ · n)HI

]
(u0
ext + uinc)

−ρ
[
∆Γ((θ · n)∂n(u0

ext + uinc)) + κ2
i (θ · n)∂n(u0

ext + uinc)
]
.

Let us detail the computations for the order N = 2 only. The shape derivative u̇2
ext satisfies

∆u̇2
ext + κ2

eu̇
2
ext = 0, in Ωext .

On the boundary Γ, some difficulties arise. We have for all x ∈ Γ and for all θ ∈ O

∂nθu
2,θ
ext(x+θ(x))+ρ[∆Γθ+κ2

i I]u
1,θ
ext(x+θ(x))+ρ[divΓθ (Rθ− 1

2
HθI)∇Γθ− 1

2
Hθκ2

i I](u
0,θ
ext+u

inc)(x+θ(x)) = 0 .

We focus on the shape derivative of the third boundary term. For any small real value t, let us denote

vt =
ρ

2
divΓtθ

[
(2Rtθ −HtθI)∇Γtθ (u0,tθ

ext + uinc)
]

and
wt = −ρ

2
κ2
iHtθ(u0,tθ

ext + uinc)

Denote zt = u0,tθ
ext + uinc and ż = u̇0

ext. We take a test function φ ∈ D(Γ) which is supposed to be

the restriction on Γ of a function Φ ∈ D(R3) satisfying ∂nΦ = 0. We are led to compute
d

dt

[ ∫
Γtθ

(vt +

wt) φ dσ
]
|t=0

.

d

dt

[ ∫
Γtθ

vt φ dσ
]
|t=0

= −
ρ

2

[ d
dt

[ ∫
Γtθ

[
(2Rtθ −HtθI)∇Γtθzt.∇Γtθφ

]
dσ
]
|t=0

= −
ρ

2

[
(I) + (II)

]
where [28, Eq. (4.44), pp. 192]

(I) =

∫
Γ

d

dt

[
(2Rtθ −HtθI)∇Γtθzt

]
|t=0

.∇Γφ dσ,

and
(II) =

∫
Γ

θ · n ∂n
[
(2R−HI)∇Γz.∇Γφ

]
dσ +

∫
Γ

θ · n H
[
(2R−HI).∇Γz.∇Γφ

]
dσ
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Concerning (I), we get [16]

(I) =

∫
Γ

∇Γφ ·
[
− (2D2

Γ(θ · n)) + ∆Γ(θ · n)I)∇Γz
]
dσ

+

∫
Γ

∇Γφ ·
[
(2R−HI) (∇Γż + ∂nz∇Γ(θ · n))

]
dσ

Indeed, set A = (2R−HI) and A = (aij)1≤i,j≤3. We have [27, pp. 69]

(∂naij)1≤i,j≤3 = Trace(R2)I− 2R2.

It comes that

∂n(A∇Γz.∇Γφ) + AH∇Γz.∇Γφ) =

A∂n
[
∇Γz.∇Γφ

]
+
[
Trace(R2)I− 2R2 +H(2R−HI).

]
∇Γz.∇Γφ

= A∇Γ∂nz.∇Γφ+ (HA− 2RA
[
∇Γz).∇Γφ

]
+
[
Trace((R2)I− 2R2).

]
∇Γz.∇Γφ

= (2R−HI)∇Γ∂nz.∇Γφ+
[
(Trace(R2)−H2)I− 6R2 + 4HR

]
∇Γz.∇Γφ

= (2R−HI)∇Γ∂nz.∇Γφ+
[
− 2GI− 6R2 + 4HR

]
∇Γz.∇Γφ

= (2R−HI)∇Γ∂nz.∇Γφ+
[
− 4R2 + 2HR

]
∇Γz.∇Γφ

Finally, gathering all the terms we get

(II) =

∫
Γ

φ divΓ

[
θ · n (4R2 − 2HR)∇Γz

]
+

∫
Γ

φ divΓ

[
(θ · n)(H I − 2R)∇Γ(∂nz)

]
From (I) + (II) we obtain

d

dt

[ ∫
Γtθ

vt φ dσ
]
|t=0

= −
ρ

2

∫
Γ

φ divΓ

[
(2 DΓ(∇Γ(θ · n))−∆Γ(θ · n) I)∇Γz

]
dσ

−
ρ

2

∫
Γ

φ divΓ

[
(−2R+HI)∇Γż

]
dσ

− ρ

∫
Γ

φ divΓ

[
θ · n (2R2 −HR)∇Γz

]
−

ρ

2

∫
Γ

φ divΓ

[
(θ · n)(H I − 2R)∇Γ( ∂nz)

]
−

ρ

2

∫
Γ

φ · divΓ

[
(2R−HI) (∂nz∇Γ(θ · n))

]
dσ

Following the same lines as before, we get the following

d

dt

[ ∫
Γtθ

wt φ dσ
]
|t=0

= −
ρ

2

∫
Γ

Hκ2
i żφ dσ −

ρ

2
κ2
i

∫
Γ

(θ · n)H(∂nz +Hz)φ dσ

+
ρ

2
κ2
i

[ ∫
Γ

(
∆Γ(θ · n) + θ · n(H2 − 2G)

)
z φ dσ

]
We finaly get on Γ

∂nu̇
2
ext + ρ(∆Γ + κ2

i )u̇
1
ext + ρ

[
(divΓ(R− 1

2
H)∇Γ)− 1

2
Hκ2

i I
]
u̇0
ext

=
[

divΓ θ · n∇Γ + κ2
eθ · nI

]
u2
ext − ρ

[
divΓ θ · n(H− 2R)∇Γ + κ2

iθ · nHI
]
(u1
ext + uinc)

−ρ
[
∆Γ + κ2

i I
]
(θ · n)∂n(u1

ext + uinc) +
ρ

2
divΓ

[
(2 D2

Γ(θ · n)− [∆Γ(θ · n)]I)∇Γ(u0
ext + uinc)

]
+ρ divΓ

[
θ · n (2R2 −HR)∇Γ(u0

ext + uinc)
]
−
ρ

2
κ2
i

[
(∆Γ(θ · n)− 2θ · nGI) (u0

ext + uinc)
]

+
ρ

2
divΓ

[
(HI− 2R)∇Γ(θ · n ∂n(u0

ext + uinc))
]

+
ρ

2
κ2
iθ · nH ∂n(u0

ext + uinc)
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6 Comparison of the two approaches
In this section, we focus on the remainder rε[N ] = v̇ε[N ]−wε[N ] for N = 0, 1, 2. Our main result is the following.

Theorem 6.1. Let N = 0, 1, 2. There exists some constants CΓ, CR and C∞ independant on ε such that

‖ rε[N ] ‖
H

1
2 (Γ)
≤ CΓε

N+1 ,

‖ rε[N ] ‖H1(Ωext∩BR) ≤ CRε
N+1 ,

‖ rε∞,[N ] ‖L2(S2) ≤ C∞ε
N+1 ,

where R is sufficiently large such that Ω ⊂ BR.
It is sufficient to prove the results for N = 2. It relies on the fact that the difference between the right-hand
sides (F ε,1[N ] − F

ε,2
|N|) is up to O(εN+1). Then, the theory presented in [12] allows us to deduce the above

estimates. We needs the following two propositions.

Proposition 6.2. We have

1
2

divΓ

[
(2D2

Γ(θ · n)−∆Γ(θ · n)I)∇Γu
]
−

1

2
κ2
i

[
u∆Γ(θ · n)

]
− 1

2
(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ]u− 1

2
[divΓ(θ · n)∇Γ + (θ · n)κ2

i ][∆Γ + κ2
i ]u

+
[
∆Γ + κ2

i

] (
(θ · n)(∆Γu+ κ2

iu)
)

= 0.

Proof. It is straightforward to verify that the summation of the coefficients in κ2
i and κ4

i vanish. Then we
have

1
2

divΓ

[
(2D2

Γ(θ · n)−∆Γ(θ · n)I)∇Γu
]
−

1

2
κ2
i

[
u∆Γ(θ · n)

]
− 1

2
(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ]u− 1

2
[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](∆Γ + κ2
i )u)

+
[
∆Γ + κ2

i

] (
(θ · n)(∆Γu+ κ2

iu)
)

= 1
2

divΓ

[
(2D2

Γ(θ · n)−∆Γ(θ · n)I)∇Γu
]
− 1

2
∆Γ (divΓ(θ · n)∇Γu)

− 1
2
[divΓ(θ · n)∇Γ](∆Γu) + ∆Γ ((θ · n)∆Γu)

= 1
2

divΓ

[
(2D2

Γ(θ · n))∇Γu
]
− 1

2
∇Γ(∆Γ(θ · n)) · ∇Γu− 1

2
(∆Γ(θ · n))(∆Γu)

− 1
2
∆Γ (∇Γ(θ · n) · ∇Γu)− 1

2
(∆Γ(θ · n))(∆Γu)−∇Γ(θ · n) · ∇Γ(∆Γu)− 1

2
(θ · n)(∆2

Γu)
− 1

2
∇Γ(θ · n) · ∇Γ(∆Γu)− 1

2
(θ · n)(∆2

Γu) + (∆Γ(θ · n))(∆Γu) + 2∇Γ(θ · n) · ∇Γ∆Γu+ (θ · n)(∆2
Γu)

= divΓ

[
D2

Γ(θ · n)∇Γu
]
− 1

2
∇Γu · ∇Γ(∆Γ(θ · n)) + 1

2
∇Γ(θ · n) · ∇Γ(∆Γu)− 1

2
∆Γ

[
∇Γu · ∇Γ(θ · n)

]
We end the proof once we use the following two relations

divΓ

[
D2

Γ(θ · n)∇Γu
]

= ∇Γ

[
∆Γ(θ · n)

]
· ∇Γu+D2

Γ(θ · n) : D2
Γu ,

where for two (3×3) matrices A and B whose columns are denoted by (a1, a2, a3) and (b1, b2, b3), respectively,
we set A : B = a1 · b1 + a2 · b2 + a3 · b3 and,

1

2
∆Γ

[
∇Γu · ∇Γ(θ · n)

]
=

1

2
∇Γ(θ · n) · ∇Γ(∆Γu) +

1

2
∇Γu · ∇Γ(∆Γ(θ · n)) +D2

Γ(θ · n) : D2
Γu .

The second result concerns the GIBC satisfied by rε[N ] on Γ.

Lemma 6.3. In the Neuman case, we have

∂nr
ε
[2] + ρε(∆Γ + κ2

i )r
ε
[2] + ε2ρ

[
(divΓ(R− 1

2
H)∇Γ)− 1

2
Hκ2

i

]
rε[2] = O(ε3) on Γ (6.1)

where O(x) stands for a generic distribution belonging to H−
3
2 (Γ).

Proof. We have on Γ

∂nr
ε
[2] + ρε(divΓ∇Γ + κ2

i )r
ε
[2] + ρε2

[
(divΓ(R− 1

2
H)∇Γ)− 1

2
Hκ2

i

]
rε[2] = F ε,2[2] − F

ε,1
[2] = Rε1 +Rε2 ,
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where

Rε1 = ε2 ρ
2

divΓ

[
(2D2

Γ(θ · n)−∆Γ(θ · n)I)∇Γ(vε[2] + uinc)
]
− ε2 ρ

2
κ2
i

[
∆Γ(θ · n)(vε[2] + uinc)

]
− ρ

2
ε2(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ](v

ε
[2] + uinc)

− ρ
2
ε2[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](∆Γ + κ2
i )(v

ε
[2] + uinc)

and where

Rε2 = −ε2ρ divΓ

[
(θ · n)(R− 1

2
H I)∇Γ − 1

2
κ2
i (θ · n)H

]
∂n(vε[2] + uinc)

−ερ
[
∆Γ + κ2

i

]
((θ · n)∂n(vε[2] + uinc))

+ε(ρ− 1)
[
divΓ

(
1 + ε(R− 1

2
H)
)
∇Γ + (1− 1

2
εH)κ2

i

]
((θ · n)∂n(vε[2] + uinc))

= −ε2ρ divΓ

[
(θ · n)(R− 1

2
H I)∇Γ − 1

2
κ2
i (θ · n)H

]
∂n(vε[2] + uinc))

−ερ
[
∆Γ + κ2

i

]
((θ · n)∂n(vε[2] + uinc)) + ε(ρ− 1)

[
∆Γ + κ2

i

]
((θ · n)∂n(vε[2] + uinc))

+ε2(ρ− 1)
[
divΓ

(
R− 1

2
H
)
∇Γ − 1

2
Hκ2

i

]
((θ · n)∂n(vε[2] + uinc)) .

Thanks to the relation
∂n(vε[2] + uinc) = −Bε,2(vε[2] + uinc) ,

where
Bε,2 = ερ

[
∆Γ + κ2

i

]
+ ε2ρ

[
divΓ

(
R− 1

2
H
)
∇Γ − 1

2
Hκ2

i

]
,

we can rewrite Rε2 as

Rε2 = ε2ρ
[
∆Γ + κ2

i

] (
(θ · n)(∆Γ + κ2

i )(v
ε
[2] + uinc)

)
+O(ε3)

where O(x) stands for a generic distribution belonging to H−
3
2 (Γ). Thanks to the Proposition 6.2 , we

conclude

F ε,2[2] − F
ε,1
[2] = ε2

ρ

2
divΓ

[
(2D2

Γ(θ · n)−∆Γθ · n I)∇Γ(vε[2] + uinc)
]
− ε2

ρ

2
κ2
i

[
∆Γ(θ · n)(vε[2] + uinc)

]
− ρ

2
ε2(∆Γ + κ2

i )[divΓ(θ · n)∇Γ + (θ · n)κ2
i ](v

ε
[2] + uinc)

− ρ
2
ε2[divΓ(θ · n)∇Γ + (θ · n)κ2

i ](∆Γ + κ2
i )(v

ε
[2] + uinc)

+ε2ρ
[
∆Γ + κ2

i

] (
θ · n(∆Γ + κ2

i )(v
ε
[2] + uinc)

)
+O(ε3)

= O(ε3).

Proof of Theorem 6.1. We can easily verify that rε[N ] solves the following boundary value problem:
∆rε[N ] + κ2

er
ε
[N ] = 0 in Ωext

limR→+∞

∫
∂BR

|
∂rε[N ]

∂r
− ikerε[N ] |2 ds = 0

(6.2)

with the GIBC on Γ

∂nr
ε
[2] + ρε

(
divΓ

[
(I + ε(R− 1

2
HI))∇Γr

ε
[2]

])
+ ρκ2

i ε(1−
ε

2
H)rε[2]. = O(ε3) on Γ (6.3)

We follows ideas of [32, Lemma 1]. We begin to introduce the Dirichlet to Neumann operator AΓ :

Hs+ 1
2 (Γ) 7→ Hs− 1

2 (Γ), s ∈ R defined as follows : for g ∈ Hs+ 1
2 (Γ) we set AΓ(g) = ∂nv the normal

derivative of v solution of
∆v + κ2

ev = 0, in Ωext
v = g, on Γ

limR→+∞

∫
∂BR

|
∂rε[N ]

∂r
− ikerε[N ] |2 dr = 0.

‖ AΓu ‖L2(Γ)≤ c3||u||H1

Let ZΓ be the operator defined by

ZΓw = ρε
(

divΓ

[
(I + ε(R− 1

2
HI))∇Γw

])
+ ρκ2

i ε(1−
ε

2
H)w
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Set
BΓ = AΓ + ZΓ.

We study first BΛ
Γ = AΓ + ρε

(
divΓ

[
(I + ε(R − 1

2
HI))∇Γw

])
− Λu where Λ is a positive constant chosen

sufficiently large. Denote E = ρε(1−ε
H

2
)I+ρε2R. Supposing ε > 0 sufficiently small such that the spectrum

of the matrix E belongs to (c1, c2) for some c1, c2 > 0. We have for u ∈ H1(Γ)

−Re(〈BΛ
Γu, u〉) = −〈AΓu, u〉+ 〈∇Γu,E∇Γu〉+ Λ ‖ u ‖2L2(Γ)

≥ − ‖ AΓu ‖L2(Γ)‖ u ‖L2(Γ) +c1 ‖ u ‖2H1(Γ) +(c1 + Λ) ‖ u ‖2L2

≥ −c3 ‖ u ‖H1(Γ)‖ u ‖L2(Γ) +c1 ‖ u ‖2H1(Γ) +(c1 + Λ) ‖ u ‖2L2

≥ −c3(
δ

2
‖ u ‖2H1(Γ) +

‖ u ‖2L2(Γ)

2δ
) + c1 ‖ u ‖2H1(Γ) +(c1 + Λ) ‖ u ‖2L2

≥ (c1 −
c3

2δ
) ‖ u ‖2H1(Γ) +(c1 + Λ−

c3

2δ
) ‖ u ‖2L2(Γ))

The last two inequalities are obtained thanks to the Young’s inequality. Setting δ =
c1

c3
we then get

−Re(〈BΛ
Γ 〈u, u〉) ≥

c1

2
‖ u ‖2H1(Γ) +(Λ + c1 −

c23

2c1
) ‖ u ‖2L2(Γ) .

Hence coercivity is obtained whenever Λ ≥
c23

2c1
−c1. We have shown that −BΓ = −BΛ

Γ +KΓ where −KΓ = Λu

is compact. Then Bλ is a Fredholm operator of index zero. Furthermore, one can easily show that BΓ is
injective [12]. The trick is classical : we combine the Reillich theorem and the analytic continuation principle.
Then it is invertible. Since BΓ is bounded from H1(Γ) to H−1(Γ), we deduce from the closed graph theorem,
that if −BΓu = h then there exists C > 0 such that

‖ u ‖H1(Γ)≤ C ‖ h ‖H−1(Γ) .

Doing the same analysis for h ∈ Hs(Γ) when s > −1, we deduce that the problem has a unique solution
u ∈ H1(Γ). Hence −BΛ

Γu+ u = h+AΓu+ (1− Λ)u ∈ Hmin (s,0)(Γ) and since Γ is C∞ we get u ∈ Hs+2(Γ)
thanks to bootstrap procedure. We conclude from the closed graph theorem that there exists C > 0 such
that

‖ u ‖Hs+2(Γ)≤ C ‖ h ‖Hs(Γ) .

The case s < −1 is treated by transposition. Indeed, for any s ∈ R the operator BΓ continuously maps
Hs+2(Γ) to Hs(Γ). Its L2-adjoint is BΓ : H−s(Γ)→ H−s−2(Γ), which is bijective as −s−2 > −1 by previous
case. The proof is then completed as in the previous case. If s = −3/2 we get the first estimate. We obtain
the other estimates by the potential theory.

�

Similar bounds can be obtained in the Dirichlet case. Indeed, we can prove again that (F ε,1[N| − F
ε,2
|N ]) is

up to O(εN+1) in the following lemma.

Lemma 6.4. In the Dirichlet case, we have

rε[2] − 1
ρ
ε
(

1 +
ε

2
H
)
∂nr

ε
[2] = O(ε3) on Γ (6.4)

where O(x) stands for a generic distribution belonging to H−
1
2 (Γ).

Proof. We have on Γ

rε[2] − 1
ρ
ε
(

1 +
ε

2
H
)
∂nr

ε
[2] = F ε,2[2] − F

ε,1
[2] = Rε1 +Rε2 ,

where
Rε1 = ε(1 + 1

2
εH)

[
divΓ(θ · n)∇Γ + (θ · n)κ2

i

]
(vε[2] + uinc) ,

Rε2 =− 1
2ρ
ε2[∆Γ + κ2

i ]
(

(θ · n)∂n(vε[2] + uinc)
)
− 1

2ρ
ε2(θ · n)[∆Γ + κ2

i ]∂n(vε[2] + uinc)

+ 1
2ρ
ε2(∆Γ(θ · n)

)
∂n(vε[2] + uinc) .

Thanks to the relation
(vε[2] + uinc) = −Bε,2∂n(vε[2] + uinc) ,
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where
Bε,2 = − 1

ρ
εI− 1

1ρ
ε2HI

we can rewrite Rε1 as

Rε1 = ε2 1
ρ

[
divΓ(θ · n)∇Γ + (θ · n)κ2

i

]
∂n(vε[2] + uinc) +O(ε3) ,

where O(x) stands for a generic distribution belonging to H−
1
2 (Γ). We also simplify the expression of Rε2 as

Rε2 =− 1
ρ
ε2∇Γ(θ · n) · ∇Γ∂n(vε[2] + uinc)− 1

ρ
ε2(θ · n)[∆Γ + κ2

i ]∂n(vε[2] + uinc) .

We finally get F ε,2[2] − F
ε,1
[2] = O(ε3).

7 Numerical experiments
We discuss in this section the numerical accuracy of the GIBCs to approximate the solution to the original
transmission problem and its shape derivatives. We evaluate the L2 error of the far-field pattern associated
to the exact and approximate fields. The far-field pattern are computed by solving the boundary integral
equations given in the Appendix thanks to the high-order spectral algorithm presented in [18]. The numerical
scheme applies to boundaries which are globally parameterised by spherical coordinates and consists in
transforming the integral equation on the surface Γ to an integral equation on the unit sphere using a
change of variable and then by expanding the integrand and looking for a scalar solution in terms of series
of scalar spherical harmonics.

We denote by
(
Y j`
)

0≤|j|≤` the orthonormal system of scalar spherical harmonics. In all our experiments
we set κe = π so that the object size is roughly 1λe (where λe = 2π

κe
is the exterior wavelenght) and κi = 2κe,

ρ = 1.3. The incident plane wave is defined by uinc(x) = eiκex·d, with d =
T(

1, 0, 0
)
.

As a first test, we consider a spherical coating of an acoustic object whose boundary Γε1 is parameterised
by the unit sphere S2 as follows and the visualisation is given in Figure 1.

x ∈ Γε1 ⇔ ∃ x̂ ∈ S2 , x = r1(x̂)x̂ with r1 = 0.9
√

4πY 0
0 + 0.1Y 5

10 + 0.1Y −5
10 .

The width is then εh = 1 − r1. In Table 1 we indicate the L2 relative error, denoted by err2 between the

Figure 1: Interior boundary of the spherical coating with a variable thickness εh varying between 0.05λe and 0.15λe.

far-field patterns of the exact exterior field uεext and the approximated field vε[N|.

errε2 =


∫
S2
|vε∞,[N ] − uε∞|2 ds∫

S2
|uε∞|2 ds


1
2

.
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In Figures 2 and 3 we compare the amplitude of the far-field patterns of the exact solution and the approx-
imate solution on the cut φ = 0°.

Table 1: Scattering of an incident plane wave by the spherical coating with either a Dirichlet or a Neumann boundary
condition on the interior boundary : relative L2-errors between the true scattered field and the approximate field.

Dirichlet Neumann
N errε2 errε2
0 2.9132E− 01 1.1004E− 00

1 5.0567E− 02 2.1414E− 01
2 2.9561E− 02 1.3574E− 01
3 7.5691E− 03 4.5420E− 02
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Figure 2: Amplitude of the farfield patterns uε∞ and vε∞,[N ] of the scattered field associated to the original transmission
problems for the spherical coating and its approximate fields in the case of a Dirichlet interior boundary condition.

As a second task, we consider an axisymetrical coating with a constant thickness whose the exterior
boundary Γ2 is parameterised by the unit sphere as follows and the visualisation is given in Figure 4.

x ∈ Γ2 ⇔ ∃ x̂ ∈ S2 , x = r2(x̂)x̂ with r2 = 5
6

√
4πY 0

0 + 1
4
Y 0

1 + 1
4
Y 0

2 .

The curvature operator R, the mean curvature H and the gauss curvature G are computed analytically.
The surface differential operators are computed using integration by parts, projection onto the spherical
harmonics and the various formulas stated in [23].

To attest the shape derivative formulas of uεext and its approximate field vε[N ] given by Theorems 4.1, 5.1
and 5.2 , we compare them with the Gâteaux derivative typically defined by

u̇ε∞ = lim
t→0

(
u̇ε,t∞ =

uε,tθ∞ − uε∞
t

)
and v̇ε∞,[N ] = lim

t→0

(
v̇ε,t∞,[N ] =

vε,tθ∞,[N ] − v
ε
∞,[N ]

t

)
,

for different values of t and N = 2. The direction θ is described by the spherical coordinates of any point
x̂ ∈ S2 denoted by (ψ, φ) ∈ (0;π)× (0; 2π) ∪ {(0, 0); (0, π)} by

θ(x̂) = r(x̂)x̂ , r(x̂) = 3
5

cosψ sinφ+ 2
5

cos 2ψ sin 3φ .
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Figure 3: Amplitude of the farfield patterns uε∞ and vε∞,[N ] of the scattered field associated to the original transmission
problems for the spherical coating and its approximate fields in the case of a Neumann interior boundary condition.

Figure 4: Exterior boundary of a coated object with a constant thickness ε = 0.15λe.

We set ε = 0.1λe. As expected, we observe linear convergence rate.
In Figure 5, we numerically verify the accuracy and effectiveness of the two approaches presented in

Section 4 and 5 to compute of the shape derivatives . The curves represents the L2 error between the shape
derivative of the true far-field u̇ε∞ and the approximate shape derivatives wε∞,[N ] or v̇

ε
∞,[N ] for N = 1, 2 and

various values on the thickness ε in a log log scale. In view of the error bound given in the introduction and
the Theorem 6.1, taking the logarithm to both sides we obtain

log10

(
||uε∞ − vε∞,[N ]||L2

)
≈ log10(cN ) +mN log10(ε) , (7.1)

where cN is a constant and mN ≈ N + 1. The positive real values mN are the slope of the linear curves and
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Table 2: Numerical computation of the Fréchet derivative : comparison with the finite difference method

Dirichlet Neumann

t
||u̇ε,t∞ − u̇ε∞||L2

||u̇ε∞||L2

||v̇ε,t∞,[2] − v̇
ε
∞,[2]||L2

||v̇ε∞,[2]||L2

||u̇ε,t∞ − u̇ε∞||L2

||u̇ε∞||L2

||v̇ε,t∞,[2] − v̇
ε
∞,[2]||L2

||v̇ε∞,[2]||L2

E− 01 1.1892E− 01 1.2944E− 01 2.8351E− 01 1.1807E− 01
E− 02 1.1899E− 02 1.2969E− 02 2.7977E− 02 1.1832E− 02
E− 03 1.1899E− 03 1.2970E− 03 2.7975E− 03 1.1832E− 03

are indicated on the Figure 5. We observe that similar speed of convergence of vε∞,[N ] to u
ε
∞ and of v̇ε∞,[N ]

to u̇ε∞ are obtained. The speed of convergence of wε∞,[N ] to u̇
ε
∞ is close to N + 1 but slower than the one of

v̇ε∞,[N ] to u̇
ε
∞.

8 Conclusion and perspectives
In this work we proposed a new way to construct GIBCs for elliptic problems in R3 extending previous
work realised in R2 [33, 3]. The method allows the possibility to obtain, in future works, the high order
GIBCs modelling thin coatings in electromagnetics and elastodynamics with variable thickness, generalising
the already existing results [2, 5, 6, 10, 17, 19].

Using these results, we investigate the asymptotic behaviour of the shape derivatives of the solution to
thin layer transmission problems. We present two different way to approach the shape derivatives. On one
hand, we construct the GIBCs associated to the thin layer transmission problem characterising the shape
derivative of the solution. On the other hand, we compute the shape derivatives of the approximate solution.
We show that the two approaches are equivalent in the sense that the error estimates is up to O(εN+1),
where N is the order of truncation in the asymptotic expansion of the exact shape derivative. We explain
the results by the fact that the first shape derivative depends only on the normal deformation of the exterior
boundary. A general observation is that for N ≥ 2, the first approach is simpler than computing the shape
derivatives of the GIBCs.

Appendix: boundary integral equation methods
In this appendix we present the boundary integral equation methods used to solve both the thin layer
transmission problem and the boundary value problems with GIBCs. We follow the procedure described in
[34] for the transmission problem and in [18] for impedance-like problems. For more details on the potential
theory in acoustics we refer to [13].

For a = i, e, let G(κa,z) =
eiκa|z|

4π|z| be the fundamental solution of the Helmholtz equation ∆u+κ2
au = 0.

We denote by SaΓ and DaΓ the single layer and double layer potential operators related to the boundary Γ.
They are defined by

SaΓϕ(x) =

∫
Γ

G(κa,x− y)ϕ(y)dσ(y) and DaΓψ(x) =

∫
Γ

∂ynG(κa,x− y)ψ(y)dσ(y) .

The functions ϕ and ψ are some distributions in the Sobolev spaces of fractional order H
1
2 (Γ) and H−

1
2 (Γ),

respectively. We define in the same way the potential operators related to the boundary Γε. The transmission
problem (1.1) can be reduced in several different ways to a system of uniquely solvable boundary integral
equations. We present two different approaches. The indirect approach is based on the layer ansatz

uεext = ρDeΓψ − SeΓϕ , in Ωext , (A.1)

uεint =
(
DiΓψ − SiΓϕ

)
+
(
DiΓεξε + iηSiΓεξε

)
, in Ωεint , (A.2)

where η is a given positive constant and ξε ∈ H
1
2 (Γε). Using the transmission conditions on Γ and the

boundary condition on Γε, the thin-layer transmission problem can be reduced to a uniquely solvable system
of boundary integral equations of unknowns ϕ, ψ and ξε. For any distribution ϕ ∈ H−

1
2 (Γ), the potential
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Figure 5: Numerical convergence, when ε→ 0, of the approximate far-field vε∞,[N ] to u
ε
∞ and of the approximate shape

derivatives wε∞,[N ] or v̇
ε
∞,[N ] to u̇

ε
∞ in the Dirichlet (left) and Neumann (right) cases.

SaΓϕ is analytical in any subdomain of R3\Γ and is continuous accross Γ. We have

(SaΓϕ)|Γ = SaΓϕ and lim
s→0

n(x) · (∇SaΓϕ)(x± sn(x)) =
(
∓ 1

2
I +D′aΓ

)
ϕ(x) ,
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where I is the identity operator and the involved boundary integral operators are defined for x ∈ Γ by

SaΓϕ(x) =

∫
Γ

G(κa,x− y)ϕ(y) dσ(y),

D′aΓ ϕ(x) =

∫
Γ

∂xnG(κa,x− y)ϕ(y) dσ(y) .

For any distribution ψ ∈ H
1
2 (Γ), the potential DaΓϕ is analytical in any subdomain of R3\Γ and is discon-

tinuous accross Γ. We have

lim
s→0

(DaΓψ)(x± sn(x)) =
(
± 1

2
I +Da

Γ

)
ψ(x) and ∂nDaΓψ = Na

Γψ ,

where the involved boundary integral operators are defined for x ∈ Γ by

Da
Γψ(x) =

∫
Γ

∂ynG(κa,x− y)ψ(y) dσ(y),

Na
Γψ(x) =

∫
Γ

∂xn∂
y
nG(κa,x− y)ψ(y) dσ(y).

The operator SaΓ is bounded from H−
1
2 (Γ) to H

1
2 (Γ) and compact from H−

1
2 (Γ) to itself. The operators

Da
Γ : H

1
2 (Γ) → H

1
2 (Γ) and D′aΓ : H−

1
2 (Γ) → H−

1
2 (Γ) are compact and the operator Na

Γ : H
1
2 (Γ) →

H−
1
2 (Γ) is bounded and has a hypersingular kernel. Using these results, we obtain the following system of

second kind Fredholm boundary integral equations when a Dirichlet boundary condition is fulfilled on Γε


(1+ρ)
2

I 0 0

0
(1+ρ)

2
I 0

0 0 1
2
I

+


ρDeΓ −D

i
Γ SiΓ − S

e
Γ −

(
(DiΓε )|Γ + iη(SiΓε )|Γ

)
ρ(Ne

Γ −N
i
Γ) ρD′iΓ −D

′e
Γ −ρ

(
(∂nDiΓε )|Γ + iη(∂nSiΓε )|Γ

)
(DiΓ)|Γε −(SiΓ)|Γε DiΓε + iηSiΓε



ψϕ
ξε

 =

−fext−gext
−fεint

 .

The associated integral equation operator is invertible from H
1
2 (Γ) × H−

1
2 (Γ) × H

1
2 (Γε) to itself. When

a Neumann boundary condition is fulfilled on Γε, we obtain the following system of boundary integral
equations
 (1+ρ)

2
I 0 0

0
(1+ρ)

2
I 0

0 0 N i
Γε

+


ρDeΓ −D

i
Γ SiΓ − S

e
Γ −

(
(DiΓε )|Γ + iη(SiΓε )|Γ

)
ρ(Ne −Ni) ρD′iΓ −D

′e
Γ −ρ

(
(∂nDiΓε )|Γ + iη(∂nSiΓε )|Γ

)
(∂nεDiΓ)|Γε −(∂nεSiΓ)|Γε iηD′iΓε −

iη
2
I



ψϕ
ξε

 =

−fext−gext
−gεint

 .

Using regularization technique for the third equation, we can prove that the associated integral equation
operator is invertible from H

1
2 (Γ)×H−

1
2 (Γ)×H

1
2 (Γε) to H

1
2 (Γ)×H−

1
2 (Γ)×H−

1
2 (Γε). The farfield pattern

associated to the exterior field is then given by

uε∞ = ρD∞Γ ψ − S∞Γ ϕ , on S2 , (A.3)

with
D∞Γ ψ(x̂) = − iκe

4π

∫
Γ

(
x̂ · n(y)

)
e−iκex̂·yψ(y) ds(y) ,

S∞Γ ϕ(x̂) =
1

4π

∫
Γ

e−iκex̂·yϕ(y) ds(y).

The direct approached is used when fext and gext are the boundary data of the time-harmonic incident
plane wave uinc and fεint = 0 = gεint. Then we have the following integral representation

uεext = DeΓ(uεext + uinc)− SeΓ∂n(uεext + uinc) , in Ωext , (A.4)

uεint =
(
−DiΓ(uεext + uinc) + ρSiΓ∂n(uεext + uinc)

)
+
(
DiΓεuεint − SiΓε∂nεuεint

)
, in Ωεint , (A.5)

The transmission conditions and the Dirichlet condition uεint = 0 yield


(1+ρ)
2

I 0 0

0
(1+ρ)

2
I 0

0 0 1
2
I

+


ρDiΓ −D

e
Γ SeΓ − S

i
Γ −ρ(SiΓε )|Γ

ρ(N i
Γ −N

e
Γ) ρD′eΓ −D

′i
Γ −ρ(∂nSiΓε )|Γ

−
(
(DiΓ)|Γε + iη∂nε (DiΓ)|Γε

)
1
ρ

(
(DiΓ)|Γε + iη∂nε (DiΓ)|Γε

)
D′iΓε + iηSiΓε



 (uεext + uinc)
∂n(uεext + uinc)

uεint

 =

 uinc

ρ∂nuinc

0

 .
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The transmission conditions and the Neumann condition ∂nuεint = 0 yield
 (1+ρ)

2
I 0 0

0
(1+ρ)

2
I 0

0 0 N i
Γε

+


ρDiΓ −D

e
Γ SeΓ − S

i
Γ ρ(DiΓε )|Γ

ρ(Ni −Ne) ρD′eΓ −D
′i
Γ ρ(∂nDiΓε )|Γ

−
(
(DiΓ)|Γε + iη∂nε (DiΓ)|Γε

)
1
ρ

(
(DiΓ)|Γε + iη∂nε (DiΓ)|Γε

)
iηDiΓε −

iη
2
I



 (uεext + uinc)
∂n(uεext + uinc)

∂nεuεint

 =

 uinc

ρ∂nuinc

0

 .

The farfield pattern associated to the exterior field is then given by

uε∞ = D∞Γ (uεext + uinc)− S∞Γ ∂n(uεext + uinc) , on S2 , (A.6)

The direct method is used to compute the solution to the forward problem while the indirect one is required
to compute the shape derivatives of the solution. The direct method has the advantage to provide the
boundary data which are needed to compute the boundary data of the shape derivatives (see Theorem 4.1).

The exterior problems (3.1) can be solved, for N = 1, 2, 3, using boundary integral equation methods.
Here again we consider two approaches. The indirect one is based on the layer ansatz

vε[N ] = SeΓϕ in Ωext

and can be used for solving the exterior problems (3.1) when the boundary condition is written in the form
C
(
ε, ∂n(vε[N ]), (v

ε
[N ])

)
= F . The exterior problem can be reduced to the following boundary integral equation

for the unknown ϕ
C
(
ε,− 1

2
I +D′eΓ , S

e
Γ

)
ϕ = −C

(
ε, ∂nu

inc, uinc
)
.

The farfield pattern associated to the exterior field is then given by vε∞,[N ] = S∞Γ ϕ.
The direct one is based on the integral representation formula of the exterior wave

vε[N ] = DeΓ(vε[N ] + uinc)− SeΓ∂n(vε[N ] + uinc) , in Ωext , (A.7)

In the case of a Dirichlet boundary condition, the GIBCs given in Theorem 3.1 yield the boundary integral
equation [(

1
2
I−De

Γ

)(
−Bε,N

)
− SeΓ

]
∂n(vε[N ] + uinc) = uinc.

We obtain the other boundary data by computing (vε[N ] + uinc) = −Bε,N∂n(vε[N ] + uinc). In the case of a
Neumann boundary condition, the GIBCs given in Theorem 3.1 yield the boundary integral equation[(

1
2
I−De

Γ

)
− SeΓ

(
−Bε,N

)]
(vε[N ] + uinc) = uinc.

We obtain the other boundary data by computing ∂n(vε[N ] +u
inc) = −Bε,N (vε[N ] +u

inc). The farfield pattern
associated to the exterior field is then given by (A.6).

Here again, the direct method is used to compute the solution to the forward problem while the indirect
one is required to compute the shape derivatives of the solution. The direct method has the advantage
to provide the boundary data which are needed to compute the boundary data of the shape derivatives.
The integral formulation may suffer from irregular frequencies, however we consider wavenumbers out of the
discrete set of eigenvalues.
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