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ISorbonne Universités, Université de technologie de Compiégne, LMAC EA2222 Laboratoire de Mathématiques
Appliquées de Compiégne - CS 60 319 - 60 203 Compiégne cedex, France

Abstract

This paper is concerned with the shape sensitivity analysis of the solution to the Helmholtz transmission
problem for three dimensional sound-soft or sound-hard obstacles coated by a thin layer. This problem can
be asymptotically approached by exterior problems with an improved condition on the exterior boundary of
the coated obstacle, called Generalised Impedance Boundary Condition (GIBC). Using a series expansion
of the Laplacian operator in the neighborhood of the exterior boundary, we retrieve the first order GIBCs
characterizing the presence of an interior thin layer with either a constant or a variable thickness. The
first shape derivative of the solution to the original Helmholtz transmission problem solves a new thin layer
transmission problem with non vanishing jumps across the exterior and the interior boundary of the thin
layer. In the special case of thin layers with a constant thickness, we show that we can interchange the first
order differentiation with respect to the shape of the exterior boundary and the asymptotic approximation
of the solution. Numerical experiments are presented to highlight the various theoretical results.

1 Introduction

This paper is devoted to the shape sensitivity analysis of the solution to time-harmonic acoustic scattering
problems in the special case where the scattering object is a three-dimensional sound-soft or a sound-hard
obstacle coated by a thin layer whose width ¢ tends to zero. It is well known that the use of boundary
and finite elements methods for solving this scattering problems fail since some numerical instabilities arise.
Indeed, we face two kind of scalings : a big scale for the exterior of the obstacle and a very small one
which corresponds to the thin layer. To avoid the phenomenon, we are led to approximate the original
model by a new exterior boundary value problem with high order boundary conditions in terms of surface
derivatives, called generalized impedance boundary conditions (GIBC). The exact solution is given through
an asymptotic expansion in terms of the thickness parameter € where each coefficient function is the solution
of a boundary value problem set on a geometry independent on e. In practice, we are only interested by a
finite number of terms in the asymptotic expansion. The GIBC satisfied by the approximate solution leads
to an error estimate up to O(e¥ 1), where N is the order of truncation in the asymptotic expansion of the
exact solution. These conditions have been first derived by Bendali and Lemrabet in [4] in the case of thin
layer with a constant thickness and more recently they were generalised to the 2D case of thin layer with a
variable thickness in [3].

The work finds its motivation in the recent study of inverse scattering problems (see |7 8 [9] [T1]) or shape
optimization problems (see [I5]). The authors take the approximation of order 1 of the original problem
and present a theoretical analysis based on the shape derivative of the approximate solution. Our natural
question is the following : what happens if we compute first the shape derivative of the original problem
(with the coated context) and then take the corresponding GIBC of order 1. The purpose of the paper is to
give here a general result about the norm of the difference of the shape derivatives for an approximation of
order N. We show that the error is up to O(e™ ).

Let consider a simply connected bounded domain Q in R*, with a closed orientable boundary T, as
smooth as we need, representing a sound-soft or a sound-hard scatterrer Q° coated by a thin layer denoted
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Q5. Let € > 0 and h be a positive smooth function defined on I". The thin layer with variable thickness
surrounding the acoustic object is defined by:

Qipe ={z +dh(x)n(z) |z €T and —e<J <0}.

Qezt n

We set I'® = 90° so that we have Q = Qf,, UT'* UQ°. We denote by n and n. the outward unit normal
vectors to I' and I'®, respectively, and by Qc.t = ]RS\Q the unbounded exterior domain. Throughout the
paper we denote by H'(Q5,.;), H,.(Qext) and H*(T') the standard (local in the case of the exterior domain)
complex valued, Hilbertian Sobolev space of order t € R defined on Q5,;, Qeczt, I' and I'* respectively (with
the convention H? = L2.) The exterior wavenumber ke, the interior wavenumber x; and the density ratio
p are given positive constants. We are concerned with the following transmission problem : Given any
densities feqt € H%(F) and geqt € Hfé(lj), find the solution (uS,s, usy) € H (Q5,) X Hpo(Qext) satisfying

5 2 e _ . 5

Aufpy + Kiuine = 0 in Qfy,
€ 2, s

Auezt + Kelegt = 0 m Qezt 1.1
£ € _ 1—\ ( N )

Uint — Uext = feact on
€ €
POnUny — Onlicey = Gewt onl,

and either a Dirichlet boundary condition on I'
Uint = fint 5 (1'2)
or a Neumann boundary condition on I'*
On, Ufnt =MNg - (Vufm)uﬂe = gfnt . (1~3)
To ensure the uniqueness of the solution to either the problem - or —, the scattered field
Ugy¢ 18 assumed to solve the Sommerfield radiation condition |w|li>r51-oo || |Onu(z) — iku(z)| = 0 uniformly in

all directions x/|x|. Following the proof of Theorem 2.1 in [25], one can prove that the thin-layer transmission
problem has at most one solution. Existence of a solution can be proved using boundary integral equation
methods [25] [34]. More details can be found in the Appendix. The radiation condition implies that the

s (@) + 0 (), lal = o,

|z

eu‘;\m\

scattered field wu.r: has an asymptotic behavior of the form uf,(x) = ]

uniformly in all directions & = % The far-field pattern uS, is a scalar function defined on the unit sphere
S? of R? and is always analytic.

The scattering problem of time-harmonic waves by the coated obstacle €2 leads to special cases of the above
transmission problems where the given densities fez: and ges+ are the boundary data of an incident plane
wave u'"(x) = ered® g ¢ S, The total displacement field us,, + u'™ is then given by the superposition
of the incident field "¢, which is an entire solution of the Helmholtz equation, and the scattered field ug,.,
which solves the Helmholtz equation in ., and the Sommerfield radiation condition. In this cases, we
assume f5,; = 0 and g5,; = 0. In Section[3] for small positive real values of &, we approach the solution ug,;
of by the solution va] of some exterior boundary value problems of the form

Aviyy + mgva] _ = 0 in Qe
C(e,0n(viy) +u'), (vyy +u™)) = 0 onT (1.4)
lim || |Onvfy) (@) — irviy (@) = 0,

|&|—+o0



where the linear condition on the boundary C(&, On (V[ +u'me), (vin) +u'")) = 0is the so-called Generalised
Impedance Boundary Condition (GIBC). To construct the GIBCs, we extend to R3 the approach developed
in [3] to model the 2D case of thin layers with variable thickness. The technique originates from the
PhD thesis [33] and is based on an asymptotic expansion of the Helmholtz equation in 5,, in terms of
e and surface derivatives on I' presented in Section 2] We introduce a rapid variable S and thanks to the
transformation of the thin layer into a band of thickness h we get us,; as a solution to a Sturm-Liouville type
problem of variable S . Once the differential equation is solved, then thanks to boundary conditions and
jump condition, we get the corresponding boundary condition corresponding to the exterior domain. The
existence and uniqueness of a solution to these problems can be found in [I2] for N = 1,2. This approach
leads first to estimate |[ug,: — vy HH%( = 0(eM*) and we deduce ||us,, — Vil Y (QepinBR) = O(eN+h)
6N+1)

r)
for every ball Br of radius R and ||us, — v5, (wllz2(s2) = O(
the approximate solution 'U[SN].

Then, assuming the thin layer having a constant thickness, we analyze the dependence of the solution, or
equivalently its far-field pattern, to the transmission problem with respect to the shape of the exterior
boundary I'. The first shape derivative ug,; solve the transmission problem with non vanishing jumps
accross the exterior and the interior boundaries. On one hand, the shape derivative 4, is approached in
Section [4| by the solution wfy; of some exterior boundary value problems of the form

where v, [ is the far-field pattern of

Awiy -&;ng[izv] =0 - in Qeat
C(s,@nw[m, w[N]) = Fy onl
lim |a| [Onwiy () — ikwiy (x)] = 0,

|| —+oo

where the right-hand side F[ENl] can be expressed in terms of the boundary data of the exterior total field
VNt u'™. In this case we naturally obtain ||u5, — wio L2y = O(eN 1) where Weo (v 18 the far-field
pattern of the approximate derivative wa]. On the other hand, we provide in Section |5 the characterisation

of the first shape derivative vy, of the solution v{y; to the exterior problem (1.4} of the form

Adfyy + K20y =0 in Qeze
C’(s7 3n1')[6N], @EN]) = F[SNQ] onT
lim |z |8n'[)[5N](:c) — mi/fN](azﬂ = 0,

|| —+oo

where the right-hand side F[ENQ] can be expressed in terms of the boundary data of the exterior total field

c

va] + uine,
0w —wa]HH%(F) = 0(eM*) and [[05, (v — Wi, nll22s2) = Ofe

of the derivative ¥y;. The various theoretical results are illustrated by some numerical experiments in
Section m The transmission problem and the exterior boundary value problems are solved using boundary
integral equation methods [I3] 34] (see the Appendix) and the high order spectral method [18]. Finally, we
draw concluding remarks and we discuss possible research lines in Section []

In Section |6] we prove for N = 0,1,2 that the two approaches are equivalent, which means

N+1) where V5o, 18 the far-field pattern

2 Elementary differential geometry and asymptotic expansions

In this section, we derive the asymptotic expansion of the Laplacian operator in the neighborhood of I" using
the high-order material derivatives of some surface differential operators and Taylor-Young expansions. We
use the surface differential operators: The tangential gradient Vr, the surface divergence divr and the scalar
Laplace-Beltrami operator Ar. For their definitions we refer to Nedelec’s book [27] (pp. 68-75). We use the
notations of [27] and quote some usefull results from [27] (pp. 67-78) and [14].

Since I' is a smooth closed orientable boundary, there exists a tubular neighbourhood fso of I' in which
any point y admits the unique expansion

y=x+sn(x), withz €', and s €] — so; s0[ with so > 0.

For any s € | — so; so[, we set I's := {y = @ + sn(x) | ¢ € I'}. We denote Vr, and divr, the tangential
gradient and the surface divergence on I, respectively, and we denote by ns the outward unit normal vector
to I's. For any scalar function v and vector function w defined in T, the following expansions hold on T:

Vu=Vru+ nsdsu,



and

divw = divr, w + (n, - Osw) .
We denote by 75 the transformation that maps the restriction ur, of u to I's to the function defined on
I by (teun,)(x) = ujr, (x + sn(x)). Setting (Tsur,)(x) = @(x,s), we define an isomorphism between I,
and FX] — So; so[. The outward unit normal vector ns to the boundary I's satisfies n, = 7';11'1,. Using this
change of coordinate system we can write for y € I5:

(Vu)(y) = (1sVu)(x) = 7V, 75 'z, s) + ndst(x, s) ,
and
(divw)(y) = 7 (divw)(z) = 75 divr, 75 '@ (x, s) + n - dsi(x, s) .
The material derivatives of the surface differential operators has been analysed in [I4] Section 5] and we
obtain the following result.
Proposition 2.1. The functions defined by s €] — so;so[— 7.V, 75 ' € Z(¢"(),¢°(,R?)) and s €
1= s0; 80[— Ts divp, 75t € f(%”l (I, R?),¢° (F)) are infinitely differentiable and we have for any uo € €*(T)
and wq € %1(F,R3):
Os (TSVDSTS_l)uO = 7 Rs V75 "uo (2.1)
and
0s (1 divr, T{l)wo = —7ydivr, Re7s 'wo + 75V, Hs - wo — Trace[rsR2](n - wo) (2.2)
where Rs = Vr,n and Hs = Trace[Rs].
The first order material derivatives corresponds to the commutators given in [27, Egs. (2.5.228) and
(2.5.229)]. To obtain the high order derivatives, it suffices to use the chain rule since we have [27, Eq

(2.5.154) and (2.5.155)]
9s(7sRs) = —7-R2 and 8.(1sHs) = —Trace[rsR2] .

Further, we will use the gaussian curvature denoted by Gs which satisfies

Trace[R2] + 2Gs = H: . (2.3)
and if we set II3 = I3 — n ® n, then the Cayley Hamilton’s theorem implies

R2—HsRs +Gsll3 =0 . (2.4)

Using the Taylor-Young formula in the neighbourhood of s = 0 and (2.1), we can expand the gradient
operator in the coordinate system (x,s) € I'x | — so; so[ and we obtain for any N € N

(Vu)(x + sn(x)) = n(x)dsu(z,s)+ Vra(z,s)
AR (2.5)
+37 5" OV, 7 jemoti(, 5) + O™ ) ‘
rardiR?
with %aﬁ(uvrggl)‘szo = (=1)*RVr. In the same way, we write
(divw)(z 4+ sn(x)) = n(x)-d:w(x,s)+ divr w(x,s)
(2.6)

N

1 . - _

+ 8 0k (rs dive, 7)o@ (@, 5) + O™
=1

with
ds(1s divr, 75 ) jsmo® = — divy R + VrH - @ — Trace[R*](n - @)
= — (divr(R — H)Izw + H divr Hsw + (H* — 2G)(n - w)) ,
where II3 = I3 — n ® n and using the chain rules we obtain the following high order terms

1

gaf (s divr, 75 )jsmo® = Hdive (R — H)[zw + (H* — G) divr [lzw
+ (H? = 3HG)(n - @) ,

and

%af(fs dive, 77Y) 0@ = — [(H? — G) dive(R — H)TTs@ + (H* — 26H) divr Tya]

— Trace[R'](n - w).



The formula (2.5) is in accordance with the formula (2.5.182) in [27]
T Vr.7s fa(x, s) = (1+ sR(x)) "' Vra(z, s) .

Indeed, the Neumann series of (I+ sR(x))”"' yields the infinite series given in (2.5). We deduce that the
gradient operator is equal to its Taylor series in the tubular f‘so. Since we have divw = Trace[Vw], we also
deduce that the divergence operator is equal to its Taylor series in ID‘SO. However, the high-order terms are
easier to obtain by computing the material derivatives than taking the trace of [RZpr] for any ¢ € N.

Assuming Vz € T', 0 < eh(x) < so, then we use the change of variable s = —&S with S € [0; h(x)]. We
set u(x, s) = u(x, —eS) = U(x, S) and we have

D.ii(x, s) = —é&sU(m, 9).

Combining (2.5) and (2.6]), we obtain the asymptotic expansion of the Laplacian A = divV

N
1
A= (ag +> A+ O(EN“)) ,

£=1

where
Ay = —Hds , Aa = Ar — S(H? — 2G)0s ,

As = S(divr(2R — H)Vr + HAr) — S*(H® — 3HG)s ,
Ay = S*(divr(2R? — HR)Vr + Hdivr (2R — H)Vr + (H* — G)Ar) — S*Trace[R"]0s .

The following proposition gives an expression of the outward unit normal vector to the interior boundary
I'* ={y =« — eh(x)n(x) | ¢ € I'} for any function h.

Proposition 2.2. The outward unit normal vector to I'° is given by

(1 —ehH + e*h*G)n + (I3 + eh(R — H))Vrh
V(U= ehH + e2h2G)? + €2[[(Ts + eh(R — H))Vrh|?

Nne =

Proof. Assume that the tangent plane to I' at the point @ is generated by the unit vectors e;(x) and ez (x)
such that the outward unit normal vector to I" is defined by n = e1 X e2. The cotangent vectors are given
by e! = ez xn and e =n x e;. We have e; - e’ = (5{ where 5? is the kronecker symbol. The tangent plane
to I'° at the point y = & — eh(x)n(x) is generated by the vectors ei(x,e) = D[I — eh(x)n(x)]lei(x) and
D[I — eh(x)n(x)]ez(x) and the outward unit normal vector to I'* is given by

_ ei(m,e) x ex(w,€)
lei(®,e) x ea(w, )|

ne(y)

It remains to compute Nj(x) = e1(x,€) x ez(x,e). We have
N;EL e X ey — E([D(hn)]el X ez + e; X [D(hn)}eg) + 82([D(h’n)}61 X [D(hn)]CQ)
=n—ch(Re1 Xxex+e1 xRez) —e((Vrh-e1)n x e2 + (Vrh-e2)er X n)

+e°h*Rer x Rez + &°h ((Vrh - e1)n x Rea + (Vrh-e2)Rer x n) .

To conclude we use the following equalities
Rei xex+er xRea=(H—R)e1 xea=(H—R)n="Hn,
(Vrh . el)n X ez + (Vrh . 62)61 Xn = —(Vrh . 61)61 — (Vrh . 62)62 = —-Vrh,
Re1 x Rez = cof[R](e1 X e2) =Gn ,
nxRes=nxRes+Rnxe =—(H-R)e",
Reixn=Re xn+e xRn=—(H-R)e>.



3 Construction of the GIBCs

The construction of the GIBC is based on the assumption that the interior and exterior fields admits the
following expansion when ¢ tends zero :

ufnt(y) = znt Z‘g Uznt in I' x [07 h(iB)] )

£>0

uizt(y) = anuﬁmt (y) in Qeﬁft'

£>0
The problem (1.1) can be rewritten as follows:
e (Auﬁzt + ngﬁzt) = 0 in Qext
£>0
Z Z65‘Umt = - Z E[Alent - Z EZ(AQ + H?hQ )Ufnt2
£>0 i>1 £>2
- k; gk "N UL in T x (0,h) 51)
£§0 e" U, (x,0) = u"(x) + zgoa ubgy () onI' x {0}
l;o EeasUfnt(HLO) = _% (68" ch( ) + [;1 Z8”'11/“ezt ( )> on I[' X {O} ’

and the interior field satisfies either a Dirichlet boundary condition on I x {h}

Zg Uznt _O

£>0

or a Neumann boundary condition on I" x {h} that can be rewritten using Proposition as follows

Z 5685Umt =hH Z EeasUznt

£>0 £>1
—h*GY 05U+ > ' Vrh- ViU
£>2 £>2
+Y RPN Yk (2R - H)RMTUVRULE
k>3 L>k

We identify the right and left hand sides of each equations in (3.1)) according to the power £ > 0 of € and we
solve iteratively the new systems - that can be split into two systems of unknowns U%,, and u’,, respectively
- to compute first U, and then recover the boundary condition satisfied by u’,;. From these results we

N
deduce the GIBC satisfied by ’U[EN], which is an approximation of » eful,, up to O(€N+1). The final results
(=0
are stated in the following two propositions. We obtain similar results than in the 2D case [3].

Proposition 3.1. The GIBCs modeling sound-soft obstacles coated by thin layers with a variable thickness
are given for N =0,1,2,3 by

('U‘[EII\}] + uinC) Bsh Na (U[N + uin(;) =0

where
Bsh,O -0 , Bah,l — —%(Eh)l , Bah,2 _ —%(Eh) (1 + @H) I and
B = —Lep <I+ %HI (Eh) Ar + [ Ar + %(m +H - 0) ] sh) :

Proof. Collecting the equations when ¢ = 0, we obtain the two systems

03UY, = 0 inT x (0,h(x)) A s 0 0
— Uegt T RKellegt = 0 in Qeat
asU%, = 0 onT x{0} and { WO 4wt — U0, onT.
U, = 0 onT x{h(x)}



The first equation implies that UY,,(x, S) is a polynomial function of degre 1 in the variable S. The second
equation implies that the leading coefficient is 0 and the third equation gives the constant term. We conclude

Uznt( 7S) =0

In this case we approach ug,; by the function vjy; = u§™ and then u,, — Vo = O(g). When ¢ = 1, we obtain
the two systems

oiul,, = -A\UY, in I x (0, h(x)) . - _
9sUiny = —10n (udp +u™™) onT x {0} and { Aueztu-i-:eum z U(})m :)r; g_l%‘eict
Ui, = 0 on ' x {h(zx)}
We conclude with similar arguments that
Ul 8) = = (8 = h(@)) 20 (ulr +u™) .
We compute u'™¢ + Z etuly,, = %ehan (ugm +umc) on I'. In this case we approach the solution u{,,

=0
by the function vf that satisfies the Helmholtz equation and the boundary condition (u‘"¢ + vhy) =

eh0n (u'™ +vfy)) and we get ug,y — vfy = O(®). When £ = 2, we obtain the two systems

aSUznt = _Alelnt (A2 + Ky )Uznt in I" x (Oa h(m))
: 1 1 Aul,, —|— K2uZy = 0 in Qext
0sUhy = —L0nuls on T x {0} and { 2., = U2, onl.
Uznt =0 on I' x {h(:c)} .

We compute
8§U22nt = _H%an (USzt + uinc) )

and we conclude

2 2 _
U8 = = (557 ) om0 (e ™) = (5 = hw)p ™ O

. 1
We compute u!"¢ + Z eul,, = (ah) ’H On (uezt + umc) + sh On [ u™ + Z € uezt> on I'. In this case
we approach the solutlon ut,; by the function U[Q] that satisfies the Helmholtz equatlon and the boundary
condition u'™¢ + vy = (eh) (1 + 77—[) ;Bn (u' + U[2]) and we get ucy; — V) = O(e®). When £ = 3, we

obtain the two systems

8SUznt = _Aleznt (A2 + K“z)Uznt inI" x (Oa h’(m)) 3 2 3
: _ 14 .2 AuZyy + Kiugyy = 0 in Qeqt
osU3, = 5 Ontcy on I x {0} and { ul, — U, onTl.
Ui, =0 onI' x {h(x)}

We compute
aSUznt - 5(27_[2 - 2g)%6n (ugzt + ’(L 4) H a’nuezt + (AF + F‘?z)(S h( )) 8 (ugzt + uinc) s

and we conclude

Ulu(-,8) =— (753 _6h3(x)> [(27—[2 —2G)p '0n (ugzt + umc) —(Ar +&3)p ' On (ngt + ui"c)]
- (752 _2h2(5”)) [’Hp*lanu;mlp 1 (Ar + &)hp 0n (ui?wt + u")]

(S — h(2)) p Oy
) 3 )
We compute u'™® + 3 eful,, = (eh)? [3(eh)(k] + H* — G)I + 3(sh)Ar — 2 Arp(eh)] 2 0n (udpy +u'™) +
=0
) 1 ) 2
%(Eh)Q’Hlan (umc + Z Eeuﬁm> + Ehlﬁn (umc + > 6€u£zt) on I'. In this case we approach the solution

=0 =0
cxt DY the function v ) that satisfies the Helmholtz equation and the boundary condition u!™¢ + 1)[63] =

ug
[sh (1 + Py 2 g g)) I+ & Ar — %Ar(eh)} $0n (u' + vig)) and we get ug,, —vfy =
O



Proposition 3.2. The GIBCs modeling sound-hard obstacles coated by thin layers with a variable thikness
are given for N =0,1,2 by _ _
an(U[E]}\;] + uan) + BEh,N(/U[E]}\;] 4 uan) =0
where
B =0, B =) [divr(eh)Vr + (eh)k I}

B"? = p[divr(eh) (1 + (h)(R — AH))Vr + (eh) (1 — l(ah)?{)mzl} ,
(6h)

2
(2R? — HR) )vp + sh(l (eh)® Q)mfl

B3 = divr sh(l + @(272 —H) + 3

(Eh)

[Ar + K (e ) [Ar + £71] [ dive (eh) Vi + &7 (eh)]]

+ ivp(sh) -Vr [din(é‘h) Vr + K?(Eh)QI] .

Proof. The rank £ = 0 allows us to compute UY,, only. We obtain the system

aS 1nt = 0 in I' x (O7h(m))
osUl, = 0 on I’ x {h(z)}
Uznt = ( ne =+ uezt) on I' x {0} .

The first equation implies that U2, (x, S) is a polynomial function of degre 1 in the variable S. The second
equation implies that the leading coefficient is 0 and the third equation gives the constant term. We conclude
that .

Uin(+18) = (u™ + ugp)-

When ¢ = 1, we obtain the two systems

02U, = AU, =0 inT x (0,h(x)) A . 0
1 _ 0 _ uezt + K’ elext = 0 in ext
6SUznt - HaSUznt =0 onI'x {h({l))} and { an( inc + uczt) — _pasUilnt onT.
U, = Upgt on I’ x {0} .

We conclude with similar arguments that
1 1
Uint('v S) = Uegt-

We compute 9y, (1™ + uly,) = 0 on I'. In this case we approach uS,, by the function Vo) = us® and then
On(Uce: — vfg)) = O(¢). When £ = 2, we obtain the two systems

93U;, = —-MUL, — (A2 + ’%)Umt in I x (0, h(z))
OsUZ, = Vrh- V(@) +ul(z)) onT x {h(x)} and { et TRl = 0 in feat
S it S Oty = —pdsU;,; onl.
U2, = ul, on I’ x {0} .
We compute
8SUznt = 7(AF + ’4’12)( e + ue‘Lt)
and we conclude
52 inc inc
Uh(8) = = (5 = 5h(e) ) (Be + KW 4 ) + STk Vo™ 4 uli) + 0

We compute On, ( ine 4 Z € uezt) = —p (divr(eh)Vr + (gh)r7) (u™“4ul,;) on T. In this case we approach

the solution uf.; by the functlon v[l] that satisfies the Helmholtz equation and the boundary condition
On (U™ + V) = —p (divr(eh)Vr + (eh)k]) (u'™* +v[1]) and we get On(uge: — vfyy) = O(e ). When £ = 3,
we obtain the two systems

agUgnt = _AlU’L%‘Lt (A2 + Ki )Ulnt A3Ui0nt in I" X (07 h’(w))
0sUS, = hHOsUL, — h*GOsU},, + Vrh-VrUL,
+hVrh - (2R — H)VrUD, on T x {h(x)}
U’Lnt = ngt on I' X {0} .



and ) 5 o
Augy + KoUusy = 0 in Qegt
2 3
OnUsyt = —posU;,;, onl.

We compute
02U (+,8) = — (S — h(z))H(Ar + £7) (W™ + udyy) + HVrh - Ve (u'™ 4 ulyy)
— (Ar 4 &) ulyyr — S(dive (2R — H)Vr + HAL) (0™ + ul,,)
and
05U+, h(x)) = WHVrh - Vr(u™ + ugy) + Vrh - Vitegep + AVrh - (2R — H) Ve (™ + ugy,) -
We conclude

Si _ Sh?(x)
6 2

Uﬁlt( 8) =~ < > [H(AF + "ff)( me 4 uezt) (diVF(zR —H)Vr + HAF)(UMC + ngt)]

SQ inc inc
+ <— - Sh(m)) [PH(Ar + K2) (W™ + o) + HI TR Vo™ +ul) = (Ar + K7) b

+ S [th . Vpuizt“« + hVrh - QRVr(umc + ugzt)} + Ugm .

. 2 .
We compute Oy, (umc + > seuﬁxt> = —1p[divr(eh)*(2R — HI)Vr — (eh)*Hr71] (ulpe + u'™™)

—p (din(Eh)VF + (eh)k3) ( ine 4 Z € uwt) In this case we approach the solution u¢,; by the function

5) that satisfies the Helmholtz equatlon and the boundary condition

On( ine —1—1; ) = ( [Ar + Hfl} — 75 [lep(?’R HI)Vr — HK?I]) (umc + UE]) and we get On (Ui —
’UE]) = O(E )
When ¢ = 4, we obtain the two systems
RUL: = —MUL, — (A2 + Hz)Uz — AU, — A4Uﬁn in I x (0, )
05U}, = hHOsUSL, — h*GOsUL, + Vrh- Vi,
+hVrh - (2R ’H)VrUmt + h*Vrh- (2732 —HR)VrU),, onT x {h}
Uznt = uéxt on I' x {0} .
and
Auext + "i uewt = 0 in Qezt
Onu,, = —posUL, onT.

We obtain

95 Ujni (-, 9)

= = H((5° = b*) = 1(S = WR?) [H(Ar + k)™ + ule) + (dive 2R = H)Vr + HAC) (0™ + ulsy) |
+HL(S = ) [BH(Ar + K2) (™ + uler) + HVrh - Tr(u™ + uler) = (Ar + ) uleep
+(S—h)H [vrh Vrulpp + hVrh - 2RV (u™™ + ugu)] — (8 — h)(Ar + £2)u2s

(8° -~ 1)
6

(SQ*h2) 2 2 inc 0 inc 0
— 2 (A 4 ) [R(Ar 4 kD) (U™ 4 ulk) + Veh Vo™ +ul)]

— (M =20) [(3(5° = b*) = 1(5* = 1)) (Ar + kD) (™ + ulhy) = §(5° = h)Veh - Ve(u"™ + ully)|
— 1(8® = 1*)(divr (2R? — HR)Vr + Hdivr (2R — H)Vr + (H? — G)Ar) (u'™ + uly)
+hH [Vrh - Vrtdesr + hVrh - 2RV (u'™ + uSM)] — h*GVrh - Vr(u'™ + uly)

+ (Ar + £D)(Ar + £ (W™ + udy) — 5(S? = B?) (dive (2R — H) Ve + HA ) gy

+Vrh-Vr [%hQ (Ar + &) ('™ 4+ ulyy) + hVrh - Ve (u'™ 4 uly,) + uizt}
+hVrh- (2R — H)Vruly + h°Vrh - (2R? — HR)Vr (1™ + uly,) .



We compute dnpu,, = —pdsUp,(-,0) and obtain on T
Onule = —p(dive hVr + h&l) uZy — p [dive B2 (R — $H) Ve — $hPHET] ueg
—2divr B*(2R? = HR)Vr (u™™ + ulyy) — 2h3GRT (U™ + uly)

+E[Ar + /2P (@ + uler) = 2 [Ap + wF][dive Ve + 2R + ul)
—£Vrh - Vr[dive A°Vr + 67 (W + uly,) -

We construct the approximate solution vfy in the same way as previously and we get On(uce: — vj3;) =

O(e"). O

4  Construction of GIBCs for the shape derivatives

In the remaining of the paper, we assume that the layer QF,,, has a constant thickness € > 0 which means
Va € T, h(x) = 1. This section is devoted to the shape derivative analysis of the solution to the thin layer
transmission problem. In paragraph [{.1] we give a characterisation of the shape derivative as a solution to a
new transmission problem with non vanishing jumps. In paragraph 2] we construct the GIBC statisfied by
the approximate shape derivative wa] for N =0,1,2.

4.1 Characterization of the shape derivative

From now on, we choose a fixed reference domain € with a closed and orientable boundary I of class €*, with
k as great as we need, and we consider variations generated by transformations of the form @« — x + 0(x) of
point & in the space R3, where 0 is a smooth vector function defined in a neighborhood of I'. The functions
0 are assumed to be sufficiently small elements in an open subset @ of the Banach space €* (T, IR3) in order
that (I+ 0) is a diffecomorphism from I" to I'e := {xe = x + 0(x);x € I'} . By n¢ we denote the outward
unit normal vector to I'g and we set

T :={yo = xo —cnog(xo) | xo €T} .

The transformation 7. ' maps the restriction Or of 8 to I' to the function defined on I'* by (Te_le‘r)(m +
en(z)) = Or(x). We have I'e = (I+ )T but in general I'y # (I+ 7. '0)I'°. Indeed, let y, € T and y € T'°,
then

Yo — ¥ = zo — eno(@e) — (@ — en(2)) = 6(z) — = (no(x + 0(2)) — n(x))

= 0(x) +e[Vro(@)n(z) + O(|10]|%:) -
The following theorem is a direct consequence of the Theorem 4.2 in [24] (see also [11 20} 21]).

Theorem 4.1. Assume that (uf-_ﬁ,uift) is the solution to the transmission problem (L.1)) where feot and
Jewt are the boundary data of u'™°(x) = ered ™ on Ty and fint = 0 = gint on T'g. Then the mappings
0 — u;’g and @ — uift are Fréchet differentiable at @ = 0 and the derivative (U5,q, Ugy) in the direction

0 cs* (T, R®) is the radiating solution to the transmission problem

AuS,, + R3S, = 0 in Q5
Ay, + k2us,, = 0 _ in Qeat i1
PO Uy — Onley = [(p —1)divr(0 - n)Vr + (0 - n)(ps? — lii):l (umc + u;.t) onT (4.1)
Uy — Uye = —(0- 'n,)(% = 1)0n (u"™ + ulyy) on T,

with either a non vanishing Dirichlet boundary condition on T'®
Wny = — (72 1(0 - 1)) Oty
or a non vanishing Neumann boundary condition on I'®
Onelsns = [divrs (7';1(9 -m))Vre + (7';1(0 . ’I’L))H?I] USpt -

Proof. Among all the already existing techniques to prove the Fréchet differentiability of the solution we
can consider the boundary integral equation approach. Using the results detailed in the Appendix and the
material derivative analysis of boundary integral operators presented in [I4} [31] 30] we deduce the Fréchet
differentiability of the solution. It remains to compute the boundary condition satisfied by the solution. The
boundary conditions fullfilled by the derivative on I" are given in Theorem 4.2 in |24]. It remains to compute
the boundary data of the derivative on I'°.
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e In the case of a Dirichlet boundary condition on I'*, we have
uS% (x4 0(x) —eng(x +60(x)) =0, forallez el and forall @ € O .

The material derivative of the normal vector is given in [I4, Lemma 4.3 | by dg{ngo(I+£)}1e=00 = —[Vr]n.
By differentiation with respect to the boundary parametrization, we have

0 =t (x + en(x)) + (0(x) + €[ Vre7s ' 0(2)n(x)) - (Vufm)|Fa (x +en(z))
1(2))Onz Ui (T + en(x))

z)|n(z)) - (Vreuin) (@ + en(z))

1(x))Onzuin, (T + en(x)) ,

— i@+ en(@) + (O(a
+(9( )+€[TEVFETE 10
= Uint (T +en(x)) + (O(x

)
)
(
)
since u§,;(x +en(x)) =0 for all x € T.
e In the case of a Neumann boundary condition on I'*, we have

Ongu uS (@ + 0(x) —eng(x+6(x)) =0, forallzel and forall @ € O .

By differentiation with respect to the boundary parametrization, we have

0 = Op=tiip (@ + en(am)) — [revrsr; HO(@) + e[reVrers 1(J(ar:)]n(a:))] n(@) - (Vi) .. (x +en())

I
+n(x) - {(B(m) + e[ Ve '0(x)|n(x)) - V(Vus,,) e (z + en(m))}
= Ot + enla) — [ ren (0@) + el Veer 0(@)n(@) [n(a) - (Vreu,)

+(0() - n(z))(n(T) - On=Viint)

(@ +en(@))

(@t en(a))

+n(x) - {(B(w) + e[r.Vrer'0(x)|n(x)) - Vre (Vu?nt)|rs (x+ En(w))}

= Oneu,,(z +en(x)) — [TEVFET;1 (0(x) + E[TngsTglo(w)]n(w))} n(x) - (Vreuin,) (@ +en(x))

+(0(x) - n(2))(—r7ufn; — Are Ufm)‘rg (z +en(x))

— (Vitin)| . (@ + en()) - [(8(x) + e[r=Vrer. 0(@)n(z)) - Vren(z)]

e

= Onci(@ + en(@) - [rVeer ! (0(@) - n(@))] - (Vreulur) . (@ + en(a))

Te

+(0(2) - n()(—Kiufn — Areuin)| . (@ +en(z))

e

= Onetiini (@ + en(@)) — w7 (0(x) - n(@))uin (@ + en())

— divre 7210 - 0)7e (Ve tSny) | ( + en(x)).

re

O
Now, we assume uf,;(y) = U'fnt(m,S) = > 6ZUfnt(a:,S) in ' x [0,1] and 4, (y) = Z eeuezt( ) in
£>0
Qezi. If we use the asymptotic expansions of the gradient (2.5) and the divergence (2.6]) we obtaln

(7= divre 72 1)(0 - n) (7. Vrers ') = dive(0 - n)Vr + Y "By,
E>1

with
B = divr(0 - n)(2R — H)Vr + H divr(8 - n)Vr

and

B? = divr(0 - n)(2R? — HR)Vr + Hdivr(8 - n)(2R — H)Vr + (H? — G) divr(0 - n)Vr .
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The transmission problem (4.1)) can be rewritten as follows:

> EZ(AiLﬁm + "égﬁﬁxt) = 0 in Qeat
£>0
Z Eéas int = - Z EEAleentl - Z (A2 + K )Ufnt2
(>0 >1 >2
-3 S A ULk in " x (0,1)
k>3 >k
Z 82Uf’nt = Z 64“612&
>0 >0
—(0- n)(f -1) <8n(u21t +ui"?) + ez>:1 gfanuﬁm> onI' x {0}
E SzasUznt = Z aeanuiubtl
>0 P i1
[(1 — 1) dive (0 n)Vr + (8- n)(wf — 12)] (w™ + ull)
~ (= L) dive(9 - n)Vr + (0 ) (7 - me)] Tt onTx {0},

with either the Dirichlet condition on I' X {1} that can be written
Z ZUfntl( ) = (9 : n) Z EzasUfnt( ] 1)
1 >0
or the Neumann condition on I' x {1} that can be written
ZE 85 znt ’ ZE leF(o n)Vr + (0 n)K/z]Ufntl '7 Z‘E Bt Ufnt2 'a )
>0 1 >2
4.2 Construction of the GIBC for the shape derivative

The following two theorems give the GIBCs satisfied by the function wfyy, for N = 0,1,2, which is an
approximation of 4., up to O(eV ).
Theorem 4.2. The GIBCs associated to the transmission problem characterising the first shape derivative
of the solution in the Dirichlet case can be written for N = 0,1,2 as follows
winy + BE’Nanw[EN] = ST’N(U[EN] +u™) + S;Nan(U[EN] +u'™)
where
S5°=0 and S5°=—(6-n)I,
Sl = ¢ [(1 — 1) divr(0 - n)Vr + (6 - m)(x? — %;@)1} and 85" = —(6 - n) (1 + E%H) I
and

S5% = (1 + LeH) [(1 ~ 1) dive(0 - n)Vr + (0 - m) (k2 — %ni)l] ,

S5 =—(6-n) (1 +elH 4+ L(H - g)) I— [Ar + &1 ((0 - n)T) — 35%(8 - n)[Ar + 4]

p

Proof. When ¢ = 0, we obtain the following equations that can be split into two systems

0iU mf = 0 inT x (0,1)
sy, = onT x {0}
Uy, = (0-n)dsUl, onT x {1}
and
Augzt + ’Vigugzt = 0 . in Qezt
ugzt = U?nt + (9 : n)(% - 1)an(u8zt + u”w) on F .
We deduce

znt (:L' S) (9 ! n)%a" (ugxt + ui”C)
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0

and 42, = —(0-1)9n (uly; +u™) on T'. In this case we approach @S, by the function W) = Ueg

Ugrt — Wip) = O(€). When £ = 1, we obtain the two systems

. and then

85 znt _AlUO =0 inI' x (07 1)
aSU'}nt = _78 uezt
[(1 — ) dive(8 - n)Vr + (8- ) (s — 1k)] (ular +u™) on T x {0}
U;nt = (6-n)osUi,, onI'x {1}.
and
Auixt + ngiwt = 0 n Qezt
uizt = U'}nt +(0- n)(* - 1)8nuext onl,

We compute U}, . (-,1) = —(6 - n)% (Onuter + HOn (Ul + ™)) and we deduce

1
Uznt

(+8) = = (S = D) [20ntlyp + [(1 = D) dive(@ - m)Vr + (0 ) (k7 = 262)] (uler +u"™)]

- (9 : n); (a’nuezt + Ha‘n(’“Szt + u1n0)> .

We have on I"
wly = 20nul, = (0 n) (Onubes + HLOn (0l +u'™))
+ [(1 — 2)dive(8 - n)Vr + (8 - n) (k7 — wg)] (W0 + u™).
and
Z Went 768"%“ = —(mn) (8" ( et 42:05 uezt) + Hlsan(ugzt + umc)>

+e [ Dy dive® m)Ve+ @ m)(sF — 2] (ue + )

In this case we approach ., by the function w[el] which solves the Helmholtz equation and the boundary
condition

w[e1] + Bs,lanw[sl] = —(6-n) ((‘3 (uinc + U[El]) + nga (U[El] + umc))

te[(1- Ddive(@ m)Ve + (8- m)(s? — 26)] (05 ).

and then g, — wf; = O(e*) on T.
When ¢ = 2, we obtain the two systems

03U, = MU}, — (A2+sDHUY inT x (0,1)
95U, = _% Uy
- [(1 ~ 1) divr(6 - n)Vr + (0 - n)(k? — ;Kg)] ul,, onT x {0}
U7,2nt = (0 : n)asU?nt on P X {1} .
and
Augzt + K/gu’izt = 0 in Qezt
uzxt = U12nt (0 ) ’n’)(% - 1)8nu31t on F )

We compute
+ (Ar +K7)(0 - n)%an(ugm +uine)
Ul 1) = = (0 m) [(2H° = 26) 30n(ul +"™) o (v + 2) 20y + )
— (8- n)HL0nuis — (6-n)L0nul,, .
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and we conclude

u2,(-,8) = ) 18num + [( — L) dive(0 - n)Vr + (8 n)(s; — %ni)] (W, + uinC):|
) Ar + £5)(6 - 1) 20 (e +u™™)
+ (S = D[ = 20nuly = [(1= L) dive(0 - n)Vr + (8 m)(s? — 1r2)] ule]
- 5(0 1) [(2H? = 2G) 20 (uly + u™") + (Ar + K1) 10m (ule + u'™)]
- (0 . n)H%Bnui;ct — (9 . n)%@nuzxt .
We have on I'

18 U‘ezt - Ha uezt

ezt

—(6- n)( numH-L—anum)

[ (1= D ave(@ - m)Vr + (0 m)(s? — 5Dl

— 3[Ar + /218 1) 20 (ular + w™) = (0 - m)[Ar + ) 50 (s + u™)
1H [(1 — *)leF(O n)Vr + (0 -n)(k; — %Hg)] (W2, + u'™)

—(0-n)(H* — g) o (ulyy + ™) on T .

_|_

and

ZE Uert 5 8 Z&‘ Uegr — 77H8nueact
. ) 1
0o (on (w3t ) i (w0 z))

£=0

te [(17 1) divr (6 - n)Vr + (6 - n)(k? — 1r? ] < W+Zg um>

— L[Ar + K20 - 1) L0 (uly + u') — 1620 - n)[Ar + K] L0 (uy + u')
+ 1M (1= 1) dive(8 - )V + (0 ) (57 — Li2)] (uley +u'™)
—&%(0-n)(H* — g)%an(ugm +u"™) onT.

In this case we approach ., by the function wa] which solves the Helmholtz equation and the boundary
condition

why + B 0pufy = —(0-m) (8 (u'™ +vy)) + H5e0n (v]y + umc)>
+e [(1 - 7)d1vr(9 n)Vr + (0 - n)(x? — 7f<ap ] vy + u'e)
320 RO ) on e ) — 10 A 4 000y )
1

H[(lff)dlvr(e n)Vr + (60 - n)(k; f;mg)] +u”w
—52(0-17,)(7-[ g)pa (v[2]+u ) onl.

and then g, — wiy = O(e*) on T.
O

Theorem 4.3. The GIBCs associated to the transmission problem characterising the first shape derivative
of the solution in the Neumann case can be written for N = 0,1,2 as follows

8nw[EN] + BS'Nw[eN] = Sf’N(va] +auf ")+ S5 N o (’U[N + umc)

where
520 = [divr(0 - n)Vr + (0 -n)k2l]  and S5° =0,

Syt = [dive(0-n) (1+pe(2R —H)) Vi + (8- n)k’1] — (0-n)peHr;1 and Sy = e(1— p)[Ar + ;1] ((6-n)])
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and
S7? = [divr (8- n) (1 + pe(2R — H) + p*(2R? — HR])) Vr + (8 - n)kZI] — (8 - n)pe(H — eG)k;1
+ £&*[Ar + K{1)[dive(0 - n)Vr + (8 - n)k;1] + Le°[divr (0 - n)Vr + (8- n)sI1|[Ar + &:1]

S5 =e(1—p) [dive (1 +e(R— M) Ve + (1 — LeH)sIT] (8- n)I) .

Proof. We detail the computations of the functions u’_, only. The rank £ = 0 allows us to compute UY ,
only. We obtain the system

UL, = 0 in T x (0,1)
asul, = 0 onI' x {1}
U’En,t = ezt (9 n)(7 - 1)8n(ugzt + uinc) on I' X {0} .

We conclude that _
Ui (+18) = tgyy = (8- 1) (5 = 1)0n (uln +u'™) .
When ¢ = 1, we obtain the two systems

05U, = -MU;, =0 inT x (0,1)
asut, = [divr(G n)Vr + (0 -n)kZUY, onT x {1}
U, = u,—-(0- n)( — 1)Onudz onI'x {0},
and
Aul,, + Koul, = 0 in Qe
{ Onul,, = —pdsUL, + [(1 = p)divr(0 - n)Vr + (0 - n)(kZ — pr})] (ulpe +u™™) onT .
We deduce
Ui+, 8) = =S[dive(6 - n)Vr + (6 - n)w7)(uler +u™™) + gy — (6 1) (5 — 1)Ontucy -
and
Onul_, [divr(0 - n)Vr + (0 - n)k2](ulpe +u™) onT.
When ¢ = 2, we obtain the two systems
RUL, = -MUL, — (A2 +sDUY, in T x (0,1)
0sUZ, = —[divr(0-n)Vr + (0 -n)x3 UL,
—[divr(8 - n)(2R — H)Vr + H divr (0 - n)Vr]U?,, on I’ x {1}
U2, = wi,—(0: n)(f — 1)Onul onI'x {0} .
and
Al + KUz, = 0 in Qeqt
{ Onu2,, = —pdsU., + [(1 - p)dive(0-n)Vr + (8 - n) (k2 — pri)] ulye onl .

We compute
OFUZ,(+,8) = — Hldive (8 - n)Vr + (8 - m)w?] (uly, +u'™)

— (Ar + 1) [ulyy = (0~ 1)} = DO (uls +u™)]

and
85U2nt( ;1) =—[divr(6 - n)Vr + (6 - n)“?]uizt
— [divr (8 - n)(2R — H)Vr + Hdivr (0 - n) V] (ude; + u'™) .
We deduce
52
U8 =— (7 — S) H[divr (0 - n)Vr + (0 - n)ki](udy; + u'™)

- (% - s) (Ar 4 12) (4l — (0 m)(2 = Dl + ™))
— S[dive(6 - n)Vr + (0 - n)k; Jueq

— S[divr(0 - n)(2R — H)Vr + Hdivr(8 - n)Vr] (ulpy + u'™)
+ul, () = (0-n) (5 — Donugy
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and

8nue:ct + p (AF + L% ) ezt\[‘ = [leF(e : n)VF (0 n) e]uezt )
+pldive(6 - m)(2R = H)Vr — (8 n) i)l + ™)
+HAr +K2)(0 - n)(1 = p)On(ulyy +u'™) onl.
When ¢ = 3, we obtain the two systems
85 e:ct _Alent (A2 + K; )Uzlnt( 7S) A3U£Lt in I X (07 1)
aS znt = [leF (9 n)vr + (6 TL) 2]Uznt
—[divr(6 - n)(2R — H)Vr + Hdivr (6 - n)Vr] U,
—divr(0 - n)(2R? — HR)VrUY,,
[’H divr (6 - n)(2R — H)Vr + (H? — G)divr(0 - n)Vr]UY,, onT x {1}
Ul3nt = ue:ct (0 n)(7 1)6nuezt on I' x {0} N
and
Auezt + K’ngzt = 0 in Qezt
Onul,, = —pdsU., + [(1—p)dive(0-n)Vr + (8- n) (k2 — pri)] uZye onl .
We deduce
3 2 _
U (.8) =~ <% S s) H[HIive(8 - n)Vr + (8- m)w?] (1l + ™))
SS S S2 0 inc
. (F 55 +s> H[(Ar 4 12) (e~ (0 - ) — on(uler +u™)) ]
52 27,1
5~ S| H[divr (0 - n)Vr + (0 - n)K; Ut
S? ;
- (7 S) H[divr(6 - n)(2R — H)Vr + Hdivr (0 - n)Vr] (ulpy + u'™)
S3 S inc
g —3)@r+ K7)[dive (0 - n)Vr + (0 - n)k7] (uger + u'™)
52 1 1 1
— (5= 8) @Ar ) [ul(@) = (0 n)(E — Donule
SS S inc
53 —2G)[divr(0 - n)Vr + (0 - n)m](umt + ')
SB S inc
— (% =5 ) (dive@R = H)Vr + HAC) [uly, = (0 7)(2 = 1) (ulee +u"™)]
— Sldive(8 - n)Vr + (8- )] (3(Ar + kD) (uley + ™) + 1l )
— S[divr(0 - n)(2R — H)Vr + Hdivr(0 - n)Vp]uim(x)
— Sdivr(0 - n)(2R?* — HR)Vr(uly, + u'™)
— S[Hdivr(6 - n)(2R — H)Vr + (H* — G) divr (0 - n)Vr] (uly: +u'™)
+ uiu - (0 : 'I’L)(* 1)8”luezt .
and
8"”"@5% +p (AF + KIZ) uixt +p [diVF (R - %H)VF - 77{’{/1] ezt = f onl',
with

f=[divr(0 - n)Vr + (0 - n)k2|ul., + p[dive(0 - n) (2R — H)Vr — (0 - n)HK;ule,
+ (Ar +£7)(0 - n)(1 = p)Onties:(z) + pG(0 - 17 (uear + u'™)
+ pdive(8 - n)(2R* — HR)Vr(ulyy + u'™)
+ [dive(R — $H)Vr — %’chf] (0 -1)(1 — p)On (uly + u'™)
+ 2p(Ar + &) [divr (8 - n) Vi + (0 - )] (udp: + u'™)
+ 3p[dive(6 - n)Vr + (0 - )R] |(Ar + £7) (ugee +u'™) .
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5 Shape derivatives of the approximate solution

This section is devoted to the shape derivative analysis of the approximate solution ’U[SN] of uf. It provides a

second way to compute an approximation of the shape derivative of uf,,. It suffices to determine the exterior
N

boundary value problem characterising the shape derivative o[y of v[y;. Since v[y; =~ (ul,, +ui"0)+[2 efulyy,
=1

it is equivalent to determine, in a first step, the equations satisfied by every derivatives u%,; of the functions
occurring in the sum. In a second step, we obtain the equation satisfied by the desired approximation 7'1[61\7]
for N =0,1,2 as in the proofs of Propositions [3.1] and [3:2] This is realized in the following two theorems.

Theorem 5.1. The boundary conditions characterising the first shape derivative of the approrimate solution
U[EN], for N =0,1,2, to the transmission problem with a Dirichlet condition on the interior boundary can be
written as follows _ _
oing + BY N Ontiny = T (vin) + u'™) + Ts N 0 (vin) +u'™)
where
T5%°=0 and T5°=—(0-n)l,

Tl = —Le[dive(0-n)Vr + (0-n)s2l]  and  T5' = —(0-n) (1 +5%’H)I

and
Ti? = —Le(1+ 3eH) [divr(0 - n)Vr + (8- n)kZ1]

TE2 = —(6-n) (1 +elH 4L (H? - g)) - L*Ar(0 n)l.
Proof. The result for the order N = 0 is well-known |30}, [22] T3]

Ay, + Kk2ul,, = 0 . in Qeqt
ugact = 7(9 : n)aﬂ (ugxt + uznc) onI'.

and using straightforward calculation we obtain the characterisation at the order N =1

Aul, +K2al,, =0, in Qe
with, on I'; the boundary condition

ey = L0nile = —(0-n) (Onuber + HLO (1l +u)
—% [divr (6 - n)Vr + (0 - n)kZT] (udy 4+ u'™).

Let us detail the computations for the order N = 2 only. We know that the derivative 42,; satisfies

AW, + K24, =0, in Qege .
We essentially need to differentiate the boundary condition. We have for all « € T" and for all 8 € O

Uz (@ + 0(2)) = Longucyy (@ + 0(2)) — 5 1 Ho0n, (ugy; +u™™)(x + 6(z)) = 0.

We use H = —Ar(6 - n) =0 [15] and we obtain

0=y +6- (vuim)|F — LOpitear + £[VrO - n] - Viugs, — 260 - V(Ontigrr)

MOty + %%Ar(() . n)an(u‘;m + uinc) I %%’H[Vrg -m] - Vr (ngt + uinC)
120V (HOn (ules +u™™))
=l + o - n)@nuizt — %&mim + %[Vrﬂ -m] - Vrul, — %(9 . n)(@fbuén)

= 53 HOniicar + 55 A1 (0 1)0n (uer + u) + 3 ZH[VEO 1] - Vi (g +u'™)

P

— 1100 1) (00 ) (1l +u") — 11(0 - Y HOR (w0 + u'™)

SIS

1
P
1
P

We use [27] 92 = A — Ar — HOn and 0, H = —Trace[R?] = (H? — 2G) to conclude

-2 1 -1 11 -0
Uext — ;aﬂuewt - 5;7{871“63675

= _(0 ) ’I’l) (a‘nuz,zt + Hianuémt) - % [leF(O : n)vF + (0 ) n)’le] uézt
—(0-1)(H? = G)20n(uler + u™) = 3 [Ar(0 - 1)]0n (uln + u'™)
— oM [dive (0 - n)Vr + (0 - n)r2T] (udey +u™).
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Theorem 5.2. The boundary conditions characterising the first shape derivative of the approximate solution
va], for N =0,1,2, to the transmission problem with a Neumann condition on the interior boundary can
be written as follows

Intin) + BN oy = To ™ (vin) +u'™) + Ts N 0 (vin) +u'™)
720 = [dive(0 - n)Vr + (8 -n)k2]] and T5°=0,
9! = [divr(8 - n)(1+ pe(2R —H))Vr + (6 - n)k21) — (0 -n)peHr;1 and Ts' = —pe[Ar + #:1]((0 - n)I)
and
T5? = [divr(8 - n)(1+ pe(2R —H) + pe?(2R? — HR]))Vr + (0 - n)K21] — (0 - n)pe(H — £G)r; 1
+ £ divr (2D (0 - n) — [Ar(6 - n)I)Vr — 2°k7[Ar(8 - n)]T,
T5? = —pe [divr (1 +&(R — 3H))Vr + (1 — $eH)sII] ((6-n)I) .

Proof. The results for the order N = 0 is well-known [22] [3T], T3]

A’U/gzt + K’Eugzt = . 0 ) in Qea:t
O 10,y = divr(0-n)Vr (ugzt +u'™) + KE(O . n)(ugzt +u™) onl.

and the characterisation at the order N = 1 is obtained in [I5]. We have
Al + K20t = 0, in Qe
with, on I'; the boundary condition
aﬂ'dézt + p[AF + K?I}'I;ngt = leF((e : n)vr) + F‘-’g (0 : n)I] uézt

—p| divr(6 - n)(H — 2R)Vr + Kk2(0 - n)m] (10, + 1)

P AL (6 1) On (uly + u")) + KH(O - 1) (ules + ™) .
Let us detail the computations for the order N = 2 only. The shape derivative 42,; satisfies

AUy + K20l =0, in Qe
On the boundary I', some difficulties arise. We have for all @ € I" and for all @ € O
Ong it (@+0(@))+p[Arg+r T ugy, (x+60(@))+pldivr, (Ro— 5 Hol) Vry — 3 Hori 1) (g +u") (@+0(x)) = 0.
We focus on the shape derivative of the third boundary term. For any small real value ¢, let us denote

ve =2 divry, [(2Rio — Hua)) Vi (ulif + )]

and .
wy = —gnfﬂte(ug;ff +u'™)
Denote z, = uX'® + v and 3 = u0,,. We take a test function ¢ € D(I') which is supposed to be
the restriction on T' of a function ® € D(R?) satisfying 9,® = 0. We are led to compute %[/ (ve +
Tt
we) ¢ do]
[t=0
i[/ v qsdg] - —3[1[/ [(273 Mo D) V20V qﬁ} da]
atl ., o 2ldtl)y, t0 T TheT ¥ Te =t Vo =0

L+ an)

where |28, Eq. (4.44), pp. 192]

I) = / i [(2Rt0 — HteI)vazt]

. d
rdt =0 Vr¢ do,

|t

and

(II) = / 0-n o, [(273 - Hl)vm.vm] do + / 0-n H[(QR — HI).Vr2.Vro| do
T r
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Concerning (1), we get [16]

(I) = /Fquﬁ-[—(2D%(0~n))+AF(0-n)I)Vrz] do
+/FVF¢>. [(273-7{1) (vpz+anzvp(9-n))] do

Indeed, set .A = (QR — HI) and .A = (aij)lgid‘gg. We have [27, Pp- 69]
(anaijhgi,jgg = Trace(RQ)I — 2R2.
It comes that

0 (AVr2.Vre) + AHVrzVre) =
A, [vpz.vp¢] + [Trace(RQ)I —9R? + H(2R — HI).] V2. Ve
= AVr0,2.Vré + (HA - 2RA [vrz).vrqﬁ} + [Trace((R2)I - 2722).] Vrz. Ve
= (2R — HD)Vrdn2.Vré + |(Trace(R?) — H2)I — 6R? + 4%72} Vrz.Vre
= (2R—H)Vrdu2.Vro + | — 201 - 6R* + 4HR| Vr2.Vro
— (2R — HD)Vr8n2.Vré + | — 4R? + QHR} V2.V

Finally, gathering all the terms we get

(In = / ¢ divr [0 n (4R% — 2HR)vpz]
T /: ¢ divr [ 0 -n)(H I— zn)vp(anz)]

From (I) + (II) we obtain

%[/F v ¢ da]“:o _ —g/r¢ divr [(QDF(VF(O.n)) ~AN(O-n) I)vpz] o

. g ddive [(~2R + HI)Vrz| do

- p/d) divr [e.n (2R? —HR)VFZ]
T

L
2

- g/r¢-divF (2R~ H1) (9n2V0(8 - 1) | do

/F¢ divr [(0-n)(H 1~ 2R)Vr( 9n2)]

Following the same lines as before, we get the following

il el

—3/ Hr2s¢ do — Dx? /(0 ) H(Onz + H2)é do

2 /¢ 2" |,

gli? [/F (Ar(0-n) + 60 -n(H> —20))z ¢ da]

We finaly get on I'
Oy + p(Ar + K7 )iy + p[(divF (R — iH)Vr) — ;mﬁ] Uyt

= [divr 0 nVr + 120 - nl] w2 — p[diw 0 n(H — 2R)Vr + £26 - nHI] (b + ™)

—p[Ar + I@?I} (8- 1) (ulyy +u'™) + g divr [(2 D2(6 - n) — [Ar(8 - n)|D)Vr(uly, + u")]
+p divr [9 -n (2R = HR)Vr (ules + Umc)] - gﬂf [ (Ar(6 - n) — 20 - nGI) (udy; + u'™) ]
—l—g divp [(HI —2R)Vr(0 -1 On(uly; + umc))} + gmfe “nH O (ulyy + u'™)
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6 Comparison of the two approaches

In this section, we focus on the remainder 7y = ¥[n) — W[y} for N = 0,1,2. Our main result is the following.

Theorem 6.1. Let N =0,1,2. There exists some constants Cr, Cr and Co independant on € such that

Nt1

1t 3 ) < Cre™

I 75y et (9eninBr) < Cre™ ™,
N1

| 750,15 2252y < Cooe )

where R is sufficiently large such that ) C Bg.
It is sufficient to prove the results for V = 2. It relies on the fact that the difference between the right-hand
sides (F[E’ F‘ENQ‘) is up to O(e™*!). Then, the theory presented in [12] allows us to deduce the above
estimates. We needs the following two propositions.
Proposition 6.2. We have

1o 2 L,

L divr [(2DF(0 ‘n)—Ar(0- n)I)Vpu] B [UAF(O : n)]
—  H(Ar+£7)[dive(0 - n)Vr + (0 - n)kiu — [dive(0 - n)Vr + (0 - n)k7][Ar + K7 ]u

+ [Ap + /qf} (8- n)(Aru+ kju)) =0.

Proof. Tt is straightforward to verify that the summation of the coefficients in x? and s} vanish. Then we
have

L divr [(20%(0 ‘n)—Ar(0- n)l)vpu} - %m? [uAF(e n) ]
—2(Ar + &7)[dive (8 - n)Vr + (6 - n)k3]u — §[divr (0 - n)Vr + (0 - n)ki](Ar + K7 )u)
+ [Ap + /{f] ((6-m)(Aru+ /ﬁzu))

= Ldivr [(QD%(H n) — Ar(0 -n)l pu] 1A (divr (0 - n) Vi)
—7[d1vr(0 n)Vr]|(Aru) + Ar ((6 - n)Aru)

= ldivr [(2DF(0 n))vru] — LVr(Ar(0 - n)) - Viu — L(Ar(0 - n))(Aru)

—3Ar (Vr(0 - n) - Vru) — 3(Ar(8 - n))(Aru) — Vr(0 - n) - Vr(Aru) — 5(8 - n)(Afu)
—le(e ’I‘L) VF(Apu)——(G n)(A%u)—i—(AF(O 'I'L))(AF’U,)—FQVF( n) VFAFU—‘y—(O 'I'L)(AF’LL)

= divr [DF(O n)Vru] — 1Vru- Vi(Ar(0 - n) + V(0 - n) - Vi(Aru) — 2Ar[Viu- Vi(6 - n)]
We end the proof once we use the following two relations
divr [D%(e : n)vpu] = Vr[Ar(6-n)] - Vru+ D3(6-n) : Du,

where for two (3 x 3) matrices A and B whose columns are denoted by (a1, a2, as) and (b1, b2, b3), respectively,
weset A: B=aji-b1+az- b+ as-bs and,

1 1 1
EAF [Vru . VF(Q . n)] = §VF(0 . ’I'L) . VF(AFU) + §Vru . VF(AF(B . n)) =+ D%(O . ’I'L) : D%u .

O
The second result concerns the GIBC satisfied by 7y) on I'.
Lemma 6.3. In the Neuman case, we have
< e . 1 1 -
OnTia) + pe(Ar + m?)r[Q] + 52p[(dlvr(7€ — 57—[)Vr) — 57—[&?] Thy = O@E®) on T (6.1)

where O(z) stands for a generic distribution belonging to H_%(F).

Proof. We have on I'

OnT{z) + pe(divr Vr + n?)rfg] + pe® [(divr (R — H)Vr) - 77-[/{1] F[EZ]2 F[Z]l =Ri+R5,
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RS = &2 divr [(21)12 (0-n) — Ar(6 - m))Vr (5 + u")} €282 [Ar(e -n) (v + u'™) ]
—5e%(Ar + 7)[divr (0 - n)Vr + (0 - n)K)(vy +u'™*)
—2&2[divr(6 - n)Vr + (6 - n)k}](Ar + I{?)(’Ufz] + u')
and where
RS = —e2p divr [(e.n)( 19 )Vr — 1e2(0- n)H]a (v + ui™)

—ep[Ar + K2]((0 - )Dn(vfy +ui™))
+e(p—1) [dive (14 (R = 3H)) Vi + (1 = geH)s?] (8- n)On(vfy +u'™))
= < dive [(0-m)(R — JH Ve — b0 m)M] ooy )
—ep[Ar + K] (8- )On(vfy +u™)) +£(p — D[ Ar + k2] (6 - n)on (v +u'™))
+e%(p— 1) [dive (R — $H)Vr — 2HrZ] (6 - 1) (v + ©Y) .
Thanks to the relation . .
a'n,(v[sg] + ’U/ch) = —.BE’2 (U[EQ] + Ulnc) s
h
where . . o 1 .
B*? = ep[Ar +k;] +°p [dive (R — 3H) Ve — $Hk{],

we can rewrite R5 as
Rs = p|Ar + 17| (0 m)(Ar + &) (vfy + ™)) + O(*)

where O(x) stands for a generic distribution belonging to Hfg(f‘). Thanks to the Proposition n , we
conclude

F[ZQ F[";]l = 5Zg divp [(2D12~(0 n) — Ar6 - n I)Vr(vfy + u') ] g f/-e [Ap (6 -n)(viy + u™ )]
—222(Ar + k7)[divr (0 - n)Vr + (0 - n)k ](0[2] —|—umc)
—££%[divr(0 - )V + (6 - n)k;](Ar + HZ)(UD] + u'")
—|—s2p[Ap + 1@2] (0-n(Ar + ni)(vm +u'™)) + O(*)

= 0().
O
Proof of Theorem . We can easily verify that T[EN] solves the following boundary value problem:
AT[N a+ K/ T[N] = O in Qext
TN
limRHJroo / ‘ al — ’LkeTfN] |2 ds = 0 (62)
dBR 87‘
with the GIBC on "
£ . 1 5 2 € 5 3
Onriy + pe(dwr [(1 fe(R— EHI)WFT[Q]]) + prle(l = SH)r. = O(E) on T (6.3)

We follows ideas of [32] Lemma 1]. We begin to introduce the Dirichlet to Neumann operator Ap :
HH%(F) — H*2(T'), s € R defined as follows : for g € Hs+%(F) we set Ar(g) = Onv the normal
derivative of v solution of
Av + k2 =0,in Qext
v =g, on I

ors
limR%+oo/ ‘ a[N] —ikeTfN] |2 dr =0.
dBR T

[ Arw (|22 (r) < esf|ul |

Let Zr be the operator defined by

Zrw = ps(divr [([ Fe(R— %HI))erD + pr2e(1 — %H)w
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Set
Br = Ar + Zr.

We study first B = Ar + pa(divr [(I +e(R - %’HI))VFwD — Au where A is a positive constant chosen

H
sufficiently large. Denote E = pe(1 —€§)I+p5272‘ Supposing € > 0 sufficiently small such that the spectrum
of the matrix E belongs to (c1,c2) for some ¢1,c2 > 0. We have for u € Hl(l")

“Re(Bfu,u)) = —(Aru,u) + (Veu, EVru) + A | [Zagr,

> = [ Aru g2yl w2y +er || Hj{l(r) e +A) [lu H22L2
> —cs |l ullmayll vz -21—01 Il 7y +(er +A) [ w72
d Il llz2
> oGl ey + g ) e [y e A [ 2
Cc3 C3
> (a- 2*5) w13y +(er + A~ 2*5) I l172r))

c
The last two inequalities are obtained thanks to the Young’s inequality. Setting § = ! we then get
Cc3

2
c1 C3
—Re((Bf (u, u)) > o) w7y +(A+c1 — Z) [KAZTE

2

c

Hence coercivity is obtained whenever A > 2—3701. ‘We have shown that —Br = fB{}JrKr where —Kr = Au
C1

is compact. Then B, is a Fredholm operator of index zero. Furthermore, one can easily show that Br is

injective [12]. The trick is classical : we combine the Reillich theorem and the analytic continuation principle.
Then it is invertible. Since Br is bounded from H'(T") to H~(I"), we deduce from the closed graph theorem,
that if —Bru = h then there exists C' > 0 such that

II'u HHI(F)S Clh HH—l(r) .

Doing the same analysis for h € H*(T') when s > —1, we deduce that the problem has a unique solution
u € HY(T). Hence —BRu+u = h + Aru+ (1 — A)u € H™* 0T and since T' is C*° we get u € H*T2(T)
thanks to bootstrap procedure. We conclude from the closed graph theorem that there exists C' > 0 such
that
v sz < C L B llas ) -

The case s < —1 is treated by transposition. Indeed, for any s € R the operator Br continuously maps
H*3(T) to H*(T"). Tts L?-adjoint is Br : H~*(T") — H*"%(T"), which is bijective as —s—2 > —1 by previous
case. The proof is then completed as in the previous case. If s = —3/2 we get the first estimate. We obtain

the other estimates by the potential theory.
|

Similar bounds can be obtained in the Dirichlet case. Indeed, we can prove again that (F[SNI‘ — FlsNQ]) is

N+1)

up to O(e in the following lemma.

Lemma 6.4. In the Dirichlet case, we have
Ty — %5 (1 + g?—l) Onriy) = O(e%) on T (6.4)

where O(z) stands for a generic distribution belonging to H_%(F).
Proof. We have on I'
€ ,2 a1
riy = 2o (14 SH) Ourly = Fi? — F' = Ri + R,

where ,
Ri =£(1+4 1eH) [divr(0 - n)Vr + (0 - n)fc?] (v +u™),

R; = - 21762[AF + 7] ((9 1) On (V) + umc)) — 552(9 -m)[Ar + n?]@n(vfz] + ')
+ iEQ (AF(@ - n))@n (U[EQ] + umc) .
Thanks to the relation ‘ ’
(v +u™) = 7BE’28n(v[62] +u"),
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where
B =1 Lnl

P 1p
we can rewrite Rj as

Ri =&°2 [divr(0 - n)Vr + (0 - n)k}] On (vl +u'™) + O(°)

where O(z) stands for a generic distribution belonging to H —z (I"). We also simplify the expression of R5 as
R; = —1e?Vr(0-n) - Vron (v + ™) — 2%(0 - n)[Ar + #7105 (v + ™) .

We finally get F[‘;’]2 - F[Ez’]1 = 0(). O

7 Numerical experiments

We discuss in this section the numerical accuracy of the GIBCs to approximate the solution to the original
transmission problem and its shape derivatives. We evaluate the L? error of the far-field pattern associated
to the exact and approximate fields. The far-field pattern are computed by solving the boundary integral
equations given in the Appendix thanks to the high-order spectral algorithm presented in [I8]. The numerical
scheme applies to boundaries which are globally parameterised by spherical coordinates and consists in
transforming the integral equation on the surface I" to an integral equation on the unit sphere using a
change of variable and then by expanding the integrand and looking for a scalar solution in terms of series
of scalar spherical harmonics.

We denote by (YZJ)OSU\SZ
we set ke = 7 so that the object size is roughly 1A. (where A, = i—’: is the exterior wavelenght) and k; = 2k,

p = 1.3. The incident plane wave is defined by u'"°(z) = "¢, with d = T(l, 0,0).
As a first test, we consider a spherical coating of an acoustic object whose boundary I'§ is parameterised
by the unit sphere S? as follows and the visualisation is given in Figure

the orthonormal system of scalar spherical harmonics. In all our experiments

zclfedzeS’, x=r(2)& with r = 0.9V4rYy + 0.1 + 0.1Y;,° .

The width is then e¢h = 1 — r;. In Table [1| we indicate the L? relative error, denoted by errs between the

Figure 1: Interior boundary of the spherical coating with a variable thickness eh varying between 0.05A. and 0.15A,.

far-field patterns of the exact exterior field u,, and the approximated field v[EN‘.

1
2

[ ko — uscPas
S
/2 [uso|? ds
S
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In Figures 2] and [3] we compare the amplitude of the far-field patterns of the exact solution and the approx-
imate solution on the cut ¢ = 0°.

Table 1: Scattering of an incident plane wave by the spherical coating with either a Dirichlet or a Neumann boundary
condition on the interior boundary : relative L2-errors between the true scattered field and the approximate field.

Dirichlet Neumann
N errs errs
0 2.9132E - 01 1.1004E — 00
1 5.0567E — 02 || 2.1414E — 01
2 2.9561E — 02 || 1.3574E — 01
3 7.5691E — 03 || 4.5420E — 02
3 3
——exact ——exact
-, —.—-approximate solution N=0 —-—-approximate solution N=1
= =
£ £
< <
0 0
0 90 180 0 90 180
0 9
3 3
——exact ——exact
—-—-approximate solution N=2 —-—-approximate solution N=3
= 3
£ £
< <
0 0
0 90 180 0 90 180
0 0

Figure 2: Amplitude of the farfield patterns ug, and v: ) of the scattered field associated to the original transmission
problems for the spherical coating and its approximate fields in the case of a Dirichlet interior boundary condition.

As a second task, we consider an axisymetrical coating with a constant thickness whose the exterior
boundary T'; is parameterised by the unit sphere as follows and the visualisation is given in Figure [@

zel & IxeS’, o =ry(d)2 with ro = 2vV47Y5 + 1¥7 + 173 .

The curvature operator R, the mean curvature H and the gauss curvature G are computed analytically.
The surface differential operators are computed using integration by parts, projection onto the spherical
harmonics and the various formulas stated in [23].

To attest the shape derivative formulas of ug,, and its approximate field vy given by Theorems
and [5.2], we compare them with the Gateaux derivative typically defined by

,t0 e £,t0 o€
WS, = lim (oS! = Yoo~ U and  ©5 =lim | o9 = Joo,[N) ~ Yoo, lN]
S0\ t o INT = 0 | ToouN] t ’

for different values of ¢t and N = 2. The direction 0 is described by the spherical coordinates of any point
& € S? denoted by (¢, ¢) € (0;7) x (0;27) U {(0,0); (0,7)} by

0(z)=r(@)&, r(@) =2cosysing+ 2cos2¢sin3e.
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——exact N, ——exact
—-—-approximate solution N=0 \ —-—- approximate solution N=1

|Amplitude|
|Amplitude|

——exact ——exact
—-—-approximate solution N=2 \ —-—-approximate solution N=3

|Amplitude|
|Amplitude|

Figure 3: Amplitude of the farfield patterns uZ, and vS, ) of the scattered field associated to the original transmission
problems for the spherical coating and its approximate fields in the case of a Neumann interior boundary condition.

Figure 4: Exterior boundary of a coated object with a constant thickness e = 0.15A,.

We set € = 0.1A.. As expected, we observe linear convergence rate.

In Figure we numerically verify the accuracy and effectiveness of the two approaches presented in
Section 4 and 5 to compute of the shape derivatives . The curves represents the L? error between the shape
derivative of the true far-field ug, and the approximate shape derivatives wg, yj or 05, [y for N = 1,2 and
various values on the thickness € in a log log scale. In view of the error bound given in the introduction and
the Theorem [6.1] taking the logarithm to both sides we obtain

log, (||uf,o - Ugo,[N]HLQ) ~ log,o(cn) +mulog(e) , (7.1)

where ¢y is a constant and my =~ N + 1. The positive real values my are the slope of the linear curves and
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Table 2: Numerical computation of the Fréchet derivative : comparison with the finite difference method

Dirichlet Neumann
.e,t . e - e,t - €
; |[as! — as || L2 1950 12) — 0,211l 22 last — S || 2 1022 2 — Voo, t2l |22
S| L2 195, 12 lz2 IS | L2 195 12 llz2
E—-01 1.1892E — 01 1.2944E — 01 2.8351E — 01 1.1807E — 01
E—-02 1.1899E — 02 1.2969E — 02 2.7977E — 02 1.1832E — 02
E—-03 1.1899E — 03 1.2970E — 03 2.7975E — 03 1.1832E — 03

are indicated on the Figure[5| We observe that similar speed of convergence of vg, |y} to ug, and of v |
to g, are obtained. The speed of convergence of wZ, [y to U, is close to IV + 1 but slower than the one of
s to US,.

00,[N] oo

8 Conclusion and perspectives

In this work we proposed a new way to construct GIBCs for elliptic problems in R? extending previous
work realised in R? [33 B]. The method allows the possibility to obtain, in future works, the high order
GIBCs modelling thin coatings in electromagnetics and elastodynamics with variable thickness, generalising
the already existing results |2} 5] [6] [T0] [I7) 19].

Using these results, we investigate the asymptotic behaviour of the shape derivatives of the solution to
thin layer transmission problems. We present two different way to approach the shape derivatives. On one
hand, we construct the GIBCs associated to the thin layer transmission problem characterising the shape
derivative of the solution. On the other hand, we compute the shape derivatives of the approximate solution.
We show that the two approaches are equivalent in the sense that the error estimates is up to O(aN 1,
where N is the order of truncation in the asymptotic expansion of the exact shape derivative. We explain
the results by the fact that the first shape derivative depends only on the normal deformation of the exterior
boundary. A general observation is that for N > 2, the first approach is simpler than computing the shape
derivatives of the GIBCs.

Appendix: boundary integral equation methods

In this appendix we present the boundary integral equation methods used to solve both the thin layer
transmission problem and the boundary value problems with GIBCs. We follow the procedure described in
[34] for the transmission problem and in [18] for impedance-like problems. For more details on the potential
theory in acoustics we refer to [13].
iralzl

For a =i,e, let G(ka, z) = Zﬁ be the fundamental solution of the Helmholtz equation Au+ k2u = 0.

|z

We denote by Sf and Df the single layer and double layer potential operators related to the boundary T'.
They are defined by

Stp(@) = / G5, @ — 1) () do () and Dith() = / UG (e, — y)ib(y)do(y)

The functions ¢ and v are some distributions in the Sobolev spaces of fractional order H 2 (T') and H -3 (),
respectively. We define in the same way the potential operators related to the boundary I'*. The transmission
problem can be reduced in several different ways to a system of uniquely solvable boundary integral
equations. We present two different approaches. The indirect approach is based on the layer ansatz

uizt = le?‘w - SI?‘QD ) in Qe:ct ’ (Al)
wine = (D — Ste) + (D€ +inSkee”) . in Qe (A:2)

where 7 is a given positive constant and £° € H%(FE). Using the transmission conditions on I' and the

boundary condition on I'°, the thin-layer transmission problem can be reduced to a uniquely solvable system
1

of boundary integral equations of unknowns ¢, ¢ and £°. For any distribution ¢ € H~ 2 (T"), the potential
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Figure 5: Numerical convergence, when € — 0, of the approximate far-field Uio,[ N to us, and of the approximate shape
derivatives wg, [y} or ¥, (n] to U5, in the Dirichlet (left) and Neumann (right) cases.

St is analytical in any subdomain of R*\T" and is continuous accross I'. We have

s—0

(Ste)r=Stp and  lmn(e)  (VSie)(@ + sn(z)) = (F 31+ Di)e(a)

27



where I is the identity operator and the involved boundary integral operators are defined for @ € I" by

Sto(z) = / G ke, — ¥)o(y) do(y),
Ditg(x) = / 0% Ckarx — y)oly) doy)

For any distribution ¢y € H 2 (I'), the potential Dy is analytical in any subdomain of R*\I" and is discon-
tinuous accross I'. We have

lim (Df) (2 & sm(a)) = (£ %1 4+ D8)p(x) and  OnDip = NEy

where the involved boundary integral operators are defined for « € I by

Dip(x) = / LG (a — ) (y) do(y),

Niv@) = [ OROKG(u, @~ p)Ulw) doly).

r
The operator S is bounded from H_%(F) to H%(F) and compact from H_%(F) to itself. The operators
Dt H%(F) — H%(F) and Dr* : Hié(F) — Hié(l“) are compact and the operator Nf : H%(F) —

H: (") is bounded and has a hypersingular kernel. Using these results, we obtain the following system of
second kind Fredholm boundary integral equations when a Dirichlet boundary condition is fulfilled on I'"

a9 o\ [ PPE-DE k=S —((Dor +inSir)
2 . . . X ) ’lﬁ _fezt
0 <1;p)1 0 | +|p(NgE=NL) pDE =D —p ((0nDic)r + in(OnSie) 1) <<p = | —geat | .
11 i i i in Gl & —fin
0 0 2 (Dr)lpa 7(811)'1—‘5 DFE -+ ZT]SFE ¢

The associated integral equation operator is invertible from H%(F) X H_%(F) X H%(FS) to itself. When
a Neumann boundary condition is fulfilled on I'*, we obtain the following system of boundary integral
equations

0y o pDE— D Si— S ()i +in(Ste)ir)

. . . U’ 7fezt
0 Afelp o |+ | p(Ne = Ni) pDE — D¢ —p ((0nDie)jr + in(OnShe)|r) <<p> = (_gext) .

Q . . . . € —qg€
0 0 Nre (On.Di)jre —(On.SE)|re inDy. — 21 ¢ Jint

Using regularization technique for the third equation, we can prove that the associated integral equation
1 1 1 1 1 1

operator is invertible from H2 (I') x H 2 (") x H2(I'*) to H2 (I') x H~ 2 (T") x H~ 2 (I"*). The farfield pattern

associated to the exterior field is then given by

us, = pDPY —S¥p, onS?, (A.3)

with

Dy (&) = —if;/F(5:-n(y))e—“eﬁ'w(y)ds(y),
e T Y p(y) ds(y).

The direct approached is used when fez+ and ger+ are the boundary data of the time-harmonic incident
" and fi,; =0 = gi,;- Then we have the following integral representation

Stie(®) = i /s

plane wave
sy = D (ulyy + 1) — SEOn (usyy +u'™) ,  in Qear (A4)

uf’ﬂt = ( - D%(uzzt + uinc) + pS%‘a’n(uZzt + uan)) + (’D{"E u'?nt - ‘S‘ll“E 8n5u§nt) ) in Qf’nt ] (A5)
The transmission conditions and the Dirichlet condition uj,; = 0 yield

pDp — D St = St —p(Ste)ir

(I-QH))I 0|+ p(Nf - Nf‘) pr? - DE‘Z —p(@nslﬂs)‘r 871(“2175 + wine) | =
0 21 _((D%)\FE + indne (IDIZ")\FE) %((D%)\FE +'”78n5(D1z~)‘1"s) D?E +”7‘Slz"5 t
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0
0

The transmission conditions and the Neumann condition Opuj,; = 0 yield

pDr — Df St = St P(Dre)ir

0 0 . . (ugyy +u'™)
L;”’)I o |+ p(Ni — Ne) pDf* — Dft p(OnDre )T On(uiy, +ume) | =
0 Nre —((DL)re +indne (DR)re) £ ((DE)jre + indne (DR)pe)  inDie — 41 t
The farfield pattern associated to the exterior field is then given by
uSe = D (upr + u'™) — S0 (usyy +u'™), on §*, (A.6)

The direct method is used to compute the solution to the forward problem while the indirect one is required
to compute the shape derivatives of the solution. The direct method has the advantage to provide the
boundary data which are needed to compute the boundary data of the shape derivatives (see Theorem [4.1]).

The exterior problems (3.1) can be solved, for N = 1,2,3, using boundary integral equation methods.
Here again we consider two approaches. The indirect one is based on the layer ansatz

’UFN] = SF‘QO in Qe:ct

and can be used for solving the exterior problems (3.1) when the boundary condition is written in the form
Cle, On (Viny)s (va])) = F. The exterior problem can be reduced to the following boundary integral equation
for the unknown ¢ _ _
C(e, =31+ Dr¥,58) ¢ = —C(e, Onu'™, u'™°) .
The farfield pattern associated to the exterior field is then given by U;‘[N] = Sr.
The direct one is based on the integral representation formula of the exterior wave

vin] = Dr(viny + u'™) — Ston(vin) + ™), in Qe , (A7)
In the case of a Dirichlet boundary condition, the GIBCs given in Theorem [3.1] yield the boundary integral
equation
[(%1 — D) (- B*Y) - Sfi] O (V) + ') = u'".

We obtain the other boundary data by computing (viy; + u) = —BE’Nﬁn(U[EN] +4™°). In the case of a
Neumann boundary condition, the GIBCs given in Theorem yield the boundary integral equation

(51 Df) = 8 (= 5] (g + ) = ™

We obtain the other boundary data by computing Or (vfn; +u'") = —BE’N('U[EN] +u'°). The farfield pattern
associated to the exterior field is then given by .

Here again, the direct method is used to compute the solution to the forward problem while the indirect
one is required to compute the shape derivatives of the solution. The direct method has the advantage
to provide the boundary data which are needed to compute the boundary data of the shape derivatives.
The integral formulation may suffer from irregular frequencies, however we consider wavenumbers out of the
discrete set of eigenvalues.
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