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Abstract

We generalize to intersection of strictly c -convex domains in Stein manifold, Lr − Ls and

Lipschitz estimates for the solutions of the ∂̄ equation done by Ma and Vassiliadou for domains

in C
n. For this we use a Docquier-Grauert holomorphic retraction plus the raising steps method

I introduce earlier. This gives results in the case of intersection of domains with low regularity,

C3, for their boundary.

1 Introduction.

The solutions with Lr and Lipschitz estimates of the equation ∂̄u = ω, ∂̄ω = 0 revealed to be
very important in complex analysis and geometry.
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The first results of this kind were done by the use of solving kernels: Grauert-Lieb [8], Henkin [10],
Ovrelid [19], Skoda [22], Krantz [14], in the case of strictly pseudo-convex domains with C∞ smooth
boundary in C

n, with the exception of Kerzman [13] in the case of (0, 1) forms in strictly pseudo-
convex domains with C4 smooth boundary in Stein manifolds.

Here we shall be interested in strictly c -convex, s.c.c. for short, domain D in a complex manifold.
Such a domain is defined by a function ρ of class C3 in a neighbourhood U of D̄ and such that i∂∂̄ρ
as at least n− c+ 1 strictly positive eigenvalues in U.

These domains in C
n have been studied in the case of smooth C∞ boundary by Fisher and Lieb [7].

Ma and Vassiliadou [17] got very nice estimates even in the case of intersections of s.c.c. domains
with C3 boundary. I shall use their results here.

Quite recently C. Laurent-Thiébaut [15] get this kind of result for s.c.c. domains with smooth
C∞ boundary in complex manifold by use of the Grauert’s method of "bumps".

Concerning the study of transverse intersection of domains, one can cite the works of Henkin
and Leiterer [9], Menini [18] for strictly pseudo convex domains and G. Schmalz [21] and Ma
and Vassiliadou [17] for c -convex domains. C. Laurent-Thiébaut and J. Leiterer [16] solve the ∂̄
equation in a case of intersection of s.c.c. domains more general than the one considered by Ma and
Vassiliadou [17] but for bounded forms and they got solutions in Lipschitz spaces. It seems that
the Lp case is still open for their case.

Let us state our first result which is completely analogous to the one Ma and Vassiliadou [17] got
for domains in C

n.

Theorem 1.1 Let Ω be a Stein manifold of dimension n and a strictly c -convex (s.c.c.) domain
D such that D is relatively compact with smooth C3 boundary in Ω. Let ω be a (p, q) form in
Lr
p,q(D), ∂̄ω = 0 with 1 < r < 2n+ 2, c ≤ q ≤ n. Then there is a (p, q − 1) form u in Ls(D), with

1

s
=

1

r
−

1

2n+ 2
, such that ∂̄u = ω.

If ω is in Lr
p,q(D), ∂̄ω = 0 with r ≥ 2n + 2, c ≤ q ≤ n, then there is a (p, q − 1) form u in

Λǫ
(p,q−1)(D̄) such that ∂̄u = ω with ǫ =

1

2
−

n+ 1

r
.

The spaces Λǫ
(p,q−1)(D̄) are the (isotropic) Lipschitz spaces of order ǫ and we set Λ0

(p,q−1)(D̄) :=
L∞
(p,q−1)(D).

It has to be noticed that the boundary regularity is just C3, so it seems that this is a new result
in a Stein manifold for such a low regularity.

In the case of a C∞ boundary regularity then this result is contained in C. Laurent-Thiébaut [15]
corollary 2.11, but the proof here is completely different and, in some sense, "lighter" because it
never uses Beals, Greiner et Stanton [5] heavy technology. We use for the analytic part kernels
methods plus essentially geometric ones. Nevertheless we can recover the Sobolev estimates by a
direct use of Beals, Greiner et Stanton [5] in the case of a C∞ boundary regularity by theorem 7.2.
This avoid the use of the "bumps method" but this is valid only in Stein manifolds although C.
Laurent-Thiébaut [15] results are valid in any complex manifold.

To state our next result, we need the definition of a C3 c convex domain, still taken from [17].
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Definition 1.2 A relatively compact domain D in a Stein manifold Ω shall be called a C3 c -convex
intersection if there exists a relatively compact neighbourhood W in Ω of D̄ and a finite number of
real C3 functions ρ1, ..., ρN where n ≥ N + 3 defined on W such that D = {z ∈ W :: ρ1(z) <
0, ..., ρN (z) < 0} and the following are true:

i) For 1 ≤ i1 < · · · < il ≤ N the 1 -forms dρi1 , ..., dρil are R -linearly independent on

l
⋂

j=1

{ρij ≤ 0}.

ii) For 1 ≤ i1 < · · · < il ≤ N, for every z ∈

l
⋂

j=1

{ρij ≤ 0}, if we set I := (i1, ..., il), there exists a

linear subspace T I
z of Ω of complex dimension at least n− c + 1 such that for i ∈ I the Levi forms

Lρi restricted on T I
z are positive definite.

We notice that in C
n Ma and Vassiliadou need N ≤ n− 2 and here we need N ≤ n− 3. Now we

can state:

Theorem 1.3 Let Ω be a Stein manifold of dimension n and a C3 c -convex intersection D such
that D is relatively compact in Ω. There exists a ν ∈ N

+ (which depends on the maximal number of
non empty intersections of {ρj = 0} ) such that :
if ω is a (p, q) form in Lr

p,q(D), ∂̄ω = 0 with q ≥ c, 1 < r < 2n+ 2, then there is a (p, q − 1) form

u in Ls(D), such that ∂̄u = ω with
1

s
=

1

r
+

1

λ
− 1, where 1 ≤ λ <

2n+ 2ν

2n− 1 + 2ν
.

More precisely,
i) For any 1 < r < 2n+ 2ν, there exists cr(D) positive constant such that

‖u‖Ls
(p,q−1)

(D) ≤ cr(D)‖ω‖Lr
(p,q)

(D)

with
1

s
=

1

r
−

1

2n+ 2ν
.

ii) For r ≥ 2n+ 2ν, we have ‖u‖L∞

(p,q−1)
(D) ≤ ar(D)‖ω‖Lr

(p,q)
(D) for some positive constant ar(D).

This also seems to be new in case C
n is replaced by a Stein manifold.

The results of Ma and Vassiliadou [17] give good estimates in case of domains in C
n. The point

here was to pass from C
n to a submanifold of Cn. To do this I was inspired by a nice paper of H.

Rossi [20] on Docquier Grauert holomorphic retraction. The first result is based on it and is the
following non optimal theorem.

Theorem 1.4 Let M be a closed submanifold of dimension d of a Stein domain U0 in C
n. Let D

be a s.c.c. domain relatively compact in M (D̄ ⊂ M) with C3 boundary. Then, with r ≥ 2n+ 2, we
can solve in D ∂̄u = ω when ∂̄ω = 0 and with u ∈ Λǫ

(p,q−1)(D̄) if ω ∈ Lr
(p,q)(D), c ≤ q ≤ n, with

ǫ =
1

2
−

n+ 1

r
.

Then we use the raising steps method [2] (see also [4] for more general operators than ∂̄ and [3]
in the non compact case). Let me recall it in this specific case.
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Theorem 1.5 Let M be a closed complex manifold and D a relatively compact domain in M.
Suppose there is δ > 0 and a finite covering {Uj}j=1,...,N of D̄ such that :

(i) ∀r > 1, ∀ω ∈ Lr
(p,q)(D), ∂̄ω = 0, ∃uj ∈ Lt

(p,q−1)(D ∩ Uj) :: ∂̄uj = ω in D ∩ Uj

and ‖uj‖Lt(D∩Uj)
. ‖ω‖Lr(D∩Uj)

, with
1

t
=

1

r
− δ.

(ii) ∃s > 1, ∀ω ∈ Ls
(p,q)(Ω), ∂̄ω = 0, ∃w ∈ Ls

(p,q−1)(Ω) :: ∂̄w = ω and ‖w‖Ls(Ω) . ‖ω‖Ls(Ω).

Then there is a constant c > 0 such that, for r ≤ s, if ω ∈ Lr
(p,q)(D), ∂̄ω = 0, it exists u ∈ Lt

(p,q−1)(D)

with λ := min (δ,
1

r
−

1

s
) and

1

t
=

1

r
−λ, such that ∂̄u = ω, u ∈ Lt

(p,q−1)(D), ‖u‖Lt(D) ≤ c‖ω‖Lr(D).

The local estimates (i) are given by "localizing s.c.c. domain", proposition 8.2 plus the results
of Ma and Vassiliadou, theorem 2.1 here. The global estimate (ii), the threshold, is given by the
Lr − Λǫ estimates done in theorem 1.4. We get the same optimal results as for domains in C

n.

Theorem 1.6 Let M be a complex submanifold of dimension d in C
n and a s.c.c. domain D

such that D is relatively compact with smooth boundary of class C3 in M. Let ω a (p, q) form in
Lr
p,q(D), ∂̄ω = 0, c ≤ q ≤ n, with 1 < r < 2d+ 2. Then there is a (p, q − 1) form u in Ls(D), with

1

s
=

1

r
−

1

2d+ 2
, such that ∂̄u = ω.

If r ≥ 2n+2 then there is a (p, q−1) form u in Λǫ
(p,q−1)(D̄) such that ∂̄u = ω with ǫ =

1

2
−

d+ 1

r
.

We follow exactly the same path to work with C3 c -convex intersection with again local estimates
given by "localizing s.c.c. intersection", proposition 8.3 plus the results of Ma and Vassiliadou,
theorem 2.2. The global estimate (ii), the threshold, is given by the Lr − L∞ estimates done in
theorem 2.2 plus the generalization of a theorem of Rossi done in theorem 8.6.

To pass to Stein manifold, we use an embedding theorem of Bishop and Narashiman (see theorem
5.3.9. of Hörmander [12]) to see an abstract Stein manifold of dimension d as a submanifold of C2d+1.
So we get our main results.

This work will be presented in the following way.
• First we recall the estimates in the case of strictly c -convex domains in C

n done by Ma and
Vassiliadou [17].
• We recall the Docquier Grauert holomorphic retraction on a complex submanifold M of Cn.
• We extend a form ω from a domain D s.c.c. in M to a domain E s.c.c. in C

n by use of a
generalization of a theorem of H. Rossi [20]. We then solve the form in E by the known estimates
in C

n.
• We show that the solution in E can be restricted to D to get a solution in D with good enough

estimates, for r ≥ 2n+ 2. This gives theorem 1.4.
• We use the raising steps theorem with the threshold given by theorem 1.4. So we have theo-

rem 1.6 for the case of a submanifold of Cn.
• Then by the same way, using ad-hoc modifications of propositions in the appendix, we get

theorem 1.3 in the case of a submanifold of Cn.
• By use of a theorem of Bishop and Narashiman, i.e. the proper embedding of a Stein manifold

of dimension d in C
2d+1, we get our main theorems 1.1, 1.3 for any Stein manifold.

• Finally we prove technical results we need in the appendix.
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I am indebted to C. Laurent-Thiébaut who pointed to me the precise link between the work of
Beals, Greiner et Stanton [5] and the existence of actual solutions for the ∂̄ Neuman problem.

2 Strictly c -convex domain in C
n.

We shall use the nice estimates for a smoothly C3 bounded c convex domains in C
n obtained by

Ma and Vassiliadou [17] , lemma 5.3. in their paper.

Theorem 2.1 Let D be a bounded s.c.c. domain in C
n with a C3 defining function. Then

∀ω ∈ Lr
(p,q), ∂̄ω = 0, c ≤ q ≤ n, 1 ≤ r < 2n + 2,

there exists u ∈ Ls
(p,q−1)(D),

1

s
=

1

r
−

1

2n+ 2
, with the following properties:

i) ∂̄u = ω in the sense of currents in D,

ii) if r = 1, u ∈ L
2n+2
2n+1

−η

(p,q−1) for any η > 0.

iii) if 2n+ 2 ≤ r ≤ ∞, u ∈ Λǫ
(p,q−1)(D̄) with ǫ =

1

2
−

n + 1

r
.

They also prove results in the case of intersections.

Theorem 2.2 Let a C3 c -convex intersection domain D such that D is relatively compact in C
n.

Then there exists a ν ∈ N
+ (which depends on the maximal number of non empty intersections of

{ρj = 0} ) such that :
if ω a (p, q) form in Lr

p,q(D), ∂̄ω = 0 with q ≥ c, 1 < r < 2n + 2ν, there is a (p, q − 1) form u in

Ls(D), such that ∂̄u = ω with
1

s
=

1

r
+

1

λ
− 1, where 1 ≤ λ <

2n+ 2ν

2n− 1 + 2ν
.

More precisely
i) For any 1 < r < 2n+ 2ν, there exists cr(D) positive constant such that

‖u‖Ls
(p,q−1)

(D) ≤ cr(D)‖ω‖Lr
(p,q)

(D)

with
1

s
=

1

r
−

1

2n+ 2ν
.

ii) For r ≥ 2n+ 2ν, we have ‖u‖L∞

(p,q−1)
(D) ≤ ar(D)‖ω‖Lr

(p,q)
(D) for some positive constant ar(D).

3 The Docquier - Grauert holomorphic retraction.

We have the Docquier-Grauert lemma [6] :

Lemma 3.1 Let K be a compact subset of a closed complex submanifold M of C
n. There is a

neighbourhood U of K and a holomorphic map π : U → U ∩M such that π(ζ) = ζ for ζ ∈ U ∩M.

In fact we have more (Rossi [20], p 172) from the argument of Docquier-Grauert we have that
the fibers π−1πζ of π intersect M transversally at all points of M and are of dimension n− d.

Let M be a complex submanifold of dimension d in C
n and D a relatively compact domain strictly

c -convex in M. We have the following lemma.
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Lemma 3.2 Let ζ ∈ D̄, there is a neighborhood U of ζ in C
n and a bi-holomorphic application

(U, ϕ), ϕ : U → T such that, with z = (z1, ..., zn) the coordinates in T , we have: ϕ(D)
⋂

T =

{zd+1 = · · · = zn = 0} and the retraction π̃ := ϕ ◦ π ◦ ϕ−1 read in the application ϕ is given by
π̃(z) = (z1, ..., zd, 0, ..., 0), i.e. this is the orthogonal projection onto the subspace of z′ := (z1, ..., zd).
Moreover one can choose for T a tube around ϕ(M) of width δ > 0.

Proof.
The manifold M is given, by use of the retraction π, by the functions fk(ζ) := ζk−πk(ζ), k = 1, ..., n.
We have if ζ ∈ M, ζ − π(ζ) = 0 ; if ζ /∈ M, ζ − π(ζ) 6= 0, because π(ζ) ∈ M. The transversality
of the fibers with respect to M at all points of D̄ insures that the Jacobian of the application
f = (f1, ..., fn) has rank n − d, which is the complex co-dimension of M. Take a point ζ0 ∈ D̄,
there are n− d functions fj which are independent in a neighborhood U of ζ0. Re-numerating the

functions fj and the variables ζk, we may suppose that the determinant (
∂fj
∂ζk

)j,k=d+1,...,n is different

from zero.
Now we shall make the change of variables z = ϕ(ζ) with zj = ζj, j = 1, · · · , d ; zj = fj(ζ), j =

d+ 1, · · · , n. This is actually a change of variables because the Jacobian of ϕ is different from zero
in the open set U. We have that the application ϕ is a bi-holomorphism from the open set U onto
the open set T := ϕ(U).

Let z′ = (z1, · · · , zd) and z” = (zd+1, · · · , zn) ; we have in T that:
N := ϕ(M) = {z = (z′, z”) ∈ T :: z” = 0}.

Now take a tube around N centered in ζ0, T = {z = (z′, z”) :: z” ∈ B((z′, 0), δ)}, we call it again
T, and we still denote U = ϕ−1(T ).

We cover D̄ by a finite number of these bi-holomorphisms (Uj , ϕj). We note Nj the manifold
Nj := ϕj(M ∩ Uj) ⊂ Tj and, diminishing a little bit the Uj if necessary, we can suppose that the
width of the tubes Tj around the Nj is constant and equals δ > 0. We know that there is a constant
µ > 0 such that µ−1 < Jj < µ, where Jj is the Jacobian of ϕj, because there is a finite number of
charts (Uj , ϕj).

We denote dV the Lebesgue measure on the manifold M.

We have the following basic lemma.

Lemma 3.3 Let f be a function in L1(Uj) and f̃ this function read in the application ϕj , i.e.
f̃ := f ◦ ϕ−1

j , we get
∫

Uj

f(ζ)dm(ζ) =

∫

Nj

∫

B((z′,0),δ)

f̃(z′, z”)Jj(z
′, z”)dm(z”)}dV (z′).

Proof.
This is simply the change of variables formula because ϕj(Uj) = Tj = Nj×B(·, δ) and the Jacobian
of ϕj is Jj .

Lemma 3.4 Let f be a measurable function, positive on M , then
∫

Uj

f ◦ π(ζ)dm(ζ) ≤ µc(δ)

∫

Nj

f(z′, 0)dV (z′),

with dm the Lebesgue measure on C
n, dV the Lebesgue measure on M and c(δ) := |B(x, δ)| .
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Proof.
We can apply lemma 3.3 with the notation z = (z′, z”), z′ the coordinates in Nj, z” the coordinates
in the fibers:

∫

Uj

f ◦ π(ζ)dm(ζ) =

∫

Nj

{

∫

B(z′,δ)

f̃(z′, z”)Jj(z
′, z”)dm(z”)}dV (z′),

but here we have f̃(z′, z”) = f(z′, 0) because π̃(z) = (z′, 0) hence the formula is now:
∫

Uj

f ◦ π(z)dm(z) ≤ µ

∫

Nj

f(z′, 0) |B(z′, δ)| dV (z′) = µc(δ)

∫

Nj

f(z′, 0)dV (z′). �

We notice that the open set U :=

N
⋃

j=1

Uj contains D̄.

The theorem 8.5 in the appendix, which generalizes to s.c.c. domains a theorem by Rossi [20] done
for strictly pseudo convex domains, gives us the existence of the strictly c -convex domain E in C

n

such that π : Ē → D̄. Now on we fix this s.c.c. domain E.

4 Extension of the form ω.

Let ω be a (p, q) form in Lr(D), ∂̄ closed ; we extend it in E by use of the retraction π in the
following manner : ω̃ := π∗ω.

Lemma 4.1 We have ∂̄ω̃ = 0. Moreover if ω ∈ Lr(D) we have ω̃ ∈ Lr(E) with ‖ω̃‖Lr(E) ≤
µc(δ)‖ω‖Lr(D).

Proof.
Because the retraction π is holomorphic we get ∂̄ω̃ = π∗∂̄ω = 0. Moreover the lemma 3.4 gives

that ω̃ is still in Lr(E) ; we start by extending ω to U
⋂

M by zero outside D̄ ; we had that

the coefficients of ω̃ can be written f ◦ π hence, applying lemma 3.4 to the functions |f ◦ π|r

we get ‖ω̃‖Lr(Uj)
≤ µc(δ)‖ω‖Lr(Nj)

. We have only a finite number of open sets Uj , so we get

‖ω̃‖Lr(U) . µc(δ)‖ω‖Lr(D). Because E ⊂ U we get ‖ω̃‖Lr(E) ≤ µc(δ)‖ω‖Lr(D). �

Now E is s.c.c. in C
n and, with r ≥ 2n+2, we can solve the ∂̄ in the space L∞(E) : ∂̄ũ = ω̃, ũ ∈

L∞(E) by the theorem 2.1. Fix ω ∈ Lr
(p,q)(D), ∂̄ω = 0, with ω̃ as above, we have ũ ∈ L∞(E) also

fixed.
We shall need the lemma

Lemma 4.2 In an open set Uj of our covering, there is (p, q) form ṽj such that ∂̄ṽj = ∂̄M ṽj = ω̃.
This means that the ∂̄ of the form ν̃j read in (Uj , ϕj) does not contain any dz̄′′k . Moreover the
coefficients of ṽj are bounded in Uj and holomorphic in the fibers of π.

Proof.
We work directly in T = Tj by use of the bi-holomorphism ϕj and we set U := Uj , ϕ := ϕj.

The first part is coming from the fact that ω̃ read in (U, ϕ) does not contain any form dz̄′′l .
Suppose that ũ contains such a form, we have : ũ = vldz̄

′′
l + Γl with Γl not containing dz̄′′l ; notice

that the Γl are unique and so linear in ũ. Hence, keeping the notation ũ for its reading in (U, ϕ),

with the notation ∂̄z′
k
ũ =

∂ũ

∂z̄′k
,
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∀k = 1, ..., d, ∂̄z′
k
ũ = ∂̄z′

k
vl ∧ dz̄′′l + ∂̄z′

k
Γl

cannot have terms in dz̄′′l because ω̃ has not, hence we get ∂̄z′
k
vl ∧ dz̄′′l = 0. So we get :

∂̄z′(ũ−

n
∑

l=d+1

vl ∧ dz̄′′l ) = ω̃.

on the other hand we get : ∂̄z′′
k
ũ = ∂̄z′′

k
vl ∧ dz̄′′l + ∂̄z′′

k
Γl and, because there are no terms of the form

dz̄′′k ∧ dz̄′′l in ω̃, we get necessarily ∀l, k = d+ 1, ..., n, ∂̄z′′
k
vl ∧ dz̄′′l = 0. So the Γl are holomorphic in

the variables z′′. Hence we showed ṽj := ũ −
n

∑

l=d+1

vl ∧ dz̄′′l =
n

∑

l=d+1

Γl is still a solution of ∂̄ṽj = ω̃

and, because the coefficients of ũ are bounded, we get all the properties stated in the lemma. We
still notice that ṽj is linear with respect to ũ. �

Lemma 4.3 There is a (p, q) form ṽ such of that, in E, ∂̄ṽ = ∂̄M ṽ = ω̃. Moreover the coefficients
of ṽ are bounded in E and holomorphic on the fibers ∀ζ ∈ D, Fζ := π−1(ζ).

Proof.
Let us take two open sets of our covering: Uj , Uk ; the lemma 4.2 gives us:

ũ = vj ∧ dz̄′′ + ṽj in Uj ∩ E with ṽj without any dz̄′′l .
The same way in the open set Uk we have :

ũ = vk ∧ dz̄′′ + ṽk in Uk ∩ E with ṽk without any dz̄′′l .
So in the intersection of the two sets, because ũ is global, choosing one of these two systems of
coordinates and with clear notations, we get:

(vj − vk) ∧ dz̄′′ + (ṽj − ṽk) = 0 in Uj ∩ Uk ∩ E.
Because the ṽj do not contain the dz̄′′l , we necessarily have ṽj = ṽk and vj = vk. So the forms ṽj
make a global form ṽ just posing ṽ := ṽj in Uj . �

5 Estimates in the case of a submanifold of Cn .

We shall show the following theorem :

Theorem 5.1 Let M be a complex submanifold of dimension d in C
n and a s.c.c. domain D

such that D is relatively compact with smooth C3 boundary in M. Let again ω be a (p, q) form in
Lr
p,q(D), ∂̄ω = 0 with r ≥ 2n+ 2, c ≤ q ≤ n. Then there is a (p, q − 1) form u in Λǫ

(p,q−1)(D̄), ǫ =
1

2
−

n + 1

r
, such that ∂̄u = ω.

Proof.
We restrict the form ṽ got in the lemma 4.3 to D, u := ṽ|D, and we need to see that, on D, ∂̄u = ω.
It is enough to see this in an open set Uj of our covering.

We shall use that ∂̄ṽ = ω̃ in the distributions sense, with ṽ ∈ L∞(E). So let χ ∈ D(n−p, n−q)(Uj

⋂

D)
; we get

〈

∂̄u, χ
〉

M
= (−1)q+1

〈

u, ∂̄χ
〉

M
;

with the scalar product of the manifold M. We read these data in (Uj, ϕj) and we keep the same
names.
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We extend the form χ from Nj = Uj

⋂

M to the whole Uj in making it constant with respect to

z”. Let us denote χ̃ this extended form.
Because the form ṽ = ṽj in Tj is holomorphic in the variables z”, its values in (z′, z”) is the mean

value of its values in the ball centered at (z′, 0) ∈ Nj and with radius δ in z”. The lemma 3.3 gives:
∫

Tj

(ṽ, ∂̄χ̃)dm =

∫

Nj

{

∫

B(z′,δ)

(ṽ, ∂̄χ̃)(z′, z”)dm(z”)}dV (z),

but
∫

B(z′,δ)

(ṽ, ∂̄χ̃)(z′, z”)dm(z”) =

∫

B(z′,δ)

∑

I,J

ṽI,J(z
′, z”)χ̃′

IcJc(z′, z”)dm(z”)

where χ̃′ := ∂̄χ̃. Because the form χ̃ is compactly supported in Nj and is constant on the fibers, we
get

∫

B(z′,δ)

∑

I,J

ṽI,J(z
′, z”)χ̃′

IcJc(z′, z”)dm(z”) =
∑

I,J

χ′
IcJc(z′)

∫

B(z′,δ)

ṽI,J(z
′, z”)dm(z”);

So we get, because

∫

B(z′,δ)

ṽI,J(z
′, z”)dm(z”) = c(δ)uI,J(z

′), with c(δ) := |B(z′, δ)| ,

〈

ṽ, ∂̄χ̃
〉

Tj
:=

∫

Tj

(ṽ, ∂̄χ̃)dm = c(δ)

∫

Nj

(u, ∂̄χ)(x)dV (x) = c(δ)
〈

u, ∂̄χ
〉

Nj
.

keeping the same notations, we come back to the open set Uj and, because χ is compactly supported
in Nj = M ∩ Uj , we get, because Tj = ϕj(Uj) is a tube around Nj :

〈

ṽ, ∂̄χ̃
〉

:= c(δ)
〈

u, ∂̄χ
〉

M
.

exactly by the same way we get:
〈

∂̄ṽj , χ̃
〉

= c(δ)
〈

∂̄u, χ
〉

M
,

And, because ω̃ is constant on the fibers, we get
〈ω̃, χ̃〉 = c(δ)〈ω, χ〉M .

Recall that ∂̄ṽ = ω̃ in the distributions sense, and, because ω̃ is a current in Lr
p,q(E), this is also

true for ∂̄ṽ. Hence we have, because χ̃ ∈ Lr′

n−p,n−q(E), with r′ the conjugate exponent of r, that
〈

∂̄Γ, χ̃
〉

= 〈ω̃, χ̃〉 is well defined, even if χ̃ is not compactly supported. The previous equalities give
〈

∂̄u, χ
〉

D
= 〈ω, χ〉D. Because this is true for all C∞ functions compactly supported χ in an open set

Tj of a covering of D̄, we get ∂̄u = ω in the distributions sense on D, with u ∈ Λǫ
(p,q−1)(D̄). �

Remark 5.2 We have no such estimates in the case r < 2n+2 because the mean value in a ball of
the fiber of a function in Ls in E and holomorphic on the fibers is no longer in Ls(D) for s < ∞,
which can be easily seen.

Now we are in position to apply the raising steps theorem.

Theorem 5.3 Let M be a complex submanifold of dimension d in C
n and D be a s.c.c. domain

which is relatively compact with smooth C3 boundary in M. Let ω be a (p, q) form in Lr
p,q(D), ∂̄ω = 0

with 1 < r < 2d+ 2, c ≤ q ≤ n. Then there is a (p, q − 1) form u in Ls(D), with
1

s
=

1

r
−

1

2d+ 2
,

such that ∂̄u = ω.

Proof.
In order to have the local result for all points in D̄ we use the same method as in [2], but with the
proposition 8.2 and the results of Ma and Vassiliadou [17]. Let us see it.
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Let ζ ∈ ∂D and (V, ϕ) be a chart in a neighbourhood of ζ in M and ω a (p, q) form in
Lr
p,q(D), ∂̄ω = 0 with 1 < r < 2d + 2, c ≤ q ≤ n. We read this situation in C

d via the chart

(V, ϕ) so we have an open set W := ϕ(V ) ⊂ C
d and a piece of s.c.c. domain ϕ(V ∩ D) near the

point η := ϕ(ζ) ∈ C
d because the bi-holomorphic map ϕ keeps the s.c.c. property. By use of the

localizing proposition 8.2 there exist a s.c.c. domain E ⊂ ϕ(V ∩D), with C3 boundary, which shares
a part of its boundary near η with the boundary of ϕ(V ∩D). We read the form ω by ϕ, which gives
us a ω̃ := ϕ∗ω still in Lr

p,q(ϕ(V ∩D)), ∂̄ω̃ = 0 hence ω̃ ∈ Lr
p,q(E). Now we apply the results of Ma

and Vassiliadou [17], theorem 2.1 here, to get a (p, q − 1) form ũ solution of ∂̄ũ = ω̃, ũ ∈ Ls(E),

with
1

s
=

1

r
−

1

2d+ 2
. Back to D via ϕ−1 we have our local estimates : set u := (ϕ−1)∗ũ, then

∂̄u = ω, u ∈ Ls(ϕ−1(E)).
Hence we have the (i) of the raising steps theorem 1.5.

We have the global result, i.e. the (ii) of the raising steps theorem 1.5 : if µ ∈ L2n+2
p,q (D), ∂̄µ = 0

then we have a solution v in L∞
(p,q−1)(D) such that ∂̄v = µ by use of theorem 4.3. Now we take

ω ∈ Lr
p,q(D), ∂̄ω = 0, then we have that the optimal exponent for the solution u is s such that

1

s
=

1

r
−

1

2d+ 2
, then we choose any r0 > max (2n+2, s) as a threshold and, because L∞

p,q−1(D) ⊂

Lr0
(p,q−1)(D), for D is bounded, we have a global solution to ∂̄v = µ in Lr0

(p,q−1)(D) if µ ∈ Lr0
(p,q)(D).

Now s < r0 gives that u ∈ Ls
(p,q−1)(D), by the raising steps theorem 1.5, and this ends the proof.

�

6 The case of C3 c -convex intersection.

We proceed exactly the same way than for just one s.c.c. domain.
For the local estimates we use the localizing proposition 8.3 and we repeat the proof above. This is
the point where we need to have at most N = n − 3 domains in a Stein manifold of dimension n,
compare to n− 2 domains in C

n. By use of Ma and Vassiliadou main theorem 2.2 and with ν ∈ N
+

defined there, we get :

Theorem 6.1 Let M be a complex submanifold of Cn of dimension d and a C3 c -convex intersection
domain D such that D is relatively compact in M. Let ω be a (p, q) form in Lr

p,q(D), ∂̄ω = 0 with
q ≥ c, 1 < r < 2n + 2ν. Then there is finite covering {Uj}j=1,...,N of D̄ and (p, q − 1) form uj in

Ls(Uj ∩D), such that ∂̄uj = ω in Uj ∩D with
1

s
=

1

r
+

1

λ
− 1, where 1 ≤ λ <

2n+ 2ν

2n− 1 + 2ν
.

More precisely,
i) For any 1 < r < 2n+ 2ν, there exists cr(D) positive constant such that

‖uj‖Ls
(p,q−1)

(Uj∩D) ≤ cr(D)‖ω‖Lr
(p,q)

(Uj∩D)

with
1

s
=

1

r
−

1

2n+ 2ν
.

ii) For r ≥ 2n + 2ν, we have ‖uj‖L∞

(p,q−1)
(Uj∩D) ≤ ar(D)‖ω‖Lr

(p,q)
(Uj∩D) for some positive constant

ar(D).
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Now for the global threshold, we copy the proof of theorem 4.3, replacing r0 > max (2n + 2, s)
by r0 > max (2n + 2ν, s). We remark that we have not the Lipschitz estimates here. So we get,
still with ν ∈ N

+ given by Ma and Vassiliadou main theorem 2.2:

Theorem 6.2 Let M be a complex submanifold of dimension d in C
n and a C3 c -convex intersection

domain D such that D is relatively compact in M. Let ω be a (p, q) form in Lr
p,q(D), ∂̄ω = 0 with

r ≥ 2n+ 2ν, c ≤ q ≤ n. Then there is a (p, q − 1) form u in L∞
(p,q−1)(D) such that ∂̄u = ω.

So we can apply the raising steps theorem to get the analogous results in the case of a C3 c -convex
intersection domain D such that D is relatively compact in M, a closed complex submanifold of
C

n.

7 Estimates in the case of a Stein manifold.

We can apply a theorem of Bishop and Narashiman (see theorem 5.3.9. of Hörmander [12]) which
tells us that, if Ω is a Stein manifold of dimension d, there is an element f ∈ H(Ω)2d+1 which defines
a regular injective and proper application from Ω in C

2d+1 . Denote M := f(Ω) ; if D′ is the strictly
c -convex domain in Ω, relatively compact in Ω, then its image D = f(D′) is a strictly c -convex
domain in M . We can apply theorem 5.3.

Of course the same is true for C3 c -convex intersection in Stein manifold M and we get our main
theorems.

We get a easy corollary of our main theorems 1.1, (see Ma and Vassiliadou [17], corollary 1.):

Corollary 7.1 Let Ω be a Stein manifold of dimension n and a strictly c -convex domain D, or a
C3 c -convex intersection, such that D is relatively compact with smooth C3 boundary in Ω. Then,
for q ≥ c, the operator ∂̄ : L2

(p,q−1)(D) → L2
(p,q)(D) has closed range.

Proof.
This is fairly well known: for instance theorem 1.1.1 in [11]. �

The above will imply the L2 existence of the ∂̄ -Neumann operator on c -convex domains so we
get an automatic improvement of regularity in the case of a C∞ smoothly bounded s.c.c. domain,
by theorems 2 and 4 in Beals, Greiner et Stanton [5]:

Theorem 7.2 Let Ω be a Stein manifold of dimension n and a strictly c -convex (s.c.c.) domain
D such that D is relatively compact with smooth C∞ boundary in Ω. Let k ∈ N and ω a (p, q) form in
W k,r(D), ∂̄ω = 0 with 1 < r < 2n+2, c ≤ q ≤ n. Then there is a (p, q−1) form u in W k+1/2,r(D),
such that ∂̄u = ω.

If ǫ > 0 and ω is in Λǫ
p,q(D), ∂̄ω = 0 with c ≤ q ≤ n, then there is a (p, q − 1) form u in

Λ
ǫ+1/2
(p,q−1)(D̄) such that ∂̄u = ω.

Here we use the notation W k,r(D) for the Sobolev space of functions whose derivatives of order less
than k are in Lr.

We notice that there is no hypothesis here in the case r > 2 on the compactness of the support
of the form ω, in contrast to the previous results we had in [2].
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8 Appendix.

Lemma 8.1 Let A, B be two self adjoint matrices such that A has at least n−c+1 strictly positive
eigenvalues and B is positive. Then A+B has at least n− c + 1 strictly positive eigenvalues.

Proof.
Let E be the space generated by the eigenvectors associated to the strictly positive eigenvalues of
A. Then E has dimension at least n− c+ 1. Let S := A +B, because B is positive, we get

∀x ∈ E, 〈Sx, x〉 = 〈Ax, x〉+ 〈Bx, x〉 > 0.
Now let e1, ..., ek be the eigenvectors associated to the negative eigenvalues of S. We set F =
span{e1, ..., ek}, we have that F is invariant by S and we have ∀x ∈ F, 〈Sx, x〉 ≤ 0. If the space
G := E ∩ F is of non zero dimension, we get ∀x ∈ G, x 6= 0, 〈Sx, x〉 > 0 and 〈Sx, x〉 ≤ 0 so
a contradiction. Hence dimG = 0 and dimF ≤ codimE = c − 1, which means that S has a least
n− c+ 1 strictly positive eigenvalues. �

The next proposition generalizes the one in [1], proposition 1.1, done for the pseudo convex case.

Proposition 8.2 (Localizing s.c.c. domain)Let D be a strictly c -convex domain with C3 boundary
in C

n. Let ζ ∈ ∂D, U a neighbourhood of ζ in C
n and B(ζ, r) a ball centered at ζ and of radius r

such that B(ζ, 3r) ⊂ U ; then there is a domain D̃, s.c.c. and with C3 boundary such that we have
D̃ ⊂ U and ∂D ∩ B(ζ, r) = ∂D̃ ∩ B(ζ, r).

Proof.
Let ρ be a defining function for D. Let ζ ∈ ∂D and U a neighbourhood of ζ in C

n. Consider a
positive convex increasing function χ defined on R

+, C∞ such that χ = 0 in (0, r) . Set ρ̃(z) :=
ρ(z)+aχ(|z − ζ|2) ; we have ∂∂̄ρ̃ = ∂∂̄ρ+a∂∂̄χ. But, as is easily seen, i∂∂̄χ is positive at each point
z, hence, setting A = i∂∂̄ρ, B = ai∂∂̄χ, we can apply lemma 8.1 and we have that the domain
D̃ := {ρ̃ < 0} is also s.c.c. with smooth C3 boundary.
Now we choose r small enough to have B(ζ, 3r) ⊂ U. We have ρ̃(z) < 0 ⇒ ρ(z) < −aχ(|z − ζ|2) ;
so we set :

α := sup z∈D−ρ(z) < ∞, by the compactness of D̄ and β := inf z∈U\B(ζ,2r)χ(|z − ζ|2) = 4r2.

Then with a :=
α + 1

β
we get that {ρ̃(z) < 0} ⊂ U because if not ∃z /∈ B(ζ, 3r) :: ρ(z) <

−aχ(|z − ζ|2) < −(α + 1) which is not possible.
Of course in the ball B(ζ, r) we have ∂D ∩B(ζ, r) = ∂D̃ ∩B(ζ, r). �
We shall need to extend this proposition to the case of C3 c -convex intersection.

Proposition 8.3 (Localizing s.c.c. intersection)Let D be a C3 c -convex intersection in C
n. Let

ζ0 ∈ ∂D, U a neighbourhood of ζ0 in C
n and B(ζ0, r) a ball centered at ζ and of radius r ; then

there is a domain D̃, C3 c -convex intersection such that we have D̃ ⊂ U and ∂D ∩ B(ζ0, r) =
∂D̃ ∩B(ζ0, r).

Proof.
By assumption the 1 -forms {dρj(ζ)}j∈I are linearly independent in

⋂

j∈I

{ρj(z) ≤ 0} and |I| ≤ n−3.

Take a point ζ0 ∈
⋂

j∈I {ρj(z) = 0}, by translation in C
n, we may suppose that ζ0 = 0, and we have

to define the domain D̃ with the properties stated in the proposition.
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Take a vector h ∈ C
n of norm 1 and set, with a · b :=

n
∑

k=1

akbk,

ρ(z) := (|z|2 − r2)(1 + h · z + h̄ · z̄).
Because 1+h · z + h̄ · z̄ > 0 near the origin, this is a defining function for the ball centered at 0 and
of radius r.

Now the claim is: we can choose the vector h in such a way that dρj(0) and dρ(0) are linearly
independent for j ∈ I.

We have dρ(0) = (−r2)(h · dz + h̄ · dz̄).
We already know that the dρj(0) are linearly independent and span a space of dimension less than
n−3, so we take h in such a way that the form (h·dz+h̄·dz̄) is not in the span of the dρj(0) for j ∈ I.
This is independent of the choice of r > 0. By continuity this is still true for z in a neighbourhood
V of 0 with V independent of r > 0 so we now choose r > 0 in order that B(0, r) ⊂ V. We extend
ρ outside of the ball B(0, r) to be a C∞ function ρ̃ in C

n, ρ̃ = ρ in B(0, r) and strictly positive in
B̄(0, r)c in order for this ρ̃ to be a genuine defining function for B(0, r). So we get the condition (i)
in the definition 1.2.

The condition (ii) is easier because we have that

∂∂̄ρ̃ = (1+h ·z+ h̄ · z̄)

n
∑

k=1

dzk ∧ dz̄k+h ·dz∧z ·dz̄+ z̄ ·dz∧ h̄ ·dz̄ =

n
∑

k=1

dzk ∧ dz̄k+O(|z|).

Hence there is a subspace T I
z such that for i ∈ I the Levi forms Lρi restricted on T I

z are positive
definite by hypothesis and, because Lρ̃ is positive definite everywhere, we have that it is also positive
definite on T I

z which has the right dimension n− c+ 1.
It is at this point that we need N ≤ n− 3, because we add the new domain B(0, r). �

On a theorem of H. Rossi.

We shall use the following lemma.

Lemma 8.4 Let A, B two self adjoint n×n matrices such that A has at least d − c + 1 strictly
positive eigenvalues and kerA is of dimension n− d and B is positive and has n− d eigenvectors in
kerA associated to strictly positive eigenvalues. Then A + B has at least n− c+ 1 strictly positive
eigenvalues.

Proof.
Because A is self adjoint, the spaces kerA and H := kerA⊥ are invariant for A. Because kerA
has dimension n − d and there is n − d eigenvectors of B in it, then kerA is generated by these
eigenvectors. Hence, because B is self adjoint, this means that kerA and H are also invariant for
B. Set S := A+B.

Let v ∈ kerA such that Bv = λv, λ > 0, then Sv = Av +Bv = Bv = λv ; hence on kerA, S has
n− d strictly positive eigenvalues.

On H we have B ≥ 0 and A has at least d − c + 1 strictly positive eigenvalues, hence on H we
can apply lemma 8.1 and we have that S has at least d − c + 1 strictly positive eigenvalues on H.
Because H and kerA have an intersection reduced to {0}, S has d− c+1+n−d = n− c+1 strictly
positive eigenvalues. �
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The aim is to extend a theorem by H. Rossi [20] where we replace strictly pseudo convex by
strictly c -convex.

Theorem 8.5 Let M be a closed submanifold of a Stein domain U0 in C
n. Suppose there is a

neighbourhood U of M and an holomorphic retraction π : U → M. Let D be a strictly c -convex
domain in M, D̄ ⊂ M.

Then there is a strictly c -convex domain E in C
n such that :

(A) Ē ⊂ U ∩ U0

(B) E ∩M = D
(C) ∂E cuts M transversely along ∂D
(D) π : Ē → D̄.

Proof.
I shall copy the main points in the proof by H. Rossi making the necessary changes.

Docquier and Grauert (see [20]) give us a neighbourhood U of D̄ in C
n and a retraction π :

U → M ∩ U such that the fibers of π cut transversely M ∩ U and are of dimension n− d.
We set for z ∈ U and j = 1, · · · , n, fj(z) = zj −πj(z). The equations z−π(z) = 0 define the sub

manifold M :
if z ∈ M, π(z) = z because π is a retraction on M ; if z /∈ M, because π(z) ∈ M, z − π(z) 6= 0.
Moreover, because the fibers of π cut transversely M at any point ζ of D̄ , we have that the
jacobian matrix contains a (n − d)×(n− d) sub determinant which is not 0 at ζ, hence not 0 in a
neighbourhood of this point. This means that, by a change of variables, the set (fj)j=1,··· ,n contains
a coordinates system for the fibers of π at any point of D̄, hence at all points of a neighbourhood
U1 of D̄ in C

n. These "explicite" functions replace the one generating the idealsheaf of M used by
H. Rossi.

Let ρ be a defining function for D in M , we still follow H. Rossi and we set:

σ(z) := ρ ◦ π + A
n

∑

j=1

|fj |
2,

where the constant A will be chosen later. Because F (z) :=

n
∑

j=1

|fj(z)|
2 = 0 on M ∩ U, it exists a

ǫ0 > 0 such that {F (z) < ǫ0} ∩ U ⊂ U1.
It remains to see that σ is strictly c -convex, i.e. i∂∂̄σ has at least n − c + 1 strictly positive

eigenvalues.
Fix ζ ∈ D̄ ; because D is strictly c -convex i∂∂̄ρ ◦ π(ζ) has at least d − c + 1 strictly positive
eigenvalues on the tangent space to M at ζ. Because the set (fj)j=1,··· ,n contains a coordinates

system for the fibers of π we have i∂∂̄(

n
∑

j=1

|fj |
2) has all, i.e. n− d, strictly positive eigenvalues on

the tangent space to the fiber π−1π(ζ) at ζ.
Because the kernel of i∂∂̄ρ ◦ π is the tangent space to the fiber π−1π(ζ), we get, by lemma 8.4, that

i∂∂̄σ = i∂∂̄ρ ◦ π + i∂∂̄(

n
∑

j=1

|fj |
2) has at least n− c + 1 strictly positive eigenvalues. So we have at

least n− c+1 strictly positive eigenvalues at any point of D̄ hence also in a neighbourhood V of D̄
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in C
n. Now we take Aǫ0 > sup z∈D |ρ(z)| and we set E := {z ∈ U ∩ V :: σ(z) < 0} ; we get exactly

as H. Rossi, that E is strictly c -convex and we have all properties of the theorem. �

We have to get an analogous result in the case where D is a C3 c -convex intersection in M.

Theorem 8.6 Let M be a closed submanifold of a Stein domain U0 in C
n. Suppose there is a

neighbourhood U of M and an holomorphic retraction π : U → M. Let D :=
⋂N

k=1Dk be a C3 c
-convex intersection in M, D̄ ⊂ M.

Then there is a C3 c -convex intersection E :=
⋂N

k=1 D̃k in C
n such that :

(A) Ē ⊂ U ∩ U0

(B) E ∩M = D
(C) ∂E cuts M transversely along ∂D
(D) π : Ē → D̄.

Proof.
By theorem 8.5, and with the same notations, we can extend each Dk by D̃k := {ρ̃k < 0} in C

n,
with ρ̃k := ρk ◦ π + AF where ρk are the defining function for Dk, such that they fulfil the C3 c
-convex intersection requirements in M. The point is to see that we can choose A in such a way
that D̃ :=

⋂N
k=1 D̃k fulfils the C3 c -convex intersection requirements in C

n.
First we choose Aǫ0 > sup k=1,...,N, z∈Dk

|ρk(z)| in order to have that all D̃k are in the domain of
the retraction π as for theorem 8.5.

Fix a point z0 ∈ D̃ and take a vector X in C
n; then we can decompose it as X = XM ⊕ XF

where XM is tangent at z0 to the manifold {z :: z − π(z) = z0 − π(z0)}, "parallel to M ", and XF

is tangent to the fiber passing through z0, {z :: π(z) = π(z0)}, because we know that the fibers are
transverse to M, which is still true in a neighbourhood V of D̄ in C

n. Choose A big enough to have
all the D̃k in V, the same way we did it in the proof of theorem 8.5.

Now if z ∈ D̄ ⊂ M we already have that the {dρ̃j(z)}j∈I are linearly independent because there
we have F (z) = dF (z) = 0 hence dρ̃j(z) = dρj(z). So we make the assumption that z /∈ M. Let
I = (i1, ..., il) and suppose that the {dρ̃j}j∈I are not linearly independent, then there is λ ∈ R

|I|

such that
∃z ∈ D̃ :: 0 =

∑

j∈I

λjdρ̃j(z) =
∑

j∈I

λjd(ρj ◦ π(z) + (
∑

j∈I

λj)AdF (z).

This means that

−(
∑

j∈I

λj)AdF (z) =
∑

j∈I

λjd(ρj ◦ π(z). (8.1)

Take any vector X tangent to C
n at z ; then we have X = XM ⊕XF and 〈d(ρj ◦ π)(z), XF 〉 = 0

because ρj ◦ π(ζ) is constant along the fiber {ζ :: π(ζ) = π(z)}. The same way 〈dF (z), XM〉 = 0
because F (z) = |z − π(z)|2 is constant along {ζ :: ζ − π(ζ) = z − π(z)}. So

−(
∑

j∈I

λj)A〈dF (z), X〉 = −(
∑

j∈I

λj)A〈dF (z), XF 〉 =

=
∑

j∈I

λj〈d(ρj ◦ π)(z), XF 〉 = 0.
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Hence for any X ∈ C
n, (

∑

j∈I

λj)A〈dF (z), X〉 = 0 which means that the 1 -form (
∑

j∈I

λj)AdF (z) = 0

hence, because dF (z) 6= 0 for z /∈ M, we have that (
∑

j∈I

λj) = 0.

But by (8.1) this implies
∑

j∈I

λjd(ρj ◦ π(z) = 0 which means that λj = 0 because the dρj(ζ) are

independent at all points and in particular at the point ζ = π(z). So a contradiction which proves
that the dρ̃k are linearly independent.

To have the ii) fix z ∈
⋂

j∈I

{ρ̃j ≤ 0}, and set ζ := π(z) ∈ D̄. The points z, ζ belongs to an open set

U := Uj of the covering (Uj, ϕj) done via lemma 3.2, so reading by ϕ := ϕj we are in the following
situation (I keep the same notations) : we have z = (z′, z”), ζ = (z′, 0) and the retraction π is
the orthogonal projection w → (w′, 0) where w′ := (w1, ..., wd) ; w” := (wd+1, ..., wn). The tangent
space Tζ(M) is just {w :: w” = 0} and by the hypotheses on the ρj(w) = ρj(w

′) we know that
there is a subspace T I

ζ , of dimension at least d − c + 1, of the tangent space Tζ(M) on which the
Levi forms Lρj(ζ) are positive definite. Lifting this space Tζ(M) at the point z keeping it parallel
to itself, call it T I

z , it still have dimension d − c + 1, and because the ρj do not depend on w”, we
still have that the Levi form L(ρj ◦ π)(z) on T I

z is the same as the Levi form Lρj(ζ) on T I
ζ , so it is

positive definite.
Now we have ρ̃k := ρk ◦ π +AF and i∂∂̄F has all its eigenvalues positive so on T I

z the Levi form
Lρj(z) is positive definite by the proof of lemma 8.1. �
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