
HAL Id: hal-01267008
https://hal.science/hal-01267008v1

Preprint submitted on 3 Feb 2016 (v1), last revised 19 Jan 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On estimates for the ∂̄ equation in Stein manifolds.
Eric Amar

To cite this version:

Eric Amar. On estimates for the ∂̄ equation in Stein manifolds.. 2016. �hal-01267008v1�

https://hal.science/hal-01267008v1
https://hal.archives-ouvertes.fr


On estimates for the ∂̄ equation in Stein manifolds.

Eric Amar

Contents

1 Introduction. 1

2 Strictly c -convex domain in C
n. 3

3 The Docquier - Grauert holomorphic retraction. 3

4 Extension of the form ω. 5

5 Estimates in the case of a submanifold of C
n . 6

6 Estimates in the case of a Stein manifold. 8

7 Appendix. 8

Abstract

We generalize to strictly c -convex domains in Stein manifold, Lr − Ls and Lipschitz es-

timates for the solutions of the ∂̄ equation done by Ma and Vassiliadou for domains in C
n.

For this we use a Docquier-Grauert holomorphic retraction plus the raising steps method I

introduce earlier. This gives results in the case of domains with low regularity, C3, for their

boundary.

1 Introduction.

The solutions with Lr and Lipschitz estimates of the equation ∂̄u = ω, ∂̄ω = 0 revealed to be
very important in complex analysis and geometry.

The first results of this kind were done by the use of solving kernels: Grauert-Lieb [8], Henkin [9],
Ovrelid [15], Skoda [17], Krantz [12], in the case of strictly pseudo-convex domains with C∞ smooth
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boundary in C
n, with the exception of Kerzman [11] in the case of (0, 1) forms in strictly pseudo-

convex domains with C4 smooth boundary in Stein manifolds.
Here we shall be interested in strictly c -convex, s.c.c. for short, domain D in a complex manifold.

Such a domain is defined by a function ρ of class C3 in a neighbourhood U of D̄ and such that ∂∂̄ρ
as at least n− c+ 1 strictly positive eigenvalues in U.

These domains in C
n have been studied in the case of smooth C∞ boundary by Fisher and Lieb [7].

They still use kernels method.
Definitive results where obtained in a very general framework by Beals, Greiner et Stanton [5].

They used the technology, heavy but extremely powerful, of pseudo-differentials operators. They
study domains relatively compact with smooth C∞ boundary in complex manifold which are more
general that s.c.c..

Ma and Vassiliadou [14] got very nice estimates even in the case of intersections of s.c.c. domains
with C3 boundary. I shall use their results here.

Quite recently C. Laurent-Thiébaut [13] get this kind of result for s.c.c. domains with smooth
C∞ boundary in complex manifold by use of the method of "bumps", as was done by Kerzman [11].

Let us state our main result which is completely analogous to the one Ma and Vassiliadou [14]
got for domains in C

n.

Theorem 1.1 Let Ω a Stein manifold of dimension n and a strictly c -convex (s.c.c.) domain D
such that D is relatively compact with smooth C3 boundary in Ω. Let ω a (p, q) form in Lr

p,q(D), ∂̄ω =

0 with 1 < r < 2n+2, c ≤ q ≤ n. Then there is a (p, q− 1) form u in Ls(D), with
1

s
=

1

r
−

1

2n+ 2
, such that ∂̄u = ω .

If ω is in Lr
p,q(D), ∂̄ω = 0 with r ≥ 2n + 2, c ≤ q ≤ n, then there is a (p, q − 1) form u in

Λǫ
(p,q−1)(D̄) such that ∂̄u = ω with ǫ =

1

2
−

n+ 1

r
.

The spaces Λǫ
(p,q−1)(D̄) are the (isotropic) Lipschitz spaces of order ǫ and we set Λ0

(p,q−1)(D̄) :=
L∞
(p,q−1)(D).

It has to be noticed that the boundary regularity is just C3, which is allowed by kernels. So it
seems that this is a new result in a Stein manifold for such a low regularity.
In the case of a C∞ boundary regularity then this result is contained in Beals, Greiner et Stanton [5]
one, but the proof is completely different and, in some sense, "lighter" because it uses for the
analytic part kernels methods plus essentially geometric ones.

The first result we get is a non optimal theorem.

Theorem 1.2 Let M be a closed submanifold of dimension d of a Stein domain U0 in C
n. Let D

be a s.c.c. domain relatively compact in M (D̄ ⊂ M) with C3 boundary. Then, with r ≥ 2n+ 2, we
can solve in D, ∂̄u = ω when ∂̄ω = 0 and with u ∈ Λǫ

(p,q−1)(D̄) if ω ∈ Lr
(p,q)(D), ∂̄ω = 0, c ≤ q ≤ n,

with ǫ =
1

2
−

n+ 1

r
.

The results of Ma and Vassiliadou [14] gives good estimates in case of domains in C
n. The point

here was to pass from C
n to a submanifold of Cn. To do this I was inspired by a nice paper of H.

Rossi [16] on Docquier Grauert holomorphic retraction.
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Then we use the raising steps method [2] (see also [4], [3]) and to use it we need a global result
and we use these Lr −Λǫ estimates as a threshold. We get the same optimal results as for domains
in C

n.

So we get

Theorem 1.3 Let M be a complex submanifold of dimension d in C
n and a s.c.c. domain D

such that D is relatively compact with smooth boundary of class C3 in M. Let ω a (p, q) form in
Lr
p,q(D), ∂̄ω = 0, c ≤ q ≤ n, with 1 < r < 2d+ 2. Then there is a (p, q − 1) form u in Ls(D), with

1

s
=

1

r
−

1

2d+ 2
, such that ∂̄u = ω.

If r ≥ 2n+2 then there is a (p, q−1) form u in Λǫ
(p,q−1)(D̄) such that ∂̄u = ω with ǫ =

1

2
−

d+ 1

r
.

To pass to Stein manifold, we use an embedding theorem of Bishop and Narashiman (see theorem
5.3.9. of Hörmander [10]) to see an abstract Stein manifold of dimension d as a submanifold of C2d+1.
So we get our main result.

This work will be presented in the following way.
• First we recall the estimates in the case of strictly c -convex domains in C

n done by Ma and
Vassiliadou [14].
• We recall the Docquier Grauert holomorphic retraction on a complex submanifold M of Cn.
• We extend a form ω from a domain D s.c.c. in M to a domain E s.c.c. in C

n by use of a
generalization of a theorem of H. Rossi [16]. We then solve the form in E by the known estimates
in C

n.
• We show that the solution in E can be restricted to D to get a solution in D with good enough

estimates, for r ≥ 2n+ 2. This gives theorem 1.2.
• We use the raising steps theorem with the threshold given by theorem 1.2. So we have theo-

rem 1.3 for the case of a submanifold of Cn.
• By use of a theorem of Bishop and Narashiman, i.e. the proper embedding of a Stein manifold

of dimension d in C
2d+1, we get our main theorem 1.1 for any Stein manifold.

2 Strictly c -convex domain in C
n.

We shall use the nice estimates for a smoothly C3 bounded c convex domains in C
n obtained by

Ma and Vassiliadou [14] , lemma 5.3.

Theorem 2.1 Let D be a bounded s.c.c. domain in C
n with a C3 defining function. Then

∀ω ∈ Lr
(p,q), ∂̄ω = 0, c ≤ q ≤ n, 1 ≤ r < 2n + 2,

there exists u ∈ Ls
(p,q−1)(D),

1

s
=

1

r
−

1

2n+ 2
, with the following properties:

i) ∂̄u = ω in the sense of currents in D,

ii) if r = 1, u ∈ L
2n+2

2n+1
−η

(p,q−1) for any η > 0.

iii) if 2n+ 2 ≤ r ≤ ∞, u ∈ Λǫ
(p,q−1)(D̄) with ǫ =

1

2
−

n + 1

r
.
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3 The Docquier - Grauert holomorphic retraction.

We have the Docquier-Grauert lemma [6] :

Lemma 3.1 Let K be a compact subset of a closed complex submanifold M of C
n. There is a

neighbourhood U of K and a holomorphic map π : U → U ∩M such that π(ζ) = ζ for ζ ∈ U ∩M.

In fact we have more (Rossi [16], p 172) from the argument of Docquier-Grauert we have that
the fibers π−1πζ of π intersect M transversally at all points of M and are of dimension n− d.

Let M be a complex manifold of dimension d in C
n and D a relatively compact domain strictly

c -convex in M. We have the following lemma.

Lemma 3.2 Let ζ ∈ D̄, there is a neighborhood U of ζ in C
n and a bi-holomorphic application

(U, ϕ), ϕ : U → T such that, with z = (z1, ..., zn) the coordinates in T , we have: ϕ(D)
⋂

T =

{zd+1 = · · · = zn = 0} and the retraction π̃ := ϕ ◦ π ◦ ϕ−1 read in the application ϕ is given by
π̃(z) = (z1, ..., zd, 0, ..., 0), i.e. this is the orthogonal projection onto the subspace of z′ := (z1, ..., zd).
Moreover one can choose for T a tube around ϕ(M) of width δ > 0.

Proof.
The manifold M is given, by use of the retraction π, by the functions fk(ζ) := ζk−πk(ζ), k = 1, ..., n.
We have if ζ ∈ M, ζ − π(ζ) = 0 ; if ζ /∈ M, ζ − π(ζ) 6= 0, because π(ζ) ∈ M. The transversality
of the fibers with respect to M at all points of D̄ insures that the Jacobian of the application
f = (f1, ..., fn) has rank n − d, which is the complex co-dimension of M. Take a point ζ0 ∈ D̄,
there are n− d functions fj which are independent in a neighborhood U of ζ0. Re-numerating the

functions fj and the variables ζk, we may suppose that the determinant (
∂fj
∂ζk

)j,k=d+1,...,n is different

from zero.
Now we shall make the change of variables z = ϕ(ζ) with zj = ζj, j = 1, · · · , d ; zj = fj(ζ), j =

d+ 1, · · · , n. This is actually a change of variables because the Jacobian of ϕ is different from zero
in the open set U. We have that the application ϕ is a bi-holomorphism from the open set U onto
the open set T := ϕ(U).

Let z′ = (z1, · · · , zd) and z” = (zd+1, · · · , zn) ; we have in T that:
N := ϕ(M) = {z = (z′, z”) ∈ T :: z” = 0}.

Now take a tube around N centered in ζ0, T = {z = (z′, z”) :: z” ∈ B((z′, 0), δ)}, we call it again
T, and we still denote U = ϕ−1(T ).

We cover D̄ by a finite number of these bi-holomorphisms (Uj , ϕj). We note Nj the manifold
Nj := ϕj(M ∩ Uj) ⊂ Tj and, diminishing a little bit the Uj if necessary, we can suppose that the
width of the tubes Tj around the Nj is constant and equals δ > 0. We know that there is a constant
µ > 0 such that µ−1 < Jj < µ, where Jj is the Jacobian of ϕj, because there is a finite number of
charts (Uj , ϕj).

We denote dV the Lebesgue measure on the manifold M.

We have the following basic lemma.
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Lemma 3.3 Let f be a function in L1(Uj) and f̃ this function read in the application ϕj , i.e.
f̃ := f ◦ ϕ−1

j , we get
∫

Uj

f(ζ)dm(ζ) =

∫

Nj

∫

B((z′,0),δ)

f̃(z′, z”)Jj(z
′, z”)dm(z”)}dV (z′).

Proof.
This is simply the change of variables formula because ϕj(Uj) = Tj = Nj×B(·, δ) and the Jacobian
of ϕj is Jj .

Lemma 3.4 Let f be a measurable function, positive on M , then
∫

Uj

f ◦ π(ζ)dm(ζ) ≤ µc(δ)

∫

Nj

f(z′, 0)dV (z′),

with dm the Lebesgue measure on C
n, dV the Lebesgue measure on M and c(δ) := |B(x, δ)| .

Proof.
We can apply lemma 3.4 with the notation z = (z′, z”), z′ the coordinates in Nj , z” the coordinates
in the fibers:

∫

Uj

f ◦ π(ζ)dm(ζ) =

∫

Nj

{

∫

B(z′,δ)

f̃(z′, z”)Jj(z
′, z”)dm(z”)}dV (z′),

but here we have f̃(z′, z”) = f(z′, 0) because π̃(z) = (z′, 0) hence the formula is now:
∫

Uj

f ◦ π(z)dm(z) ≤ µ

∫

Nj

f(z′, 0) |B(z′, δ)| dV (z′) = µc(δ)

∫

Nj

f(z′, 0)dV (z′).

So we get the lemma. �

We notice that the open set U :=

N
⋃

j=1

Uj contains D̄.

The theorem 7.4 in the appendix, which generalizes to s.c.c. domains a theorem by Rossi [16] done
for strictly pseudo convex domains, gives us the existence of the strictly c -convex domain E in C

n

such that π : Ē → D̄. Now on we fix this s.c.c. domain E.

4 Extension of the form ω.

Let ω be a (p, q) form in Lr(D), ∂̄ closed ; we extend it in E by use of the retraction π in the
following manner : ω̃ := π∗ω.

Lemma 4.1 We have ∂̄ω̃ = 0. Moreover if ω ∈ Lr(D) we have ω̃ ∈ Lr(E) with ‖ω̃‖Lr(E) ≤
µc(δ)‖ω‖Lr(D).

Proof.
Because the retraction π is holomorphic we get ∂̄ω̃ = π∗∂̄ω = 0. Moreover the lemma 4.2 gives

that ω̃ is still in Lr(E) ; we start by extending ω to U
⋂

M by zero outside D̄ ; we had that

the coefficients of ω̃ can be written f ◦ π hence, applying lemma 4.2 to the functions |f ◦ π|r

we get ‖ω̃‖Lr(Uj)
≤ µc(δ)‖ω‖Lr(Nj)

. We have only a finite number of open sets Uj , so we get

‖ω̃‖Lr(U) . µc(δ)‖ω‖Lr(D). Because E ⊂ U we get ‖ω̃‖Lr(E) ≤ µc(δ)‖ω‖Lr(D). �
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Now E is s.c.c. in C
n and, with r ≥ 2n + 2, we can solve the ∂̄ in the space L∞(E) : ∂̄ũ =

ω̃, ũ ∈ L∞(E) by the theorem 2.1. Fix ω ∈ Lr
(p,q)(D), ∂̄ω = 0, ω̃ as above then we have ũ ∈ L∞(E)

also fixed.
We shall need the lemma

Lemma 4.2 In an open set Uj of our covering, there is (p, q) form ν̃j such that ∂̄ṽj = ∂̄M ṽj = ω̃.
This means that the ∂̄ of the form ν̃j read in (Uj , ϕj) does not contain any dz̄′′k . Moreover the
coefficients of ν̃j are bounded in Uj and holomorphic in the fibers of π.

Proof.
We work directly in T = Tj by use of the bi-holomorphism ϕj .

The first part is coming from the fact that ω̃ read in (U, ϕ) does not contain any form dz̄′′l .
Suppose that ũ contains such a form, we have : ũ = vldz̄

′′
l + Γl with Γl not containing dz̄′′l ; notice

that the Γl are unique and so linear in ũ. Hence, keeping the notation ũ for its reading in (U, ϕ),

with the notation ∂̄z′
k
ũ =

∂ũ

∂z̄′k
,

∀k = 1, ..., d, ∂̄z′
k
ũ = ∂̄z′

k
vl ∧ dz̄′′l + ∂̄z′

k
Γl

cannot have terms in dz̄′′l because ω̃ has not, hence we get ∂̄z′
k
vl ∧ dz̄′′l = 0. So we get :

∂̄z′(ũ−

n
∑

l=d+1

vl ∧ dz̄′′l ) = ω̃.

on the other hand we get : ∂̄z′′
k
ũ = ∂̄z′′

k
vl ∧ dz̄′′l + ∂̄z′′

k
Γl and, because there are no terms of the form

dz̄′′k ∧ dz̄′′l in ω̃, we get necessarily ∀l, k = d+ 1, ..., n, ∂̄z′′
k
vl ∧ dz̄′′l = 0. So the Γl are holomorphic in

the variables z′′. Hence we showed ṽj := ũ −

n
∑

l=d+1

vl ∧ dz̄′′l =

n
∑

l=d+1

Γl is still a solution of ∂̄ṽj = ω̃

and, because the coefficients of ũ are bounded, we get all the properties stated in the lemma. We
still notice that ṽj is linear with respect to ũ. �

Lemma 4.3 There is a (p, q) form ṽ such of that, in E, ∂̄ṽ = ∂̄M ṽ = ω̃. Moreover the coefficients
of ṽ are bounded in E and holomorphic on the fibers ∀x ∈ D, Fx := π−1(x).

Proof.
Let us take two open sets of our covering: Uj , Uk ; the lemma 4.2 gives us:

ũ = vj ∧ dz̄′′ + ṽj in Uj with ṽj without any dz̄′′l .
The same way in the open set Uk we have :

ũ = vk ∧ dz̄′′ + ṽk in Uk with ṽk without any dz̄′′l .
So in the intersection of the two sets, because ũ is global, choosing one of these two systems of
coordinates and with clear notations, we get:

(vj − vk) ∧ dz̄′′ + (ṽj − ṽk) = 0 in Uj ∩ Uk .
Because the ṽj do not contain the dz̄′′l , we necessarily have ṽj = ṽk and vj = vk. So the forms ṽj
make a global form ṽ just posing ṽ := ṽj in Uj . �

5 Estimates in the case of a submanifold of Cn .

We shall show the following theorem :
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Theorem 5.1 Let M be a complex submanifold of dimension d in C
n and a s.c.c. domain D

such that D is relatively compact with smooth C3 boundary in M. Let again ω be a (p, q) form in
Lr
p,q(D), ∂̄ω = 0 with r ≥ 2n+ 2, c ≤ q ≤ n. Then there is a (p, q − 1) form u in Λǫ

(p,q−1)(D̄) such

that ∂̄u = ω.

Proof.
We restrict the function ṽ got in the lemma 4.3 to D, u := ṽ|D, and we need to see that, on
D, ∂̄u = ω. It is enough to see this in an open set Uj of our covering.

We shall use that ∂̄ṽ = ω̃ in the distributions sense, with ṽ ∈ L∞(E). So let χ ∈ D(n−p, n−q)(Uj

⋂

D)
; we get

〈

∂̄u, χ
〉

D
= (−1)q+1

〈

u, ∂̄χ
〉

D
;

with the scalar product of the manifold M. We read these data in (Uj, ϕj) and we keep the same
names.
We extend the form χ from Nj = Uj

⋂

M to the whole Uj in making it constant with respect to

z”. Let us denote χ̃ this extended form.
Because the form ṽ = ṽj in Tj is holomorphic in the variables z”, its values in (z′, z”) is the mean

value of its values in the ball centered at (z′, 0) ∈ Nj and with radius δ in z”. The lemma 3.4 gives:
∫

Tj

(ṽ, ∂̄χ̃)dm =

∫

Nj

{

∫

B(z′,δ)

(ṽ, ∂̄χ̃)(z′, z”)dm(z”)}dV (z),

but
∫

B(z′,δ)

(ṽ, ∂̄χ̃)(z′, z”)dm(z”) =

∫

B(z′,δ)

∑

I,J

ṽI,J(z
′, z”)χ̃′

IcJc(z′, z”)dm(z”)

where χ̃′ = ∂̄χ̃. Because the form χ̃ is compactly supported in Nj and is constant on the fibers, we
get

∫

B(z′,δ)

∑

I,J

ṽI,J(z
′, z”)χ̃′

IcJc(z′, z”)dm(z”) =
∑

I,J

χ′
IcJc(z′)

∫

B(z′,δ)

ṽI,J(z
′, z”)dm(z”);

So we get, because

∫

B(z′,δ)

ṽI,J(z
′, z”)dm(z”) = c(δ)uI,J(z

′), with c(δ) := |B(z′, δ)| ,

〈

ṽ, ∂̄χ̃
〉

Tj
:=

∫

Tj

(ṽ, ∂̄χ̃)dm = c(δ)

∫

Nj

(u, ∂̄χ)(x)dV (x) = c(δ)
〈

u, ∂̄χ
〉

Nj
.

keeping the same notations, we come back to the open set Uj and, because χ is compactly supported
in Nj = M ∩ Uj , we get, because Tj = ϕj(Uj) is a tube around Nj :

〈

ṽ, ∂̄χ̃
〉

:= c(δ)
〈

u, ∂̄χ
〉

D
.

exactly by the same way we get:
〈

∂̄ṽj , χ̃
〉

= c(δ)
〈

∂̄u, χ
〉

D
,

And, because ω̃ is constant on the fibers, we get
〈ω̃, χ̃〉 = c(δ)〈ω, χ〉D.

Recall that ∂̄ṽ = ω̃ in the distributions sense, and, because ω̃ is a current in Lr
p,q(E), this is also

true for ∂̄ṽ. Hence we have, because χ̃ ∈ Lr′

n−p,n−q(E), with r′ the conjugate exponent of r, that
〈

∂̄Γ, χ̃
〉

= 〈ω̃, χ̃〉 is well defined, even if χ̃ is not compactly supported. The previous equalities give
〈

∂̄u, χ
〉

D
= 〈ω, χ〉D. Because this is true for all C∞ functions compactly supported χ in an open set

Tj of a covering of D̄, we get ∂̄u = ω in the distributions sense on D, with u ∈ Λǫ
(p,q−1)(D̄). �

Remark 5.2 We have no such estimates in the case r < 2n + 2 because the mean value in a ball
of the fiber of a function in Ls in E is no longer in Ls(D) for s < ∞.
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Now we are in position to apply the raising steps theorem.

Theorem 5.3 Let M be a complex submanifold of dimension d in C
n and D be a s.c.c. domain

which is a relatively compact with smooth C3 boundary in M. Let ω be a (p, q) form in Lr
p,q(D), ∂̄ω =

0 with 1 < r < 2d+2, c ≤ q ≤ n. Then there is a (p, q−1) form u in Ls(D), with
1

s
=

1

r
−

1

2d+ 2
,

such that ∂̄u = ω.

Proof.
In order to have the local result for all points in D̄ we use the same method as in [2], but with the
proposition 7.2 and the results of Ma and Vassiliadou [14].

We have the global result : if ω ∈ L2n+2
p,q (D), ∂̄ω = 0 then we have a solution u in L∞

(p,q−1)(D)

such that ∂̄u = ω by use of theorem 5.1. Now we take ω ∈ Lr
p,q(D), ∂̄ω = 0, then we have

that the optimal exponent for the solution u is s such that
1

s
=

1

r
−

1

2d+ 2
, then we choose any

r0 > max (2n + 2, s) as a threshold and, because the correction to the solution u is in L∞
p,q−1(D),

and D is bounded, we have that u ∈ Ls
(p,q−1)(D), by the raising steps theorem [2], and this ends the

proof of the theorem. �

6 Estimates in the case of a Stein manifold.

We can apply a theorem of Bishop and Narashiman (see theorem 5.3.9. of Hörmander [10]) which
tells us that, if Ω is a Stein manifold of dimension d, there is an element f ∈ H(Ω)2d+1 which defines
a regular injective and proper application from Ω in C

2d+1 . Denote M := f(Ω) ; if D′ is the strictly
c -convex domain in Ω, relatively compact in Ω, then its image D = f(D′) is a strictly c -convex
domain in M . We can apply theorem 5.3 and we get:

Theorem 6.1 Let Ω be a Stein manifold of dimension n and a strictly c -convex domain D such
that D is relatively compact with smooth C3 boundary in Ω. Let ω a (p, q) form in Lr

p,q(D), ∂̄ω = 0

with 1 < r < 2n+2, c ≤ q ≤ n. Then there is a (p, q− 1) form u in Ls(D), with
1

s
=

1

r
−

1

2n+ 2
,

such that ∂̄u = ω .
Let again ω be a (p, q) form in Lr

p,q(D), ∂̄ω = 0 with r ≥ 2n + 2, c ≤ q ≤ n. Then there is a
(p, q − 1) form u in Λǫ

(p,q−1)(D̄) such that ∂̄u = ω.

We notice that there is no hypothesis here in the case r > 2 on the compactness of the support
of the form ω, in contrast to the previous results we had in [2].

7 Appendix.

Lemma 7.1 Let A, B be two self adjoint matrices such that A has at least n− c+ 1 eigenvalues
strictly positive and B is positive. Then A +B has at least n− c+ 1 eigenvalues strictly positive.
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Proof.
Let E the space generated by the eigenvectors associated to the strictly positive eigenvalues of A.
Then E has dimension at least n− c+ 1. Let S := A+B, because B is positive, we get

∀x ∈ E, 〈Sx, x〉 = 〈Ax, x〉+ 〈Bx, x〉 > 0.
Now let e1, ..., ek be the eigenvectors associated to the negative eigenvalues of S. We set F =
span{e1, ..., ek} and we have that F is invariant by S and we have ∀x ∈ F, 〈Sx, x〉 ≤ 0. If the
space G := E ∩ F is of non zero dimension, we get ∀x ∈ G, x 6= 0, 〈Sx, x〉 > 0 and 〈Sx, x〉 ≤ 0
so a contradiction. Hence dimG = 0 and dimF ≤ codimE = c− 1, which means that S has a least
n− c+ 1 strictly positive eigenvalues. �

The next proposition generalizes the one in [1], proposition 1.1, done in the pseudo convex case.

Proposition 7.2 Let D be a strictly c -convex domain with C3 boundary in C
n. Let ζ ∈ ∂D, U a

neighbourhood of ζ in C
n and B(ζ, r) a ball centered at ζ and of radius r ; then there is a domain

D̃, c -convex and with C3 boundary such that we have D̃ ⊂ U and ∂D ∩ B(ζ, r) = ∂D̃ ∩ B(ζ, r).

Proof.
Let ρ be a defining function for D. Let ζ ∈ ∂D and U a neighbourhood of ζ in C

n. Consider
now a positive convex increasing function χ defined on R

+, C∞ such that χ = 0 in (0, r) . Set
ρ̃(z) := ρ(z) + aχ(|z − ζ|2) ; we have ∂∂̄ρ̃ = ∂∂̄ρ + a∂∂̄χ. But, as is easily seen, ∂∂̄χ is positive at
each point z, hence, setting A = i∂∂̄ρ, B = ai∂∂̄χ, we can apply lemma 7.1 and we have that the
domain D̃ := {ρ̃ < 0} is also c -convex with smooth C3 boundary.
Now we choose r small enough to have B(ζ, 3r) ⊂ U. We have ρ̃(z) < 0 ⇒ ρ(z) < −aχ(|z − ζ|2) ;
so we set :

α := sup z∈D−ρ(z) < ∞, by the compactness of D̄ and β := inf z∈U\B(ζ,2r)χ(|z − ζ|2) = 4r2

then with a :=
α + 1

β
we get that {ρ̃(z) < 0} ⊂ U because if not ∃z /∈ B(ζ, 3r) :: ρ(z) <

−aχ(|z − ζ|2) < −(α + 1) which is not possible.
Of course in the ball B(ζ, r) we have ∂D ∩B(ζ, r) = ∂D̃ ∩B(ζ, r). �

On a theorem of H. Rossi.

We shall use the following lemma.

Lemma 7.3 Let A, B two self adjoint n×n matrices such that A has at least d− c+1 eigenvalues
strictly positive and kerA is of dimension n − d and B is positive and has n − d eigenvectors in
kerA associated to strictly positive eigenvalues. Then A + B has at least n− c+ 1 strictly positive
eigenvalues.

Proof.
Because A is self adjoint, the spaces kerA and H := kerA⊥ are invariant for A. Because kerA
has dimension n − d and there is n − d eigenvectors of B in it, then kerA is generated by these
eigenvectors hence because B is self adjoint this means that kerA and H are also invariant for B .
Set S := A+B.

Let v ∈ kerA such that Bv = λv, λ > 0, then Sv = Av +Bv = Bv = λv hence on kerA, S has
n− d strictly positive eigenvalues.
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On H we have B ≥ 0 and A has at least d − c + 1 strictly positive eigenvalues, hence on H we
can apply lemma 7.1 and we have that S has at least d − c + 1 strictly positive eigenvalues on H.
Because H and kerA have an intersection reduced to {0}, S has d− c+1+n−d = n− c+1 strictly
positive eigenvalues. �

The aim is to extend a theorem by H. Rossi [16] where we replace strictly pseudo convex by
strictly c -convex.

Theorem 7.4 Let M a closed sub manifold of a Stein domain U0 in C
n. Suppose there is a

neighbourhood U of M and an holomorphic retraction π : U → M. Let D be a strictly c -convex
domain in M, D̄ ⊂ M.

Then there is a strictly c -convex domain E in C
n such that :

(A) Ē ⊂ U ∩ U0

(B) E ∩M = D
(C) ∂E cuts M transversaly along ∂D
(D) π : Ē → D̄.

Proof.
I shall copy the main points in the proof by H. Rossi making the necessary changes.

Docquier and Grauert (see [16]) give us a neighbourhood U of D̄ in C
n and a retraction π :

U → M ∩ U such that the fibers of π cut transversely M ∩ U and are of dimension n− d.
We set for z ∈ U and j = 1, · · · , n, fj(z) = zj −πj(z). The equations z−π(z) = 0 define the sub

manifold M :
if z ∈ M, π(z) = z because π is a retraction on M ; if z /∈ M, because π(z) ∈ M, z − π(z) 6= 0.
Moreover, because the fibers of π cut transversely M at any point ζ of D̄ , we have that the
jacobian matrix contains a (n − d)×(n− d) sub determinant which is not 0 at ζ, hence not 0 in a
neighbourhood of this point. This means that, by a change of variables, the set (fj)j=1,··· ,n contains
a coordinates system for the fibers of π at any point of D̄, hence at all points of a neighbourhood
U1 of D̄ in C

n. These "explicite" functions replace the one generating the idealsheaf of M used by
H. Rossi.

Let ρ be a defining function for D in M , we still follow H. Rossi and we set:

σ(z) := ρ ◦ π + A

n
∑

j=1

|fj |
2,

where the constant A will be chosen later. Because F (z) :=
n

∑

j=1

|fj(z)|
2 = 0 on M ∩ U, it exists a

ǫ0 > 0 such that {F (z) < ǫ0} ∩ U ⊂ U1.
It remains to see that σ is strictly c -convex, i.e. i∂∂̄σ has at least n − c + 1 strictly positive

eigenvalues.
Fix ζ ∈ D̄ ; because D is strictly c -convex i∂∂̄ρ ◦ π(ζ) has at least d − c + 1 strictly positive
eigenvalues on the tangent space to M at ζ. Because the set (fj)j=1,··· ,n contains a coordinates

system for the fibers of π we have i∂∂̄(
n

∑

j=1

|fj |
2) has all, i.e. n− d, strictly positive eigenvalues on

the tangent space to the fiber π−1π(ζ) at ζ.
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Because the kernel of i∂∂̄ρ ◦ π is the tangent space to the fiber π−1π(ζ), we get, by lemma 7.3, that

i∂∂̄σ = i∂∂̄ρ ◦ π + i∂∂̄(
n

∑

j=1

|fj |
2) has at least n− c + 1 strictly positive eigenvalues. So we have at

least n− c+1 strictly positive eigenvalues at any point of D̄ hence also in a neighbourhood V of D̄
in C

n. Now we take Aǫ0 > sup z∈D |ρ(z)| and we set E := {z ∈ U ∩ V :: σ(z) < 0} ; we get exactly
as H. Rossi, that E is strictly c -convex and we have all properties of the theorem. �
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