On estimates for the $\bar{\partial}$ equation in Stein manifolds.

Eric Amar

To cite this version:

Eric Amar. On estimates for the $\bar{\partial}$ equation in Stein manifolds.. 2016. hal-01267008v1

HAL Id: hal-01267008
https://hal.science/hal-01267008v1
Preprint submitted on 3 Feb 2016 (v1), last revised 19 Jan 2017 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On estimates for the $\bar{\partial}$ equation in Stein manifolds.

Eric Amar

Contents

1 Introduction. 1
2 Strictly c-convex domain in \mathbb{C}^{n}. 3
3 The Docquier - Grauert holomorphic retraction. 3
4 Extension of the form ω. 5
5 Estimates in the case of a submanifold of \mathbb{C}^{n}. 6
6 Estimates in the case of a Stein manifold. 8
7 Appendix. 8

Abstract

We generalize to strictly c-convex domains in Stein manifold, $L^{r}-L^{s}$ and Lipschitz estimates for the solutions of the $\bar{\partial}$ equation done by Ma and Vassiliadou for domains in \mathbb{C}^{n}. For this we use a Docquier-Grauert holomorphic retraction plus the raising steps method I introduce earlier. This gives results in the case of domains with low regularity, \mathcal{C}^{3}, for their boundary.

1 Introduction.

The solutions with L^{r} and Lipschitz estimates of the equation $\bar{\partial} u=\omega, \bar{\partial} \omega=0$ revealed to be very important in complex analysis and geometry.

The first results of this kind were done by the use of solving kernels: Grauert-Lieb [8], Henkin [9], Ovrelid [15], Skoda [17], Krantz [12], in the case of strictly pseudo-convex domains with \mathcal{C}^{∞} smooth
boundary in \mathbb{C}^{n}, with the exception of Kerzman [11] in the case of $(0,1)$ forms in strictly pseudoconvex domains with \mathcal{C}^{4} smooth boundary in Stein manifolds.

Here we shall be interested in strictly c-convex, s.c.c. for short, domain D in a complex manifold. Such a domain is defined by a function ρ of class \mathcal{C}^{3} in a neighbourhood U of \bar{D} and such that $\partial \bar{\partial} \rho$ as at least $n-c+1$ strictly positive eigenvalues in U.

These domains in \mathbb{C}^{n} have been studied in the case of smooth \mathcal{C}^{∞} boundary by Fisher and Lieb [7]. They still use kernels method.

Definitive results where obtained in a very general framework by Beals, Greiner et Stanton [5]. They used the technology, heavy but extremely powerful, of pseudo-differentials operators. They study domains relatively compact with smooth \mathcal{C}^{∞} boundary in complex manifold which are more general that s.c.c..

Ma and Vassiliadou [14] got very nice estimates even in the case of intersections of s.c.c. domains with \mathcal{C}^{3} boundary. I shall use their results here.

Quite recently C. Laurent-Thiébaut [13] get this kind of result for s.c.c. domains with smooth \mathcal{C}^{∞} boundary in complex manifold by use of the method of "bumps", as was done by Kerzman [11].

Let us state our main result which is completely analogous to the one Ma and Vassiliadou [14] got for domains in \mathbb{C}^{n}.

Theorem 1.1 Let Ω a Stein manifold of dimension n and a strictly c-convex (s.c.c.) domain D such that D is relatively compact with smooth \mathcal{C}^{3} boundary in Ω. Let ω a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=$ 0 with $1<r<2 n+2, c \leq q \leq n$. Then there is a $(p, q-1)$ form u in $L^{s}(D)$, with $\frac{1}{s}=\frac{1}{r}-\frac{1}{2 n+2}$, such that $\bar{\partial} u=\omega$.

If ω is in $L_{p, q}^{r}(D), \bar{\partial} \omega=0$ with $r \geq 2 n+2, c \leq q \leq n$, then there is a $(p, q-1)$ form u in $\Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ such that $\bar{\partial} u=\omega$ with $\epsilon=\frac{1}{2}-\frac{n+1}{r}$.

The spaces $\Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ are the (isotropic) Lipschitz spaces of order ϵ and we set $\Lambda_{(p, q-1)}^{0}(\bar{D}):=$ $L_{(p, q-1)}^{\infty}(D)$.

It has to be noticed that the boundary regularity is just \mathcal{C}^{3}, which is allowed by kernels. So it seems that this is a new result in a Stein manifold for such a low regularity.
In the case of a \mathcal{C}^{∞} boundary regularity then this result is contained in Beals, Greiner et Stanton [5] one, but the proof is completely different and, in some sense, "lighter" because it uses for the analytic part kernels methods plus essentially geometric ones.

The first result we get is a non optimal theorem.
Theorem 1.2 Let M be a closed submanifold of dimensiond of a Stein domain U_{0} in \mathbb{C}^{n}. Let D be a s.c.c. domain relatively compact in $M(\bar{D} \subset M)$ with \mathcal{C}^{3} boundary. Then, with $r \geq 2 n+2$, we can solve in $D, \bar{\partial} u=\omega$ when $\bar{\partial} \omega=0$ and with $u \in \Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ if $\omega \in L_{(p, q)}^{r}(D), \bar{\partial} \omega=0, c \leq q \leq n$, with $\epsilon=\frac{1}{2}-\frac{n+1}{r}$.
The results of Ma and Vassiliadou [14] gives good estimates in case of domains in \mathbb{C}^{n}. The point here was to pass from \mathbb{C}^{n} to a submanifold of \mathbb{C}^{n}. To do this I was inspired by a nice paper of H . Rossi [16] on Docquier Grauert holomorphic retraction.

Then we use the raising steps method [2] (see also [4], [3]) and to use it we need a global result and we use these $L^{r}-\Lambda^{\epsilon}$ estimates as a threshold. We get the same optimal results as for domains in \mathbb{C}^{n}.

So we get
Theorem 1.3 Let M be a complex submanifold of dimension d in \mathbb{C}^{n} and a s.c.c. domain D such that D is relatively compact with smooth boundary of class \mathcal{C}^{3} in M. Let ω a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=0, c \leq q \leq n$, with $1<r<2 d+2$. Then there is a $(p, q-1)$ form u in $L^{s}(D)$, with $\frac{1}{s}=\frac{1}{r}-\frac{1}{2 d+2}$, such that $\bar{\partial} u=\omega$.

If $r \geq 2 n+2$ then there is a $(p, q-1)$ form u in $\Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ such that $\bar{\partial} u=\omega$ with $\epsilon=\frac{1}{2}-\frac{d+1}{r}$.

To pass to Stein manifold, we use an embedding theorem of Bishop and Narashiman (see theorem 5.3.9. of Hörmander [10]) to see an abstract Stein manifold of dimension d as a submanifold of $\mathbb{C}^{2 d+1}$. So we get our main result.

This work will be presented in the following way.

- First we recall the estimates in the case of strictly c-convex domains in \mathbb{C}^{n} done by Ma and Vassiliadou [14].
- We recall the Docquier Grauert holomorphic retraction on a complex submanifold M of \mathbb{C}^{n}.
- We extend a form ω from a domain D s.c.c. in M to a domain E s.c.c. in \mathbb{C}^{n} by use of a generalization of a theorem of H . Rossi [16]. We then solve the form in E by the known estimates in \mathbb{C}^{n}.
- We show that the solution in E can be restricted to D to get a solution in D with good enough estimates, for $r \geq 2 n+2$. This gives theorem 1.2.
- We use the raising steps theorem with the threshold given by theorem 1.2. So we have theorem 1.3 for the case of a submanifold of \mathbb{C}^{n}.
- By use of a theorem of Bishop and Narashiman, i.e. the proper embedding of a Stein manifold of dimension d in $\mathbb{C}^{2 d+1}$, we get our main theorem 1.1 for any Stein manifold.

2 Strictly c-convex domain in \mathbb{C}^{n}.

We shall use the nice estimates for a smoothly \mathcal{C}^{3} bounded c convex domains in \mathbb{C}^{n} obtained by Ma and Vassiliadou [14], lemma 5.3.

Theorem 2.1 Let D be a bounded s.c.c. domain in \mathbb{C}^{n} with a \mathcal{C}^{3} defining function. Then

$$
\forall \omega \in L_{(p, q)}^{r}, \bar{\partial} \omega=0, c \leq q \leq n, 1 \leq r<2 n+2
$$

there exists $u \in L_{(p, q-1)}^{s}(D), \frac{1}{s}=\frac{1}{r}-\frac{1}{2 n+2}$, with the following properties:
i) $\bar{\partial} u=\omega$ in the sense of currents in D,
ii) if $r=1, u \in L_{(p, q-1)}^{\frac{2 n+2}{2 n+1}-\eta}$ for any $\eta>0$.
iii) if $2 n+2 \leq r \leq \infty, u \in \Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ with $\epsilon=\frac{1}{2}-\frac{n+1}{r}$.

3 The Docquier - Grauert holomorphic retraction.

We have the Docquier-Grauert lemma [6] :
Lemma 3.1 Let K be a compact subset of a closed complex submanifold M of \mathbb{C}^{n}. There is a neighbourhood U of K and a holomorphic map $\pi: U \rightarrow U \cap M$ such that $\pi(\zeta)=\zeta$ for $\zeta \in U \cap M$.

In fact we have more (Rossi [16], p 172) from the argument of Docquier-Grauert we have that the fibers $\pi^{-1} \pi \zeta$ of π intersect M transversally at all points of M and are of dimension $n-d$.

Let M be a complex manifold of dimension d in \mathbb{C}^{n} and D a relatively compact domain strictly c-convex in M. We have the following lemma.

Lemma 3.2 Let $\zeta \in \bar{D}$, there is a neighborhood U of ζ in \mathbb{C}^{n} and a bi-holomorphic application $(U, \varphi), \varphi: U \rightarrow T$ such that, with $z=\left(z_{1}, \ldots, z_{n}\right)$ the coordinates in T, we have: $\varphi(D) \bigcap T=$ $\left\{z_{d+1}=\cdots=z_{n}=0\right\}$ and the retraction $\tilde{\pi}:=\varphi \circ \pi \circ \varphi^{-1}$ read in the application φ is given by $\tilde{\pi}(z)=\left(z_{1}, \ldots, z_{d}, 0, \ldots, 0\right)$, i.e. this is the orthogonal projection onto the subspace of $z^{\prime}:=\left(z_{1}, \ldots, z_{d}\right)$. Moreover one can choose for T a tube around $\varphi(M)$ of width $\delta>0$.

Proof.
The manifold M is given, by use of the retraction π, by the functions $f_{k}(\zeta):=\zeta_{k}-\pi_{k}(\zeta), k=1, \ldots, n$. We have if $\zeta \in M, \zeta-\pi(\zeta)=0$; if $\zeta \notin M, \zeta-\pi(\zeta) \neq 0$, because $\pi(\zeta) \in M$. The transversality of the fibers with respect to M at all points of \bar{D} insures that the Jacobian of the application $f=\left(f_{1}, \ldots, f_{n}\right)$ has rank $n-d$, which is the complex co-dimension of M. Take a point $\zeta^{0} \in \bar{D}$, there are $n-d$ functions f_{j} which are independent in a neighborhood U of ζ^{0}. Re-numerating the functions f_{j} and the variables ζ_{k}, we may suppose that the determinant $\left(\frac{\partial f_{j}}{\partial \zeta_{k}}\right)_{j, k=d+1, \ldots, n}$ is different from zero.

Now we shall make the change of variables $z=\varphi(\zeta)$ with $z_{j}=\zeta_{j}, j=1, \cdots, d ; z_{j}=f_{j}(\zeta), j=$ $d+1, \cdots, n$. This is actually a change of variables because the Jacobian of φ is different from zero in the open set U. We have that the application φ is a bi-holomorphism from the open set U onto the open set $T:=\varphi(U)$.

Let $z^{\prime}=\left(z_{1}, \cdots, z_{d}\right)$ and $z^{\prime \prime}=\left(z_{d+1}, \cdots, z_{n}\right)$; we have in T that:

$$
N:=\varphi(M)=\left\{z=\left(z^{\prime}, z^{\prime \prime}\right) \in T:: z^{\prime \prime}=0\right\} .
$$

Now take a tube around N centered in $\zeta^{0}, T=\left\{z=\left(z^{\prime}, z^{\prime \prime}\right):: z^{\prime \prime} \in B\left(\left(z^{\prime}, 0\right), \delta\right)\right\}$, we call it again T, and we still denote $U=\varphi^{-1}(T)$.

We cover \bar{D} by a finite number of these bi-holomorphisms $\left(U_{j}, \varphi_{j}\right)$. We note N_{j} the manifold $N_{j}:=\varphi_{j}\left(M \cap U_{j}\right) \subset T_{j}$ and, diminishing a little bit the U_{j} if necessary, we can suppose that the width of the tubes T_{j} around the N_{j} is constant and equals $\delta>0$. We know that there is a constant $\mu>0$ such that $\mu^{-1}<J_{j}<\mu$, where J_{j} is the Jacobian of φ_{j}, because there is a finite number of charts $\left(U_{j}, \varphi_{j}\right)$.

We denote $d V$ the Lebesgue measure on the manifold M.
We have the following basic lemma.

Lemma 3.3 Let f be a function in $L^{1}\left(U_{j}\right)$ and \tilde{f} this function read in the application φ_{j}, i.e. $\tilde{f}:=f \circ \varphi_{j}^{-1}$, we get

$$
\left.\int_{U_{j}} f(\zeta) d m(\zeta)=\int_{N_{j}} \int_{B\left(\left(z^{\prime}, 0\right), \delta\right)} \tilde{f}\left(z^{\prime}, z^{\prime \prime}\right) J_{j}\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)\right\} d V\left(z^{\prime}\right)
$$

Proof.
This is simply the change of variables formula because $\varphi_{j}\left(U_{j}\right)=T_{j}=N_{j} \times B(\cdot, \delta)$ and the Jacobian of φ_{j} is J_{j}.

Lemma 3.4 Let f be a measurable function, positive on M, then

$$
\int_{U_{j}} f \circ \pi(\zeta) d m(\zeta) \leq \mu c(\delta) \int_{N_{j}} f\left(z^{\prime}, 0\right) d V\left(z^{\prime}\right)
$$

with $d m$ the Lebesgue measure on \mathbb{C}^{n}, $d V$ the Lebesgue measure on M and $c(\delta):=|B(x, \delta)|$.
Proof.
We can apply lemma 3.4 with the notation $z=\left(z^{\prime}, z^{\prime \prime}\right), z^{\prime}$ the coordinates in $N_{j}, z^{\prime \prime}$ the coordinates in the fibers:

$$
\int_{U_{j}} f \circ \pi(\zeta) d m(\zeta)=\int_{N_{j}}\left\{\int_{B\left(z^{\prime}, \delta\right)} \tilde{f}\left(z^{\prime}, z^{"}\right) J_{j}\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)\right\} d V\left(z^{\prime}\right)
$$

but here we have $\tilde{f}\left(z^{\prime}, z^{\prime \prime}\right)=f\left(z^{\prime}, 0\right)$ because $\tilde{\pi}(z)=\left(z^{\prime}, 0\right)$ hence the formula is now:

$$
\int_{U_{j}} f \circ \pi(z) d m(z) \leq \mu \int_{N_{j}} f\left(z^{\prime}, 0\right)\left|B\left(z^{\prime}, \delta\right)\right| d V\left(z^{\prime}\right)=\mu c(\delta) \int_{N_{j}} f\left(z^{\prime}, 0\right) d V\left(z^{\prime}\right)
$$

So we get the lemma.
We notice that the open set $U:=\bigcup_{j=1}^{N} U_{j}$ contains \bar{D}.
The theorem 7.4 in the appendix, which generalizes to s.c.c. domains a theorem by Rossi [16] done for strictly pseudo convex domains, gives us the existence of the strictly c-convex domain E in \mathbb{C}^{n} such that $\pi: \bar{E} \rightarrow \bar{D}$. Now on we fix this s.c.c. domain E.

4 Extension of the form ω.

Let ω be a (p, q) form in $L^{r}(D), \bar{\partial}$ closed ; we extend it in E by use of the retraction π in the following manner : $\tilde{\omega}:=\pi^{*} \omega$.

Lemma 4.1 We have $\bar{\partial} \tilde{\omega}=0$. Moreover if $\omega \in L^{r}(D)$ we have $\tilde{\omega} \in L^{r}(E)$ with $\|\tilde{\omega}\|_{L^{r}(E)} \leq$ $\mu c(\delta)\|\omega\|_{L^{r}(D)}$.

Proof.
Because the retraction π is holomorphic we get $\bar{\partial} \tilde{\omega}=\pi^{*} \bar{\partial} \omega=0$. Moreover the lemma 4.2 gives that $\tilde{\omega}$ is still in $L^{r}(E)$; we start by extending ω to $U \bigcap M$ by zero outside \bar{D}; we had that the coefficients of $\tilde{\omega}$ can be written $f \circ \pi$ hence, applying lemma 4.2 to the functions $|f \circ \pi|^{r}$ we get $\|\tilde{\omega}\|_{L^{r}\left(U_{j}\right)} \leq \mu c(\delta)\|\omega\|_{L^{r}\left(N_{j}\right)}$. We have only a finite number of open sets U_{j}, so we get $\|\tilde{\omega}\|_{L^{r}(U)} \lesssim \mu c(\delta)\|\omega\|_{L^{r}(D)}$. Because $E \subset U$ we get $\|\tilde{\omega}\|_{L^{r}(E)} \leq \mu c(\delta)\|\omega\|_{L^{r}(D)}$.

Now E is s.c.c. in \mathbb{C}^{n} and, with $r \geq 2 n+2$, we can solve the $\bar{\partial}$ in the space $L^{\infty}(E): \bar{\partial} \tilde{u}=$ $\tilde{\omega}, \tilde{u} \in L^{\infty}(E)$ by the theorem 2.1. Fix $\omega \in L_{(p, q)}^{r}(D), \bar{\partial} \omega=0, \tilde{\omega}$ as above then we have $\tilde{u} \in L^{\infty}(E)$ also fixed.

We shall need the lemma
Lemma 4.2 In an open set U_{j} of our covering, there is (p, q) form $\tilde{\nu}_{j}$ such that $\bar{\partial} \tilde{v}_{j}=\bar{\partial}_{M} \tilde{v}_{j}=\tilde{\omega}$. This means that the $\bar{\partial}$ of the form $\tilde{\nu}_{j}$ read in $\left(U_{j}, \varphi_{j}\right)$ does not contain any $d \bar{z}_{k}^{\prime \prime}$. Moreover the coefficients of $\tilde{\nu}_{j}$ are bounded in U_{j} and holomorphic in the fibers of π.

Proof.
We work directly in $T=T_{j}$ by use of the bi-holomorphism φ_{j}.
The first part is coming from the fact that $\tilde{\omega} \operatorname{read}$ in (U, φ) does not contain any form $d \bar{z}_{l}^{\prime \prime}$. Suppose that \tilde{u} contains such a form, we have : $\tilde{u}=v_{l} d \bar{z}_{l}^{\prime \prime}+\Gamma_{l}$ with Γ_{l} not containing $d \bar{z}_{l}^{\prime \prime}$; notice that the Γ_{l} are unique and so linear in \tilde{u}. Hence, keeping the notation \tilde{u} for its reading in (U, φ), with the notation $\bar{\partial}_{z_{k}^{\prime}} \tilde{u}=\frac{\partial \tilde{u}}{\partial \bar{z}_{\underline{k}}^{\prime}}$,

$$
\forall k=1, \ldots, d, \bar{\partial}_{z_{k}^{\prime}} \tilde{u}=\bar{\partial}_{z_{k}^{\prime}} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}+\bar{\partial}_{z_{k}^{\prime}} \Gamma_{l}
$$

cannot have terms in $d \bar{z}_{l}^{\prime \prime}$ because $\tilde{\omega}$ has not, hence we get $\bar{\partial}_{z_{k}^{\prime}} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}=0$. So we get :

$$
\bar{\partial}_{z^{\prime}}\left(\tilde{u}-\sum_{l=d+1}^{n} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}\right)=\tilde{\omega}
$$

on the other hand we get : $\bar{\partial}_{z_{k}^{\prime \prime}} \tilde{u}=\bar{\partial}_{z_{k}^{\prime \prime}} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}+\bar{\partial}_{z_{k}^{\prime \prime}} \Gamma_{l}$ and, because there are no terms of the form $d \bar{z}_{k}^{\prime \prime} \wedge d \bar{z}_{l}^{\prime \prime}$ in $\tilde{\omega}$, we get necessarily $\forall l, k=d+1, \ldots, n, \bar{\partial}_{z_{k}^{\prime \prime}} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}=0$. So the Γ_{l} are holomorphic in the variables $z^{\prime \prime}$. Hence we showed $\tilde{v}_{j}:=\tilde{u}-\sum_{l=d+1}^{n} v_{l} \wedge d \bar{z}_{l}^{\prime \prime}=\sum_{l=d+1}^{n} \Gamma_{l}$ is still a solution of $\bar{\partial} \tilde{v}_{j}=\tilde{\omega}$ and, because the coefficients of \tilde{u} are bounded, we get all the properties stated in the lemma. We still notice that \tilde{v}_{j} is linear with respect to \tilde{u}.

Lemma 4.3 There is a (p, q) form \tilde{v} such of that, in $E, \bar{\partial} \tilde{v}=\bar{\partial}_{M} \tilde{v}=\tilde{\omega}$. Moreover the coefficients of \tilde{v} are bounded in E and holomorphic on the fibers $\forall x \in D, F_{x}:=\pi^{-1}(x)$.

Proof.
Let us take two open sets of our covering: U_{j}, U_{k}; the lemma 4.2 gives us:
$\tilde{u}=v_{j} \wedge d \bar{z}^{\prime \prime}+\tilde{v}_{j}$ in U_{j} with \tilde{v}_{j} without any $d \bar{z}_{l}^{\prime \prime}$.
The same way in the open set U_{k} we have :

$$
\tilde{u}=v_{k} \wedge d \bar{z}^{\prime \prime}+\tilde{v}_{k} \text { in } U_{k} \text { with } \tilde{v}_{k} \text { without any } d \bar{z}_{l}^{\prime \prime}
$$

So in the intersection of the two sets, because \tilde{u} is global, choosing one of these two systems of coordinates and with clear notations, we get:

$$
\left(v_{j}-v_{k}\right) \wedge d \bar{z}^{\prime \prime}+\left(\tilde{v}_{j}-\tilde{v}_{k}\right)=0 \text { in } U_{j} \cap U_{k}
$$

Because the \tilde{v}_{j} do not contain the $d \bar{z}_{l}^{\prime \prime}$, we necessarily have $\tilde{v}_{j}=\tilde{v}_{k}$ and $v_{j}=v_{k}$. So the forms \tilde{v}_{j} make a global form \tilde{v} just posing $\tilde{v}:=\tilde{v}_{j}$ in U_{j}.

5 Estimates in the case of a submanifold of \mathbb{C}^{n}.

We shall show the following theorem :

Theorem 5.1 Let M be a complex submanifold of dimension d in \mathbb{C}^{n} and a s.c.c. domain D such that D is relatively compact with smooth \mathcal{C}^{3} boundary in M. Let again ω be a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=0$ with $r \geq 2 n+2, c \leq q \leq n$. Then there is a $(p, q-1)$ form u in $\Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ such that $\bar{\partial} u=\omega$.

Proof.
We restrict the function \tilde{v} got in the lemma 4.3 to $D, u:=\tilde{v}_{\mid D}$, and we need to see that, on $D, \bar{\partial} u=\omega$. It is enough to see this in an open set U_{j} of our covering.

We shall use that $\bar{\partial} \tilde{v}=\tilde{\omega}$ in the distributions sense, with $\tilde{v} \in L^{\infty}(E)$. So let $\chi \in \mathcal{D}_{(n-p, n-q)}\left(U_{j} \bigcap D\right)$; we get

$$
\langle\bar{\partial} u, \chi\rangle_{D}=(-1)^{q+1}\langle u, \bar{\partial} \chi\rangle_{D}
$$

with the scalar product of the manifold M. We read these data in $\left(U_{j}, \varphi_{j}\right)$ and we keep the same names.
We extend the form χ from $N_{j}=U_{j} \bigcap M$ to the whole U_{j} in making it constant with respect to $z "$. Let us denote $\tilde{\chi}$ this extended form.

Because the form $\tilde{v}=\tilde{v}_{j}$ in T_{j} is holomorphic in the variables $z^{\prime \prime}$, its values in $\left(z^{\prime}, z^{\prime \prime}\right)$ is the mean value of its values in the ball centered at $\left(z^{\prime}, 0\right) \in N_{j}$ and with radius δ in $z^{\prime \prime}$. The lemma 3.4 gives:

$$
\int_{T_{j}}(\tilde{v}, \bar{\partial} \tilde{\chi}) d m=\int_{N_{j}}\left\{\int_{B\left(z^{\prime}, \delta\right)}(\tilde{v}, \bar{\partial} \tilde{\chi})\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)\right\} d V(z)
$$

but

$$
\int_{B\left(z^{\prime}, \delta\right)}(\tilde{v}, \bar{\partial} \tilde{\chi})\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)=\int_{B\left(z^{\prime}, \delta\right)} \sum_{I, J} \tilde{v}_{I, J}\left(z^{\prime}, z^{\prime \prime}\right) \tilde{\chi}_{I^{c} J c}^{\prime}\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)
$$

where $\tilde{\chi}^{\prime}=\bar{\partial} \tilde{\chi}$. Because the form $\tilde{\chi}$ is compactly supported in N_{j} and is constant on the fibers, we get

$$
\int_{B\left(z^{\prime}, \delta\right)} \sum_{I, J} \tilde{v}_{I, J}\left(z^{\prime}, z^{\prime \prime}\right) \tilde{\chi}_{I^{c} J c}^{\prime}\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)=\sum_{I, J} \chi_{I^{c} J c}^{\prime}\left(z^{\prime}\right) \int_{B\left(z^{\prime}, \delta\right)} \tilde{v}_{I, J}\left(z^{\prime}, z^{"}\right) d m\left(z^{\prime \prime}\right) ;
$$

So we get, because $\int_{B\left(z^{\prime}, \delta\right)} \tilde{v}_{I, J}\left(z^{\prime}, z^{\prime \prime}\right) d m\left(z^{\prime \prime}\right)=c(\delta) u_{I, J}\left(z^{\prime}\right)$, with $c(\delta):=\left|B\left(z^{\prime}, \delta\right)\right|$,

$$
\langle\tilde{v}, \bar{\partial} \tilde{\chi}\rangle_{T_{j}}:=\int_{T_{j}}^{D}(\tilde{v}, \bar{\partial} \tilde{\chi}) d m=c(\delta) \int_{N_{j}}(u, \bar{\partial} \chi)(x) d V(x)=c(\delta)\langle u, \bar{\partial} \chi\rangle_{N_{j}}
$$

keeping the same notations, we come back to the open set U_{j} and, because χ is compactly supported in $N_{j}=M \cap U_{j}$, we get, because $T_{j}=\varphi_{j}\left(U_{j}\right)$ is a tube around N_{j} :

$$
\langle\tilde{v}, \bar{\partial} \tilde{\chi}\rangle:=c(\delta)\langle u, \bar{\partial} \chi\rangle_{D}
$$

exactly by the same way we get:

$$
\left\langle\bar{\partial} \tilde{v}_{j}, \tilde{\chi}\right\rangle=c(\delta)\langle\bar{\partial} u, \chi\rangle_{D}
$$

And, because $\tilde{\omega}$ is constant on the fibers, we get

$$
\langle\tilde{\omega}, \tilde{\chi}\rangle=c(\delta)\langle\omega, \chi\rangle_{D} .
$$

Recall that $\tilde{\partial} \tilde{v}=\tilde{\omega}$ in the distributions sense, and, because $\tilde{\omega}$ is a current in $L_{p, q}^{r}(E)$, this is also true for $\bar{\partial} \tilde{v}$. Hence we have, because $\tilde{\chi} \in L_{n-p, n-q}^{r^{\prime}}(E)$, with r^{\prime} the conjugate exponent of r, that $\langle\bar{\partial} \Gamma, \tilde{\chi}\rangle=\langle\tilde{\omega}, \tilde{\chi}\rangle$ is well defined, even if $\tilde{\chi}$ is not compactly supported. The previous equalities give $\langle\bar{\partial} u, \chi\rangle_{D}=\langle\omega, \chi\rangle_{D}$. Because this is true for all \mathcal{C}^{∞} functions compactly supported χ in an open set T_{j} of a covering of \bar{D}, we get $\bar{\partial} u=\omega$ in the distributions sense on D, with $u \in \Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$.
Remark 5.2 We have no such estimates in the case $r<2 n+2$ because the mean value in a ball of the fiber of a function in L^{s} in E is no longer in $L^{s}(D)$ for $s<\infty$.

Now we are in position to apply the raising steps theorem.
Theorem 5.3 Let M be a complex submanifold of dimension d in \mathbb{C}^{n} and D be a s.c.c. domain which is a relatively compact with smooth \mathcal{C}^{3} boundary in M. Let ω be a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=$ 0 with $1<r<2 d+2, c \leq q \leq n$. Then there is a $(p, q-1)$ form u in $L^{s}(D)$, with $\frac{1}{s}=\frac{1}{r}-\frac{1}{2 d+2}$, such that $\bar{\partial} u=\omega$.

Proof.
In order to have the local result for all points in \bar{D} we use the same method as in [2], but with the proposition 7.2 and the results of Ma and Vassiliadou [14].

We have the global result : if $\omega \in L_{p, q}^{2 n+2}(D), \bar{\partial} \omega=0$ then we have a solution u in $L_{(p, q-1)}^{\infty}(D)$ such that $\bar{\partial} u=\omega$ by use of theorem 5.1. Now we take $\omega \in L_{p, q}^{r}(D), \bar{\partial} \omega=0$, then we have that the optimal exponent for the solution u is s such that $\frac{1}{s}=\frac{1}{r}-\frac{1}{2 d+2}$, then we choose any $r_{0}>\max (2 n+2, s)$ as a threshold and, because the correction to the solution u is in $L_{p, q-1}^{\infty}(D)$, and D is bounded, we have that $u \in L_{(p, q-1)}^{s}(D)$, by the raising steps theorem [2], and this ends the proof of the theorem.

6 Estimates in the case of a Stein manifold.

We can apply a theorem of Bishop and Narashiman (see theorem 5.3.9. of Hörmander [10]) which tells us that, if Ω is a Stein manifold of dimension d, there is an element $f \in \mathcal{H}(\Omega)^{2 d+1}$ which defines a regular injective and proper application from Ω in $\mathbb{C}^{2 d+1}$. Denote $M:=f(\Omega)$; if D^{\prime} is the strictly c-convex domain in Ω, relatively compact in Ω, then its image $D=f\left(D^{\prime}\right)$ is a strictly c-convex domain in M. We can apply theorem 5.3 and we get:

Theorem 6.1 Let Ω be a Stein manifold of dimension n and a strictly c-convex domain D such that D is relatively compact with smooth \mathcal{C}^{3} boundary in Ω. Let ω a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=0$ with $1<r<2 n+2, c \leq q \leq n$. Then there is a $(p, q-1)$ form u in $L^{s}(D)$, with $\frac{1}{s}=\frac{1}{r}-\frac{1}{2 n+2}$, such that $\bar{\partial} u=\omega$.

Let again ω be a (p, q) form in $L_{p, q}^{r}(D), \bar{\partial} \omega=0$ with $r \geq 2 n+2, c \leq q \leq n$. Then there is a $(p, q-1)$ form u in $\Lambda_{(p, q-1)}^{\epsilon}(\bar{D})$ such that $\bar{\partial} u=\omega$.

We notice that there is no hypothesis here in the case $r>2$ on the compactness of the support of the form ω, in contrast to the previous results we had in [2].

7 Appendix.

Lemma 7.1 Let A, B be two self adjoint matrices such that A has at least $n-c+1$ eigenvalues strictly positive and B is positive. Then $A+B$ has at least $n-c+1$ eigenvalues strictly positive.

Proof.

Let E the space generated by the eigenvectors associated to the strictly positive eigenvalues of A. Then E has dimension at least $n-c+1$. Let $S:=A+B$, because B is positive, we get $\forall x \in E,\langle S x, x\rangle=\langle A x, x\rangle+\langle B x, x\rangle>0$.
Now let e_{1}, \ldots, e_{k} be the eigenvectors associated to the negative eigenvalues of S. We set $F=$ $\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ and we have that F is invariant by S and we have $\forall x \in F,\langle S x, x\rangle \leq 0$. If the space $G:=E \cap F$ is of non zero dimension, we get $\forall x \in G, x \neq 0,\langle S x, x\rangle>0$ and $\langle S x, x\rangle \leq 0$ so a contradiction. Hence $\operatorname{dim} G=0$ and $\operatorname{dim} F \leq \operatorname{codim} E=c-1$, which means that S has a least $n-c+1$ strictly positive eigenvalues.

The next proposition generalizes the one in [1], proposition 1.1, done in the pseudo convex case.
Proposition 7.2 Let D be a strictly c-convex domain with \mathcal{C}^{3} boundary in \mathbb{C}^{n}. Let $\zeta \in \partial D, U$ a neighbourhood of ζ in \mathbb{C}^{n} and $B(\zeta, r)$ a ball centered at ζ and of radius r; then there is a domain \tilde{D}, c-convex and with \mathcal{C}^{3} boundary such that we have $\tilde{D} \subset U$ and $\partial D \cap B(\zeta, r)=\partial \tilde{D} \cap B(\zeta, r)$.

Proof.
Let ρ be a defining function for D. Let $\zeta \in \partial D$ and U a neighbourhood of ζ in \mathbb{C}^{n}. Consider now a positive convex increasing function χ defined on $\mathbb{R}^{+}, \mathcal{C}^{\infty}$ such that $\chi=0$ in $(0, r)$. Set $\tilde{\rho}(z):=\rho(z)+a \chi\left(|z-\zeta|^{2}\right)$; we have $\partial \bar{\partial} \tilde{\rho}=\partial \bar{\partial} \rho+a \partial \bar{\partial} \chi$. But, as is easily seen, $\partial \bar{\partial} \chi$ is positive at each point z, hence, setting $A=i \partial \bar{\partial} \rho, B=a i \partial \bar{\partial} \chi$, we can apply lemma 7.1 and we have that the domain $\tilde{D}:=\{\tilde{\rho}<0\}$ is also c-convex with smooth \mathcal{C}^{3} boundary.
Now we choose r small enough to have $B(\zeta, 3 r) \subset U$. We have $\tilde{\rho}(z)<0 \Rightarrow \rho(z)<-a \chi\left(|z-\zeta|^{2}\right)$; so we set :
$\alpha:=\sup _{z \in D}-\rho(z)<\infty$, by the compactness of \bar{D} and $\beta:=\inf _{z \in U \backslash B(\zeta, 2 r)} \chi\left(|z-\zeta|^{2}\right)=4 r^{2}$ then with $a:=\frac{\alpha+1}{\beta}$ we get that $\{\tilde{\rho}(z)<0\} \subset U$ because if not $\exists z \notin B(\zeta, 3 r):: \rho(z)<$ $-a \chi\left(|z-\zeta|^{2}\right)<-(\alpha+1)$ which is not possible.

Of course in the ball $B(\zeta, r)$ we have $\partial D \cap B(\zeta, r)=\partial \tilde{D} \cap B(\zeta, r)$.

On a theorem of H. Rossi.

We shall use the following lemma.
Lemma 7.3 Let A, B two self adjoint $n \times n$ matrices such that A has at least $d-c+1$ eigenvalues strictly positive and $\operatorname{ker} A$ is of dimension $n-d$ and B is positive and has $n-d$ eigenvectors in $\operatorname{ker} A$ associated to strictly positive eigenvalues. Then $A+B$ has at least $n-c+1$ strictly positive eigenvalues.

Proof.
Because A is self adjoint, the spaces $\operatorname{ker} A$ and $H:=\operatorname{ker} A^{\perp}$ are invariant for A. Because $\operatorname{ker} A$ has dimension $n-d$ and there is $n-d$ eigenvectors of B in it, then $\operatorname{ker} A$ is generated by these eigenvectors hence because B is self adjoint this means that $\operatorname{ker} A$ and H are also invariant for B. Set $S:=A+B$.

Let $v \in \operatorname{ker} A$ such that $B v=\lambda v, \lambda>0$, then $S v=A v+B v=B v=\lambda v$ hence on ker A, S has $n-d$ strictly positive eigenvalues.

On H we have $B \geq 0$ and A has at least $d-c+1$ strictly positive eigenvalues, hence on H we can apply lemma 7.1 and we have that S has at least $d-c+1$ strictly positive eigenvalues on H. Because H and $\operatorname{ker} A$ have an intersection reduced to $\{0\}, S$ has $d-c+1+n-d=n-c+1$ strictly positive eigenvalues.

The aim is to extend a theorem by H. Rossi [16] where we replace strictly pseudo convex by strictly c-convex.

Theorem 7.4 Let M a closed sub manifold of a Stein domain U_{0} in \mathbb{C}^{n}. Suppose there is a neighbourhood U of M and an holomorphic retraction $\pi: U \rightarrow M$. Let D be a strictly c-convex domain in $M, \bar{D} \subset M$.

Then there is a strictly c-convex domain E in \mathbb{C}^{n} such that :
(A) $\bar{E} \subset U \cap U_{0}$
(B) $E \cap M=D$
(C) ∂E cuts M transversaly along ∂D
(D) $\pi: \bar{E} \rightarrow \bar{D}$.

Proof.
I shall copy the main points in the proof by Hossi making the necessary changes.
Docquier and Grauert (see [16]) give us a neighbourhood U of \bar{D} in \mathbb{C}^{n} and a retraction π : $U \rightarrow M \cap U$ such that the fibers of π cut transversely $M \cap U$ and are of dimension $n-d$.

We set for $z \in U$ and $j=1, \cdots, n, f_{j}(z)=z_{j}-\pi_{j}(z)$. The equations $z-\pi(z)=0$ define the sub manifold M :
if $z \in M, \pi(z)=z$ because π is a retraction on M; if $z \notin M$, because $\pi(z) \in M, z-\pi(z) \neq 0$. Moreover, because the fibers of π cut transversely M at any point ζ of \bar{D}, we have that the jacobian matrix contains a $(n-d) \times(n-d)$ sub determinant which is not 0 at ζ, hence not 0 in a neighbourhood of this point. This means that, by a change of variables, the set $\left(f_{j}\right)_{j=1, \cdots, n}$ contains a coordinates system for the fibers of π at any point of \bar{D}, hence at all points of a neighbourhood U_{1} of \bar{D} in \mathbb{C}^{n}. These "explicite" functions replace the one generating the idealsheaf of M used by H. Rossi.

Let ρ be a defining function for D in M, we still follow H . Rossi and we set:

$$
\sigma(z):=\rho \circ \pi+A \sum_{j=1}^{n}\left|f_{j}\right|^{2}
$$

where the constant A will be chosen later. Because $F(z):=\sum_{j=1}^{n}\left|f_{j}(z)\right|^{2}=0$ on $M \cap U$, it exists a $\epsilon_{0}>0$ such that $\left\{F(z)<\epsilon_{0}\right\} \cap U \subset U_{1}$.

It remains to see that σ is strictly c-convex, i.e. $i \partial \bar{\partial} \sigma$ has at least $n-c+1$ strictly positive eigenvalues.
Fix $\zeta \in \bar{D}$; because D is strictly c-convex $i \partial \bar{\partial} \rho \circ \pi(\zeta)$ has at least $d-c+1$ strictly positive eigenvalues on the tangent space to M at ζ. Because the set $\left(f_{j}\right)_{j=1, \cdots, n}$ contains a coordinates system for the fibers of π we have $i \partial \bar{\partial}\left(\sum_{j=1}^{n}\left|f_{j}\right|^{2}\right)$ has all, i.e. $n-d$, strictly positive eigenvalues on the tangent space to the fiber $\pi^{-1} \pi(\zeta)$ at ζ.

Because the kernel of $i \partial \bar{\partial} \rho \circ \pi$ is the tangent space to the fiber $\pi^{-1} \pi(\zeta)$, we get, by lemma 7.3 , that $i \partial \bar{\partial} \sigma=i \partial \bar{\partial} \rho \circ \pi+i \partial \bar{\partial}\left(\sum_{j=1}^{n}\left|f_{j}\right|^{2}\right)$ has at least $n-c+1$ strictly positive eigenvalues. So we have at least $n-c+1$ strictly positive eigenvalues at any point of \bar{D} hence also in a neighbourhood V of \bar{D} in \mathbb{C}^{n}. Now we take $A \epsilon_{0}>\sup _{z \in D}|\rho(z)|$ and we set $E:=\{z \in U \cap V:: \sigma(z)<0\}$; we get exactly as H. Rossi, that E is strictly c-convex and we have all properties of the theorem.

References

[1] E. Amar. Cohomologie complexe et applications. J. London Math. Soc., 2(29):127-140, 1984.
[2] E. Amar. The raising steps method. Application to the $\bar{\partial}$ equation in Stein manifolds. J. Geometric Analysis, 2015. DOI 10.1007/s12220-015-9576-8.
[3] Eric Amar. On the L^{r} Hodge theory in complete non compact riemannian manifolds. HAL01168927, 2015.
[4] Eric Amar. The raising steps method. applications to the L^{r} Hodge theory in a compact riemannian manifold. HAL-01158323, 2015.
[5] R. Beals, P. Greiner, and N. Stanton. L^{p} and Lipschitz estimates for the $\bar{\partial}$-equation and the $\bar{\partial}$-Neumann problem. Math. Ann. 277, 185-196 (1987), 277:185-196, 1987.
[6] F. Docquier and H. Grauert. Levisches problem und Rungescher satz fur teilbebiete Steinscher mannigfaltigkeiten. Math. Ann., 140:94-123, 1960.
[7] W. Fischer and Lieb. Lokale kerne und beschrs lssungen fiir den $\bar{\partial}$-operator auf q-konvexen gebieten. Math. Ann., 208:249-265, 1974.
[8] H. Grauert and I. Lieb. Das Ramirezsche integral und die lösung der gleichung $\bar{\partial} f=\alpha$ im bereich der beschränkten formen. Rice Univ. Stud., 56(2):29-50, 1970.
[9] G.M. Henkin. Integral representations of functions in strictly pseudoconvex domains and applications to the $\bar{\partial}$-problem. Math. USSR Sb., 11:181-273, 1970.
[10] L. Hörmander. An introduction to complex analysis in several variables. NorthHolland/American Elsevier, 1994.
[11] N. Kerzman. Hölder and L^{p} estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains. Comm. Pure. Appl. Math., 24:301-379, 1971.
[12] S. Krantz. Optimal Lipschitz and L^{p} regularity for the equation $\bar{\partial} u=f$ on stongly pseudoconvex domains. Math. Ann., 219(3):233-260, 1976.
[13] Christine Laurent-Thiébaut. Théorie L^{p} pour l'équation de Cauchy-Riemann. arXiv:1301.1611, 2013.
[14] L. Ma and S. Vassiliadou. L^{p} estimates for Cauchy-Riemann operator on q-convex intersections in \mathbb{C}^{n}. Manuscripta math, 103:413-433, 2000.
[15] N. Ovrelid. Integral representation formulas and L^{p} estimates for the $\bar{\partial}$ equation. Math. Scand., 29:137-160, 1971.
[16] H. Rossi. A Docquier-Grauert lemma for strongly pseudo convex domains in complex manifolds. Rocky mountain journal of mathematics, 6(1):171-176, 1976.
[17] H. Skoda. Valeurs au bord pour les solutions de l'opérateur d" et caractérisation des zéros de la classe de Nevanlinna. Bull. Soc. Math. France, 104:225-299, 1976.

