
HAL Id: hal-01266980
https://hal.science/hal-01266980

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum distance criterion for non negative
hyperspectral image

Yingying Song, David Brie, El-Hadi Djermoune, Simon Henrot

To cite this version:
Yingying Song, David Brie, El-Hadi Djermoune, Simon Henrot. Minimum distance criterion for non
negative hyperspectral image. 41st IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Mar 2016, Shanghai, China. �hal-01266980�

https://hal.science/hal-01266980
https://hal.archives-ouvertes.fr


MINIMUM DISTANCE CRITERION FOR NON-NEGATIVE HYPERSPECTRAL IMAGE

DECONVOLUTION

Yingying Song, David Brie, El-Hadi Djermoune and Simon Henrot
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ABSTRACT

This work aims at studying a method to automatically es-

timate regularization parameters of hyperspectral images

deconvolution methods. The deconvolution problem is for-

mulated as a multi-objective optimization problem and the

properties of the corresponding response surface are studied.

Based on these properties, the minimum distance criterion

(MDC) is proposed to estimate regularization parameters. It

has good theoretical properties (uniqueness, robustness) from

which a grid search based approach is proposed. It results in

a fast approach to estimate the regularization parameters.

Index Terms— Hyperspectral image deconvolution,

multi-objective optimization, regularization parameter es-

timation

1. INTRODUCTION

Hyperspectral image deconvolution consists in removing the

blur to restore the original images at best. This can be for-

mulated as the minimization of a penalized criterion incor-

porating prior information enforcing the spatial and spectral

regularity as well as the non-negativity of the image to re-

cover. Different hyperspectral image deconvolution methods

were proposed in [1], [2] and [3]. However, the effective

implementation of such methods is hampered by the choice

of the regularization parameters. The goal of the present pa-

per is to propose a general approach to estimate the regular-

ization parameter of deconvolution methods formulated as a

convex multi-objective minimization problem. Here we only

consider the Tikhonov-like hyperspectral image deconvolu-

tion with non-negativity constraint of [1] but this approach

can be applied to other methods.

The L-curve presented in [4], [5] is a method for select-

ing a single regularization parameter by plotting in a log-log

scale the data fitting term versus the regularization term. This

curve exhibits a corner where the curvature is expected to

reach a maximum value yielding an estimated regularization

parameter. However, the L-curve approach has some unde-

sirable properties discussed in [6] and [7]. In particular, it is
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not convex and the maximum curvature can be not unique.

L-hypersurface as a multi-objective extension of the L-curve

for selecting multiple regularization parameters was intro-

duced in [8] which also developed a minimum distance crite-

rion (MDC) applied to the L-hypersurface for estimating the

regularization parameters; this leads to a simple fixed-point

iterative algorithm for computing regularization parameters

in both bi-objective and multi-objective cases. The MDC was

already introduced in [9] for the bi-objective case only.

More recently, [10] shows that basis pursuit corresponds

to a weighted sum approach allowing to solve a convex bi-

objective optimization problem. In particular, it is proved that

the corresponding Pareto front is convex and continuously

differentiable over all points of interest. In fact, the Pareto

front of the basis pursuit is strongly connected to the regular-

ization path for which continuation based approach allows the

fast calculation of the set of all solutions when the regulariza-

tion is varying from 0 to +∞ [11]. It is worth mentioning

that [10] and [11] do not address the problem of selecting a

particular solution from the set of all solutions.

The paper is organized as follows : in section 2, we briefly

present the non-negative hyperspectral image deconvolution

problem. In section 3, it is formulated as a multi objective op-

timization problem and the properties of the corresponding re-

sponse surface are studied. In section 4, the MDC directly ap-

plied to the response surface is proposed to estimate the regu-

larization parameters. It is associated with a grid search strat-

egy to drastically reduce the computational burden of the pro-

cedure. In section 5, we present some numerical experiments

allowing to assess the effect of the non-negativity constraint

on hyperspectral image deconvolution. Due to space limita-

tion, the proofs of the theoretical results are given in [12].

2. HYPERSPECTRAL IMAGE DECONVOLUTION

We call the unknown hyperspectral image x and the observed

image y. The blurred image corresponds to the product of

x by a block diagonal convolution matrix H (see [1] for de-

tails). The blurred and noisy hyperspectral image is obtained

by adding a noise e which results in the observation model:

y = Hx+ e. (1)



In [1], the deconvolution is stated as a minimization of a crite-

rion composed of three terms: the data fitting, the spatial reg-

ularization and the spectral regularization. A non-negativity

constraint is added to the regular Tikhonov method to guaran-

tee the restored image to be non-negative:

min
x≥0

J(x) =
1

2
‖y−Hx‖22+

µs

2
‖Dsx‖

2
2 +

µλ

2
‖Dλx‖

2
2 (2)

Here µs and µλ are respectively the spatial and spectral reg-

ularization parameters. Ds corresponds to a Laplacian filter

applied to each slice of the hyperspectral image and Dλ cor-

responds to a first order derivative filter along the spectral di-

mension (see [1] for more details).

To minimize (2), we use the quadratic penalty method

proposed in [1] which consists in introducing a slack variable

p into a surrogate criterion expressed in (3)

min
x,p

K(x,p; ξ) = J(x) +
ξ

2
‖x− p‖22 s.t. p ≥ 0 (3)

The solution is obtained iteratively. At each iteration, the fol-

lowing three steps are performed: unconstrained minimiza-

tion of xk+1 when pk and ξk are fixed; constrained mini-

mization of pk+1 = max(0,xk+1); increase of the penalty

factor ξ according to ξ(k+1) = γξ(k), γ > 1. These three

steps are alternated until a maximum number of iterations

Niter is reached. In the used implementation of the algorithm,

the case Niter = 1 corresponds to the unconstrained solution

which serves as initial solution in the iterative procedure.

3. HYPERSPECTRAL IMAGE DECONVOLUTION

AS A MULTI-OBJECTIVE OPTIMIZATION

3.1. Multi-objective Optimization

Problem (2) can be stated as a multiple objective optimization

problem as in (4):

min
x≥0

J(x) = J1(x) + µsJ2(x) + µλJ3(x) (4)

Each value of µ = (µs, µλ) yields a solution:

xµ = argmin
x≥0

J(x) (5)

and gives a point in the response surface. Unlike the L-curve

or the L-hypersurface, this response surface uses linear scales

axes. For notation simplicity we will write Jk(xµ) , Jk(µ)

and the same for J(xµ) , J(µ). The ideal objective vector

is defined as in [13] :

I = (I1, · · · , Iz) (6)

where z is the number of objectives which equals 3 in our

case. The k-th component of the ideal objective vector I is

the constrained minimum of problem (7):

Ik = min
x≥0

Jk(x). (7)

In multi-objective literature, the ideal objective vector is said

to be a non-existent solution which means that it can never be

reached since it does not belong to the response surface.

3.2. Properties of the response surface

Because J(x) consists in the sum of three convex objectives

and the non-negative orthant is convex, this problem remains

convex.

Theorem 1. If J(x) is convex, the response surface of prob-

lem (4) is convex.

The demonstration of this theorem follows the same lines

of the approach [10] but is extended to the tri-objective case.
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Fig. 1: Estimated response surface for different values of

Niter

Figure 1 shows three different empirical response surfaces

estimated from the same simulated example (see section 5)

for Niter = 1, 5, 10. For each response surface, the hyperpa-

rameters are sampled on a 20 × 20 regular logarithmic scale

varying from 0.1 to 1000. The red one (Niter = 1) corre-

sponds to the Tikhonov solution without the non-negativity

constraint. The two others correspond to the response sur-

face obtained with non-negative Tikhonov solution of section

2. For both cases the penalty factor ξ is evolving similarly.

Following [10], in the unconstrained bi-objective case, the re-

sponse curve is convex and monotonically decreasing, as rep-

resented in figure 2(a). This can be extended to the response

surface corresponding to the unconstrained tri-objective case

(figure 2(b)). It is convex; its intersection with a plane par-

allel to either (J1, J2) or (J1, J3) or (J2, J3) also defines a

monotonically decreasing function. In this case, the Pareto

front coincides with the response surface since no point of

the response surface is dominated by another one. This be-

havior is experimentally observed when we use the uncon-

strained deconvolution (red response surface in figure 1). On

the contrary, when a non-negativity constraint is enforced, a

folding of the response surface is observed (figure 1, Niter =
5, 10). This results from the constrained estimator data fitting

J1 which is proved to be decreasing and then increasing as µs



(or µλ) increases. In this case, only the set of non-dominated

point of the response surface is corresponding to the Pareto

front.
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Fig. 2: Representation of the response surface for the uncon-

strained tri-objective case: it corresponds to the Pareto front.

The ideal point is denoted by I.

4. REGULARIZATION PARAMETERS ESTIMATION

4.1. Minimum distance criterion (MDC)

To estimate the regularization parameters, we propose the

MDC. Such a criterion was already proposed in [8] where it

is applied to the L-hypersurface. Instead, we use this criterion

directly on the response surface. The main reason for this is

that the L-hypersurface is no longer guaranteed to be convex

while the response surface is. The convexity of the response

surface is central in establishing the properties of the MDC.

The ideal point as defined in section 3.1 corresponds to the

minimum of all objective functions. Even it is a non-existent

solution, it can be considered as a reference point and the

optimal point of the response surface will be the one having

the minimum distance to this ideal point. Let us introduce

the MDC by defining first, the distance to the ideal point and

then the MDC.

Definition 1 (Distance to Ideal Point). Let I = (I1, · · · , Iz)
denotes the coordinates of the ideal point. The minimum dis-

tance function D(µ) is the distance from the ideal Point I to

the point M(µ) = (J1(µ), · · · , Jz(µ)) on the response sur-

face.

D(µ) =

z∑

i=1

(Ji(µ)− Ii)
2 (8)

Definition 2 (Minimum Distance Criterion).

min
µ

D(µ) (9)

Theorem 2. If the response surface is convex, the MDC ad-

mits a unique minimum.

The proof of this theorem relies on a geometrical interpre-

tation of the MDC.

Let us mention that the empirical response surface may

be slightly non-convex, something which can be attributed to

numerical errors. We also proved that the MDC still admits

a unique minimum if it is unimodal (hence not necessarily

convex). In that respect, the MDC can be said to be robust to

the loss of convexity (see [12] for details).

The evaluation of the MDC requires the determination

of the ideal point which is difficult to obtain when the non-

negative constraint is enforced. This is due to the folding dis-

cussed in section 3.2. We propose to define it by determining

the points of the response surface corresponding to the un-

constrained Tikhonov solution for three values of µ equal to

(0, 0), (0,∞), (∞, 0)1. The ideal point coordinates are deter-

mined by finding the minimum coordinate of each of the three

points (see figure 2(b)).

4.2. A grid search strategy to minimize the MDC
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Fig. 3: Grid refinement method

To reduce the computational burden of the MDC, we use a

grid search approach which is proved to be convergent for

unimodal criterion [14]. Figure 3 illustrate the grid refine-

ment. For the bi-objective case with one single regulariza-

tion parameter, at the first level r = 1, we have only four

points µ
(1)
i (i = 1, · · · , 4) on which the response surface is

estimated. Then the grid is refined by defining a new search

segment on which four new points µ
(2)
i (i = 1, · · · , 4) are

defined. The procedure is repeated until a maximum number

of levels is reached. In the tri-objective case with two reg-

ularization parameters, we define 4 × 4 points for r-th level

and choose an optimum point among them. Then we select

the points around it as the new domain. We refine this new

domain to choose a new optimum point. The procedure is re-

peated iteratively. The algorithm corresponding to this strat-

egy is proposed in [12]. In what follows, the number of levels

1In practice, the value of the hyperparameters cannot be fixed to ∞ but

are fixed to large values



is fixed to 6 which gives approximately the same resolution as

the 20× 20 grid of section 3. At each level, only 4 new points

of the response surface need to be estimated thus requiring

24 evaluations for the 6 levels instead of 400 required for the

20× 20 grid.

5. EXPERIMENTS

To simulate the blurred hyperspectral images, we first simu-

late the unblurred image according to the instantaneous mix-

ture model2. The convolution filter H is assumed to be a low

pass gaussian filter whose bandwidth is lower than the band-

width of x resulting in a difficult deconvolution problem. A

gaussian noise is then added to the blurred image. The size

of the resulting hyperspectral image is (120 × 120 × 32). It

should also be mentioned that the simulation example was de-

signed to favor the non-negative deconvolution.

Here we use the MDC to answer the following question :

does the non-negativity constraint improve the deconvolution

results? The MDC yields a different solution for each value

of the SNR. Thus it is possible to evaluate the performance of

the unconstrained and constrained deconvolution algorithms

(coupled with an automatic regularization parameter estima-

tion) by evaluating the mean square error (MSE) as a function

of the SNR.

The MSE curve includes three main parts which are rep-

resented on figure 4. The non-efficiency zone corresponds to

the part of the curve for which the MSE increases as fast as

the noise level. The efficiency zone corresponds to the part of

the curve for which the MSE increases with a lower rate than

the noise. This is the zone where the deconvolution is effec-

tive. Finally the third horizontal part corresponds to the max-

imal performance of the deconvolution. As the bandwidth of

the filter H is lower than the bandwidth of x, even in noise

free situations, the deconvolution can not restore x outside

the frequency range (bandwidth) covered by H. The minimal

MSE value reflects the ill-conditioning of the matrix H. It

decreases as the condition number of H decreases.

The Tikhonov approach with non-negativity constraint is

an iterative algorithm which converges to the optimal solution

as the number of iteration increases. In fact, analyzing the

non-negative deconvolution performance evolution as a func-

tion of Niter aims at evaluating how the convergence of the

algorithm is affecting the quality of the deconvolution results.

The MSEs obtained for different values of Niter are

shown in figure 5. Clearly, the non-negativity constraint

improves the effectiveness of the regularization parameter

estimation. This highlights the stabilizing property of the non

negativity constraint as proved in [15]. For example, when

Niter = 1 (unconstrained Tikhonov approach), the efficiency

zone is in the interval [20, 30] dB and the MSE reaches the

minimal MSE value when the SNR is greater than 30 dB.

2An instantaneous mixture of 3 sources having 32 spectral bands is con-

sidered.
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However when Niter = 10 (constrained Tikhonov approach),

not only the minimum MSE is decreased but the efficiency

zone (which is approximatively between −10 dB and 40 dB)

increases significantly. The MSE obtained for the interme-

diate values of Niter (3 and 5) shows how it is gradually

changing from the unconstrained to the constrained case.

6. CONCLUSION

A first contribution of this work is to set the problem of hyper-

spectral images deconvolution as a multi-objective optimiza-

tion problem whose response surface is proved to be convex.

But, contrarily to the unconstrained case, the response surface

does not coincide with the Pareto front. A second contribu-

tion is the proposal of the MDC to estimate the optimal values

of the regularization parameters µs and µλ. We proved that

this criterion admits a unique minimum even if the MDC is

non convex but only unimodal. A fast grid search algorithm

is proposed to estimate the point of the response surface min-

imizing the MDC. The MDC performances are assessed with

respect to the SNR for two deconvolution algorithms (with

and without non-negativity constraint). It appears that the

non-negativity constraint results in a significant improvement

of the estimation accuracy, thus confirming the regularization

property of the non-negativity constraint. Illustrative exam-

ples and a comparison of the MDC with state of the art meth-

ods can be found in [12].



7. REFERENCES

[1] Simon Henrot, Charles Soussen, and David Brie, “Fast

positive deconvolution of hyperspectral images,” IEEE

Transactions on Image Processing, vol. 22, no. 2, pp.

828–833, 2013.

[2] Simon Henrot, Saı̈d Moussaoui, Charles Soussen, and

David Brie, “Edge-preserving nonnegative hyperspec-

tral image restoration,” in 38th International Conference

on Acoustics, Speech, and Signal Processing, ICASSP

2013, 2013.

[3] Simon Henrot, Charles Soussen, Saı̈d Moussaoui, and

David Brie, “Restauration positive d’images hyper-
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