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A PARALLEL, O(1) ALGORITHM FOR UNBIASED, THIN WATERSHED

T. Chabardès, P. Doklàdal, M. Faessel, M. Bilodeau

PSL Research University - MINES ParisTech
CMM, Center for Mathematical Morphology
35 rue Saint Honoré - Fontainebleau, France

ABSTRACT

The watershed transform is a powerful tool for morphological
segmentation. Most common implementations of this method
involve a strict hierarchy on gray tones in processing the pix-
els composing an image. Those dependencies complexify the
efficient use of modern computational architectures. This pa-
per aims at answering this problem by introducing a new way
of simulating the waterflood that preserves the locality of data
to be processed. We propose a region growth algorithm based
on arrowing graphs that is strictly linear despite the valua-
tion domain of input images. Simultaneous and disorderly
growth is made possible by using a synchronization mecha-
nism coded directly on the weight of nodes. Experimental
results show that the algorithm is accurate and by far outper-
forms common watershed algorithms.

Index Terms— Segmentation, Watershed, Local imple-
mentation, Linear time.

1. INTRODUCTION

The watershed transformation is a common tool for morpho-
logical segmentation. It is based on region growth and edge
detection. One definition reflects the water flood on a topo-
graphic relief. This definition creates thin watershed lines
and was chosen for the most used algorithms. Considering
the topographic surface as pierced at the location of regional
minima, it is immerged in water, so that the water rises from
those holes and creates lakes. Those different lakes, each as-
sociated with a minimum, are not allowed to mix and their
intersections will form dams. The set of all dams is called the
watershed lines and represents the desired contours.

Algorithms that replicate this principle do not meet the
speed required by the ever-growing amount of data to be pro-
cessed. The queue-driven propagation is very sequential and
only efficient for mono-processors. The current limitation
of the clock rate limited by physical constraints brought the
need for multi-processor architectures and adaptation of usual
methods to the new specifications. The sequential nature of
most algorithms makes impossible to benefit of their parallel
processing capabilities. This motivates the work presented in
this study.

In this article, we present a new method to calculate wa-
tershed lines using an oriented graph or digraph. Compared
to traditional methods, the proposed method preserves the lo-
cality of data and allows for optimized implementation with-
out compromising the quality of the extracted contours. Time
complexity is still linear with respect to the number of pixels
and the use of complex data structures such as hierarchical
queues is avoided. We compare ourselves with the two fol-
lowing methods : a hierarchical queue-driven propagation [1]
and successive geodesic thickenings of the regional minima
[2].

2. RELATED WORK

Early work involved morphological operators. Reconstruc-
tion of successive thresholds of the image, by means of skele-
ton by geodesic influence zones, has been developed in [3] by
Beucher and Lantuejoul. Iterations are calculated until idem-
potence to obtain the watershed.

Another iterative approach based on arrowing has been in-
troduced in 1990 by Beucher [4]. A more recent method using
successive pruning of the arrowing graph has been developed
by Meyer in 2014 [5].

Other approaches involving the use of hierarchical queues
were first introduced by Vincent and Soille in 1991 [6] et
by Meyer [7, 1] and developped by Beucher in a non-biased
algorithm[8]. Splitting the image into smaller images was
studied in 1996 [9] by Bieniek and al., with a preprocessing
of the overlapping areas and distribution of those images to
multiple processing units. A study was realized on the par-
allelization of the hierarchical queue approach by Beucher in
1997 [10]. Further works on splitting by Gillibert and Jeulin
involved iterative processing of smaller images and a merging
procedure of the results until idempotence [11].

An alternative definition of the watershed transform based
on topologic distance was proposed in 1997 by Couprie et
Bertrand [12]. Futher works lead to the creation of the power
watershed by Couprie, Grady, Najman and Talbot in [13].
Parallelization of this method was studied in [14] by van
Neerbos, Najman and Wilkinson.

The first massively parallel algorithm in pseudo O(1) in
continuous space was proposed by Dejnozkova [15, 16].



3. TOPOGRAPHIC STRUCTURES

We define a gray-level image by the application f : D → V ,
where D is the set of pixels and V the valuation domain. We
associate this function with its corresponding topographic re-
lief, where all gray values can be seen as elevations on the re-
lief. This topographic relief contains a various number of to-
pographic structures such as domes, valleys, ridges, thalwegs,
regional minima, plateaus... Among those, a few interest us
as flooding paths, plateaus, regional minima and catchment
zones. The absolute heights of the pixels are not needed for
defining the topographic structures and they depend only on
the relative heights of neighboring pixels.

In the following,∼ denotes the neighborhood relationship
on D defined by the considered connectivity. Any usual con-
nectivity can be used, e.q. 4,6 or 8 in 2D and 6,18 or 26 in 3D.
If a,b are neighbors, we write a ∼ b. For a, b ∈ D | a ∼ b:

f(a) < f(b) ⇔ a is a lower neighbor of b, noted a ≺ b

f(a) > f(b) ⇔ a is a higher neighbor of b, noted a � b

f(a) = f(b) ⇔ a, b are level-neighbors, noted a ' b

We introduce a graph G(N, E), a non-oriented graph where
N ↔ D and the set E is generated by the connexity ∼. We
can encode the relative height of neighboring nodes in an ori-
ented graph built from the previous graph, by defining edge
sets derived from E. We note E≺, E� and E' the edge sets
generated by the relation≺,�,'. Using these new edge sets,
we can define the increasing graph G(N,E�), the decreas-
ing graph G(N,E≺) and the level-neighbor graph G(N,E').
Considering a ≺ b ⇔ b � a, The two following properties
can be deduced :

G(N,E� ∪ E≺) is non-oriented.

G(N,E') is non-oriented.

The relations ', � and ≺ are transitive. If a ' b ' c
then f(a) = f(b), f(b) = f(c) and also f(a) = f(c) and a
is path-connected to c by a level-constant path. Similarly, if
a � b � c then also f(a) > f(c) and a is connected to c by a
strictly decreasing path.

For a point a the transitive closure '+ of a defines a
plateau p, a connected region of a constant-level, with a ∈ p.
From now on, let P={pi} denote the set of all plateaus and
pi its elements.

A plateau from where one cannot reach a lower altitude
with a non-increasing path is called regional minimum. We
can define it using the following equation:

m ∈ P,m is a regional minimum⇔
∀a ∈ m,@b ∈ N, a ≺ b.

We call the set M = {mi} the set of all minima.
Given some minimum mi, the transitive closure �+ de-

fines the catchment basin of mi : CB(mi) = {x | x �+

y, y ∈ mi} as the union of points connected to mi by a strictly
decreasing path.

The basins are not disjoint. Their intersection is usually
considered as the watershed. However, this intersection does
not have the necessary properties, namely it is neither thin
nor contiguous. We show below how to efficiently generate a
thin, continuous and well centered watershed line, and define
the subset later as an union of nodes and edges.

4. BUILDING THE WATERSHED USING THE
FLOODING GRAPH

In the next section, we show how a flooding graph can be
used to generate the watershed lines. We describe the three
main components of the method in sections 4.1, 4.2 and 4.3.
Reconstructing the catchment basins requires the extraction
of minima and the creation of the flooding graph. However,
those two last components are independent. Figure 1 shows
how they relate to each other. The result l(f) holds both par-
tial catchment basins and watershed lines.
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Fig. 1. Overview of the method.

4.1. Minimum detection

The set of regional minima U is obtained by removing from
P all plateaus pi that are not minima by

U = P \ {pi | ∃b, b ≺ a, a ∈ pi}, with a, b ∈ N

Note that this operation is an opening by reconstruction of
P with a marker set V={a | ∃b, b ≺ a} which is the de-
creasing border (provided it exists) of any plateau which is
consequently not a regional minimum.

Given that P contains plateaus, U does not contain single-
pixel minimum. The set of single-pixel minimum is denoted
by S, and is efficiently detected using S = {a | @b, a �
b or a ' b} The set of all minima of an image, denoted by
M , is the union of both regional and singleton minima M=
U∪S. Figure 2 shows this process.

4.2. Generating the flooding graph

Water flooding a relief rises from the bottom up. A natu-
ral choice to simulate this behavior would be to use the in-
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Fig. 2. Minima detection. E'(double-sided arrows),
E�(single-sided arrows). P = {p1, p2, p3}. V = {c, f, g},
decreasing borders. U = P \ {p1, p2} = {a, b}. S = {h}.
M(f) = U ∪ S = {a, b, h}.

creasing graph G(N,E�), since for any a, b ∈ N such that
f(a) > f(b), there is ea,b∈E�. Note that this graph con-
tains no arcs on plateaus to indicate how to flood plateaus.
On plateaus, water flows from decreasing borders towards in-
creasing borders. In the following we therefore embed E�
arcs to the plateau to correctly simulate this behavior as well.
Consider some plateau p and its decreasing border V , V ⊂ p.
Let dp(a, V ), a ∈ p, denote a geodesic distance in p from a
to V . We redefine the set of increasing edges in the following
way. Let a, b ∈ N | a ∼ b:

eb,a ∈ E� if

{
f(a) > f(b) or
dp(a, V ) > dp(b, V ) when a, b ∈ p

(1)

figure 3 shows how an increasing graph of the initial image is
completed with an increasing graph of the geodesic distance
of the plateau.
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Fig. 3. Generating a flooding graph. (a) gray-level image.
(b) geodesic distance on a plateau. (c) flooding graph, as-
cendancy graph (black), ascendancy graph on the geodesic
distance (red).

4.3. Catchment basin reconstruction

Each basin is associated to a minimum, the minima are la-
beled. For every node of the flooding graph G�, we associate
a value in L = {∅,W} ∪ N∗.
∅ is an undetermined value, associated to every non-

minimum node at initialization. W is the watershed line
value. We define the application l : D → L.

As the water rises from bottom to top, a node takes its
label from the nodes below it. If the same label appears on all

lower neighbors, this label propagates. Otherwise, if different
labels are available, the value W is assigned. W itself does
not propagate.

We note Q(a) = {l(b) | b ≺ a} \ {W} the set of labels
on lower neighbors of a, and we propose the following rule
of propagation:

repeat
if Q(a) = {l}, l 6= ∅, then l(p)← l

else if |Q(a) \ ∅| > 1 then l(p)←W.

until stability

(2)

The resulting image contains both the catchment basins asso-
ciated to the minima, and the watershed lines. Depending on
the chosen flooding graph, the shape and location of water-
shed lines can vary.

4.4. Thin watershed lines

Equation (2) suffices to produce a watershed segmentation.
However, thick watershed lines appear whenever every lower
neighbor are labeled W, i.e. Q(a) = {} in (2). Figure 4 shows
an example of such a situation. We introduce a method to
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Fig. 4. Occurence of blocking nodes. (a) gray level image.
(b) flooding graph, see eq (1), labeled minima (red, green).
(c) reconstruction of basins get stuck at this stage. edges un-
explored (black). blocking nodes (thick)

correct the unexplored nodes after catchment of basin recon-
struction. Such nodes n, with Q(n) = {} are called blocking
nodes. We note B = {n | Q(n) = {}} the set of all blocking
nodes. We define the influence zones of each blocking node
as Z(n) = {a | a '+ n, l(a) = ∅}. We suppress the edges
from lower neighbors to nodes of Z(n).

E1
� ← E� \ {ea,b | n ∈ B, a ∈ Z(n), b ≺ a} (3)

Then we replace the missing graph on every influence zones
so that water flows from the lowest reachable nodes. We de-
fine the lowest reachable neighbors of a influence zone :

V ′ = arg inf
a
f(a), l(a) ∈ N, b ∈ Z(n), a ∼ b.

The updated flooding graph is E2
� ← E1

� ∪ {ea,b | a ∈
V ′, b ∈ Z(n), a ∼ b}. We complete the flooding graph on
each Z(n), n ∈ B, similarly as equation (1) :

E3
� ← E2

�∪{
ea,b | dZ(n)(a, V

′) > dZ(n)(b, V
′), a ∼ b

} (4)



Basin reconstruction can now explore the remaining nodes
using G(N,E3

�). Figure 5 shows an example of such modifi-
cations of the flooding graph.

(a) (b) (c)

Fig. 5. An example of a modified graph. (a) result of one
pass of basins reconstruction. (b) modified flooding graph,
edges to lowest reachable nodes. (c) final basin reconstruction
with nodes at value W (gray). Obtained watershed is discon-
tinuous, but continuous if edges are considered as watershed
(thick edges).

5. EVALUATION

The proposed method produces result similar to the unbiased
watershed as described in [8]. The watershed line is not nec-
essarily contiguous in a discret grid, as no biased choice is
done. However, it is contiguous if we consider watershed to
be on edges and nodes, see figure 5. Proof of equivalence of
the results obtained by the two methods is a work in progress.

Computations of minima, distances, and reconstructions
can be realized using simple queues as a propagation mean.
Parallelism can be achieved for reconstructing basins using
an atomic synchronization on each node. Minimum detection
can also be parallelized and it requires no synchronization in
a shared memory context.

5.1. Time measurement

We ran experiments on an Intel(R) Xeon(R) CPU E5-2650 v2
based shared memory parallel computer with 8 cores, running
at a 2.60Ghz clock frequency. We performed time measure-
ments using synthetic images generated by a distance function
on random seeds. We compared our method, the Beucher’s
hierarchical queue method [8] and the geodesic thickening
Meyer [2]. Figure 6 shows the obtained results. The proposed
method is almost 10 times faster than [8], and 100 times faster
than [2]. The obtained speed-up is high as it does not require
complex synchronisation mechanism.

6. CONCLUSION

We propose a method to calculate the watershed lines in O(1)
per pixel that requires no sorting of pixels with respect to
their elevations. It produces results identical to the unbiased
version of watershed using the hierarchical queue proposed
by Beucher in [8]. This method is faster than conventional
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Fig. 6. Performances of the proposed method. (a) Compari-
son to the state-of-the-art methods. (b) Multi-thread Analysis.

methods. Removing the sequential nature of the transform
allows us to reach higher performances by exploiting paral-
lel computation such as MIMD and SIMD paradigms. This
approach shows that transformations of morphological math-
ematics that were considered difficult to parallelize efficiently
can be optimized for recent architectures using simple opera-
tors such as arrowing graphs and atomic propagation.
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de Morphologie Mathématique, oct 2014.

[6] L. Vincent and P. Soille, “Watersheds in digital spaces :
An efficient algorithm based on immersion simulations,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 13, no. 6, 1991.

[7] F. Meyer, “Un algorithme optimal de ligne de partage
des eaux,” 8th Conf. Reconnaissance des Formes et In-
telligence Artificielle, vol. 2, 1992.

[8] S. Beucher, “Algorithmes sans biais de ligne de
partage des eaux,” Tech. Rep., Centre de Morphologie
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