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Abstract. The purpose of this study is to implement a powerful multi-objective (MO)
genetic algorithm(GA)-based optimization technique for structural problems, based on the
use of displacement-generalized stress Dynamic Mixed plate Finite Element Model (DM-
plate-FEM). The idea is to optimize different thickness parameters of a plate structure in
order to minimize antagonist objectives among these stress criteria under dynamic loads.
In this article, the optimization is performed with a GA-based iterative method and propose
a set of Pareto-optimal solutions, leaving the final choice to the user. The repetitions of
the calculations in this method is offset by the use of the displacement-stress mixed plate
FEM. Such a model discretizes both displacements and generalized stresses in the same
model, in order to get the latter directly and increase the efficiency of the method. The
implementation of the Kirchoff-Love (KL) plate theory also improve the work of the GA
as it allows a quick change of the thickness structure parameters without rebuilding the
whole assembly. The number and complexity of calculations needed by the GA is thus
smaller and the speed of the method highly improved. A few numerical investigations are
made with both simple and complex test examples in order to validate the methods and
show its relevance. This work shows efficient and promising results that may turn out to
be interesting regarding industrial optimization cases with plate structures.
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1 Introduction

The purpose of this study is to implement a powerful MO-GA-based optimization
technique for structural dynamic plate problems, based on the use of mixed displacement-
generalized stress plate FEM. This method has been imagined in the context of plate
structure with at least one stress objective and thickness parameters.

The optimization of a structure’s parameters in order to prevent damages is a major
concern in mechanical engineering but can only be achieved at the expense of others
essential criteria. Even though often carried out manually, MO-optimization methods
also naturally appear in the literature, such as gradient-based method [1, 2] and MO-
GA-based methods [3, 4]. In this study, the optimization is performed with a classical
GA-based NSGA-II method [5, 6], as it permits to dispense with any weighting of criteria.
This kind of method enables to find a set of Pareto-optimal solutions, which are all optimal
compared to each other, for at least one criterion. Nevertheless, an inconvenient lies in
the repetitions of the criteria’s evaluation, depending on the chosen method and theory.

Despite the power of those methods, a major inconvenient lies in the repetitions of
the criteria’s evaluations for each solution, each generation. In the case where some of
the criteria are stresses, their calculations are crucial. Usually, it necessitates to find the
displacements first through a primal FEM (in which the parameters are displacements),
and then access to the stress fields with extra calculations. Another original method, used
in this paper, consists in building a mixed FEM which discretizes both the displacements
and the stresses in the same model, in order to get the latter directly.

In the literature, many different formulations for mechanical problems permit to access
to different parameters in the same model. Washizu’s book [7] gives a good insight of
all the variational methods with different fields. Among these, the Hellinger-Reissner’s,
imagined by Hellinger [8] and later by Reissner [9, 10, 11], describes both displacements
and stresses. Its application to FEM is well explained by Wriggers’ book [12]. It is widely
used in static for plate problems, but more rarely for in dynamics [13, 12, 14]. In this
work, we establish a displacement-generalized stress dynamic mixed FEM (DM-FEM) for
structural studies, based on Kirchoff-Love thin plate theory [15]. This model allows a
direct access to the generalized stresses within the plate, and highly simplifies the work of
the GA under stress criteria, compared to a regular primal displacement FEM that need
an extra work.

Moreover, the plate theory implementation gives us the opportunity to act on the
thicknesses of the plate structure without building a whole new assembly, which offset
the numericaly bigger size of such a model. This also improves the performances of the
optimization techniques with some thickness parameters as we can act on them directly
and independently, and change the whole structure in a simple manner.

In this way, a few investigations are made, using a GA-based optimization improved
by the DM-plate-FEM, with stress criteria and thickness parameters. The idea is to split
the test structure into smaller ones with their own thicknesses, and try to optimize them,
so as to reduce the maximum Von Mises (VM) stress within the plate structure under a
dynamic harmonic load, and the mass of the structure.

This original method shows promising results as it is able to satisfy multiple damage
criteria with different thickness distributions within the structure, and decrease the num-
ber and complexity of calculations needed in the iteration of the algorithm thanks to the
DM-FEM.
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In the first part, we present the type of optimization problem we study. Then we give
a quick description of the GA used. We continue with the implementation of the mixed
FEM, and finally get to the principal relevant examples.

2 Optimization problem

The two ”example” structures we want to optimize are built up with thin Kirchhoff-
Love plate elements (see figure 1 and 2, respectively composed of 256 and 512 elements).
They are separated in a few zones with their own thicknesses (respectively 8 and 7 zones in
the figures), which are the parameters of the optimization. The range of the parameters,
as well as the number of zones and their positions are defined by the user.

Figure 1: Plate structure ”1” composed of 8 sub-structures with their own thicknesses

Figure 2: Plate structure ”2” composed of 7 sub-structures with their own thicknesses

The problem we try to solve is the minimization of both:

• the maximum Von Mises (VM) stress within the whole plate structure for a given
nth mode. In other words, we want to decrease the maximum VM stress within the

whole structure under a dynamic load
−→
F (see figure 1 and 2) considering:

−→
F = Feiωt (1)

and ω = ωn the pulsation of the nth mode

• the mass of the structure, in a bid of cost

These two objectives being antagonistic, the goal is to find some thickness distributions
(set of parameters) that are good compromises between the mass and the maximum stress
undergone by the structure. As such, the GA method quite naturally appears.
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3 Genetic Algorithm method

The GA methods can be compared to the evolution of species in their natural envi-
ronment. It consists in making evolve a population, whose individuals, solutions of the
problem, tend to improve for the purpose of our objectives as the generations follow. In
this context, the word used to explain its functioning are taken from biology domain,
namely:

• an ”individual” is a solution to the problem (here, a combination of ”n” thicknesses
(one each zone) that gives a compromises between the objectives)

• a ”population” is a group of ”individuals” (here, a set of thickness combinations, that
forms a Pareto front with one compromises per thickness distribution)

• a ”generation” is an iteration of the algorithm and correspond to a population

The functioning of the algorithm is summarized in figure 3). It is composed of 5
different stages (stages 2 being the most costly).

1. Initialization of the population
Set of thickness combinations

2. Evaluation of the individuals
Max stress and mass for each thickness combination

3. Selection / Mutations / Crossing

2bis. Evaluation of the individuals
Max stress and mass for each thickness combination

Insertion in the population

4. New population
Set of thickness combinations

5. New iteration/
Generation

Figure 3: Principle of the genetic algorithm

4 Dynamic Mixed Finite Element Model for thin Kirchhoff-

Love plate

In our studies, the ”evaluation step”(step 2 in figure 3) is by far the most costly because
we need to evaluate the stress within the whole plate structure, identify the maximum,
and it eventually necessitate to rebuild the assembly with the new structure parameters.
The classical method consists in building a primal FEM to access the displacement in a
first step when computing the response of the structure. Then we reach the stress field
through matrix calculations, and repeat it each iteration. It’s the most common and in-
tuitive method, but it appears to be heavy going because of the extra calculations, the
rebuilding and its repetition in our GA case. The main idea of this paper is to delete those
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extra calculations and enhance the rebuilding. The originality of our method consists in
the construction of a displacement-generalized stress DM-plate-FEM that permits a direct
access to both displacements and stress fields in the response of the structure. The fea-
tures of such a FEM permits to avoid the extra work needed by a primal FEM and replace
it by a simple scalar calculation. Furthermore, the implementation of the Kirchhoff-Love
thin plate theory in the mixed FEM allows to build each zone of a constant thickness
regardless of this inherent parameter, when separating the bending phenomenon. That
added features permits to act on the thickness of each zone without having to rebuild it
from the beginning which considerably improve the method.

4.1 Hellinger-Reissner mixed formulation

The displacement-generalized stress mixed FEM we implement is based on the HR
mixed functional [8, 9] expressed for dynamics problems. It may correspond to the regular
Lagrangian used in dynamics, but computed with mixed component, both functions of
displacements and stresses, as follows:

ΠHRD =

∫∫∫

V

−σijeij(ui) +
1

2
σijSijklσkl + biui +

1

2
ρu̇2

i dV (2)

considering σij the stress, ui the displacement, eij(ui) the strain (function of the displace-
ment ui), bi the body force, ρ the density and Sijkl the elastic compliance matrix. The
stationary condition or Euler-Lagrange equations can then be applied to the functional
so as to conventionally solve a dynamic structure problem.

4.2 Discretization of displacements and generalized stress

The discretization of the generalized stresses (according to figure 4a) with plate ele-
ments using Kirchhoff-Love (KL) thin plate is made as follows:

σij =
{
Mx My Mxy

}T
= Pβ (3)

with
{
Mx,My,Mxy

}T
respectively the bending moments in the x, and y direction, and

the twisting moment within the plate (thickness t). P is the generalized stresses shape
function matrix and β the generalized stress parameters vector within the plate. The
shape functions are linear in functions of x and y. The discretization of the displacements
(see figure 4)b for a thin plate elements using Kirchhoff-Love (KL) theory is made as
follows:

ui =
{
w θx θy

}T
= NU (4)

with
{
w θx θy

}T
being respectively the transverse displacement of the plate, and the

section rotations around x and y. N =
{
Nw,N θ

}T
is the displacements shape func-

tion matrix and U =
{
Uw,U θ

}T
the displacements parameters vector. For triangular

elements and cinematically admissible displacements, the functions are quadratic in func-
tion of x and y. The strain depending on the displacement is written as follows:

eij =
{
ǫxx ǫyy γxy

}T
= Dui = DNU (5)
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(a)
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(b)

Figure 4: Displacements & stress in the plate Kirchhoff-Love theory: (a) Bending and
twisting moment, (b) Transverse displacement and rotation section

with D the following displacement-strain tensor-operator:

D =







0 0 ∂
∂x

0 − ∂
∂y

0

0 ∂
∂x

∂
∂y






(6)

The elastic compliance matrix Sijkl is given by:

Sijkl =
1

t3
S̃ijkl =







12
Et3

− 12ν
Et3

0
− 12ν

Et3
12
Et3

0

0 0 24(1+ν)
Et3






(7)

4.3 Matrix formulation

The application of the Euler-Lagrange equations leads us to the following matrix for-
mulation of the dynamic mixed FEM (for one plate element of surface S and thickness t):







tM̃Fw
0 0

0 t3M̃Fθ
0

0 0 0







︸ ︷︷ ︸

Mmix







ÜFw

ÜFθ

β̈






+







0 0 GT
w

0 0 GT
θ

Gw Gθ
1
t3
H̃







︸ ︷︷ ︸

Kmix







UFw

UFθ

β






=







F w

F θ

0






(8)

with

M̃Fw
=

∫∫

S

Nw
TρNwdS et M̃Fθ

=

∫∫

S

Nθ
T ρ

12
NθdS (9)

Gw =

∫∫

S

P TDNwdS et Gθ =

∫∫

S

P TDNθdS (10)

H̃ =

∫∫

S

−P T S̃ijklPdS (11)

with G =
{
Gw,Gθ

}
, S̃ijkl = t3Sijkl and F =

{
F w,F θ

}T
being the nodal forces (splitted

for w and θ parameters).
When carefully developing the discretization of each component of the displacements and
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generalized stresses, it appears that we can split the whole matrices into smaller ones
independent on the thicknesses: M̃Fw

representing the mass in the sense of the transverse
displacement w, M̃Fθ

representing the mass in the sense of the rotation section around
x and y (respectively θx and θy) and H̃ representing the stiffness in the meaning of the
stress parameters. G is intrinsically independent from the thickness of the element. That
features permits to build an assembly of a given structure (or specific zone of it in our
case) regardless of its thickness (as long as it is constant in the zone). Thus, we can
build the assembly of each q zone of the structure, attribute their own thicknesses, and
afterwards assemble the q zones in order to build the ”total” assembly.

In the rest of the article, the superscripts .(q) and .tot are added to the matrices in order
to make the distinction between respectively the matrices of the zone q and the ones of
the ”total” structure.

4.4 Computation of the response and the Von Mises stress

The computation of the response of the ”total” structure is made with a global viscous
damping proportional to the stiffness features, as follows:

Ctot
mix = αKtot

mix (12)

Thus, the mixed response of the ”total” structure is computed as follows:

{
U

β

}

= (−ω2M tot
mix + (1 + iαω)Ktot

mix)
−1

{
F

0

}

(13)

with ω = ωn the pulsation of the nth mode in our case. The VM stress in then computed
as follows:

σVM =
1√
2

√

(σxx − σyy)2 + σ2
yy + σ2

xx + 6σ2
xy (14)

4.5 Implementation in the genetic algorithm, features and ad-
vantages

The figure 5 shows the implementation of the DM-FEM in the GA, with a population
of p individuals, g generations, and q different parameters (zones’ thickness). This type
of mixed model coupled with the thin plate theory puts forward two clear advantages
comparing to primal FEM:

• a direct access to the generalized stress within the plate (see operation ”2.c” in
schema figure 5) and the suppression of the extra calculation needed by a primal
FEM. Basically, we replace a complex matrix calculation (for example with Gauss
points and smoothing methods) by a simple scalar and almost instantaneous calcu-
lation (equation 14). Even though the response calculation (equation 13) is a bit
heavier than for a primal model because of its size, the global operation remains
more efficient with a mixed model

• the thickness parameters of each q zone of the structure are easily mutable (operation
”2.a” in schema figure 5), before assembling them (operation 2.b in schema figure
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5). Even though such models are numerically bigger than a classical FEM, the ”pre-

assembly” of M
(q)
mix and K

(q)
mix for each q zone regardless of the thickness parameters

(operation 0 in schema figure 5) leaves us the opportunity to allocate them separately
for each q zone each iteration (operation ”2.a” ) and afterwards assemble the ”total”
structure’s matrices M tot

mix and Ktot
mix (operation 2.b ). The replacement of a ”global

assembly” by a simple assembly of q zones, each iteration each generation, highly
increases the performance of the method.

0. Assembly of M̃
(q)

Fw
, M̃

(q)

Fθ
, H̃

(q)
and G(q) for each q zone

1. Initialization of the population
Set of p thickness combinations

2. Evaluation of p individuals

2.a Attribution of tq to the q zones: M
(q)
mix and K

(q)
mix

2.b Assembly of the q zones: M tot
mix and Ktot

mix

2.c Calculation of σV M,max and mmax

3. Selection / Mutations / Crossing

2. Evaluation of p individuals

2.a Attribution of tq to the q zones: M
(q)
mix and K

(q)
mix

2.b Assembly of the q zones: M tot
mix and Ktot

mix

2.c Calculation of σV M,max and mmax

Insertion in the population

4. New population
Set of p thickness combinations

5. New iteration
g generation

Figure 5: Implementation of the mixed FEM in the genetic algorithm, with a population
of p individuals, g generations, and q different parameters (zones)

5 Example: optimization of the thickness combina-

tion to minimize the mass & the maximum stress

for one selected mode

The examples we use to test our method are schematized in figure 1 and 2 in section 2.
We want to minimize the maximum VM stress ωVM within the whole structure for a given
mode n (see figure 6.c, 7.c and 8c/f), and the mass m of it. The parameters we consider
are the thicknesses of each ”zone” (see thickness zones in figures 6b, 7b and 8b/e). The
range chosen for the different parameters is 1 to 2mm. The plate is made of S210 steel
(see characteristics in table 1).

The results are presented as ”Pareto Front” (black points in figures 6.a, 7.a and 8a/d).
These points are defined by the right ordinate axis and the abscissa axis representing re-
spectively the mass of the structure and the maximum VM stress. Each of these optimal
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Table 1: Steel characteristics

Young Modulus (Pa) 2.1× 1011

Poisson ratio 0.33

Density (kg.m−3) 7.5× 103

points are better than the others in the sense of at least one of the two objectives. In
that way they are all compromises we can select to design our structure, depending on the
objective we want privilege. Once a Pareto point chosen, the parameters corresponding
to the point are defined by the colored curves plotted in addition to the Pareto Front in
figures 6.a, 7.a and 8a/d. They are determined by the left ordinate axis and the abscissa
axis representing respectively the thickness of each of the sub-structures for the chosen
Pareto point (with the same abscissa) and the maximum VM stress in the whole structure
for this optimal point. Basically, when selecting a point of the Pareto Front, the corre-
sponding thicknesses to design the structure correspond to ordinate of the colored three
points with the same abscissa.

Those results were obtained with NSGA-II with a population of p individuals and g

generations (depending on the case) following the schema figure 5. It is to be noted that
the genetic algorithm has been compiled several times with the same population and gen-
eration, in order to check the convergence of the results.

The first subsection deals with the optimization of structure 1 for the mode 1 and
constitutes a simple example whose sketch of the results could easily be intuitive, while
the second one treats of the optimization of the more complex structure 2 for the mode
3. in the end, subsection 3 shows results for the mode 4 of structure 1 and tricky results.

5.1 Structure 1, Mode 1: Validation / Simple example

This subsection shows a simple intuitive example with structure 1, in order to show
the qualitative relevance of such a method. It presents the results obtained with the pul-
sation ω1 of the mode n = 1 (bending mode), a damping coefficient α = 2e−2 and for a
stress distribution divided in q = 8 zones. The structure is composed of 256 elements. In
the genetic algorithm, the population is composed of p = 50 individuals and the results
presented in figure 6 are obtained with g = 500 generations.

This example shows some thickness combinations that allows us to have a VM stress
between 17 and 142 MPa, with a mass of the structure between 2.85 and 4.8 Kgs. In
this case, more than the steadiness of the Pareto Front itself, the most relevant is the
evolution of the thicknesses in function of the VM stress (see colored curves in figure 6a).
In fact, we can observe that the most important zones to ”reinforce” in order to decrease
damages are the closest to the housing. Indeed, the closer to the housing the zone is, the
more it needs to be thick. When taking a look at the stress distribution for the first mode
(see figure 6c), this evolution of the thicknesses in function of the stress seems coherent.
Intuitively, in order to decrease the mass and keep a low stress, we would have decrease
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Figure 6: Optimization results for ”structure 1” and mode 1: a/ Pareto Front (black)
& thicknesses (m) for each point (colored), b/ Independent thickness zones, c/ Stress
distribution on mode 1 (Pa)

the thickness where the stress is low, and increase it where it is high. This example puts
forward the qualitative relevance of the method, and also gives a quantitative aspect to
the thickness parameters with numerical precise values.

5.2 Structure 2, Mode 3: Validation / Complex example

This subsection presents intuitive results with a less simple example with the structure
2 (see figure 2). It presents the results obtained with the pulsation ω3 of the mode n = 3
(bending mode), a damping coefficient α = 2e−3 and for a stress distribution divided in
q = 10 zones. The structure is composed of 512 elements. In the genetic algorithm, the
population is composed of p = 100 individuals and the results presented in figure 7 are
obtained with g = 500 generations.

This example shows some thickness combinations that allows us to have a VM stress
between 14 and 142 MPa, with a mass of the structure between 4.95 and 8.3 Kgs. In
the same way as section 5.1, the most interesting is the evolution of the thicknesses in
function of VM stress (see colored curves in figure 7a). In fact, when observing the stress
distributions for this mode (see figure 7c), we note that the most stressed zones (see figure
7b) are the zones 1, 5, 6 and 7. It seems intuitive to reinforce these zones specifically
in order to decrease the VM stress within the structure. Indeed, the evolutions of the
thicknesses 7a) follows this intuition, as these zones look to be the most important, stress
wise. In this way, this example, even though more complex than the first one, also puts
forward the relevance of the method, in a qualitative manner.
Besides the evolution of the stress distribution that is intuitively predictable, as for the
last example, our method still add a qualitative interest as figure 7a gives precise values
to the thickness parameters we need to select in order to get the corresponding maximum
VM stress and mass of the selected point.
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Figure 7: Optimization results for ”structure 2” and mode 3: a/ Pareto Front (black)
& thicknesses (m) for each point (colored), b/ Independent thickness zones, c/ Stress
distribution on mode 1 (Pa)

5.3 Structure 1, Mode 4

This section focus on the 2nd twisting mode of the structure 1. It presents the results
obtained with the pulsation ω4 of the mode n = 4 (twisting mode), a damping coefficient
α = 1e−4. We implemented two cases both divided in 4 zones, with a different repartition
of the zones (see figure 8b and 8e). The results are summed up for this two configurations
respectively in figure 8a and 8d. In both cases, the structure is composed of 256 elements,
the population is made with p = 50 individuals and the number of generations is g = 500.

The Pareto Front in both cases are not as well-defined and steady as for the last cases.
In the first configuration, it allows us to have a VM stress between 3.4 and 170 MPa, with
a mass of the structure between 2.85 and 4.23 Kgs. In the second one, the VM stress
goes from 3.3 up to 170 MPa, with a mass of the structure between 2.85 and 4.24 Kgs.
We note that the Pareto Front both presents some specificity we didn’t observe in the
optimization of the 1st mode (see section 6), as in both cases:

• the Pareto front shows a large set of solutions that have almost the same VM stress
for wide range of mass (low stress domain). This domain is interesting stress wise,
because it allows the user to choose this low stress, and dispose of a many different
solutions parameters wise. We could call that phenomenon ”stress typing”

• the Pareto front shows a large that have a mass between 3.35 and 2.85kgs for the
first configuration and 3.46 and 2.85kgs. In this low mass domain, the VM stress
varies a lot between respectively 6.6 and 170MPa, and 6.8 and 170MPa. This
domain is interesting mass wise, because it allows the user to choose a low mass in
this domain, and dispose of a a large set of parameters possibility. We could call
that phenomenon ”mass typing”
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0

x 10
7

x 10
−3

 

 

0

x 10
7

T
h
ic
k
n
e
ss

(m
)

Von Mises maximum stress (Pa)

M
a
ss

o
f
th

e
p
la
te

(k
g
s)

zone1

zone2

zone3

zone4

Front

66 88 1010 1212 1414 1616

1

1.2

1.4

1.6

1.8

2

2

2

3

3.5

4

44

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

−0.4

−0.2

0

0.2

0.4
 

 2

4

6

8

10

12

14

x 10
8

(c)

0

x 10
7

x 10
−3

 

 

0

x 10
7

T
h
ic
k
n
e
ss

(m
)

Von Mises maximum stress (Pa)

M
a
ss

o
f
th

e
p
la
te

(k
g
s)

zone1

zone2

zone3

zone4

Front

66 88 1010 1212 1414 1616

1

1.2

1.4

1.6

1.8

2

2

2

3

3.5

4

44

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

−0.4

−0.2

0

0.2

0.4
 

 2

4

6

8

10

12

14

x 10
8

(f)

Figure 8: Optimization results for ”structure 1” and mode 5: a/ Pareto Front (black)
& thicknesses (mm) for each point (colored), b/ Independent thickness zones, c/ Stress
distribution on mode 5 (MPa)
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When observing the stress distribution within the plate for the 4th mode (see figure
8c/f), it seems tricky to define intuitively which zones need reinforcement. Nevertheless,
a first guess would be to increase the thickness either of the first zone (red) in the second
configuration (figure 8d/e) or the first zone (red) in the first configuration figure 8a/b).
Nevertheless, the two Pareto front show different results, as the second configuration pre-
scribes to pay attention to the 4th central violet zone (almost exclusively), whereas the
first configuration focus more on its 4th violet zone and a bit on the 1st red one. Further-
more, the first configuration shows a parameters typing with a switching between the 1st

and 4th zones in the high stress domain. This phenomenon can present a high interest
in an industrial case as it means that different set of parameters leads to the same stress
and mass configuration.

The results described here puts forward the importance of the choice of the distribution
of the zone at the beginning of the study, and the relevance of the method in non-intuitive
cases. These unexpected results could be interesting in a complex non-predictable indus-
trial case, and puts forward the interest of such a method, in addition to the simplicity
and efficiency highlighted in section .

6 Conclusion

This paper introduces a methodology of MO optimization for structural dynamic plate
problems with stress criteria and thickness parameters. It is based on a classical NSGA-II
method based on compromises and Pareto-optimal solutions, but presents the particu-
larity of using a displacement-generalized stress DM-plate-FEM. Such a model permits
a direct access to the stress criteria compared to a primal FEM that needs extra com-
plex calculation. Furthermore, when implementing a KL plate theory, this mixed FEM
is featured by a linear dependence to the thickness parameters which facilitates the work
of the repetitive algorithm as a whole new assembly is not necessary. These two features
combined permits to improve the costly ”evaluation step” of the GA and to make it more
efficient than classical methods.

This article shows three practical cases, using two different plate structures under a
dynamic harmonic load. They are divided into a few zones and each of them has a
thickness that is a parameter of the optimization. The goals of the studies are to minimize
the maximum VM stress and the mass of the whole structure in function of the thicknesses
of each zone, for a harmonic dynamic load of a selected mode. Our optimization technique
permits to find a whole group of compromises between the maximum stress and the mass
for different thickness distributions, with a different a simpler FEM model. The first
examples focus on two different structures and show simple results that could be found
intuitively. They put forward the qualitative relevance of the model for a simple example
and a more complicated one, and also add a qualitative interest of the method. The third
example, deals with a twisting mode and show interesting results. In fact, the qualitative
and quantitative evolutions of the parameters of the optimal points were unpredictable,
and the Pareto Front presents both stress and mass typing. These kind of results could
be interesting to observe in a complex industrial case, and puts forward the interest of
such a simple method, in addition to the simplicity and efficiency previously highlighted.
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