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Received: date / Accepted: date

Abstract This paper presents a methodology for the

multi-objective (MO) robust optimization of plate struc-

tures under stress criteria, based on Mixed Super-Ele-
ments (MSEs). The optimization is performed with a

classical Genetic Algorithm (GA) method based on Pa-

reto-optimal solutions. It considers antagonist objec-

tives among them stress criteria and thickness param-
eters distributed along the plate. This work aims at

providing fast and efficient objective calculations. Our

method is based on the implementation of MSEs for
each zone of the plate featured by its own thickness.

They are constructed with a Mixed Finite Element Mo-

del (MFEM) based on a displacement-stress mechani-
cal formulation, and is enhanced with a sub-structuring

modal reduction method in order to reduce the size of

each constant thickness MSE. Those methods combined

enable a fast and stress-wise efficient structure analy-
sis, which improves the performance of the repetitive

GA. A few cases minimizing the mass and the maxi-

mum Von Mises stress within a plate structure under
dynamic loads put forward the relevance of our method

with promising results. For the sake of robustness, both

discrete frequencies and frequency bands are studied.
The MO optimization is able to satisfy multiple damage

criteria with different thickness distributions. It brings
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simplicity, saves computational time and the Pareto-

front presentation with stress objective provides a good
overview of the possibilities for the designers.
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1 Introduction

The goal of this paper is to present a new methodol-

ogy for plate structural dynamic Multi-Objective (MO)
optimization with thickness parameters along the struc-

ture and stress criteria, using Genetic Algorithms (GA).

The idea is to implement a Mixed Finite Element Model
(MFEM) based on a displacement-stress mechanical for-

mulation, enhanced with a sub-structuring reduction

method. It results a Mixed Super-Element (MSE) fea-

tured by a direct access to the stress and a small nu-
merical size, which improves the work of the GA.

Even though often carried out manually, structural

dynamic MO optimization methods are developed in

the literature, such as gradient [1,25] and MO Evolu-
tionary Algorithms(EA) methods [24,27]. MOEA per-

mit to dispense with any criteria weighting. In this

field, many methods are available [20] such as Strength
Pareto Evolutionary Algorithms (SPEA [41,39] and SPEA-

II [40]), Pareto Archived Evolution Strategy (PAES [23]),

Non-dominated Sorting Genetic Algorithms (NSGA [33]
and NSGA-II [10,11]) or Adaptative Pareto Algorithm

(APA [14,13]). In this study, the purpose is not, strictly

speaking, to work on the algorithms, but to develop a

tool usable by any MOEA. We chose to perform the
optimization with a NSGA-II method, because it ap-

peared to be a simple and common method. These meth-

ods lead to a set of Pareto-optimal solutions, but the in-
convenience lies in the repetitions of the criteria’s eval-

uation. The main idea of this work is to find a way to

reduce the CPU-Time necessary for this evaluation.

Some of the previous works on thin structures op-

timization focus on laminated composites [1,27], shell
[25,8] and piezoelectric smart structures [24]. In these

cases, the calculation of stresses is mostly done as a

constraint, and rarely as an objective like we do. Fur-
thermore, they use primal displacement FEMs, that re-

quire extra calculations to get the stress, and rebuilding

of the meshing to change the parameters. Our work is

based on the use of a different FEM mechanical formu-
lation. Among those available in the literature [37], the

Hellinger-Reissner’s (HR) [21,29,30,31], that describes

displacements and stresses, has been chosen for our
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problems. The use of mixed theorems has been popular-

ized in the context of plate structures analysis, because
it provides computational advantages for such represen-

tation. Many MFEMs have been implemented over the

years for different theories such as 3D representations
[28], 2D [19,34,35], plates [34,35,12,9,32], and multi-

layered and piezoelectric structures [5,6,2,17,18]. Wrig-

gers’ book [38] provides a wide range of application for
MFEMs. Besides the computational interests for var-

ious mechanical elastic theories, MFEMs give the big

advantage of providing stress parameters at the master

of the element level with the response of the structure.
In this way, we program a Dynamic Mixed FEM (DM-

FEM), for Kirchoff-Love (KL) thin plates. This model

allows a faster access to the stress fields, one objective
of the optimization. Furthermore, the implementation

of the plate theory permits to act on the thicknesses

without building a new assembly which improves the
GA’s performances since thicknesses of each zones are

parameters of the optimization.

The DM-FEM presents a detrimental feature be-

cause of its bigger size, which increases the CPU-Time

of the structure response under a dynamic load. In this
way, we decide to implement a sub-structuring reduc-

tion method in order to reduce the DM-FEM splitting

the structure into reduced ones with their own thick-
nesses. Sub-structuring methods exist so as to reduce

primal FEM, such as ”fixed interface mode” methods

[7], ”free interface mode” methods [26] and ”boundary

mode” methods [36,4]. The principle of those methods
is to split the structure into a few sub-structures, and

to express the behavior of each with its own chosen

eigenmodes. These methods have also been associated
to build up a Double Modal Synthesis [22,3] with both

sub-structures and junctions condensation. An adapta-

tion of these displacement methods for MFEM has been
imagined by the authors [15,16]. The principle is to

build, for each sub-structure in parallel, a reduced basis,

for the displacements with the existing primal methods,

and a projection of the primal basis for the stresses.
New mixed reduced basis for each sub-structure are

then built up with modes from the primal model. The

sub-structures are linked through physical Degrees Of
Freedoms (DOFs) kept in the new basis. That method

reduces the number of DOF [15] and the CPU-Time

for the global structure response, and keeps the advan-
tages of the MFEM. In this MO-optimization, each sub-

structure has a constant thickness and thus one single

parameter. That reduction is linearly dependent from

this parameter and turns each zone into a MSEs, whose
thickness is mutable each iteration without rebuilding.

The evaluation of the response is then computed each

iteration on the reduced assembled DM-FEM.

In the first part, we present the optimization prob-

lem and the GA. We continue with the implementa-
tion of the DM-FEM and the sub-structuring method,

highlighting the differences with regular methods. Fi-

nally we present a few investigations, made with the
GA-based MO optimization powered by the MSEs. The

test structure is splitted into sub-structures (MSEs)

with one thickness each (parameters), and we mini-
mize the mass and the Von Mises (VM) stress within

the whole plate (objectives) under dynamic loads (both

discrete and continuous frequency band are presented).

The method is able to satisfy multiple stress criteria
with different thickness distributions, it saves CPU-Time,

and the Pareto-front presentation with a stress objec-

tive gives a good overview of the design possibilities.

2 Optimization problem and use of Genetic

Algorithms

The ”example” structure we want to optimize is built
up with 768 thin plate elements (see figure 1). It is

composed of 3 flat sub-structures, with their own thick-

nesses, parameters of the optmimization (range defined
by the user).

The problem we try to solve is the following: we want

to minimize both the maximum VM stress within the
whole plate structure under a harmonic load and the

mass in a bid of costs. We consider two different cases

(see figure 1): a frequency equal to an eigenfrequency

of the system, and a frequency that belong to a fre-
quency band in a matter of robustness. The two objec-

tives being antagonistic, the goal is to find some thick-

ness distributions that lead good compromises between
the mass and the maximum stress undergone by the

structure. As such, MO-GA-based methods quite nat-

urally appears.

The GA methods are based on the evolution of spe-

cies in their natural environment. The functioning of

the algorithm is summarized in figure 2). We consider
”individuals” that are solutions to the problem (here,

a combination of 3 thicknesses) and that give compro-

mises between the objectives. A group of individuals
constitutes a ”population” (here, a set of thickness com-

binations, that forms a Pareto front with one compro-

mise per thickness distribution). The goal of the GA
consists in making evolve the population over the ”gen-

erations” (iterations) by doing mutations and crossing

between the individuals of this population, in order to

improve for the purpose of our objectives regarding
these individuals. The GA is composed of 5 different

stages (see figure 2). The italic descriptions in figure 2

represent the adaptation of the GA to our problem.
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The main contributions and innovations of our work

appear in the grey blocks (figure 2). We improve the
Evaluation step in terms of CPU-time and complexity,

and add a preliminary step 0.

Fig. 1: Plate structure made of 3 flat sub-structures

with their own thicknesses

0. Assembly of M̃
a

Fw
, M̃

a

Fθ
, H̃

a
and Ga for each a zone

Assembly of Φa
FIi (U,β), Ψ

a
i and P̃

a
for each a zone

1. Initialization of the population
Set of p thickness combinations

2. Evaluation of p individuals
2.a Attribution of ta to the a zones: Ma

mix,red and Ka
mix,red for each a zone

2.b Assembly of the a zones: M tot
mix,red and Ktot

mix,red

2.c Calculation of σV M,max and mmax

3. Selection / Mutations / Crossing

2bis. Evaluation of p individuals
2.a Attribution of ta to the a zones: Ma

mix,red and Ka
mix,red for each a zone

2.b Assembly of the a zones: M tot
mix,red and Ktot

mix,red

2.c Calculation of σV M,max and mmax

Insertion in the population

4. New population
Set of p thickness combinations

5. New iteration
g generation

Fig. 2: Principle of the genetic algorithm with p indi-

viduals and g generations

3 Mixed Finite Element Model for thin

Kirchhoff-Love plate

The ”evaluation step” of the GA (step 2 in figure 2) is
the most costly because we need to evaluate the stress

within the whole structure, and identify the maximum.

The classical method consists in building a primal FEM
to get the displacements and use extra calculations to

reach the stress. It is the most common and intuitive

method, but it appears to be heavy going because of the
extra calculations. Our method build a displacement-

generalized stress DM-FEM for plates that gives a di-

rect access to both fields. Another important benefit,

when choosing a plate theory, is the possibility of mod-
ifying the thickness as a parameters without rebuilding

a whole assembly.

(a)

w

x

y

z

(b)

Fig. 3: Kirchhoff-Love theory: (a) Generalized stresses
(b) Displacements

This type of DM-FEM is based on the HR mixed

functional [31,38] expressed for dynamics mechanical

problems as follows:

ΠHRD =

∫∫∫

V

−σijeij(ui) +
1

2
σijSijklσkl +

biui +
1

2
ρu̇2

i dV

(1)

considering σij the stress, ui the displacement, eij(ui)

the strain function of the displacement ui, bi the body
force, ρ the density and Sijkl the elastic compliance

matrix. The Euler-Lagrange equations can then be ap-

plied to the functional so as to conventionally solve a

dynamic structure problem.

The discretization of the generalized stresses and the

displacements, with plate elements (thickness t) using

Kirchhoff-Love (KL) theory (see figure 3) is as follows:

σij =
{
Mx,My,Mxy

}T
= Pβ (2)

ui =
{
w, θx, θy

}T
= NU (3)

eij =
{
ǫxx, ǫyy, γxy

}T
= Dui = DNU (4)

with
{
Mx,My,Mxy

}T
respectively the bending moments

in the x and y direction, and the twisting moment

within the plate,
{
w, θx, θy

}T
respectively the trans-

verse displacement of the plate, and the section rota-

tions around x and y. P is the generalized stresses shape

function matrix with β the generalized stress parame-

ters vector, N =
{
Nw,N θ

}T
the displacements shape

function matrix, U =
{
Uw,U θ

}T
the displacements

parameters vector and D the displacement-strain oper-

ator.

When carefully splitting the matrices dependent on

t, t3 and 1
t3
, the Euler-Lagrange equations leads to the

following matrix formulation of the DM-FEM (for one
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plate element of surface S):







tM̃Fw
0 0

0 t3M̃Fθ
0

0 0 0







︸ ︷︷ ︸

Mmix







ÜFw

ÜFθ

β̈






+







0 0 GT
w

0 0 GT
θ

Gw Gθ
1
t3
H̃







︸ ︷︷ ︸

Kmix







UFw

UFθ

β






=







Fw

F θ

0







(5)

with S̃ijkl = t3Sijkl, M̃Fw
=

∫∫

S

Nw
T ρNwdS,

M̃Fθ
=

∫∫

S

Nθ
T ρ

12
NθdS, Gw =

∫∫

S

P TDNwdS,

Gθ =

∫∫

S

P TDNθdS, H̃ =

∫∫

S

−P T S̃ijklPdS,

G =
{
Gw,Gθ

}
and F =

{
Fw,F θ

}T
the nodal forces

(splitted w / θ).

The first benefit of this model compared to displace-

ment ones is the direct access to the stress parameters.
In fact, it doesn’t require to rebuild the stress field from

the displacements like we do with a displacement FEM,

and improve the stress evaluation.
The second advantage is the thickness independence of

the matrices (equations 5. Basically, it means that the

model doesn’t require to rebuild M̃Fw
, M̃Fθ

, G and
H̃) for the same meshing, and allows to modify the

thickness parameters each iteration of the optimization

with an almost instantaneous operation.

Nevertheless, it has the inconvenience of being bigger
than a displacement FEM (see Table 1), which, on the

other hand, may slow down the computation of the

structure response. A sub-structuring reduction method
is thus implemented, in order to decrease the size of the

DM-FEM, and keeping the thickness independence of

the method and the stress access.

4 Sub-structuring method

The reduction method used in this paper has been ex-
plained in [15,16]. The idea is to split the structure

into few sub-structures, and reduce each of them sepa-

rately in parallel, using the primal corresponding FEM,
turning them into MSE. Then we assemble them and

compute the stress on the global reduced structure.

The initial Degrees Of Freedom (DOF) of a given sub-

structures a are separated in internal DOF Ua
i , junc-

tion DOF Ua
j (allowing to link sub-structures between

them) and stress DOF βa. The displacements are pro-

jected on a basis composed of truncated primal ”fixed”

modes (see Craig & Bampton method [4]) and the stres-

ses on a basis composed of truncated primal ”fixed”
modes as well, but projected on the stresses. The new

reduced parameters are then: truncated modal compo-

nents ηa
FI (U,β), and the junction DOF Ua

j remaining
unchanged. The reduction of the whole sub-structure a

is given by:






Ua
i

Ua
j

βa






=







Φa
FIi (U,β) Ψa

i

0 Iij

t3P̃
a
{
Φa

FIi (U,β)

0

}

t3P̃
a
{
Ψa

i

Iij

}







{
ηa
FI (U,β)

Ua
j

}
(6)

with P̃
a
= −(H̃

a
)−1Ga, Φa

FIi (U,β) being a truncated

basis of the ”fixed”modes of the sub-structures a (junc-
tion considered fixed) and Ψa

i = −Kii
−1Kij being the

matrix of the constraint static modes, taken from the

primal FEM. We assemble two sub-structures a and b
considering: Ua

j = U b
j = U j .

When reducing flat sub-structures, the formulation
of the reduced basis gives other advantages: the ”fixed”

modes of the sub-structure a Φa
FIi (U,β) remains the

same, even when the thickness change and the basis
{
Ψa

i , Iij

}T
(representing the reaction of the sub-stru-

cture when its junction is moving) doesn’t depend on

the thickness of the plate. In this way, our reduction

method is all the more robust that it is easily trans-
posable to a different thickness of one sub-structure

(doesn’t requires to rebuild the matrices Φa
FIi (U,β), Ψ

a
i

and P̃
a
of each sub-structure a built in step 0).

Basically, each sub-structure works as a MSE, defined

by its thickness only. Each individual of each genera-

tion, a simple operation is made in parallel for each
MSE a, in order to modify their thicknesses (colored in

red) in the matrices of equation 5 and 6 (step 2.a figure

2). Then we assemble the global matrices M tot
mix,red and

Ktot
mix,red (step 2.b figure 2). Then, the step 2.c figure 2

is done with the computation of the structure response
on the reduced global model as follows:
{
U

β

}

= (−ω2M tot
mix,red+(1+iξ)Ktot

mix,red)
−1

{
F

0

}

(7)

with ξ the hysteretic damping coefficient.
Then, the maximum VM stress σV,M,max is easily ac-

cessible thanks to the mixed feature:

σVM =
1
√
2

√

(σxx − σyy)2 + σ2
yy + σ2

xx + 6σ2
xy (8)

Table 1) summarizes the benefits of our MSEs in terms

of time gain, comparing the Dynamic Primal FEM, the
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Dynamic Mixed FEM and the Reduced Dynamic Mixed

FEM.

Table 1: Methods Characteristics - 768 elements, 3

MSEs, 20 modes each

FEM Primal Mixed Reduced Mixed

Field U U , β U , β
Stress field Rebuild Direct Direct

DOFs 2448 9360 168
Time Step 2 (s) 3.00 2.50 2.15

Gain Ref 16.7% 28.2%

5 Example: optimization of the thickness

distribution to minimize the mass & the

maximum stress

The example we use is an academic simple structure
schematized in figure 1 in section 2). The FEM repre-

sentation makes the method transposable to an indus-

trial case. We minimize the maximum VM stress within

the structure and the mass. The parameters are the
thicknesses of each MSE or ”sub-structure” (thickness

zones in figures 1 and 4c and 5c). The thickness param-

eters may vary in a range between 1 and 2 mm. We
consider ρ = 7500kg/m3, E = 210GPa and ν = 0.33.

The pulsation studied will be both discrete (subsection

5.1) and within a frequency band (5.2). Table 1 shows
the improvements of this method compared to classical

ones in terms of time gain.

The results are presented as ”Pareto Front” (black

points in 4a, 5a and 6a). These points are defined by the
right ordinate axis and the abscissa axis representing re-

spectively the mass of the structure and the maximum

VM stress. Each of these optimal Pareto-points are bet-

ter than the others in the sense of at least one of the two
objectives and are compromises we can select to design

our structure, depending on the objective we want priv-

ilege. Once a Pareto point chosen, the colored curves in
4a, 5a and 6a lead to the parameters corresponding to

the point. They are defined by the left ordinate axis and

the abscissa axis representing respectively the thickness
of each of the sub-structures for the chosen Pareto point

(with the same abscissa) and the maximum VM stress

corresponding to this point. Basically, when selecting

a point of the Pareto Front, the corresponding thick-
nesses to design the structure correspond to ordinate of

the colored three points with the same abscissa. This

kind of presentation with stress criteria and thickness

curve provides a good overview of the possibilities for

the user.
Those results were obtained with NSGA-II (popu-

lation of 100 individuals and 1000 generations) and the

method described in the last sections. The GA has been
compiled several times so as to check the convergence

of the results.

The first subsection deals with the discrete frequency

case for the mode 1 (intuitive result) and 7 (more com-

plex), whereas the second one treats of a more robust

case with a frequency band (70− 100Hz).

5.1 Discrete Frequency: ω = ωn, n
th mode

5.1.1 Simple example: mode 1, ξ = 1e− 5

The results presented in figure 4a,b,c show some thick-

ness combinations allowing a VM stress between 21 and

89 MPa, with a mass of the structure between 2.9 and
4.7 Kgs. In this case, more than the Pareto-Front itself,

the most relevant is the evolution of the thicknesses

in function of VM stress (colored curves in figure 4a).
We observe that the most important zone to ”reinforce”

is the first one, and then the second one. When tak-

ing a look at the stress distribution for this mode (fig-
ure 4b), that evolution of thicknesses in function of the

stress seems coherent as we would intuitively decrease

the thickness where the stress is low, and increase it

where it is high. This test puts forward the qualitative
validity of the method, and brings a quantitative point

stress-wise.

5.1.2 Test example: mode 7, ξ = 1e− 3

The results are presented in figure 5a,b,c. Considering

the stress distribution for the mode 7 (figure 5b), the re-

sults are not intuitive. This example shows some thick-

ness combinations allowing a VM stress between 18 and
140 MPa, with a mass of between 2.9 and 4.7 Kgs. The

evolution of the 3 parameters in function of VM stress

(colored curves in figure 5a) is very specific. In fact, we
distinguish 2 main zones. From 18 until 86 MPa: it is

the lowest stress range. It appears that the third zone

is stuck to his minimum whereas the two others has in-
fluence. The latters have a decreasing thickness as the

VM stress increases, and the first zone is more impor-

tant than the second one.

From 86 until 140 MPa: it is the highest stress range.
The evolution of the thicknesses and the order of mag-

nitude are different. The three parameters have close

values (between 1 and 1.3 mm) and their evolution is
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Fig. 4: Results case 1 for mode 1: (a) Pareto Front

(black) & thicknesses (color), (b) Stress distribution

(MPa) on the mode, (c) Thickness zones

close as well, decreasing the same from 1.3 till 1 mm as

the VM stress increases.
Those results define a phenomenon we call ”parametric

typing”. Although the Pareto Front has no singulari-

ties, the parameters’ evolution do not follow any spe-
cific or logical rule. Nevertheless, they can be divided

into two main stress domains which correspond to dif-

ferent thickness distributions. Interesting advantage in

terms of design possibilities: you can find two different
thickness distributions (two designs) that leads to close

optimums (close properties regarding the objectives) at

the junction of the two zones. Those results could be in-
teresting with more complex industrial cases, and puts

forward another interest of the optimization, in addi-

tion to the efficiency previously highlighted.

5.2 Frequency band: ωmin ≤ ω ≤ ωmax, , ξ = 1e− 3

For the sake of robustness, this section focuses on a har-

monic excitation whose pulsation varies in a frequency

band 70 − 100Hz. For each thickness distribution, the

VM stress has to be calculated for all the modes whose
pulsation is within the frequency band (equations 7 and

8 for each mode) in order to find the more constraint

modes. Nevertheless, since the eigenfrequencies varies
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Fig. 5: Results case 1 for mode 7: (a) Pareto Front

(black) & thicknesses (color), (b) Stress distribution

(MPa) on the mode, (c) Thickness zones

with the parameters, one can disappear from the fre-

quency band, and let the maximum VM stress to an-
other mode. The results presented in figure 6 show that

4 modes influence the optimization (11 to 14, shape

form in figure 6b,c,d,e), and successively present the
highest VM stress. The horizontal arrows define the

concerning mode in each domain, and the frequency

band associated. The domains 1 and 4 present the par-
ticularity of mixing the influence of two modes (respec-

tively 11/12 and 13/14) whereas the domains 2, 3 and

5 deals with the same mode (respectively 12, 13 and

14). This alternation result in a singular Pareto Front
(figure 6a).

The domain 1 (low stress) is mass-typed as all the

points have close masses, and the 3 MSEs’ thicknesses
have the same order of magnitude. As the stress in-

creases, the influence of the third zone decreases, the

second one increases and the first one looks stable. We
also observe a mass ”gap” with the next domain.

The domains 2 and 3 (middle stress) present an inter-

esting singularity as the thickness of the 3rd MSE re-

mains in the highest range (1.8 − 2.0mm) whereas the
two others remain minimum.

The domains 4 and 5 present a classical Pareto-front

with different thickness parameters distributions and
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order of magnitude. The MSEs’ thickness 3 remains the

highest whereas the zones 1 and 2 are no longer mini-
mum in the domain 4, and minimum again in domain

5.

As explained in the last case, the singularities in the
thickness values (parametric typing) and the Pareto

front present designs benefits. For example the junc-

tion between the zone 3 and 4 presents two close point
objectives-wise with two different shapes. The junc-

tion between domains 1 and 2 present two close points

stress-wise with very different shapes as well. That do-

main 1 also highlights a common problem in struc-
tural mechanics when making the structure, because

few points with close parameters (shapes) show high

differences in terms of objectives (stress in this case).

6 Conclusion

This paper introduces a new methodology for MO opti-
mization of structural dynamic plate problems with stress

criteria and thickness parameters. The optimization is

made with a classical NSGA-II method that finds a set

of Pareto-optimal solutions, and presents the original-
ity of using MSEs built up with a displacement-stress

DM-FEM for plates enhanced with an adapted sub-

structuring reduction method. The mixed features pro-
vides a direct access to the stress objective, the plate

theory prevents from rebuilding each iteration while

changing the thickness parameters, and the sub-stru-
cturing method reduces the CPU-time of the struc-

ture response. In the case of 3 MSEs, 768 finite ele-

ments and a reduction with 20 modes each MSE, the

method is 28.2% faster than a classical method using
plate displacement FEM. The MO optimization’s goal

is to minimize the maximum VM stress and the mass

of the plate structure in function of the thickness of
each sub-structure, under a dynamic load with both dis-

crete frequencies and frequency bands. Besides the com-

putational interest, the results have shown interesting
singularities in both the evolution of the Pareto-Front

and the parameters in function of the stress objective.

Parametric typings put forward good designs possibili-

ties and the MO Pareto-Front presentation provides a
quick overview of the different options for the designer.

In the end, it would be relevant to investigate deeply

on the MOEA in order to improve the algorithm part
of the optimization and save even more CPU-Time.
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3. S. Besset and L. Jézéquel. Dynamic sub-structuring
based on a double modal analysis. Journal of Vibration
and acoustics, 130(1):011008, 2008.
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14. D. Dumitrescu, C. Groşan, and M. Oltean. Simple mul-
tiobjective evolutionary algorithm. In Seminars on Com-
puter Science, Faculty of Mathematics and Computer Sci-
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thesis applied to a reissner mixed plate finite element
dynamic model. Proceedings of the 9th International
Conference on Structural Dynamics, EURODYN 2014,
2014.

16. P. Garambois, S. Besset, and L. Jézéquel. Various double
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