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Abstract This paper presents a methodology for the reduction of Dynamic Mixed
Finite Element Models (DM-FEMs) based on the use of a sub-structuring primal
methods adapted to such models. We implement a DM-FEM for Kirchhoff-Love
(KL) thin plates using the Hellinger-Reissner (HR) variational mixed formulation
adapted to dynamic, and give a quick insight of its convergence. This model uses
both displacement and generalized stress fields within the plate, obtained as a
primary result, but the numerical size of the model is bigger than with a primal
displacement model. Thus we choose to offset this complication by reducing the
model with a totally new sub-structuring reduction method, especially adapted to
DM-FEMs. The aim of our method is to adapt sub-structuring reduction methods
commonly used for primal displacement FEM only (such as Craig & Bampton
method) and split the reduction of the two fields. With these displacement meth-
ods, the whole structure is splitted into few smaller ones, and each of them is
condensed with eigenmodes of the sub-structure and static connections between
them. The principle of our method is to build, for each sub-structure, a reduced
basis for the displacements according to the existing method, and a projection
of the primal basis for the stresses. A new reduced basis for the whole mixed
model is then built up exclusively with modes taken from the primal model. That
method reduces significantly the number of degrees of freedom (DOF), and keeps
the properties and advantages of the mixed formulation.

Keywords Component Mode Synthesis (CMS) · mixed finite element · reduction ·

sub-structuring · vibrations · plates

1 INTRODUCTION

Engineering plate problems are often described by partial differential equations.
Thus, approximate numerical methods to solve them have been widely used in

P. Garambois · S. Besset · L. Jézéquel
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many disciplines, especially for buckling, bending and vibrations analysis of isotropic
plates and composite structures. We can make the distinction between meshed
methods and meshless methods. In the group of meshed methods, Finite Element
Models (FEMs), Finite Differences Methods (FDM) and Differential Quadrature
(DQ) are widely used. DQ [52,75] and Harmonic DQ (HDQ) methods [25] permit
to approximate partial derivatives by weighted linear summation of specific val-
ues and thus solve initial and boundary value. Compared to FEM and FDM, it
only needs to use a few grid points to get a higher resolution and less computa-
tional cost. In spite of this, FEM are still mostly used in industry because they are
simply implementable and they give an efficient representation of big complex sys-
tems and loads, especially for non-linear behavior. In the field of meshless method,
some have shown interesting results, such as Discrete Singular Convolution (DSC)
[26,27] that discretizes the spatial derivatives and transform them into eigenvalue
problem, the wavelet collocation methods [36] or the radial basis function methods
[80]. In our case, the idea is to work on FEM because it still represents the most
popular way to treat efficiently engineering problems in industry and there is still
a lot to learn and improve in this field.

Most of the FEM used in industry for structural mechanical problems are
based on a dynamic primal displacement formulation. This displacement approach
in FEMs have largely been developped [81,28,1]. They are fast and efficient, but
they need an extra calculation and integration to get the strains and the stresses.
They may also show some computational difficulties when it comes to plate and
shell theories representation. Other numerical solutions providing stresses as pri-
mary results and solving computational problems have always been a major con-
cern in mechanical engineering. A force approach based on direct calculation of
the stresses was pioneered in FEMs by Fraejis de Veubeke [37,38] and then by
Pian and Tong [60,73] were made. Another method, called ”mixed formulation” or
”Reissner Mixed Variational Theorem”(RMVT), is based on the Hellinger-Reissner
(HR) variational functional and defines a new ”mixed” Lagrangian using both dis-
placement and stress fields in the same functional, whereas the stresses depend
on displacement in a displacement formulation. It was imagine for the first time
by Hellinger [42] and Prange [61], and later by Reissner [65,66,67] and Arnold [3,
2]. Generalized variational principles are well explained in Washizu’s book [77].
Over the past four decades, many mixed FEM have been implemented, originally
with Herrmann [45,46] who implemented one of the first mixed plate FEM using
this RMVT and taking shear phenomenons into consideration, quickly followed
by other researchers [15,23]. Over the last forty years, many mixed FEMs have
been implemented for different theory such as 3D problems [59], elastic arches
problems [41], Timoshenko’s beams [71,72] and particularly for plates [71,72,32,
31,68]. Wriggers’ book [78] provides a wide range of application for mixed FEM.
Stability [6,13] and convergence [4] depending on the space fields of such elements
have also been widely discussed. FEMs implemented with RMVT may present
two main advantages in general: a direct access to stress parameters without post-
processing, and a better representation of certain two-dimensional theories such
as thick plates.

As far as stress access is concerned, researches have been made in order to eas-
ily get to the stain and stress fields, starting from a displacement approach. The
classical methods used by most of the software in industry is the Gauss Points
Method, that approximates an integral of a function with a weighted sum of func-
tion values at specified points within the elements. Other stresses and strains re-
covery methods were recently developped by Tornabene and Fantuzzi in the field
of arbitrarely shaped laminated plates [33,34,35,74]. They implemented a Strong
Formulation FEM (SFEM) using the strong formulation of the differential system
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at the master element level. These models combined the generality of FEM and the
accuracy of Spectral Methods (SM). Their method is based on the use of General-
ized Differential Quadrature (GDQ) which approximates some derivatives (of both
strains/stresses). That method permits a good representation of both in-plane and
out-of-plane stresses/strains, for both static [33,34,35,74] and dynamic [35] anal-
ysis. Another method to access strain/stress values within an element formulates
the intial problem in a ”mixed” way, in function of both displacement and stress
parameters, using the RMVT.

The use of such a mixed theorem has been mainly popularized in the context of
plate and shell structures analysis, when three-dimensional descriptions try to be
obtained with two-dimensional models, because it provides some computational
advantages regarding such theory. Indeed, structural plates have a multitude of
applications in industries and has recieved the attention of many researchers. The
Kirchhoff-Love (KL) thin plate theory, originally developped by Love [54], is sim-
ply implementable and takes into consideration bending and twisting moments
but doesn’t deal with shearing phenomenons which appear to be essential with
moderately thick and thick plates. Thus, the Reissner-Mindlin (RM) theory for
thick plates naturally appeared [64,56]. Nevertheless, thick RM plate may suffer
from ”shear-locking” problems and their representation can be tricky. In order to
avoid computational problems, solutions have been imagined over the years [47,7,
8,51,70,12,50,57,79] and among them, mixed type methods have shown very suc-
cessful results [68,31,32,71,72,5], and thus justify its wide use in addition to the
stress access previously mentioned. Other type of representations for plate and
shell have been introduced by Henshell for hybrid/mixed element using specific
continuity conditions [43] and rectangular elements with a high number of nodes
[44]. In our case, although the mixed theory can solve locking problems for thick
plate with certain continuity conditions, we want to focus more on the easy access
to the stress parameters and especially show the benefit of the reduction method.
This is the reason why we build a thin plate finite element model that is rather
simple in terms of continuity conditions and do not focus on the thick plates issues.
Mixed FEM are also widely used in the field of laminated multilayered plate struc-
ture and piezoelectric multilayered structures because of the increasing use of com-
posites in thick and thin structures in industry. Indeed, the evaluation of normal
stress and transverse shear is crucial in composites, and Equivalent Single Layer
(ESL) models using displacement approach have been imagined to represent mul-
tilayered structure. They present the advantage of a number of unknowns indepen-
dent from the number of layers but it does not fulfill some continuity requirements
and post-processing can show innacurate results in the case of thick plates. Fur-
thermore, High-order Shear Deformation Theory (HSDT [53]), developped by Cho
and Parmerter [24], although including some continuity requirements, experiences
difficulties with analyzing problems in which out-of-plane stress play an impor-
tant role. Another model called LayerWise Model (LWMs) considers each layer as
a single plate [69,62], and gives acceptable results but does not fulfill interlami-
nar continuity, and have a much bigger size. In this context, mixed models using
RMVT have retained attention in this field as they a priori and completely verify
C0
z -requirement, and give a good description of transverse stresses. In this way,

mixed layerwise theory to calculate in-plane and out-of-plane stresses/strains for
thick multilayered orthotropic laminated plates have been implemented by Carrera
for static analysis [17,21,22], thermo-static stress analysis [18] and well reviewed
in [19] for both ESL and LWM theories. FEMs deep development of such the-
ory is also available in [21,22]. The comparison between the Principle of Virtual
Displacements (PVD) used in primal displacement approached and RMVT-based
mixed model [17,19,21,22] gives a clear advantage to the mixed formulation, in
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terms of interlaminar displacement and stress continuity as well as a good descrip-
tion of stresses within the structure.
As far as piezoelectric adaptive plate is concerned, mixed formulation has also
proved to be efficient. Although primal models exist [9], and some of them fulfill
interlaminar continuity implementation [16], the use of mixed Layerwise theory for
piezoelectric adaptive structure has also proved to be of a high interest in static
and modal analysis [39,40], thermodynamic analysis [10]. Carrera and Boscolo’s
article [20] shows an extension to electro-mechanical piezoelectric plate problems
of a previously cited article by Carrera [21,22] on both primal and mixed FEM
for multilayered plate elements using both ESL and LWM theories. This article
puts forward another use and interest of mixed model in structural mechanical
and FEMs analysis.

Although showing some benefits for the reasons previously defined, an obvious
inconvenience of the mixed formulation, is the numerical size of the problems, due
to the addition of stress fields parameters (generalized stress in a plate case) to the
displacement field parameters of a regular primal method. Many reserachers even
consider that any advantage of the mixed FEM is outweighed by the problem size.
That is the reason why our work focus on finding a numerical solution in order to
reduce such models, meanwhile keeping the mixed benefits.

In this paper, the mixed FEM we choose as a test model for the reduction
methods, is voluntarily simple as it is not the main point of the study. It is a
Dynamic Mixed Finite Element Model (DM-FEM) implemented with RMVT for
thin KL plate elements, in which displacements and generalized stresses are pa-
rameters of the problem. Most of the time, the cited examples of mixed FEM deals
with static analysis. It is more rarely used for free vibrations [58], and when it is,
it often condenses the problems with condensed (or equivalent) stiffness on the
displacement and then make the calculation only on this field. The idea of our
sub-structuring method is to reduce the full model in order to keep stresses as a
primary result. Indeed, the mixed model used in this paper is a Dynamic Mixed
FEM (DM-FEM) that takes into consideration the kinetic energy in the mixed
formulation and keep both fields in the model. Besides implementing the whole
FEM on Matlab, we implemented a method of assembling to build highly meshed
structures.

Many sub-structuring reduction methods called Component Mode Synthesis
(CMS) methods exist in order as to reduce primal displacement FEM such as:
”fixed interface mode”method (Craig & Bampton method [30,29,14]), ”free inter-
face mode” method (Mac Neal method [55]) and ”boundary mode” method (see
Brizard [14] and Tran [76]). The principle of these methods is to split the global
structure into a few sub-structures, to describe each of them with a truncated
basis made of their proper eigenmodes (the type of eigenmodes depending on the
method) before re-assembling them. Some of those methods have also been asso-
ciated to build up a Double Modal Synthesis (DMS) or Double Component Mode
Synthesis (Double CMS, see Jezequel [48,49]) and Besset [11]) that both condenses
the sub-structures and the junction between them with ”boundary modes”. In the
case of a mixed FEM, the constitutive matrices are singular and it is impossible
to compute the modes of the structure. In this way we cannot use these meth-
ods, as originally formulated. Our work is to adapt them in order to build up a
new reduced basis for each mixed sub-structure. The main idea is, for each sub-
structure, to separate the condensation of each of the two fields, using the primal
Craig & Bampton method [30,29,14] for the condensation of the displacements
and a projection of this method on the stresses for the latter. Once the reduction
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of the two fields is made, we build up a whole mixed basis for each sub-structure
and we assemble them through the displacement parameters. It is to be noticed
that the method we implement here remains identical for any displacement-stress
mixed FEM using any mechanical theory (plate, beam, 3D, arches...).

First of all, the article presents the HR mixed variational dynamic formulation,
its application to FE for KL theory in the case of thin plates, and quickly discuss
the convergence of the two mixed model. In the next part, we present a CMS
sub-structuring methods based on ”fixed interface modes” and its application to
the DM-FEM. In the end, we deal with the convergence of the reduction method
implemented in function of the truncation on a simple example and present the
main results.

2 MIXED VARIATIONAL FORMULATION AND MIXED FINITE
ELEMENT MODEL BASED ON THIN PLATE THEORIES

In this section, we use Einstein summation convention to manipulate physical
equations with coordinates. The Cartesian coordinates system leads us to a sub-
script i that corresponds to x, y, z. The following examples illustrate the meaning
of this convention in our case:

biui =
{
bx by bz

}

{
ux
uy
uz

}

(1)

σijeij =
{
ǫxx ǫyy γxy

}

{
Mx

My

Mxy

}

(2)

σijSijklσkl =

{
Mx My Mxy

}

{
Sxx xx Sxx yy Sxx xy

Syy xx Syy yy Syy xy

Sxy xx Sxy yy Sxy xy

}{
Mx

My

Mxy

}

(3)

2.1 The Hellinger-Reissner mixed variational dynamic formulation

The Hellinger-Reissner (HR) mixed functional [42,65,66,67] expressed for dynam-
ics problems may equate to the regular Lagrangian used in dynamics, but com-
puted with mixed component. Basically, it means that the potential energy and
the kinetic energy are calculated with both displacement and stress fields whenever
possible. In this way, the HR dynamic functional can be given in its weak form as
follows:

ΠHRD =

∫∫∫

V

−σijeij(ui) +
1

2
σijSijklσkl + biui +

1

2
ρu̇

2
i dV (4)

considering σij the stress, ui the displacement, eij(ui) the strain function of the
displacement ui, bi the body force, ρ the volumic mass and Sijkl the elastic com-
pliance matrix. The stationary condition or Euler-Lagrange equation can then be
applied to the functional so as to conventionally solve a dynamic structure prob-
lem. We consider 3 main fields in the function:
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– Mixed strain energy: σijeij(ui) −
1
2σijSijklσkl

– Body force work: biui

– Kinetic energy: 1
2ρu̇

2
i

2.2 Mixed finite element for Kirchoff-Love Thin Plates

2.2.1 Definition of the Kirchoff-Love theory

The KL theory [63] is a thin plate theory that only focus on bending and twisting
phenomenons, and doesn’t take into consideration shearing effects. In this case,
the displacement is given by:

ui =

{
w
θx
θy

}

=







w
∂w
∂y

−
∂w
∂x






(5)

considering w the transverse displacement, θx and θy the normal rotation around
the -x and -y axis. The theory of KL is C1 continuous on the node displacement,
and assumes that the 2 rotations θx and θy depend on the transverse displacement
w. It doesn’t take into consideration any shearing phenomenon.

The strain is given by:

eij =

{
ǫxx
ǫyy
γxy

}

= Dui (6)

where D is the operator

D =







0 0 ∂
∂x

0 −
∂
∂y 0

0 ∂
∂x

∂
∂y






(7)

The generalized stress field is given by:

σij =

{
Mx

My

Mxy

}

(8)

where
{
Mx,My,Mxy

}T
represents the bending and twisting moments. The trans-

verse shearing force is not taken into consideration using the Kirchoff-Love theory.

The elastic compliance matrix is given by:

Sijkl =







12
Et3

−
12ν
Et3

0
−

12ν
Et3

12
Et3

0

0 0 24(1+ν)
Et3






(9)

where E is the Young Modulus, t is the thickness of the plate element and ν is
the Poisson ratio. It is important to notice the elastic compliance matrix already
contain the integration of the thickness of the plate, hence the appearance of the
thickness in it and the use of genralized stress instead of stress.

The positive directions of the generalized stress field are shown in Figure 1.
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(a)

w

x

y

z

(b)

Fig. 1: Kirchhoff-Love theory (a) Generalized stresses (b) Displacements

2.2.2 Interpolation of nodal displacement in element

The features of the KL let us the choice between triangular and quadrilateral
elements. In fact, the C1 nodes displacement continuity conditions that link the
displacement fields inside the plate (see equation 5) give us 9 conditions for each
shape functions when using a 3-node triangular element, and 12 when using a 4-
node quadrilateral and thus third degrees functions in both case. It is to be noted
that our model fulfill the nodal displacement continuity but doesn’t attend the
edges continuity. The 3-node element option is preferred for the sake of simplicity
and meshing simplicity. We assume that w, θx and θy, for a 3-node triangular
element, are interpolated in terms of nodal displacements

{
wi θxi θyi

}
(i = 1,2,3),

as follows:

w(x, y) =
3∑

i=1

Ni(x, y)wi (10)

θx(x, y) =
3∑

i=1

∂Ni(x, y)

∂y
θxi

(11)

θy(x, y) =
3∑

i=1

−

∂Ni(x, y)

∂x
θyi

(12)

Which gives us:

ui =

{
w
θx
θy

}

= NU =







N1 N2 ... N9
∂N1

∂y
∂N2

∂y ... ∂N9

∂y

−
∂N1

∂x −
∂N2

∂x ... −∂N9

∂x






U (13)

Chosing a 3-node triangular element, the shape functions have 9 conditions
each and thus are 3rd order polynomials as follows:

Ni(x, y) = ai + bix+ ciy + dixy + eix
2 + fiy

2 + gix
3 + hiy

3 + ii(xy
2 + x

2
y) (14)
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2.2.3 Interpolation of stress

The order of the stress interpolation in function of the displacement interpolation
has been discuss in the litterature [59,4], in particular for RM plates with the
motivation of building shear-locking-free elements [70]. The choice of KL theory
voluntarily avoids these discussions as it doesn’t requires conditions as good as the
RM theroy needs. Thus, for the sake of simplicity, we assume that each field of the
generalized stress is interpolated with linear functions and does not depend on the
nodal values, which does not fulfill the C0 nodes or edges continuity in terms of
stresses. Each generalized stress is interpolated with 3 parameters β, as follows:

σij =

{
Mx

My

Mxy

}

= Pβ

σij =

{
1 x y 0 0 0 0 0 0
0 0 0 1 x y 0 0 0
0 0 0 0 0 0 1 x y

}







β1
β2
.
.
β9







(15)

These choices give us a total of 18 parameters per element matrix, as we have
9 displacement parameters U and 9 generalized stress parameters β.

2.2.4 Variational function and mixed finite element formulation

The HR mixed dynamic formulation presented in equation 4 can be discretized
through equations 13 and 15, and express for a RM thick plate element as follows:

ΠHRD =

∫∫∫

V

−σijeij(ui) +
1

2
σijSijklσkl + biui +

1

2
ρu̇

2
i dV

ΠHRD =

∫∫

S

1

2
(NU̇)Tm(NU̇)− (Pβ)T (DNU)

+
1

2
(Pβ)TS(Pβ) dS +

∫∫

V

biUdS

(16)

where

m = ρ







t 0 0

0 t3

12 0

0 0 t3

12






(17)

ρ is the density and t the thickness.
The matrix development gives us:

ΠRD =
1

2
U̇

T
MU̇ − β

T
GU − β

T
Hβ + F

T
U (18)

where

M =

∫∫

S

N
T
mNdS (19)

G =

∫∫

S

P
T
DNdS (20)
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H =

∫∫

S

−P
T
SPdS (21)

and F is the force vector applied to the mesh nodes.
Then we have: {

M 0

0 0

}

︸ ︷︷ ︸

Mmix

{
Ü

β̈

}

+

{

0 GT

G H

}

︸ ︷︷ ︸

Kmix

{
U

β

}

=

{
F

0

}

(22)

2.3 Convergence of the DM-FEM

In this subsection, we aim to show the convergence of the DM-FEM, on a dy-
namic point of view for the model we implemented. Many convergence studies
are available in the litterature for plate primal FEM for free vibrations or static
problems, and plate mixed FEM for static analysis, but more rarely in dynamics
and it’s more likely depending on the interpolation, integration space and type
of elements. That section is therefore necessary prior to the reduction subsection
3 which is the main point of this paper. The example we study in this part is
a rectangular plate clamped on one edge and free on the three other edges (see
figure 2). It is built with KL mixed triangular thin plate finite elements described
in section 2. The plate is made of steel (see characteristics in table 1) and the
thickness t of the plate is a variable of the different calculations, as well as the
number of elements of the plate.
The first section of this part quickly reminds the convergence of the primal FEM
compared to a reference (highly meshed primal FEM) prior to the second section
that deals with the convergence of the DM-FEM compared to the dynamic primal
FEM and the reference, considering the same number of elements in the plate.
Both sections discuss two different thicknesses for each theory.

Table 1: Steel characteristics

Young Modulus (Pa) 2.1× 1011

Poisson ratio 0.33

Density (kg.m−3) 7.5× 103

Fig. 2: Rectangular plate built with various triangular mixed plate elements
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2.3.1 Convergence of the primal model

In this section, we focus on the convergence of the primal model compared to a
reference. In fact, the next section 2.3.2 deals with the convergence between the
DM-FEM and the primal dynamic FEM with the same meshes and theory. The
convergence check is made with the relative error of the eigenfrequencies of the
ten first modes, between the primal model and the reference. The relative error
for the mode i is given by:

ǫi,pri/ref =
abs(fi,primal − fi,reference)

fi,reference
(23)

The results obtained with two different thicknesses of the plate (Table 2 and
Table 3) show a good convergence. It appears that the characteristic size of the
element doesn’t influence the convergence of the model, as long as we stay in small
thicknesses, as the KL theory defines it.

Table 2: Relative error ǫi,pri/ref for the first eigenfrequencies i for the example 1
with t = 0.01m and Reissner KL mixed model

Element size (cm)
47.5 32.9 23.8 5.9

Mode
Elt

16 64 256 1024

1 2.94 1.47 0.53 0.21
2 8.13 1.90 0.42 0.10
3 6.80 1.19 0.40 0.13
4 - 7.58 1.63 0.33
5 - 2.87 0.24 0.06
6 - 11.59 2.28 0.41
7 - 1.72 0.01 0.01
8 - 4.90 0.27 0.00
9 - 3.35 0.06 0.00
10 - 20.35 3.29 0.43

2.3.2 Convergence of the mixed model towards the primal model

In this part, we focus on the convergence of the DM-FEM in comparison to the
corresponding dynamic primal FEM with the same number of elements. The choice
of showing the convergence of the dynamic primal FEM with a reference and then
the DM-FEM to the primal corresponding FEM is the results of the analysis of
this section: in fact, we show that the primal and mixed formulation show the
exact same results with the interpolation and element setting we chose in section
2. Hence the interest of reminding the convergence of the primal formulation and
then the mixed one with it.

The check procedure contains three parts. The first part is the relative error
ǫi,mix/pri between the eigenfrequencies of the modes i of the dynamic primal FEM
and the DM-FEM:

ǫi,mix/pri =
abs(fi,mixed − fi,primal)

fi,primal
(24)
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Table 3: Relative error ǫi,pri/ref for the first eigenfrequencies i for the example 1
with t = 0.001m and Reissner KL mixed model

Element size (cm)
47.5 32.9 23.8 5.9

Mode
Elt

16 64 256 1024

1 3.16 2.11 1.05 0.00
2 8.14 1.67 0.42 0.00
3 6.68 1.17 0.33 0.00
4 43.16 7.55 1.63 0.32
5 24.84 2.86 0.24 0.18
6 - 11.56 2.26 0.38
7 - 1.77 0.01 0.00
8 - 4.85 0.26 0.00
9 - 3.60 0.29 0.06
10 - 20.36 3.72 0.41

with fi,mixed the eigenfrequency of the mode i for the DM-FEM and fi,primal the
eigenfrequency of the mode i for the primal FEM. The second part concerns the
displacement shape of the modes and uses the Mac criterion as follows:

MAC(i, j) =
(XT

i Xj)
2

(XT
i Xi)(X

T
j Xj)

(25)

with Xi the shape of the mode i of the primal FEM and Xj the shape of the mode
j of the mixed FEM, taking into consideration only the displacement parameters.
The third parameter deals with the stress convergence: it calculates a MAC-type
criterion that compares the distribution of stress along the meshing with the primal
and mixed model, as follows:

MACstress(i, j) =
(Y T

i Y j)
2

(Y T
i Y i)(Y

T
j Y j)

(26)

with respectively Yi and Yj the vector of the Von Mises stress on every node of
the meshing, respectively for the mode i of the primal FEM and Xj the shape of
the mode j of the mixed FEM.

We focus on a the largest frequency band possible depending on the conver-
gence of the meshing. We choose to limit the study to a frequency band between 0
and 20kHz whenever it is possible. The convergence of the mixed FEM compared
to that primal FEM appears to be dependent on the thickness of the plate, even
though really good in both cases.

The results do not depend on the thickness of the plate. The three criteria
concerning the eigenfrequencies 24, the form of the modes 25 and the stress dis-
tribution of the modes 26 are excellent for all the meshing tested, as:

ǫi,mix/pri < 10−5 (27)

MAC(i, i) ≃ 1 (28)

MACstress(i, i) ≃ 1 (29)
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As those results are excellent, we decide to go further and calculate the relative er-
ror ǫFRF between a colocated FRF (see section2.4) of the DM-FEM and the same
colocated FRF of the corresponding primal FEM. Those results are shown in figure
4 (thickness t = 1cm) and figure 3 (thickness t = 0.1cm). Those graphics describe
the relative error between two mixed and primal colocated FRF for various num-
ber of elements composing the plate (16(a), 64(b), 256(c), 410(d), 1024(e) and
4096(f) elements). The frequency band we study varies because of the convergence
of the meshing. In fact, the smaller the thickness is, the lower the eigenfrequencies
are, that is the reason why the highest mode described by the meshes is smaller
than 20kHz. The results remain excellent, with a relative error between the two
FRF less than 10−6, with the thicknesses and numbers of elements studied. These
outcomes reveals the fact that the DM-FEM and the dynamic primal FEM as
described have exactly the same convergence and show almost identical results for
the same meshing, which makes all the results from section 2.3.2 available for the
DM-FEM as well.

So as to conclude this section, the calculations have shown that the KL thin
plate theory does not depend on the thickness of the plate and have an excellent
convergence. In the meantime, both the primal and mixed FEM (as discretized)
show the same results in terms of eigenfrequencies, modal displacement, and Von
Mises stress. It should be noted that other discretization options are available in
the literature and may show a better convergence of the mixed FEM compared to
the primal FEM in terms of stress, but this is not the main point of the article.

2.4 Features of the mixed model and consequences

2.4.1 Advantage

As explained in the introduction, mixed FEMs may present enormous benefits
when it comes to Reissner-Mindlin thick plates analysis, stress continuity descrip-
tion and thin structure in general. In our case, the stress functions were voluntarily
chosen simple, and the main interest kept for such model remains in the direct ac-
cess to stresses among the plate structure. Indeed, such models provide the stress
parameters in the response of the structure, whereas primal models must do ex-
tra calculation in order to get the stresses. This features leads to more facility
to rebuild the stress field, and save CPU time. Table 4 gives an insight of the
time gain with the mixed model for the computation of stress compared to the
primal model. The calculations were made on the plate structure (figure 6) for the
different meshing implemented in section 2.3. The time gain to rebuild the stress
distribution within the structure is important as it remains between 45% and 11%.
The gain appears to decrease as the size of the meshing increase because of the
size of the matrices remains positive with the use of the mixed model.

Table 4: Time gain for the computation of Von Mises stress within the plate
structure (figure 6) with the mixed model compared to the primal model

Elements 16 64 256 410 1024

Time Gain (stress on all structure) 45% 25% 19 % 15% 11%
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Fig. 3: Relative error on FRF ǫFRF, for t = 0.1cm (a: 16 elements, b: 64 elements,
c: 256 elements, d: 410 elements, e: 1024 elements, f: 4096 elements)
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Fig. 4: Relative error on FRF ǫFRF, for t = 1cm (a: 16 elements, b: 64 elements,
c: 256 elements, d: 410 elements, e: 1024 elements, f: 4096 elements)
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2.4.2 Inconveniences

Even though better for the description of stresses and faster to reach it, the mixed
models presents some major drawbacks.

First of all, the number of DOFs of the elementary matrices is higher with
mixed FEM that with primal FEM, due to the addition of stresses parameters.
For the KL theory and discretization chosen, the size is twice bigger. As the assem-
bly only links the displacement DOFs but leaves the generalized stress parameters
unchanged, the ratio between primal and mixed model for concerning the DOFs
is even bigger for an assembly. That inconvenience usually outweights the stress
access benefits because we may lose more time computing the response of the
structure that we save reaching the stress. In that way, the present work aims at
presenting a sub-structuring reduction method that offset this inconvenience and
provides a smaller and faster model, both in terms of response and stress calcula-
tion.

Another drawback of the mixed model lies in its matrix formulation, due to
empty part of the mass matrix in the stress field in 22. Thus, we cannot diagonalize
the equations and use a regular modal synthesis method. Some methods presented
in literature [58] consist in using the second line of the matrix system as a rela-
tion between displacement and stress, and thus build an ”equivalent stiffness”Keq

condensed on displacements. It is a quite simple way of solving an elastic dynamic
mechanical mixed problem, and even save CPU time. But it only focuses on the
displacements as a first result of the computation, it tends to lose the stress inter-
est of the model and most of all, it doesn’t fix the modal problem that remains
impossible to get quickly. The main idea and choice of our work is to keep the
matrix system as is, and make the computation, convergence test and reduction
of the mixed model in its primary form, to get both displacements and stresses as
a primary result.
A consequence of this feature: it is complicated to get a quick modal analysis with
eigenfrequencies and mixed eigenvectors. We choose to build a Frequency Response
Function (FRF) so as to get both eigenvalues and dynamic mixed response on a
wide frequency band. We have to excite a degree of freedom with a harmonic force
and observe the response as follows:

{
U

β

}

= (Kmix − ω
2
Mmix)

−1

{
F

0

}

(30)

with ω the chosen pulsation of the harmonic force and F the force vector apply on
the DOFs of the meshing. This calculation gives us the dynamic mixed response of
the structure to a harmonic excitation with a pulsation ω, on the chosen DOF. So
as to get a complete FRF on a frequency band, we must repeat it as many times as
the number of frequencies we want in the FRF curve and choose a specific degree
of freedom to observe (usually the same we observe). All the eigenfrequencies and
the mixed mode form studied in this paper are computed through equation 30.
A second consequence of this feature: we cannot apply a regular primal modal syn-
thesis method [48,49] in order to reduce the model and increase the computation
speed, as we cannot easily compute the mode on a mixed model. This is the reason
why the reduction method presented in next section 3 is based on primal modes
and doesn’t require to get a proper modal analysis of the mixed model.

As a conclusion, the DM-FEM we implemented presents the same displace-
ment and stress dynamic convergence as a primal FEM with the same meshing,
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but provides a much faster acces to the stress field. Nevertheless, its size is bigger
may complicate the response computation, and it is impossible to use displace-
ment modal analysis. These are the reason why we implement in the next section
3 a new sub-structuring reduction method that reduces the numerical size of the
mixed model and using primal modes.

3 MODAL REDUCTION ON A MIXED FINITE ELEMENT
MODEL

As described in the first section 2, the numerical sizes of the DM-FEM is sig-
nificantly higher than primal models using the same theory and meshing. The
elementary matrix is twice bigger. As an example, the clamped plate tested in
section 2.3 composed of 1024 elements is composed by 3270 primal DOFs or 12486
mixed DOFs which is amost 4 times more. It is therefore important to reduce it in
order to increase the computation speed. Not to mention that any reduction could
also be useful for the RM thick plate theory that suffers from ”shear-locking”prob-
lems. Nevertheless, the main point of this paper is to develop a general reduction
method for mixed FEM

The distinctive feature of the mixed model (not condensed on the displace-
ments) is the impossibility to apply a regular CMS method as the mixed matrices
cannot be diagonalized. Thus, the idea of this part is to reduce the numerical size
of the model, by adapting regular sub-structuring methods for primal FEM, easily
computable, to DM-FEMs.

The sub-structuring methods using modal components permit to describe the
low frequency phenomenon of a structure split into substructures using eigenmodes
of each sub-structures and constraint modes to link them. The constraint modes
permits to offset the truncation of the eigenmodes of each sub-structure, and thus
increase the precision of the method. This section deals with one of these sub-
structuring method, and its application to our DM-FEM.

The structure is supposed to be composed of two sub-structures, which does
not restrict the method. A superscript .(s) is added to make the distinction be-
tween each substructure s. The subscripts i and j refer to internal and junction
DOFs respectively. The subscripts E refer to ”fixed” eigenmodes. We may also
add the subscript (U) and (β) when talking about a mixed formulation to refer to
displacement fields and generalized stress field respectively.

3.1 Various subs-structuring methods

There are two main modal synthesis families. The first one is the fixed interface
methods described in 1968 for the first time by Craig and Bampton [30,29]. It is
based on eigenmodes of each substructure, assuming that the boundary is held
fixed, and constraint static modes (these are substructure response to successive
unit boundary displacement). The second family refers to free interface methods
and has been released in 1971 for the first time by MacNeal [55]. It is based on
eigenmodes of each substructure, assuming that the boundary is free and attach-
ment modes (substructure response to successive unit boundary force). In this
case, we are going to use a ”fixed mode” method. It is important to notice that
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the regular substructuring methods are applied to primal FEM with only one field
(displacement), and that is the way we describe the ”fixed mode” method in the
next sections. The other sections deal with the application of those methods to
our DM-FEM and the assembly of the substructures.

3.2 Fixed mode method

The regular modal synthesis using fixed modes keep a number of boundary modes
equal to the number of junction DOFs. The constraint static modes represent the
behavior of the structure regarding the interface, that is to say the response of the
structure to successive unit boundary displacement). Considering two substructure
a and b and a global structure s, the constraint static modes are computed as
follows:

Ψs =







Ψ
(a)
i
Ψ j

Ψ
(b)
i






=







−K
(a)−1
ii K

(a)
ij

Iij

−K
(b)−1
ii K

(b)
ij







(31)

The fixed mode method is a primal method that separates, for each substruc-

ture (a), boundary DOFs U
(a)
j and internal DOFs U

(a)
i . It projects the initial

DOFs of the substructure (a) on a new smaller basis composed of truncated modal

DOFs η
(a)
FI and the same boundary DOFs, as follows:
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0 Iij

}{

η
(a)
FI

U
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}

(32)

where Φ
(a)
FI is a truncated basis composed of eigenmodes of the structure a assum-

ing that the boundary nodes are held fixed, and
{

Ψ
(a)
i Iij

}T

are the constraint

static modes previously defined. Note that all the modes mentionned in this sec-
tion are taken from the primal associated FEM with the same meshing

3.3 Projection of generalized stress field

The fixed mode method previously defined is primal methods. It projects the dis-
placement degrees of freedom on a new basis, but they don’t reduce the generalized
stress parameters used in a mixed formulation.
Considering the second line of the equation 22, we can express the generalized
sress parameters in function of the displacement parameters of of the correspond-
ing stress, as follows:

β
(a) = −(H(a))−1

G
(a)

U
(a) (33)

That idea was already mentionned earlier in the possibility of transforming the
mixed FEM into a ”condensed”primal FEM. In our case, that method is only used
for the reduction. Indeed, the projection of the generalized stress on a primal base
composed of fixed mode can now be express as follows:

β
(a) =

{

P (a)

{

Φ
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FI i
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}

P (a)

{
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Iij

}}{

η
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FI

U
(a)
j

}

(34)

where P (a) = −(H(a))−1G(a).
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3.4 Application to the mixed model

So as to apply the substructuring methods to our DM-FEM, we can choose to
project the displacement field and generalized stress field in two different way,
that is to say with different method and/or different truncation. In this article we
decide to project the displacement on a basis composed of fixed modes and the
generalized stress on another basis composed of fixed modes (but possibly with
different truncation). The reduction of the whole substructure a is given by:
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where
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(36)

where (U) and (β) are subscripts respectively for displacement parameters and
generalized stress parameters. In this case, it is also important to notify the differ-
ence between the eigenmodes used for the displacement projection and the ones
used for the stress parameters, even though the method is the same and the full
eigenmodes matrices is the same, because the truncation may be different.

It should be noted as well that, the projection using some eigenmodes of the
primal equivalent FEM, our method requires to build both primal and mixed as-
semblage at the same time for each structure we study, as all the reduction of the
mixed FEM comes from the primal associated FEM. Of course, both models use
the same theory and same meshing to link them together.

3.5 Assembly

We assemble the substructures a and b considering:

U
(a)
j = U

(b)
j = U j (37)

Then, the assembly may lead to different formulation depending on the method we
use (fixed or free mode method) for the projection of the displacement field. For
the ”fixed mode”method used here, the reduction of the assembly of the structure
(a+ b) is then given by:
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(38)
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where
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The figure 5 summarises the calculation of the dynamic response with the use
of the sub-structuring method (the subscripts pri, mix and red representing re-
spectively the primal, mixed, and mixed reduced matrix).

Meshing
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primal global matrix
Mmix and Kmix

mixed global matrix
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mixed global matrices

Dynamic global response

{
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Fig. 5: Computation of the dynamic response of the global structure using the sub-
structuring method (global structure level, sub-structure level. Each block needs
all the input to be computed
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In the next section, we use a simple example with two substructures to check
the convergence of this method in function of the truncation of the eigenmodes
chosen.

4 CONVERGENCE STUDY OF THE REDUCTION

4.1 Example

This section focus on the convergence of DM-FEM described in 2, using the method
described in section 3, depending on the number of modes kept in the truncation
for displacement fields and generalized stress fields. The example used in this part
is composed of two different plates, meshed with KL triangular DM-FEM described
in section 2. It is made of steel (see characteristics in table 1) and we choose a
thickness of 1e−3m. That example is shown in figure 6.

Fig. 6: Double structured thin plate built with KL triangular mixed elements

The global structure is composed of 922 elements whilst the first plate is com-
posed of 414 elements and the second plate of 510 elements. The first plate is
clamped on one edge (102 DOFs clamped) and the jonction is composed of 102
boundary DOFs. The table 5 summarise the elements and DOFs characteristics
of the test structure and substructures.

Table 5: Characteristics of the test structure for the convergence study of the
reduction

Plate Elements DOFs displacement DOFs Generalized stress DOFs Boundary DOFs

Global structure 922 11256 2958 8298 /
Sub-structure 1 414 5064 1338 3726 102
Sub-structure 2 510 6294 1722 4572 102

In this section, we calculate the results of the dynamic response of the global
structure with the sub-structuring method (see section 3) for different truncations
(see Table 6).
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Table 6: Different truncations for the sub-structuring method (number of modes
per substructure)

Name 5-5 10-10 20-20 40-40 60-60 80-80 100-100 150-150 Reference

U modes 5 10 20 40 60 80 100 150 2958
β modes 5 10 20 40 60 80 100 150 8298

Boundary DOFs 102

4.2 Checking Method

This section focus on the convergence of the reduced DM-FEM in comparison
to the DM-FEM with no reduction (considering that the DM-FEM has already
converged with the meshing). We calculate the dynamic response of the global
structure with the sub-structuring method (see section 3) and for different trunca-
tions, and compare it to the non-reduced dynamic response. The check procedure
contains two parts. The first part concerns the relative error between the eigen-
frequencies of each mode i of the global structure as described in the following
equation:

ǫi,red/mix =
abs(fi,mixed reduced − fi,mixed)

fi,mixed
(40)

with fi,mixed the eigenfrequency of the mode i for the DM-FEM and fi,mixed reduced

the eigenfrequency of the mode i for the reduced DM-FEM. The second part con-
cerns the shape of the modes and uses the Mac criterion with both displacement
and stress parameters as follows:

MAC(i, j) =
(XT

i Xj)
2

(XT
i Xi)(X

T
j Xj)

(41)

with Xi the shape of the mode i of the DM-FEM and Xj the shape of the mode
j of the reduced DM-FEM.

The results are shown as graphics describing the relative error (equation 40)
on the eigenfrequencies in function of the mode i and compare it to an arbitrary
limit of 3%. Each marker gives an insight of the MAC criterion (equation 41) of
the mode i, as follows:

– black marker: MAC > 0.8 (”good” criterion)
– grey marker: 0.5 6 MAC < 0.8 (”medium” criterion)
– white marker: MAC < 0.5 (”bad” criterion)

We also show the matrices of the MAC criterion for each sub-structuring
method and truncation, to focus on the form of the modes. The idea is to compare
the number of modes used in the truncations of the displacement field basis and
the generalized stress field basis, and the number of modes well defined (frequency
and form) by the corresponding mixed reduced model.

4.3 Results: truncation of the displacement and stress modes

The table 6 summarises the various truncations we tested for the sub-structuring
method (see section 3) and compares them to the non-reduced method parameters.
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The results are shown in figures 7 and 8 (relative error and insight of the MAC
criterion) and figures 9 and 10 (matrix of the MAC criterion). The different trun-
cations are explained in table 6.

The results for this method are promising. In fact, they look like the results we
would get with a sub-structuring method applied on a primal model, with a good
representation for low frequency and a convergence limit frequency that increases
with the number of modes kept in the truncation. It appears that, most of the
time, the two check criteria work together as they are both ”good” or ”bad” at the
same time, that is to say MAC criterion and frequency error are getting bad at
the same time when the model is diverging.
Nevertheless, depending on the truncation and number of modes we can possibly
observe, it sometimes remains a few modes with one of the two criteria (or some-
times both) that are ”medium” or even ”bad” for some modes, but they are very
rare and exceptions among many other well described modes. We call them ”sin-
gular modes”. The table 7 summarise the frequency and mode bands well defined
by the sub-structuring method and the number and density of ”singular modes”
among that band.

Table 7: Results for different truncation, using the sub-structuring method

Name 5-5 10-10 20-20 40-40 60-60 80-80 100-100 150-150 Ref mixed Primal
Relative error figure 7a 7b 7c 7d 7e 7f 8a 8b / /

MAC figure 9a 9b 9c 9d 9e 9f 10a 10b / /

Limit mode 12 22 41 76 113 147 181 276 / /
Limit frequency (Hz) 33 70 146 290 447 580 730 1170 / /

Nb of singular modes 0 0 1 2 6 4 3 10 / /
% of singular modes 0 0 2.4 2.6 5.3 2.7 1.7 3.6 / /

Number of DOFs 122 142 182 262 342 422 502 702 11256 2958

Acces to stress Yes Yes Yes Yes Yes Yes Yes Yes Yes No

The results shown in table 7 are good, and reveal the fact that we can highly
decrease the number of DOFs but still keep a good convergence on a large band
of modes. For example, the ”20-20” reduction reduce the DOFs from 11256 to
182 (more than 60 times less) and allows a good representation of the dynamic
response for the 42 first modes, with only two singular modes (with a ”medium”
MAC criterion: 0.5 6 MAC < 0.8).
As the frequency band depends on the thickness of the plate, it sounds more likely
to talk about a number of modes observable instead of a frequency band. In fact,
the same computation with a higher thickness gives the same results in terms of
modes, but a higher frequency band because the higher the thickness is, the higher
the eigenfrequencies are.
The figure 11 shows the von mises stress distribution in the global structure for the
12th mode, using the sub-structuring method (see section 3) with the truncation

”5-5”. In this case, the 12th mode is the last one we can clearly observe among the
frequency band.
Despite the good results of this method, we can still notice the presence of some
”singular” modes (with a ”medium” or ”bad” criterion) among the frequency band
we observe. It seems that some modes needs a specific higher frequency mode to
be well represented, but that phenomenon concerns no more than 5% of the repre-
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Fig. 7: Relative error on the eigenfrequencies ǫi,red/mix in function of the mode
i and insight of the MAC criterion for each modes (truncations: a:5-5, b:10-10,
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Fig. 8: Relative error on the eigenfrequencies ǫi,red/mix in function of the mode i and
insight of the MAC criterion for each modes (truncations: a:100-100, b:150-150)

sented modes most of the time. Furthermore, those singularities tend to disappear
or change with different meshes, which could explains that the method is not re-
sponsible for the singularities. It looks like the presence of singularities is random,
but does not really question the quality of this reduction.
Even though there is no exact rule to predict the mode band we can observe
in function of the truncation, we understand that, generally, it corresponds to a
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Fig. 10: MAC criterion for each modes (truncations: a:100-100, b:150-150)

number of modes equal or a bit inferior to the sum of the displacement modes and
generalized stress modes for each substructure. We also observe that the amount
of ”singular mode” tend increase with the frequency band we can observe, but this
remains rather random, and does not influence the global convergence frequency
band.
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Fig. 11: Von Mises stress distribution in the 2 plates for the 12th mode (f =
33.1Hz) obtained with the reduction method, truncation ”5-5”

5 CONCLUSIONS

As a first step, we implement a DM-FEM for KL theory and discuss its conver-
gence prior to the reduction. The computation reveals that, as long as the primal
model converges to a reference solution, the mixed one (with the same amount of
elements) also converges to the same reference. It basically means that the mixed
model has the same convergence as the regular primal model associated for the
simple interpolation and element type we chose. When choosing the KL thin plate
theory, the FEM has a great convergence, requires a low amount of element to
reach the reference and the results does not depend on the thickness of the plate
when sticking to small thicknesses.
The advantage of this formulation is the easy access to the stress within the plate
as a primary result of an analysis, without any other calculation. The first dis-
advantage is the numerical size of the mass and stiffness matrices that is much
bigger as they use parameters for the generalized stress fields, that is why we aim
at reducing the finite element model. Nevertheless, the second drawback is the
impossibility to diagonalize them as they are, which force us to imagine differ-
ent methods. Indeed, the article presents a new reduction method applicable to
DM-FEMs in general. The difficulty in using regular displacement CMS methods
and sub-structuring methods leads us to a different reduction. In fact, the idea
is to adapt a displacement sub-structuring modal reduction to the mixed model
by separating the projection of displacement and generalized stress. The primal
model associated uses the same meshing and same theory as the mixed model.
With the method presented in this paper, we reduce the mixed model using a ba-
sis composed of ”fixed interface modes” obtained with a Craig & Bampton method
and the generalized stress field on another projected basis also composed of ”fixed
interface modes”. The results shown in the last section are good and permit to
decrease a lot the number of DOFs, and still keep a good convergence on a large
frequency band, despite the presence of singularities among that band. The con-
vergence may change depending on the structure and the type of junction but we
can still set the fact that, for the example chosen, we can divide the number of
DOFs by 22, 32 and 62 and keep a good representation of the 181, 113 and 41
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first modes respectively. In the end, we dispose of a reduced mixed finite element
model for thin plate that keeps the advantages of that theory meanwhile getting
rid of its main inconvenients.
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