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Ramification of Quaternion Algebras over Stable Elliptic Surfaces

The aim of this work is to study the ramification of quaternion algebras over the function field of a stable elliptic surface, in particular over the field of complex numbers. Over number fields there are criteria for the ramification of quaternion algebras such as the tame symbol formula. We study how this formula can be interpreted in a geometrical way, and how the ramification relates to the geometry of the surface. In particular, we consider stable complex elliptic surfaces that have four 2-torsion sections.

Introduction

Let X be an (absolutely) irreducible variety over a field k. Let BrX be the Brauer group of the variety X, that is, the group of equivalence classes of Azumaya algebras on X. We have various descriptions of this group. One of these is given by means of the étale cohomology of X: by [Ca], Th. 1.1.8, we have an injective homomorphism

BrX -→ H 2 (X, O * X ) tors = H 2 ét (X, G m ).
We will denote K := k(X) the function field of X, and BrK its Brauer group, that is, the group of equivalence classes of central simple K-algebras.

As shown in [Se], Ch 4, §4 and §5, we have the following description of this group by means of Galois cohomology:

BrK ≃ lim -→
H 2 (Gal(L/K), L * ),
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1 where the direct limit is taken over the family of finite Galois extensions L of K. BrK is a torsion group. For later use, we will denote Br n K the n-torsion part of BrK. We will be concerned with Br 2 K, and, in particular, with equivalence classes of quaternion algebras over K. BrX and BrK are deeply related: if A is an Azumaya algebra, then, by definition, its stalk A η at the generic point η of X is a central simple K-algebra. This gives a morphism

BrX -→ BrK, [A] -→ [A η ]
which is injective when X is regular ( [AM]). Thus, we can think of an Azumaya algebra on X as a central simple K-algebra which extends to an Azumaya algebra on X. We will make this statement precise in section 3. The problem is the following. Let us suppose that we are able to give an explicit element in BrK. Does this element extend to an Azumaya algebra over X? If we have a positive answer to this question, is the Azumaya algebra obtained in this way non trivial? Our strategy will be the following. Let π : X -→ P 1 C be a complex elliptic surface. By [S2], Ch. III, Rem. 3.1 and Prop. 3.8, the generic fiber E X of π is an elliptic curve over the field C(t). In the next section, we describe a way to construct quaternion algebras over E X . Then we study when these extend to Azumaya algebras over X.

The Brauer group of an elliptic curve

We recollect some basic facts about the 2-torsion of the Brauer group of an elliptic curve E over a field k. Let us suppose that the 2-torsion points of E are k-rational, and fix an isomorphism

E(k)[2] ≃ (Z/2Z) 2 . Let Br 0 E := ker(BrE ǫ * 0 -→ Brk)
be the kernel of the restriction of an Azumaya algebra to the origin of E, where ǫ 0 : Spec k -→ E is the point 0 ∈ E. We have:

Proposition 1. There is a canonical isomorphism Br 0 E ≃ H 1 (k, E). Proof. See [Wi], Lemma 2.1.
The Kummer sequence for the 2-torsion part of the elliptic curve E is

0 -→ E[2] -→ E •2 -→ E -→ 0.
Using the previous proposition we get the following exact sequence:

0 -→ E(k)/2E(k) δ -→ (k * /(k * ) 2 ) 2 γ -→ Br 0 2 E -→ 0
(see [S1], Ch. VIII, §2).

Before going on, we fix some notation. A quaternion algebra over a field k is a four dimensional k-algebra A with center k, for which we can find elements i, j, l ∈ A such that

A = k ⊕ i • k ⊕ j • k ⊕ l • k,
and such that ij = -ji = l. These elements being fixed, we denote A with the standard symbol (a, b) k , where a = i 2 and b = j 2 are elements in k * . When no confusion on this symbol is possible, we will drop k, and we will simply write (a, b) for the corresponding quaternion algebra. The same symbol will be used for its equivalence class in the Brauer group of k. 

y 2 = x(x -p)(x -q),
where p, q ∈ k, then R = (0, 0), P = (p, 0) are generators of E(k) [2]. Let also Q = (q, 0).

Proposition 2. Let M ∈ E(k)/2E(k). Then δ(M ) ∈ (k * /(k * ) 2 ) 2 is given by: δ(M ) =              (x(M ), x(M ) -p) if M = R, P (q/p, -p) if M = R (p, (p -q)/p) if M = P (1, 1) if M = O. Let f, g ∈ k * /(k * ) 2 . Then γ(f, g) = (x, f ) k ⊗ (x -p, g) k ∈ Br 0 2 E.
Proof. For δ see [S1], Ch. X, Prop. 1.4. For γ see [Wi], Proposition 2.2.

Note that since we have chosen R and P as generators of E(k)/2E(k), the equations of δ and γ are different from what is written in [Wi] (where the basis is given by P and Q).

Let π : X -→ P 1 C be a complex elliptic surface which has four 2-torsion sections s R , s P , s Q and O. The generic fiber E X of π has therefore Weierstrass equation:

y 2 = x(x -p)(x -q),
with p, q ∈ C(t), and we assume that s R , s P and s Q correspond to the points R = (0, 0), P = (p, 0), Q = (q, 0) (and, clearly, O corresponds to the origin of E X ). By Proposition 2, (x-p, f ) C(t) , (x-q, g)

C(t) , (x, h) C(t) ∈ Br 0 2 E X for every f, g, h ∈ C(t).
For example, by Remark 1 we have that (x -p, f ) C(t) = γ(1, f ). Since the function field K of the surface X is generated by the rational functions x, y, t, we see that (x -p, f ) C(t) (as well as the others) can be viewed as an element in BrK. These will be the quaternion algebras we will study.

3 The Brauer group of a smooth surface

In this section, X will be a smooth surface over an algebraically closed field k of characteristic zero. In the introduction, we saw that there is an injective homomorphism BrX ρ -→ BrK. We give a description of the elements in the image of ρ. The main result we will use is the following: Theorem 3. There is an exact sequence:

0 -→ BrX ρ -→ BrK α -→ C⊆X H 1 (k(C), Q/Z),
where the direct sum is taken over the set of irreducible curves in X. The map α is defined in the following way: let η be the generic point of an irreducible curve C on X, O X,η ⊆ K the local ring of X in η, and let D be a central division algebra over O X,η . Then α(D) will be the cyclic extension L of k(C) associated to D.

Proof. See [AM], Ch. 3, Th. 1. or [Ta], Lemme 4.1.

Let D = (a, b) be a quaternion algebra over K, so that a and b are rational functions on X. Let us denote α(D) C the component of α(D) in H 1 (k(C), Q/Z). By Theorem 3, there can only be a finite number of irreducible curves C 1 , ..., C n ⊆ X such that α(D) C i = 0. The curve C D given by the union of these C i will be called ramification curve of D. By Theorem 3, D extends to an Azumaya algebra over X if and only if its ramification curve C D is empty. But how to find this ramification curve?

Let V be the closed subset of X given by the curves on which a or b have zeroes or poles, and let U be its complement. Over this open subset we can define the following locally free sheaf

A a,b : if W ⊆ U is an open in U , we define A a,b (W ) := O X (W ) ⊕ i • O X (W ) ⊕ j • O X (W ) ⊕ l • O X (W ), where i 2 = a |W , j 2 = b |W and ij = -ji = l. Moreover, O X (W )
is the center of this algebra. Since a |W and b |W are regular functions without zero on W , A a,b is a sheaf of O U -modules which has the structure of Azumaya algebra on U . Thus, A a,b is the extension of the quaternion algebra (a, b) to U , and the ramification curve of (a, b) is contained in V . To determine this curve we have to study how A a,b behaves on the irreducible components of V . We use the following well-known tame symbol formula and, for completeness sake, we give a proof: Proposition 4. Let X be a smooth surface over an algebraically closed field k of characteristic 0, and let (a, b) ∈ Br 2 (k(X)) be a quaternion algebra over k(X). Let U and V be as above, and C be an irreducible component of V . Then A a,b extends to an Azumaya algebra over U ∪ C if and only if the following rational function on C (called tame symbol):

c = (-1) v(a)v(b) a v(b) b -v(a)
, is a square in k(C) * , where v is the valuation for the discrete valuation ring O X,η at the generic point η of C.

Proof. First, choose a function t such that C is given by t = 0 and v b) , where v(α) = v(β) = 0. By Remark 1, it suffices to study only where a or b have zeroes, that is, we can take v(a), v(b The remaining case, namely v(a) and v(b) are odd and αβ is not a square in k(C), is studied in [AM], Ch. 4, Prop. 2, where it is shown that (a, b) ramifies over C. So, we study the 3 cases listed above. Write v(a) = 2m + e, v(b) = 2n + f , where e and f can be 0 or 1. The strategy goes as follows: by purity, it suffices study the problem locally, so we take p ∈ C and a neighborhood U ′ of p in X. We construct an Azumaya algebra D on U ′ and an isomorphism between D |U ∩U ′ and A a,b|U ∩U ′ . D is the quaternion algebra

(t) = 1, so that O X,η /(t) = k(C). Then we can write a = αt v(a) , b = βt v(
) ≥ 0. Since k is algebraically closed, c is a square in k(C) * if and only if α v(b) β -v(a)
O U ′ ⊕ i 1 • O U ′ ⊕ j 1 • O U ′ ⊕ i 1 j 1 • O U ′ , where i 1 and j 1 are sections of D over U ′ such that i 1 j 1 = -j 1 i 1 . Similarly, we have A a,b = O U ⊕ i•O U ⊕ j •O U ⊕ ij •O U with i 2 =
a and j 2 = b. So let us study the 3 cases above:

1. If e = f = 0, we take i 1 = t -m i, j 1 = t -n j, and the isomorphism is given by i 1 → i, j 1 → j.

2. If e = 0, f = 1 we take i 1 = t -m i, j 1 = t -n j, so that i 2 1 = α is a square modulo t. We write i 2 1 = -z 2 + ht, j 2 1 = βt, where h = dt s , v(d) = 0. Now take i 2 = i 1 -j 1 i 1 and j 2 = j 1 . In this way,

i 2 2 = i 2 1 -(j 1 i 1 ) 2 = (1 + j 2 1 )i 2 1 = (1 + βt)(-z 2 + ht) = -z 2 + tw
where w = -βz 2 +h-βth is unit. Now take i 3 = i 2 , j 3 = t -1 (z -i 2 )j 2 , so that i 2 3 = -z 2 + tw and j 2 3 = βw. Since these two have valuation 0, we are done.

3. If e = 1, f = 0, we take i 1 = t -n j, j 1 = t -m i and we go on as in the previous case.

4. If e = 1, f = 1, we take i 1 = t -n-m-1 ij, j 1 = t -n j and we go on as in the second case.

Criterion for ramification

In this section we give a criterion for the ramification of a quaternion algebra of the form (x-p, f ), (x-q, g), or (x, h) over an elliptic surface π : X -→ P 1

C

whose Weierstrass model π : X -→ P 1 C has equation:

y 2 = x(x -p)(x -q),
where p, q ∈ C[t]. For simplicity's sake, we will only consider stable elliptic surfaces. We start by giving this criterion, which establishes when X is stable: we study the fibers of π and follow the Kodaira classification.

Proposition 5. Using the same notation as above, let p(t) = t a p 1 (t) and q = t b q 1 (t), with p 1 (0), q 1 (0) = 0. Moreover, let p(t) -q(t) = t n h(t), with h(0) = 0. The fiber π -1 (0) is stable if and only if ab = 0. In this case, the fiber is of type

1. I 2a if a > 0, b = 0; 2. I 2b if a = 0, b > 0; 3. I 2n if a = b = 0.
Proof. This can easily be done using the Weierstrass form of the equation of X, that is y 2 = x 3 + Ax + B, where A and B depend only on p and q. Since π -1 (0) is stable if and only if A(0)B(0) = 0 (see [Mi], Lecture 2, §3

and Lecture 3, §2, §3), writing out the explicit formulas for A and B, we see that the fiber is stable if and only if ab = 0. The discriminant of this Weierstrass equation is ∆(t) = t 2a+2b+2n p 1 (t)q 1 (t)h(t), and we get the three possibilities listed above (see again [Mi], Lecture 2, §3 and Lecture 3, §2, §3).

We use Proposition 2 to study the ramification of the quaternion algebras of the form (x, f ), (x -q, g) or (x -p, h). If we change coordinates by x -q → x or x -p → x, we can always get to a quaternion algebra of the form (x, f ).

We have the following proposition:

Proposition 6. Let π : X -→ P 1 C be a stable elliptic surface, whose Weierstrass model π : X -→ P 1

C is given by the equation y 2 = x(x -p)(x -q), with p, q ∈ C[t], p = q and m = max{deg(p), deg(q)} even. Let f ∈ C(t). The quaternion algebra (x, f ) extends to an Azumaya algebra over X if and only if for every zero or pole t 0 ∈ P 1 C of f , we have p(t 0 )q(t 0 ) = 0 and p(t 0 ) = q(t 0 ).

Proof. Using Remark 1, it is clear that it suffices to show the proposition in the case of f (t) = t, so that t 0 is 0 or ∞ ∈ P 1 C . It is clear that (x, t) extends to an Azumaya algebra at least over the open subset U of X where x and t do not have any zero or pole: we blow up any singularity in U and apply Proposition 4 (here there is no zero nor pole of t or x). Next, we have to study what happens on X \ U . Since the function x is regular, X \ U is given by x = 0 and by the fibers of π on 0 and ∞ ∈ P 1 . We start by studying the fiber over 0.

We begin with the case when p(0)q(0) = 0 and p(0) = q(0), so that the fiber of π over 0 is smooth. Here, we don't need to blow up (at least near this fiber). We have v(t) = 1, v(x) = 0. By Proposition 4, we get that (x, t) extends to an Azumaya algebra over U ∪ π -1 (0) if and only if x is a square in the function field of π -1 (0). Since the equation of the fiber is y 2 = x(x -p(0))(x -q(0)), with p(0), q(0) = 0 and p(0) = q(0), we see that this is not the case, so that (x, t) ramifies.

As second case, we consider when p(0)q(0) = 0 and p(0) = q(0), so π -1 (0) has equation y 2 = x(x -p(0)) 2 . The point P 0 = (p(0), 0, 0) is singular. Let p(t) -q(t) = t n h(t) with h(0) = 0. We change coordinates in order to get P 0 = (0, 0, 0), so the equation becomes:

y = x(x + p)(x + p -q),
thus we don't have any ramification. If t 1 = 0, we get the quaternion algebra (x 1 t n + p, t) and the equation

y 2 1 = x 1 (x 1 t n + p)(x 1 + h),
which describes a smooth surface, and we have no ramification. Finally, we show that if p(0)q(0) = 0, then (x, t) ramifies over t = 0. We can suppose q(0) = 0 (and p(0) = 0 by Proposition 5), and we write q(t) = t b q 1 (t), with q 1 (0) = 0. We use the same notation as before for the blow-up.

Where x 1 = 0 we have y = y 1 x, t = t 1 x, quaternion algebra (x, t 1 x) and equation

y 2 1 = (x -p(t 1 x))(1 -t b 1 q 1 (t 1 x)x b-1
) which is smooth. Over the curve t 1 = 0 we have v(t 1 ) = 1, v(x) = 0 so that (x, t 1 x) extends to an Azumaya algebra over this curve if and only if x is a square modulo t 1 . By the equation above, we get x = y 2 1 + p(0), so that x is not a square modulo t 1 . Since this component does not change under further blow-ups, (x, t) ramifies over π -1 (0).

Next, we study how (x, f ) behaves on the fiber π -1 (∞). Since (x, t) is equivalent to (x, 1/t), we can reduce to the previous case, but the equation is different: using s = 1/t, we get y 2 = x(x -p(1/s))(x -q(1/s)).

Using m = max{deg(p), deg(q)}, we have

s 2m y 2 = x(s m x -p 1 (s))(s m x -p 2 (s))
where p 1 (s) = s m p(1/s), q 1 (s) = s m q 1 (1/s). Since m is even, we can define Y = s 3m/2 y and X = s m x. Finally, we get the equation Y 2 = X(X -p 1 )(X -q 1 ), and the quaternion algebra (s m X, s), which is equivalent to (X, s) since m is even. By the first part of the proof, we can study this quaternion algebra on the fiber of 0 and conclude as stated in the proposition.

In order to finish the proof, we shall study how (x, t) behaves over the curve {x = 0}. The only problem here can be given by singular points of the surface that lie on this curve and on the fiber of a point t 0 ∈ P 1 different from 0 and ∞. We can change coordinates in order to get a quaternion algebra (x, t+t 0 ) and the usual equation. We can use the same calculations as above for the blow-ups, and look to the transform of x = 0. In any case, we see that since t 0 = 0 is a square in C, we do not have any ramification.

Remark 2. As we saw in the proof, we often make use of the fact that we are over the field of complex numbers, as here any number is a square. We can modify the statement for any field k of characteristic 0 asking also that for every zero or pole t 0 of f , p(t 0 ) and q(t 0 ) are squares in k.

A natural question is whether (x, f ) is non trivial in BrX. We have the following:

Proposition 7. Let π : X -→ P 1 be a stable complex elliptic surface whose Weierstrass model has equation y 2 = x(x -p)(x -q), where p, q ∈ C[t], p = q. Assume that rk(M W (X)) = 0, where M W (X) is the Mordell-Weil group of X. If f ∈ C(t) and (x, f ) ∈ BrX is trivial, then we are in one of the following three cases: f is a square in the function field of E X ; f = λq and q -p = µ; f = -λq and p = -µ, where λ, µ are squares in the function field of E X .

Proof. We can argue as follows: if (x, f ) is trivial in BrX, then its restriction to the general fiber E X of π is trivial in BrE X . By Proposition 2, (x, f ) = γ([f ], 1), where [f ] is f modulo squares in the function field C(t) of E X . It is now clear that if (x, f ) = 0 in BrX, then there must be a C(t)-rational point M of E X such that δ(M ) = ([f ], 1). Since the Mordell-Weil group of X is torsion, the only possible M can be P , Q, R and the origin O of E X . By Proposition 2, we have only this four possibilities:

1. f is a square in the function field of E X ; 2. q = λf and p = µ(f -1); 3. q = -λf and p = -µ; 4. p = λf and q = µf (f -1) with λ, µ squares in the function field of E X . Since the surface is stable, by Proposition 5 we see that the last case is impossible. The other cases agree with the hypothesis (x, f ) ∈ BrX.

We give two examples. The first one, due to Olivier Wittenberg, is an elliptic K3 surface with Picard number 20. This is described in [Wi], Section 3, but here we can study it in a more geometrical way. The second one was suggested to me by Bert van Geemen, and shows how important the hypothesis on the annulation of the rank of the Mordell-Weil group of the elliptic surface is. and a revised version of my Tesi di Laurea at the Università degli Studi di Milano. I wrote a preliminary version of this work during my staying at the Université de Paris XI -Orsay, during the spring of 2004, for the Program of Arithmetic Algebraic Geometry, under the precious and helpful direction of Jean-Louis Colliot-Thélène and Etienne Fouvry, which I thank for the possibilities they gave me.

Remark 1 .

 1 If a, b ∈ k * , the quaternion algebras (a, b) k , (b, a) k , (a, -ab) k are all isomorphic. Moreover, for any c ∈ k * , (a, bc 2 ) k is equivalent (in Brk) to (a, b) k , so that (a, b) k , (1/a, b) k , (a, 1/b) k and (1/a, 1/b) k are all equivalent in Brk. Finally, the quaternion algebra (1, a) k is trivial in Brk. Now fix a Weierstrass equation for E:

  is a square. This is possible if one of the following is satisfied:1. v(a)and v(b) are even, 2. v(a) (resp. v(b)) is even and α (resp. β) is a square in k(C), 3. v(a) and v(b) are odd, and αβ is a square in k(C).
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and the quaternion algebra is (x + p, t). We blow up the surface X in P 0 . We shall write down explicit equations for the blow-up: we work in the subvariety of A 3 × P 2 with coordinates (x, y, t, (x 1 : y 1 : t 1 )) defined by the equations xy 1 -x 1 y = 0, xt 1 -x 1 t = 0 and yt 1 -y 1 t = 0. Where x 1 = 0 we have y = y 1 x and t = t 1 x, so that the equation becomes

which describes a smooth variety. The quaternion algebra is (x + p, t 1 x), and we study it over the curves given by t 1 = 0 and x = 0. If t 1 = 0, then

In both cases (x + p, t 1 x) extends to Azumaya algebra on this curve.

Where y 1 = 0 we have x = x 1 y, t = t 1 y, quaternion algebra (x 1 y +p, t 1 y) and equation 1 = x 1 (x 1 y + p(t 1 y))(x 1 + t n 1 y n-1 h(t 1 y)). Calculations similar to those we did before show that the quaternion algebra extends to Azumaya algebra also over t 1 y = 0.

There remains the component given by t 1 = 0, where we have x = x 1 t and y = y 1 t. The quaternion algebra becomes (x 1 t + p, t) and the equation is

this surface is smooth, while if n > 1, it has a singular point in (0, 0, 0). Let n = 1: if t = 0, we have v(t) = 1, v(x 1 t+p) = 0. By Proposition 4, (x 1 t + p, t) extends to an Azumaya algebra over this curve if and only if x 1 t + p is a square modulo t, that is if and only if p(0) is a square in C, which is the case. This shows that if n = 1, then (x, t) extends to an Azumaya algebra over π -1 (0). There remains n > 1: we must blow up in (0, 0, 0) till we get a smooth surface and analyze the quaternion algebra we obtain as we did for the case n = 1. By induction on n, we study the ramification of the quaternion algebra (xt n-1 + p, t) over a surface of equation

With the same notation as before, if x 1 = 0 we get the quaternion algebra (x n t n-1 1 + p(t 1 x), t 1 x) and equation

which describes again a smooth surface. As before, the quaternion algebra doesn't ramify over the curve given by t 1 x = 0. If y 1 = 0, we get the quaternion algebra (x 1 t n-1 1 y n + p(t 1 y), t 1 y) and the equation

Example 1. Let X be the elliptic complex surface over P 1 whose Weierstrass model has equation

where p(t) = 3(t + 1) 3 (t -3) and q(t) = 3(t -1) 3 (t + 3). It is easy to show that the only singular fibers are of type I 2 over 0, 3, -3 and of type I 6 over 1, -1, ∞. Thus X is stable, has Euler number e(X) = 24 (which implies that X is a K3 surface) and Picard number ρ(X) = 20. By the Shioda-Tate formula (see [Mi], Corollary VII.2.4), rk(M W (X)) = 0. By Proposition 6, since p(0) = q(0) = -9, the quaternion algebra (x, t) does not ramify over 0. Over ∞, following the proof of Proposition 6, we study the ramification over 0 of the quaternion algebra (x, s) for the surface of equation

where p 1 (s) = 3(1 + s) 3 (1 -3s) and q 1 = 3(1 -s) 3 (1 + 3s). Since p 1 (0) = q 1 (0) = 3, (x, t) ∈ BrX. By Proposition 7, (x, t) is non trivial. By Remark 2, we even get [Wi], Remark 3.7: the quaternion algebra (x, t) ∈ Br(Q(X)) is not ramified over the field Q(i, √ 3) (we must have that -9 and 3 are square in the base field, which is the case for Q(i, √ 3)). We can even show that (x -p, t) ramifies, but (x -p, (t -1)(t + 3)) is in BrX and it is non trivial. To do so, we can write X = x -p, so that the Weierstrass model of X becomes y 2 = X(X + p)(X + p -q) and the quaternion algebras become (X, t) and (X, (t -1)(t + 3)). Now we can apply Propositions 6 and 7. Using the same kind of arguments, we get the same conclusions for (x -q, t) and (x -q, (t + 1)(t -3)).

Example 2. Let X be an elliptic complex surface over P 1 whose Weierstrass model has equation

where p(t) = (t -1) 2 and q(t) = t 2 + 1. It is easy to show that X is rational: the only singular fibers are of type I 4 over 1, and of type I 2 over i, -i, 0 and ∞, so that the Euler number of X is 12 and Picard number 10 (see [Sh], Lemma 10.2). By Proposition 6, we get easily that (x, t) ∈ BrX. Since X is rational, BrX = 0. In this case, we see that the rank of the Mordell-Weil group of X is 1, by the Shioda-Tate formula, so that we cannot apply Proposition 7.