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Abstract – When studying a mechanical structure, evaluation of its frequency response function (FRF)
over a given frequency range is one of the main interests. Computational cost aside, evaluating FRFs
presents no methodological difficulty in the deterministic case. Doing this when the model includes some
uncertain parameters may however be more difficult as multimodality and discontinuity can arise around
resonances. Indeed, even for a single degree of freedom system, it can be shown that usual methods of
the probabilistic frame such as generalized Polynomial Chaos may fail to properly describe the probability
density function of the response amplitude. This study proposes another approach which involves a shift in
the usual quantities used to draw FRFs. Instead of computing the stochastic response for a given excitation
frequency, this work adopts a constant response phase point of view. For each phase value of the oscillator
response, the uncertainty over some parameters is propagated to the corresponding uncertain amplitudes
and excitation frequencies. This provides much smoother variations of the involved quantities which are
much easier to describe using a simple Polynomial Chaos approach. Both analytical and numerical results
will be exposed for a single degree of freedom oscillator whose stiffness follows a uniform law.

Key words: Structural dynamics / frequency response function / random vibrations / uncertainty propa-
gation / polynomial chaos

1 Introduction

When studying a mechanical structure, evaluation of
its frequency response function (FRF) over a given fre-
quency range is one of the main interests. Computational
cost aside, evaluating FRFs presents no methodological
difficulty in the deterministic case. Doing this when the
model includes some uncertain parameters may however
be more difficult. Analytic expressions can be established
for small systems: Udwadia [1,2] provided explicit expres-
sions of the statistics of the response of a single degree of
freedom system for random mass, stiffness and damping
rate. Heinkelé et al. [3] wrote the explicit formula for the
probability density fonction of the FRF of a single degree
of freedom oscillator with random damping, either vis-
cous or hysteretic. Expressions for envelopes (confidence
intervals) could then be derived and finally lead to a mean
to identify damping random properties from experiments.
Similar work was conducted for a random stiffness [4–6]
showing that multimodality can arise around resonances.

a Corresponding author:
emmanuelle.sarrouy@centrale-marseille.fr

When large or nonlinear systems are involved, numerical
methods must be considered as full analytic expressions
cannot be established anymore. Since Wiener [7] who pro-
posed the Polynomial Chaos decomposition for Gaussian
processes, many developpments were done to enlarge the
application of this idea. Winterstein [8, 9] introduced the
moment-based Hermite model for random vibrations and
fatigue. In these works, the polynomial expansion is also
generalized to arbitrary polynomials through a procedure
analogous to the Gram-Schmidt method. This enables a
choice for the represention basis. For instance, Laguerre
polynomials have been proposed for positive random pro-
cess, associated to chi-square-2 variables. Ghanem and
Spanos [10] proposed to combine the polynomial chaos
expansion viewed as a generalized Fourier expansion with
the finite element method and Xiu and Karniadakis [11]
extended this approach by introducing a larger family
of polynomials adapted to different distributions, lead-
ing to the so-called generalized Polynomial Chaos (gPC;
see Ernst et al. [12] for detailed results on convergence). In
the last decade, several papers addressed the discretiza-
tion of the stochastic space to process random processes
with a discontinuous dependency to the input random
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Nomenclature

a System response amplitude [m]
f0 Modal excitation amplitude [N.kg−1]
I(Ω2

0) Squared eigen circular frequency variation range
pX Probability density function of X
PX Cumulative distribution function of X
P Probability measure
q System dynamic response (displacement) [m]
q̇ Velocity (q derivative with respect to time) [m.s−1]
q̈ Acceleration (q̇ derivative with respect to time) [m.s−2]
X Random variable associated to deterministic variable x
ϕ System response phase [rad]
η System damping ratio [∅]
ω Excitation circular frequency [rad.s−1]
ω0 Eigen circular frequency [rad.s−1]

ω2
0 Mean value of squared eigen circular frequency [rad2.s−2]

Δω2
0 Half width of I(Ω2

0) [rad2.s−2]

variables (see Wan and Karniadakis [13,14] for the Multi-
Element generalized Polynomial Chaos and Foo et al. [15]
for the Multi-Element Probabilistic Collocation Method).

Recent work by the authors [16] showed that for a
single degree of freedom system, generalized Polynomial
Chaos may fail to properly describe the probability den-
sity function of the response amplitude. More complex
methods such as Multi-Element generalized Polynomial
Chaos must be used to address this problem, increasing
the computational cost in return.

This study proposes another approach to handle the
frequency study of stochastic linear systems. It involves a
shift in the usual quantities used to draw FRFs: instead
of computing the stochastic response for a given excita-
tion frequency, this work adopts a constant phase point
of view. For each phase value of the oscillator response,
the uncertainty over some parameters is propagated to
the corresponding uncertain amplitudes and excitation
frequencies.

This work will be illustrated by a simple single degree
of freedom (sdof) linear damped oscillator whose eigen
frequency follows a uniform law. This system described
in Section 2. Section 3 illustrates multimodality of sys-
tem response amplitude when the response is sought for
a given excitation frequency but variable (free) response
phase. Section 4 then develops the proposed approach:
the response is sought for a given phase but variable
excitation frequency. Section 4.1 provides the equations
while Section 4.2 illustrates the approach on the sdof sys-
tem. Finally, Section 5 proposes a comparison of both
methods efficiency – constant excitation frequency and
constant phase – when combined to a Polynomial Chaos
Expansion.

2 Stochastic system studied

2.1 Deterministic single degree of freedom oscillator

Let us consider the sdof damped oscillator undergoing
a harmonic load depicted in Figure 1. Its movement is

1

ω2
0

2ηω0 q(t)

f0 cos(ωt)

Fig. 1. Simple damped oscillator.

governed by Equation (1).

q̈ + 2ηω0 q̇ + ω2
0 q = f0 cos(ωt) (1)

where q is the mass displacement, q̇ and q̈ are its veloc-
ity and acceleration respectively, ω0 is its eigen circular
frequency, η is the damping ratio, f0 is the excitation am-
plitude and ω is the excitation circular frequency.
In the frequency domain, Equation (1) becomes

(ω2
0 − ω2 + 2jηω0ω)q̂ = f0 (2)

where j2 = −1 and q̂ is the complex amplitude of q:

q(t) = Re
(
q̂ ejωt

)
(3)

Using these complex notations, one can easily write the
complex solution q̂ as a function of the mechanical pa-
rameters ω0, η and f0 and the excitation frequency ω:

q̂ =
f0

ω2
0 − ω2 + 2jηω0ω

(4)

Finally, decomposing the complex quantity q̂ into its am-
plitude a and phase ϕ,

q̂ = a ejϕ (5)
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Fig. 2. Deterministic frequency response diagrams for the sdof damped oscillator.

one gets separate expressions for each component:

a =
f0√

(ω2
0 − ω2)2 + (2ηω0ω)2

(6)

ϕ = arctan
(
− 2ηω0ω

ω2
0 − ω2

)
(7)

Amplitude and phase response of the oscillator are dis-
played in Figure 2 for f0 = 1, ω0 = 2π and η = 0.05.

2.2 Stochastic single degree of freedom oscillator

Let us now consider a probability space (Θ,A,P)
with Θ the event space, A the σ-algebra on Θ, and P

a probability measure. Random variables will be denoted
by the capital letter which matches the deterministic vari-
able. Hence if x is a deterministic variable, the associ-
ated random variable will be denoted X . Its cumula-
tive distribution function (cdf) and probability density
function (pdf) will be denoted PX(x) = P(X ≤ x) and
pX(x) = dPX

dx respectively.
We assume that ω2

0 varies and can be modeled using a
random variable Ω2

0(θ) : Θ → R which follows a uniform
distribution:

Ω2
0 ↪→ U

(
ω2

0 −Δω2
0 ;ω2

0 +Δω2
0

)

PΩ2
0
(x) = P(Ω2

0 ≤ x) =
x−

(
ω2

0 −Δω2
0

)
2Δω2

0

, x ∈ I(Ω2
0)

(8)
with I(Ω2

0) =
[
ω2

0 −Δω2
0 ;ω2

0 +Δω2
0

]
.

This may happen when the oscillator stiffness has
bounded variations.

Numerical values for later numerical applications are:
ω2

0 = (2π)2, Δω2
0 = 0.3ω2

0, η = 0.05 and f0 = 1. Diagrams
in Figure 2 then match the mean sdof system response
over the frequency range [0; 4π]. Four operating points
around which the stochastic response will be detailed are
marked in Figure 2 using letters (a) to (d).
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Fig. 3. Constant excitation frequency study: A pdf (pA) over
a given excitation frequency range. Color scale maps lg(pA).
(a)–(d) cuts refer to operating points defined in Figure 2.

3 Problems arising when considering
a constant excitation frequency

When studying a linear system over a given frequency
range, it is natural to observe the variation of a for a set
of excitation frequencies ω. That is what is usually done
when considering deterministic structures: for several val-
ues of ω, amplitude a and phase ϕ are evaluated and plot-
ted on graphics similar to Figure 2. It then seems natural
to use a similar procedure when studying stochastic linear
structures over a given excitation frequency range: for sev-
eral values of ω, a sample of Ω2

0 realizations is generated
and corresponding realizations of A and Φ are evaluated.
The problem is that, for some values of ω, the probability
density function of A is discontinuous as demonstrated
by Pagnacco et al. [6, 16]. This is illustrated in Figures 3
and 4.

These Monte Carlo simulations are obtained by
considering 501 ω values equally distributed over the

206-page 3



E. Sarrouy et al.: Mechanics & Industry 17, 206 (2016)

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

a (m)a (m)

a (m)a (m)

p
A

p
A

p
A

p
A

(a) ω/π = 1.50 rad/s (b) ω/π = 1.80 rad/s

(c) ω/π = 2.00 rad/s (d) ω/π = 2.50 rad/s

Fig. 4. Constant excitation frequency study: A pdf (pA) for operating points (a)–(d).
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Fig. 5. Constant excitation frequency study: a versus ω2
0 for operating points (a)–(d).

range [0; 4π]. For each ω value, 20 001 realizations of Ω2
0

are considered; these realizations are equally distributed
over the range I(Ω2

0 ). For each Ω2
0 realization, the cor-

responding value for A is evaluated using Equation (6)
and stored. The empirical pdf pA is then evaluated for
each excitation frequency ω. Figure 3 displays pA for the
whole ω range using colors while Figure 4 displays pA in
a classical way for the four ω values defined by operating
points (a−d) marked in Figure 2.

Panes (a) and (d) in Figure 4 show smooth pdfs
whereas discontinuous pdfs similar to pane (b) curve can
be observed for the excitation range ω ∈ [1.66π; 2π[ and
ω ∈]2π; 2.28π]. The exception in this range is the pdf ob-
tained in pane (c). Detailed explanations for these behav-
iors can be found in the previously mentioned references.
Only the main phenomenon will be outlined here using
Figure 5 which plots a versus ω2

0 for the same four exci-
tation frequencies values as in Figure 4. Continuous pdfs
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Fig. 6. Constant excitation frequency study: ϕ versus ω2
0 for operating points (a)–(d).

of panes (a) and (d) in Figure 4 are related to a bijective
relation between ω2

0 and a as displayed by panes (a) and
(d) in Figure 5. On the contrary, Figure 4b shows that
different values of ω2

0 map identical values of a. Being
represented twice, theses values for a are linked to sud-
denly higher pdf values. The exception of Figure 3c comes
from the symmetrical property visible in Figure 5c: each
a value has 2 preimages. Figure 6 displays plots similar to
Figure 5 except that they display ϕ instead of a when ω2

0
varies.

These discontinuous and possibly multimodal pdfs are
difficult to obtain when applying the widely used Polyno-
mial Chaos method to approximate A and Φ as illustrated
further in Section 5. More complex methods must then be
deployed to handle the problem [16].

4 Consideration of a constant phase

To avoid the previously mentioned drawbacks of us-
ing a constant excitation frequency method which can be
explained by the non-bijective link between the square
eigen frequency ω2

0 and the response amplitude a for a
given ω value, let us observe a when the response phase ϕ
is kept constant. Equation (4) creates a link between the
triplet (a, ϕ, ω); instead of choosing ω and evaluating sub-
sequent a and ϕ values, let us choose a ϕ value and evalu-
ate subsequent a and ω values. From a mechanical point of
view, this makes sense: when ω2

0 varies, responses sharing

a same phase ϕmatch similar operating points (maximum
response amplitude for example). From a mathematical
point of view, it is interesting since the link between ω2

0

and a is bijective when ϕ is kept constant as illustrated
by Figure 9. This figure displays graphics equivalent to
Figure 5 (that is a versus ω2

0) but for four given values of
ϕ instead of using given values for ω. Figure 10 shows that
the link between ω and ω2

0 for the considered ϕ values is
also bijective.

The next subsection develops the equations giving the
expressions of ω and a for a given ϕ value. An expression
for the pdf of A in the case when Ω2

0 follows a uniform
distribution is then derived, showing its continuity. The
second subsection illustrates this constant phase method
and provides graphics equivalent to those in Figures 3
to 6.

4.1 Expressions of ω, a and pA for a given ϕ

For a given ϕ ∈]−π, 0[ value, Equation (7) imposes ω
as follows:

Case ϕ = −π
2
:

ω = ω0 (9)

Case ϕ �= −π
2
: ω is solution of a second order polynomial

equation

− tan(ϕ)2ω2 + 2ηω0ω + tan(ϕ)2ω2
0 = 0 (10)
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which has two possible solutions:

ω =
ω0

tan(ϕ)

(
η ±

√
η2 + tan(ϕ)2

)
(11)

Case −π < ϕ < −π
2

: then tan(ϕ) > 0,

η+
√
η2 + tan(ϕ)2 > 0 and η−√η2 + tan(ϕ)2 < 0.

ω =
ω0

tan(ϕ)

(
η +

√
η2 + tan(ϕ)2

)
, ω > ω0 (12)

Case −π
2
< ϕ < 0: then tan(ϕ) < 0,

η+
√
η2 + tan(ϕ)2 > 0 and η−√η2 + tan(ϕ)2 < 0.

ω =
ω0

tan(ϕ)

(
η −

√
η2 + tan(ϕ)2

)
, ω < ω0 (13)

This leads to three cases for the displacement amplitude
a formula due to Equation (6):

Case −π < ϕ < −π
2

:

a =
1
ω2

0

f0√
1 + tan(ϕ)2

× 1
1

tan(ϕ)2
(
η +

√
η2 + tan(ϕ)2

)2

− 1
(14)

Case ϕ = −π
2
:

a =
1
ω2

0

f0
2η

(15)

Case −π
2
< ϕ < 0:

a =
1
ω2

0

f0√
1 + tan(ϕ)2

× 1

1 − 1
tan(ϕ)2

(
η −√η2 + tan(ϕ)2

)2 (16)

In every case, a can be rewritten

a =
aϕ

ω2
0

(17)

where aϕ is a coefficient depending on ϕ but not on ω2
0 .

Hence, formulas for A and its cdf can be derived:

A =
aϕ

Ω2
0

(18)

PA(x) = 1 − PΩ2
0

(aϕ

x

)
(19)

In the case when Ω2
0 ↪→ U(ω2

0 − Δω2
0 ;ω2

0 + Δω2
0), one
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Fig. 7. Constant phase study: A pdf over a given excitation
frequency range. Color scale maps lg(pA). (a)–(d) cuts refer to
operating points defined in Figure 2.

gets:

PA(x) = 1 +
1
2

(
ω2

0

Δω2
0

− 1

)
− aϕ

2Δω2
0

1
x
,

x ∈
[

aϕ

ω2
0 +Δω2

0

;
aϕ

ω2
0 −Δω2

0

]
(20)

pA(x) =
aϕ

2Δω2
0

1
x2

, x ∈
[

aϕ

ω2
0 +Δω2

0

;
aϕ

ω2
0 −Δω2

0

]
(21)

which is smooth, unlike the case when ω is kept constant.

4.2 Numerical example

To illustrate the constant phase method, Monte Carlo
simulations similar to those of Section 3 are carried out
using 501 ϕ values equally distributed over the range
[−0.98π;−0.02π]. For each ϕ value, 20 001 realizations
of Ω2

0 are considered; these realizations are equally dis-
tributed over the range I(Ω2

0). For each Ω2
0 realization,

the corresponding values for Ω and A are evaluated us-
ing Equations (12) and (14) or Equations (9) and (15) or
Equations (13) and (16) depending on ϕ value. The pdf
pA is then evaluated for each phase ϕ. Figure 7 displays
pA for the whole ϕ range using colors while Figure 8 dis-
plays pA in a classical way for the four ϕ values defined
by operating points (a−d) marked in Figure 2.

All panes (a−d) in Figure 8 show smooth pdfs while
discontinuous pdfs were observed in the constant excita-
tion frequency case, for ω ∈ [1.66π; 2.28π]. This is justi-
fied mathematically by Equation (21) which proves the
smoothness of pA. It can also be understood by consid-
ering the bijective link between a and ω2

0 emphasized by
Figure 9 which was previously mentioned. Finally let us
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Fig. 8. Constant phase study: A pdf for operating points (a)–(d).
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Fig. 10. Constant phase study: ω versus ω2
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point out that the link between ω and ω2
0 is bijective too

as illustrated by Figure 10.
To figure out the main differences between the spaces

involved by each method (constant excitation frequency
or constant phase), Figure 11 displays the variations
around operating points (a−d) when ω2

0 varies over I(Ω2
0)

for both methods in classical diagrams: amplitude a and
phase ϕ versus excitation frequency ω.

5 Consequences on a polynomial chaos study

Previous illustrations are based on Monte Carlo simu-
lations: the direct problem (considering either a constant
excitation frequency or a constant phase) is solved for a
large sample of Ω2

0 realizations. This can be afforded here
because the system is very small and the cost of the di-
rect evaluation is trivial. However, stochastic systems are
often studied using an approximation of the stochastic
response [17–19] in order to decrease the computational
cost. Among the different methods used to compute such
approximations, the Polynomial Chaos expansion (PCE)
introduced by Wiener [7] and recently expanded to gen-
eralized Polynomial Chaos (gPC) expansion and Multi-
Element generalized Polynomial Chaos (MEgPC) expan-
sion [11, 13, 20] is one of the most famous.

The next subsection provides a brief description of
the simple Polynomial Chaos expansion, while the sec-
ond one compares the results obtained when combining

each method (constant excitation frequency and constant
phase) with PCE.

5.1 Brief summary about polynomial chaos expansion

Only the principle is recalled here for a dimension-one
stochastic space, that is when only one random variable ξ
is used to introduce randomness in the system. The reader
is referred to the references cited above for a complete pre-
sentation of PCE.
Considering a second-order random process X , the Poly-
nomial Chaos expansion proposes to express it as a func-
tion X̂ which is a polynomial series using a set of N or-
thogonal polynomials denoted ψn in the variable ξ:

X(θ) = X̂(ξ(θ)) :=
N−1∑
n=0

xnψn(ξ(θ)) (22)

where the order N is theoretically infinite for general sit-
uations.
The deterministic coefficients xn are now used to repre-
sent X . They can be evaluated in two ways: using an
intrusive method or a non-intrusive one. The intrusive
method follows a Galerkin approach: Equation (22) is in-
troduced in the equations governing X and these equa-
tions are projected onto the set of orthogonal polynomi-
als ψn. The non-intrusive method uses the orthogonality
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approach. Grey patches display the domains of possible amplitudes or phases considering the whole ω2

0 variation range.

of the polynomials with respect to a scalar product de-
noted 〈•, •〉:

xn =
〈X̂, ψn〉
〈ψn, ψn〉 (23)

where the numerator is usually evaluated using a quadra-
ture rule.

The main difference between both methods is that the
intrusive method provides a set of m × N coupled alge-
braic equations (where m is the size of the underlying de-
terministic problem) and often requires a special imple-
mentation while the non-intrusive approach determines
the set of coefficients xn one after the other in an inde-
pendent manner and reuses existing codes to evaluate X
realizations needed for the quadrature.

The choice of the polynomial basis is somehow arbi-
trary even if some bases are considered as optimal to de-
scribe some distributions by some authors, as Xiu and
Karniadakis [11]. In the present case, the random in-
put Ω2

0 follows a uniform distribution which makes the

Legendre polynomial basis the most natural choice. The
first 6 polynomials are:

ψ0(x) = 1 ψ4(x) = 1
8 (35x4 − 30x2 + 3)

ψ1(x) = x ψ5(x) = 1
8 (63x5 − 70x3 + 15x)

ψ2(x) = 1
2 (3x2 − 1) ψ6(x) = 1

16 (231x6 − 315x4

ψ3(x) = 1
2 (5x3 − 3x) +105x2 − 5)

(24)
This set of polynomials is orthogonal with respect to the
following scalar product

〈f, g〉 =
1
2

∫ 1

−1

f(x)g(x)dx (25)

The adequacy of the Legendre polynomial basis and
the expansion on a random variable ξ that fol-
lows a uniform distribution U(−1; 1) and hence has
pξ(x) = 1

2 as probability density function may become
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Fig. 12. Constant excitation frequency study: PC simulations compared to MC simulations for operating point (a).

visible if the numerator of Equation (23) is rewritten as
follows:

〈X̂, ψn〉 =
∫ 1

−1

X̂(x)ψn(x)
1
2
dx

=
∫ 1

−1

X̂(x)ψn(x)pξ(x)dx = E[X̂ψn] (26)

where E[X ] denotes the expected value of random vari-
able X .

Once PCE coefficients xn are evaluated, there are two
ways to post-process them. First, the mean and variance
can be directly computed provided ψ0(x) = 1:

E[X̂ ] = x0〈ψ0, ψ0〉

and E[(X̂ − E[X̂])2] =
N−1∑
n=1

x2
n〈ψn, ψn〉 (27)

Second, cdf and pdf can be evaluated based on MC sim-
ulations. The difference with the usual processing is that
X̂ realizations are computed using its PCE (i.e. Eq. (22))
rather than solving the direct problem which saves a lot
of computational time and resource when the samples are
large.

5.2 Application of PCE for both methods

Let us define the random variable ξ as follows:

ξ =
Ω2

0 − ω2
0

Δω2
0

(28)

Its cdf Pξ and pdf pξ can be easily established:

Pξ(x) =
x+ 1

2
, pξ(x) =

1
2
, x ∈ [−1, 1] (29)

It follows that ξ has a uniform distribution U(−1; +1).
This random variable will serve to develop all the stochas-
tic quantities around the 4 operating points (a−d) de-
fined in Figure 2 and which correspond to the 4 following
triplets:

(ωop
a , aop

a , ϕop
a ) = (1.5π, 0.0571, −0.0540π)

(ωop
b , aop

b , ϕop
b ) = (1.8π, 0.1205, −0.1408π)

(ωop
c , aop

c , ϕop
c ) = (2.0π, 0.2533, −0.5000π)

(ωop
d , aop

d , ϕop
d ) = (2.5π, 0.0440, −0.9304π)

(30)

When the constant excitation frequency method is ap-
plied, ω is set to ωop

x (x ∈ {a, b, c, d}) and A and Φ expan-
sions are evaluated. In the case when the constant phase
method is applied, ϕ is set to ϕop

x (x ∈ {a, b, c, d}) and
A and Ω expansions are evaluated. A degree 6 expansion
is used in every case. The coefficients are evaluated us-
ing a non-intrusive method relying on a Gauss-Legendre
quadrature with 7 nodes.

Figures 12 to 15 provide comparisons of Monte Carlo
simulations and PCE results around operating points
(a−d) when the constant excitation frequency method is
used. As expected, this method provides correct result
for operating points (a), Figure 12 and (d), Figure 15:
variations of a and ϕ with ω2

0 are well reproduced by the
PCE and so are the respective pdfs. However, PCE does

206-page 10



E. Sarrouy et al.: Mechanics & Industry 17, 206 (2016)

0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

−1 −0.8 −0.6 −0.4 −0.2 0
0

5

10

15

)2.b()1.b(

)4.b()3.b(

PC simulationsMC simulations

a (m)

a
(m
)

p
A

ϕ/π (rad)

ϕ
/π
(r
ad
)

p
Φ

ω2
0/ω

2
0ω2

0/ω
2
0

Fig. 13. Constant excitation frequency study: PC simulations compared to MC simulations for operating point (b).
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Fig. 15. Constant excitation frequency study: PC simulations compared to MC simulations for operating point (d).

not provide a proper description of A and Φ for operating
points (b), Figure 13 and (c), Figure 14. As stated in [16],
increasing the expansion degree would not provide better
results.

Figures 16 to 19 provide comparisons of Monte Carlo
simulations and PCE results around operating points
(a−d) when the constant phase method is used. In this
case, the variation of a and ω with ω2

0 is well described
by the PCE as well as the corresponding pdf, both being
much smoother than when the constant excitation fre-
quency is used.

5.3 Comments on the practical use of the constant
phase approach

The constant phase approach is obviously useful when
one wants to study the variation of the system response
in a particular configuration which is characterized by
the phase ϕ: variation of the resonance peak (ϕ =
arctan(−

√
1 − 2η2/η)) , variation of the system response

when in quadrature with the excitation (ϕ = −π/2), . . .
However, one frequently wants to check that the sys-

tem response will not exceed some given values over a
range of excitation frequency. In this case, the constant
excitation frequency approach seems more adapted but
returns erroneous results for some system parameters
when using PCE (see Pagnacco et al. [6, 16]), especially
around resonance that is where amplitudes are gener-

ally controlled. The constant phase approach can still be
used if combined to a little post processing: let us denote
[fmin; fmax] the frequency range of interest. Evaluation
of the response of the mean system for fmin and fmax

provides coarse upper and lower bounds for the phase
response. As depicted in Figure 11, it is necessary to en-
large this range to properly cover the whole frequency
range [fmin; fmax]. By enlarging this phase range, one
gets the systems stochastic response over the desired fre-
quency range. Depending on the desired statistical indi-
cators (confidence interval, quantiles, moments, . . .), an
adapted post-processing can be implemented.

This said, it is nonetheless interesting to keep in mind
that being able to describe the variation of the resonance
peak both in terms of amplitude and frequency is much
more interesting that knowing that the amplitude may
stay below a given value over fmin and fmax and ignoring
it will explode for a little lower excitation frequency.

6 Conclusion

An original approach to study the dynamic response
of a single degree of freedom system has been developed.
This approach proposes to expand the system response
on the Polynomial Chaos when imposing the response
phase and freeing the system excitation frequency rather
than the other way around as it is usually done. The
proposed approach was applied to a single dof system
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Fig. 16. Constant phase study: PC simulations compared to MC simulations for operating point (a).
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Fig. 18. Constant phase study: PC simulations compared to MC simulations for operating point (c).
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Fig. 19. Constant phase study: PC simulations compared to MC simulations for operating point (d).
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whose squared eigen frequency follows a uniform law. This
method was proven to provide much better results than
the usual approach which suffers from the inability to de-
scribe the multimodality of the stochastic response. The
numerical application also demonstrated its ability to fol-
low some phase defined points such as the response of the
system when in quadrature with the excitation which is
usually close to the resonance point and is easy to detect
experimentally.
This work addressed a single dof system: further work
should handle the case of multi-dofs systems for which
multiple phases (one per dof) exist.
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