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INVERSION, DUALITY AND DOOB h-TRANSFORMS FOR
SELF-SIMILAR MARKOV PROCESSES

L. ALILI, L. CHAUMONT, P. GRACZYK, AND T. ŻAK

Abstract. We show that any Rd\{0}-valued self-similar Markov process X, with
index α > 0 can be represented as a path transformation of some Markov additive
process (MAP) (θ, ξ) in Sd−1 × R. This result extends the well known Lamperti

transformation. Let us denote by X̂ the self-similar Markov process which is
obtained from the MAP (θ,−ξ) through this extended Lamperti transformation.

Then we prove that X̂ is in weak duality with X, with respect to the measure
π(x/‖x‖)‖x‖α−ddx, if and only if (θ, ξ) is reversible with respect to the measure
π(ds)dx, where π(ds) is some σ-finite measure on Sd−1 and dx is the Lebesgue

measure on R. Besides, the dual process X̂ has the same law as the inversion

(Xγt/‖Xγt‖2, t ≥ 0) of X, where γt is the inverse of t 7→
∫ t
0
‖X‖−2α

s ds. These
results allow us to obtain excessive functions for some classes of self-similar Markov
processes such as stable Lévy processes.

1. Introduction

There exist many ways to construct the three dimensional Bessel process from
Brownian motion. It is generally defined as the strong solution of a stochastic
differential equation driven by Brownian motion or as the norm of the three dimen-
sional Brownian motion. It can also be obtained by conditioning Brownian motion
to stay positive. Then there are several path transformations. Let us focus on the
following example.

Theorem A (M. Yor, [27]). Let {(B0
t )t≥0,Px} and {(Rt)t≥0,Px}, x > 0, be re-

spectively the standard Brownian motion absorbed at 0 and the three dimensional
Bessel process. Then {(Rt)t≥0,Px} can be constructed from {(B0

t )t≥0,Px} through
the following path transformation:

{(Rt)t≥0,Px} = {(1/B0
γt)t≥0,P1/x},

where γt = inf{s :
∫ s
0

du
(B0
u)

4 > t}.

This result was actually obtained in higher dimension in [27] where the law of the
time changed inversion of d-dimensional Brownian motion is fully described. Recall-
ing that three dimensional Bessel process is a Doob h-transform of Brownian motion
absorbed at 0, the following result can be considered as a counterpart of Theorem
A for isotropic stable Lévy processes.

Date: January 29, 2016.
2010 Mathematics Subject Classification. 60J45.
Key words and phrases. Self-similar Markov processes, Markov additive processes, time change,

inversion, duality, Doob h-transform.
1



2 L. ALILI, L. CHAUMONT, P. GRACZYK, AND T. ŻAK

Theorem B (K. Bogdan, T. Żak, [5]). Let {(Xt)t≥0,Px}, x ∈ Rd \ {0} be a d-
dimensional, isotropic stable Lévy process with index α ∈ (0, 2], which is absorbed at
its first hitting time of 0. Then the process

(1.1) {(Xγt/‖X‖2γt)t≥0,Px/‖x‖2} ,

where γt = inf{s :
∫ s
0

du
‖X‖2αu

> t}, is the Doob h-transform of X with respect to the

positive harmonic function x 7→ ‖x‖α−d.

When d = 1 and α > 1, Yano [26] showed that the h-process which is involved
in Theorem B can be interpreted as the Lévy process {(Xt)t≥0,Px}, conditioned to
avoid 0, see also Pant́ı [22]. Then recently Kyprianou [19] proved that Theorem B
is actually valid for any real valued stable Lévy process.

Comparing Theorems A and B, we notice that they are concerned with the same
path transformation of some Markov process, and that the resulting Markov process
can be obtained as a Doob h-tranform of the initial process. Then one is naturally
tempted to look for a general principle which would allow us to prove an overall result
in an appropriate framework. It clearly appears that the self-similarity property is
essential in these path transformations. Therefore a first step in our approach was
an indepth study of the structure of self-similar Markov processes. This led us to
an extension of the famous Lamperti representation. The latter is the object of the
next section, see Theorem 1, and represents one of our main results. It asserts that
any self-similar Markov process absorbed at 0 can be represented as a time changed
Markov additive process and actually provides a one-to-one relationship between
these two classes of processes.

Then Section 3 is devoted to the study of the time changed inversion (1.1) when
{(Xt)t≥0,Px} is any self-similar Markov process absorbed at 0. Another impor-
tant step in our reasoning is the characterisation, in Theorem 2, of self-similar
Markov processes {(Xt)t≥0,Px}, which are in duality with the time changed inver-
sion {(Xγt/‖X‖2γt)t≥0,Px/‖x‖2}. We show that a necessary and sufficient condition
for this to hold is that the underlying Markov additive process in the Lamperti rep-
resentation satisfies a condition of reversibility. Some important classes of processes
satisfying this condition are also described. The results of this section extend those
obtained by Graversen and Vuolle-Apiala in [14].

It remains to appeal to some link between duality and Doob h-transform. More
specifically in Section 4, we recover Theorems A and B, and Theorem 4 in [19] as
consequences Theorem 2 in Section 3 and the simple observation that if two Markov
processes are in duality between themselves then it is also the case for their Doob
h-transforms. This general principle actually applies to large classes of self-similar
Markov processes and allows us to obtain excessive functions attached to them.
We end the paper by reviewing the examples of contitioned stable Lévy processes,
free Bessel processes and Dunkl processes. Let us finally emphasize that another
incentive for our work was the recent paper from Alili, Graczyk and Żak [1], where
some relationships between inversions and h-processes are provided in the framework
of diffusions.
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2. Lamperti representation of Rd \ {0}-valued ssMp’s

All Markov processes considered in this work are standard processes for which
there is a reference measure. Let us first briefly recall these definitions from Section
I.9 and Chapter V of [4]. A standard Markov process Z = (Zt)t≥0 is a strong Markov
process, with values in some state space Eδ = E∪{δ}, where E is a locally compact
space with a countable base, δ is some isolated extra state and Eδ is endowed with
its topological Borel σ-field. The process Z is defined on some completed, filtered
probability space (Ω,F , (Ft)t≥0, (Px)x∈Eδ), where Px(Z0 = x) = 1, for all x ∈ Eδ.The
state δ is absorbing, that is Zt = δ, for all t ≥ ζ(Z) := inf{t : Zt = δ} and ζ(Z) will
be called the lifetime of Z. The paths of Z are assumed to be right continuous on
[0,∞). Besides, they have left limits and are quasi-left continuous on [0, ζ). Finally,
we assume that there is a reference measure, that is a σ-finite measure µ(dy) on E

such that for each x ∈ E, the potential measure Ex(
∫ ζ
0

1I{Zt∈dy} dt) of Z is equivalent
to µ(dy). We will generally omit to mention (Ω,F , (Ft)t≥0) and in what follows, a
process satisfying the above properties will be denoted by {Z, Px} and will simply
be referred to as an E-valued Markov process absorbed at δ. (Note that absorbtion
may or may not hold with positive probability.)

In all this work, we fix an integer d ≥ 1 and we denote by ‖x‖ the Euclidean
norm of x ∈ Rd. We also denote by Sd−1 the sphere of Rd, where Sd−1 = {−1,+1}
if d = 1. Let H be a locally compact subspace of Rd \ {0}. An H-valued Markov
process {X,Px} absorbed at 0, which satisfies the following scaling property: there
exists an index α ≥ 0 such that for all a > 0 and x ∈ H,

(2.2) {X,Px} = {(aXa−αt, t ≥ 0),Pa−1x} ,

is called an H-valued self-similar Markov process (ssMp for short). The scaling
property implies in particular that H should satisfy H = aH, for any a > 0.
Therefore the space H is necessarily a cone of Rd \ {0}, that is a set of the form

(2.3) H := φ(S × R) ,

where S is some locally compact subspace of Sd−1 and φ is the homeomorphism,
φ : Sd−1 × R → Rd \ {0} defined by φ(y, z) = yez. Henceforth, H and S will
be any locally compact subspaces of Rd \ {0} and Sd−1 respectively, which are re-
lated to each other by (2.3). The main result of this section asserts that ssMp’s can
be obtained as time changed Markov additive processes (MAP) which we now define.

A MAP {(θ, ξ), Py,z} is an S × R-valued Markov process absorbed at some extra
state δ, such that for any y ∈ S, z ∈ R, s, t ≥ 0, and for any positive measurable
function f , defined on S × R,

(2.4) Ey,z(f(θt+s, ξt+s − ξt), t+ s < ζp | Ft) = Eθt,0(f(θs, ξs), s < ζp)1I{t<ζp} ,

where we set ζp := ζ(θ, ξ) for the lifetime of {(θ, ξ), Py,z}, in order to avoid heavy
notation. Let us now stress the following important remarks.
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Remark 1. Let {(θ, ξ), Py,z} be any MAP and set θt = δ′, t ≥ ζp, for some extra
state δ′. Then according to the definition of MAP’s, for any fixed z ∈ R, the process
{θ, Py,z} is an S-valued Markov process absorbed at δ′, such that Py,z(θ0 = y) = 1,
for all y ∈ S and whose transition semigroup does not depend on z.

Remark 2. If for any z ∈ R, the law of the process (ξt, 0 ≤ t < ζp) under Py,z
does not depend on y ∈ S, then (2.4) entails that the latter is a possibly killed Lévy
process such that Py,z(ξ0 = z) = 1, for all z ∈ R. In particular, ζp is exponentially
distributed and its mean does not depend on y, z. Moreover, when ζp is finite, the
process (ξt, 0 ≤ t < ζp) admits almost surely a left limit at its lifetime. Examples
of such MAP’s can be constructed by coupling any S-valued Markov process θ with
any independent real valued Lévy process ξ and by killing the couple (θ, ξ) at an
independent exponential time. Isotropic MAP’s also satisfy this property. These
cases are described in Section 3, see parts 2. and 3. of Proposition 1, Definition 1
and the remark which follows.

MAP’s taking values in general state spaces were introduced in [13] and [10]. We
also refer to Chapter XI 2.a in [2] for an account on MAP’s in the case where θ is
valued in a finite set. In this particular setting, they are also accurately described
in the articles [18] and [11], see Sections A.1 and A.2 in [11], which inspired the
following extension of Lamperti representation.

Theorem 1. Let α ≥ 0 and {(θ, ξ), Py,z} be a MAP in S × R, with lifetime ζp and
absorbing state δ. Define the process X by

Xt =

{
θτte

ξτt , if t <
∫ ζp
0

exp(αξs) ds ,

0 , if t ≥
∫ ζp
0

exp(αξs) ds ,

where τt is the time change τt = inf{s :
∫ s
0
eαξu du > t}, for t <

∫ ζp
0
eαξs ds. Define

the probability measures Px = Px/‖x‖,log ‖x‖, for x ∈ H and P0 = Pδ. Then the process

{X,Px} is an H-valued ssMp, with index α and lifetime
∫ ζp
0

exp(αξs) ds.
Conversely, let {X,Px} be an H-valued ssMp, with index α ≥ 0 and denote by ζc

its lifetime. Define the process (θ, ξ) by{
ξt = log ‖X‖At and θt =

XAt
‖X‖At

, if t <
∫ ζc
0

ds
‖Xs‖α ,

(ξt, θt) = δ , if t ≥
∫ ζc
0

ds
‖Xs‖α ,

where δ is some extra state, and At is the time change At = inf{s :
∫ s
0

du
‖Xu‖α > t},

for t <
∫ ζc
0

ds
‖Xs‖α . Define the probability measures, Py,z := Pyez , for y ∈ S, z ∈ R and

Pδ = P0. Then the process {(θ, ξ), Py,z} is a MAP in S ×R, with lifetime
∫ ζc
0

ds
‖Xs‖α .

Proof. Let (Gt)t≥0 be the filtration corresponding to the probability space on which
the MAP {(θ, ξ), Py,z} is defined. Then the process {Y,Px}, where Px as in the
statement and Yt = θte

ξt , for t < ζp and Yt = 0, for t ≥ ζp is the image of (θ, ξ)
through an obvious one to one measurable mapping, say φδ : (Sd−1×R)∪{δ} → Rd.
Hence it is clearly a standard process, as defined in the beginning of this section,
in the filtration (Gt)t≥0. Besides, if ν is the reference measure of {(θ, ξ), Py,z}, then
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ν ◦ φ−1δ is a reference measure for {Y,Px}. Now define τt as in the statement if

t <
∫ ζp
0
eαξs ds, and set τt = ∞ and Xτt = 0, if t ≥

∫ ζp
0
eαξs ds. Since eξs = ‖Ys‖,

(τt)t≥0 is the right continuous inverse of the continuous, additive functional t 7→∫ t∧ζp
0
‖Ys‖α ds of {Y,Px}, which is strictly increasing on (0, ζp). It follows from part

v of Exercise (2.11), in Chapter V of [4], that {X,Px} is a standard process in the

filtration (Gτt)t≥0. Finally, note that ζc :=
∫ ζp
0
eαξs ds is the lifetime of X. Then

we derive from the identity Ex(
∫ ζc
0

1I{Xt∈dy} dt) = ‖y‖Ex(
∫ ζp
0

1I{Yt∈dy} dt) and the fact

that for all x ∈ H, ‖Yt‖ > 0, Px-a.s., on the set t ∈ [0, ζp) > 0, that ν ◦ φ−1δ is also
reference measure for {X,Px}.

Now we check the scaling property as follows. Let a > 0, then for t < aα
∫ ζp
0
eαξs ds,

τa−αt = inf{s :

∫ s

0

eα(ln a+ξv) dv > t} .

Let us set ξ
(a)
t = ln a+ ξt, then with obvious notation, τa−αt = τ

(a)
t and

Xa−αt = a−1θ
τ
(a)
t

exp(ξ
(a)

τ
(a)
t

) .

But the equality {(θ, ξ(a)), Py,− ln a+z} = {(θ, ξ), Py,z} follows from the definition (2.4)
of MAP’s, so that with x = yez, a−1x = ye− ln a+z, Px = Py,z and Pa−1x = Py,− ln a+z,
we have

{(aXa−αt, t ≥ 0),Pa−1x} = {(Xt, t ≥ 0),Px} .
Conversely, let {X,Px} be a ssMp with index α. Then we prove that the process
{(θ, ξ), Py,z} of the statement is a standard process which admits a reference measure
through the same arguments as in the direct part of the proof. We only have to
check that this process is a MAP. Let (Ft)t≥0 be the filtration of the probability

space on which {X,Px} is defined. Define At as in the statement if t <
∫ ζc
0

ds
‖Xs‖α ,

set At = ∞, if t ≥
∫ ζc
0

ds
‖Xs‖α and note that for each t, At is a stopping time of

(Ft)t≥0.Then let us prove that {(θ, ξ), Py,z} is a MAP in the filtration Gt := FAt .
We denote the usual shift operator by St and note that for all s, t ≥ 0,

At+s = At + SAt(As) .

Set ζp =
∫ ζc
0

ds
‖Xs‖α . Then from the strong Markov property of {X,Px} applied at the

stopping time At, we obtain from the definition of {(θ, ξ), Py,z} in the statement,
that for any positive, Borel function f ,

E x
‖x‖ ,log ‖x‖(f(θt+s, ξt+s − ξt), t+ s < ζp | Gt)

= Ex
(
f

(
SAt

(
XAs

‖X‖As

)
, log

SAt(‖X‖As)
‖X‖At

)
, At + SAt(As) < ζc | Gt

)
= EXAt

(
f

(
XAs

‖X‖As
, log
‖X‖As
z

)
, As < ζc

)
z=‖X‖At

1I{At<ζc}

= E XAt
‖X‖At

(
f

(
XAs

‖X‖As
, log ‖X‖As

)
, As < ζc

)
1I{At<ζc}

= Eθt,0(f(θt+s, ξt+s − ξt), t+ s < ζp)1I{t<ζp} ,
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where the third equality follows from the self-similarity property of {X,Px}. We
have obtained (2.4) and the theorem is proved. �

This theorem provides a one-to-one correspondence between ssMp’s with index α ≥ 0
and MAP’s, in the general setting of standard processes which have a reference mea-
sure. We emphasize that {X,Px} and {(θ, ξ), Py,z} can have very broad behaviours
at their lifetimes. For instance, {X,Px} can have a finite lifetime ζc, but may or may

not have a left limit at ζc. Besides whether or not ζc is finite, either
∫ ζc
0

ds
‖Xs‖α =∞

and {(θ, ξ), Py,z} has infinite lifetime or
∫ ζc
0

ds
‖Xs‖α < ∞ and {(θ, ξ), Py,z} has finite

lifetime ζp =
∫ ζc
0

ds
‖Xs‖α and may or may not have a left limit at ζp. However, in

all commonly studied cases, the processes {X,Px} and {(θ, ξ), Py,z} admit almost
surely a left limit at their lifetime.

For instance, if d = 1 and S = {1}, then it follows from (2.4) that ξ is a pos-
sibly killed real Lévy process. Hence our result implies Theorem 4.1 of Lamperti
[20], who proved that all positive self-similar Markov processes can be obtained as
exponentials of time changed Lévy process. In this case, in order to describe the
behaviour of {X,Px} at its lifetime, it suffices to note from general properties of

Lévy processes that
∫ ζp
0

exp(αξs) ds =∞ if and only if ξ is an unkilled Lévy process
such that lim sup ξt =∞, almost surely.

More generally, whenever S is a finite set, for all z, {θ, Py,z} is a possibly absorbed
continuous time Markov chain. As we have already observed, the law of this Markov
chain does not depend on z. Then it is plain from the definition that between two
successive jump times of θ, the process ξ behaves like a Lévy process. Therefore, if
n = card(S), then the law of {(θ, ξ), Py,z} is characterized by the intensity matrix
Q = (qij)i,j∈S of θ, n non killed Lévy processes ξ(1), . . . , ξ(n), and the real valued
random variables ∆ij, such that ∆ii = 0 and where, for i 6= j, ∆ij represents the
size of the jump of ξ when θ jumps from i to j. More specifically, the law of
{(θ, ξ), Py,z} is given by

(2.5) Ei,0(e
uξt , θt = j) = (eA(u)t)i,j , i, j ∈ S , u ∈ iR ,

where A(u) is the matrix,

A(u) = diag(ψ1(u), . . . , ψn(u)) + (qijGi,j(u))i,j∈S ,

ψ1, . . . , ψn are the characteristic exponents of the Lévy processes ξ(i), i = 1, . . . , n,

that is E(euξ
(i)
1 ) = eψi(u), and Gi,j(u) = E(exp(u∆i,j). We refer to Sections A.1 and

A.2 of [11] for more details. We emphasize that when d = 1, any R \ {0}-valued
ssMp absorbed at 0 is represented by such a MAP. The case where the intensity
matrix Q is irreducible has been intensively studied in [7], [18] and [11].

We end this section with an application of Theorem 1 to a construction of ssMp’s
which are not killed when they hit 0. Let {X,Px} be an Rd-valued Markov process
satisfying the scaling property (2.2) with α > 0, and assume that it has an infinite
lifetime.This means in particular that {X,Px} can possibly hit 0 without being
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absorbed, like real Brownian motion for instance. Then consider the trivial real
valued ssMp {Y,Py}, whose law is defined by Ey(f(Yt)) = f(sgn(y)(|y|α + t)1/α),
for y ∈ R \ {0}. The process {(X, Y ),Px ⊗ Py} is clearly an Rd+1-valued ssMp
which never hits 0. Hence, from Theorem 1, it admits a representation from a MAP

{(θ, ξ), Py,z} in Sd × R, such that
∫ ζp
0
eαξs ds = ∞, Py,z-a.s. for all y, z. Therefore,

the process {X,Px} can be represented as a functional of this MAP for all t ∈ [0,∞)
and since Y is deterministic, this MAP is itself a functional of {X,Px}.

Corollary 1. Let {X,Px} be an Rd-valued Markov process satisfying the scaling
property (2.2) with α > 0 and assume that its lifetime is infinite Px-a.s. for all
x ∈ Rd. Then the process ξt = log(‖X‖2At + A

2/α
t )1/2 and θt =

(XAt ,A
1/α
t )

(‖X‖2At+A
2/α
t )1/2

, if t <
∫∞
0

ds
(‖X‖2s+s2/α)1/2

,

(ξt, θt) = δ , if t ≥
∫∞
0

ds
(‖X‖2s+s2/α)1/2

,

where δ is an extra state and At = inf{s :
∫ s
0

du
(‖X‖2u+u2/α)α/2

> t}, is a MAP in Sd×R,

with lifetime ζp, such that
∫ ζp
0
eαξs ds =∞, Py,z-a.s. for all y, z.

Besides, the process {X,Px} can be represented as follows:

Xt = θ̄τte
ξτt , t ≥ 0 ,

where τt = inf{s :
∫ s
0
eαξu du > t}, θ̄ = (θ(1), . . . , θ(d)) and θ(i) is the i-th coordinate

of θ.

3. Inversion and duality of ssMp’s

Recall that two E-valued Markov processes absorbed at δ with respective semi-

groups (Pt)t≥0 and (P̂t)t≥0 are in weak duality with respect to some σ-finite measure
m(dx) if for all positive measurable functions f and g,

(3.6)

∫
E

g(x)Ptf(x)m(dx) =

∫
E

f(x)P̂tg(x)m(dx) .

Duality holds when moreover, Pt and P̂t are absolutely continuous with respect to
m(dx). However, we will make an abuse of language by simply saying that they are
in duality, whenever they are in weak duality. With the convention that all mea-
surable functions on E vanish at the isolated point δ, duality is sometimes defined

by
∫
E∪{δ} g(x)Ptf(x)m(dx) =

∫
E∪{δ} f(x)P̂tg(x)m(dx), which is equivalent to (3.6).

We refer to Chapter 13 in [9] where duality of standard processes is fully described.

For a MAP {(θ, ξ), Py,z}, we denote by {(θ,−ξ), Py,−z} the process with life-
time ζp, obtained from {(θ, ξ), Py,z} simply by replacing ξ by its opposite. Then
{(θ,−ξ), Py,−z} is clearly a standard process, with an obvious reference measure,
which satisfies (2.4). Hence, {(θ,−ξ), Py,−z} is a MAP. In this section, we will fo-
cus on MAP’s {(θ, ξ), Py,z} such that {(θ, ξ), Py,z} and {(θ,−ξ), Py,−z} are in weak
duality with respect to the measure π(ds)dx on S ×R, where π(ds) is some σ-finite
measure on S and dx is the Lebesgue measure on R. We will need on the following
characterisation of this duality.
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Lemma 1. The MAP’s {(θ, ξ), Py,z} and {(θ,−ξ), Py,−z} are in duality with respect
to the measure π(ds)dx if and only if the following identity between measures

(3.7) Py,0(θt ∈ dy1, ξt ∈ dz) π(dy) = Py1,0(θt ∈ dy, ξt ∈ dz) π(dy1) ,

holds on S × R× S.
We call (3.7) the reversibility property of the MAP {(θ, ξ), Py,z}, or equivalently

we will say that {(θ, ξ), Py,z} is reversible (with respect to the measure π(ds)dx).

Proof. We can write for all nonnegative Borel functions f and g on (S × R) ∪ {δ}
which vanish at δ,∫

S×R
f(y, z)Ey,z(g(θt, ξt))π(dy)dz

=

∫
S

Ey,0

(∫
R
f(y, z)g(θt, ξt + z) dz, t < ζp

)
π(dy)

=

∫
S

∫
R
Ey,0 (f(y, z1 − ξt)g(θt, z1), t < ζp) π(dy) dz1

=

∫
S2

∫
R2

f(y, z1 − u)g(y1, z1)Py,0(θt ∈ dy1, ξt ∈ du) π(dy) dz1

=

∫
S2

∫
R2

f(y, z1 − u)g(y1, z1)Py1,0(θt ∈ dy, ξt ∈ du)π(dy1) dz1

=

∫
S×R

g(y1, z1)Ey1,−z1(f(θt,−ξt))π(dy1)dz1 ,

where the first identity follows from the definition of MAP’s, the second one is ob-
tained from a change of variables and the fourth identity is due to (3.7). Then com-
paring the first and the last term of the above identities, we obtain duality between
{(θ, ξ), Py,z} and {(θ,−ξ), Py,−z} with respect to the measure π(dy)dz. Conversely,
we prove that the latter duality implies (3.7) from the same computation. �

By integrating (3.7) over the variable z, it appears from Lemma 1 that if a MAP
{(θ, ξ), Py,z} is reversible with respect to the measure π(ds)dx, then the Markov
process {θ, Py,z} is in duality with itself with respect to π(ds), which is also some-
times called the reversibility property of {θ, Py,z} and justifies our terminology for
{(θ, ξ), Py,z} .

In the next proposition, we give sufficient conditions for a MAP to be reversible.
As will be seen later on, each case corresponds to a well known class of ssMp’s via
the representation of Theorem 1.

Proposition 1. In each of the following three cases, the reversibility condition (3.7)
is satisfied.

1. Assume that S is finite. Then the MAP {(θ, ξ), Py,z} is reversible if and only
if {θ, Py,z} is in duality with itself with respect to some measure (πi, i ∈ S)

and the random variables ∆ij introduced in (2.5) are such that ∆ij
(d)
= ∆ji,

for all i, j ∈ S.
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2. The transition probabilities of the MAP {(θ, ξ), Py,z} have the following par-
ticular form:

(3.8)

{
Py,z(θt ∈ dy1, ξt ∈ dz1) = e−λtP ξ′

y (θ′t ∈ dy1)P θ′
z (ξ′t ∈ dz1) ,

Py,z((θt, ξt) = δ) = 1− e−λt ,

for all t ≥ 0, (y, z), (y1, z1) ∈ S×H, where λ > 0 is some constant, {ξ′, P ξ′
z }

is any non killed real Lévy process and {θ′, P θ′
y } is any Markov process on S

with infinite lifetime. Moreover, {θ′, P θ′
y } is in duality with itself with respect

to some σ-finite measure π(ds).
3. S = Sd−1 and for any orthogonal transformation T of Sd−1,{(θ, ξ), Py,z} =
{(T (θ), ξ), PT−1(y),z}, for all (y, z) ∈ Sd−1 × R. In this case, π(ds) is the
Lebesgue measure on Sd−1. (When d = 1, the Lebesgue measure on Sd−1 is
to be understood as the discrete symmetric measure on {−1,+1}.)

Proof. 1. Recall the notation of Section 2. Then duality with itself of {θ, Py,z} with
respect to some measure (πi, i ∈ S) (i.e. reversibility) is equivalent to πiqij = πjqji,

for all i, j ∈ S. Since ∆ij
(d)
= ∆ji, we have πiG(u)ij = πjG(u)ji, which implies

(3.9) πiEi,0(e
uξt , θt = j) = πjEj,0(e

uξt , θt = i) ,

and proves that {(θ, ξ), Py,z} is reversible with respect to (πi, i ∈ S). Conversely,
(3.9) with u = 0 implies that {θ, Py,z} is reversible with respect to (πi, i ∈ S) and

furthermore that ∆ij
(d)
= ∆ji, for all i, j ∈ S.

2. We easily check that the law defined in (3.8) is that of a MAP. Then (3.7)
follows directly from the particular form of this law.

3. Then we prove the result in the isotropic case. Let us denote by O(d) the
orthogonal group and by H(dt) the Haar measure on this group. It is known that
since O(d) acts transitively on the sphere Sd−1, then for any y1 ∈ Sd−1 and any
positive Borel function f , defined on Sd−1,

(3.10)

∫
O(d)

f(hy1)H(dh) =

∫
Sd−1

f(y) dy .

Let g be another positive Borel function defined on Sd−1 and λ ∈ R. Assume
moreover that f(δ) = g(δ) = 0, then from the assumption and (3.10), for any
y1 ∈ Sd−1,∫

Sd−1

g(y)Ey,0(e
iλξtf(θt))dy =

∫
O(d)

g(hy1)Ehy1,0(e
iλξtf(θt))H(dh)

=

∫
O(d)

g(hy1)Ey1,0(e
iλξtf(h−1θt), t < ζp)H(dh)

= Ey1,0

(
eiλξt

∫
O(d)

g(hy1)f(h−1θt)H(dh), t < ζp

)
.
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Let h′ ∈ O(d) such that y1 = h′θt and make the change of variables h′′ = hh′, then
since H(dh) is the Haar measure, we have

Ey1,0

(
eiλξt

∫
O(d)

g(hy1)f(h−1θt)H(dh), t < ζp

)
= Ey1,0

(
eiλξt

∫
O(d)

g(hh′θt)f(h−1h′−1y1)H(dh), t < ζp

)
= Ey1,0

(
eiλξt

∫
O(d)

g(h′′θt)f(h′′−1y1)H(dh′′), t < ζp

)
=

∫
Sd−1

f(y)Ey,0(e
iλξtg(θt))dy ,

where we have used the assumption and (3.10) again in the last equality. Then
comparing the first and the last term in the above equalities gives (3.7). �

Examples given in this proposition lead to the definition of two important classes of
ssMp’s: those who satisfy the skew product property and those who are isotropic.

Definition 1. Let {(θ, ξ), Py,z} and {X,Px} be respectively a MAP and a ssMp
which are related to each other through the representation of Theorem 1.

Then we say that {(θ, ξ), Py,z} and {X,Px} satisfy the skew product property if
the transition probabilities of the MAP {(θ, ξ), Py,z} have the form (3.8). (Note that
according to this definition, the process {θ′, P θ′

y } involved in Proposition 1 is not
necessarily in duality with itself.)

We say that {(θ, ξ), Py,z} and {X,Px} are isotropic if the MAP {(θ, ξ), Py,z} sat-
isfies conditions of part 3 of Proposition 1.

Note that this common definition of isotropy for {(θ, ξ), Py,z} and {X,Px} relies on

the fact that for any orthogonal transformation T of Sd−1, (θt, ξt)t≥0
(d)
= (T (θt), ξt)t≥0,

under Py,z, for all (y, z) ∈ Sd−1 × R if and only if (Xt)t≥0
(d)
= (T (X)t)t≥0 under Px,

for all x ∈ Rd \ {0}. Let us also stress the following facts.

Remark 3. If {X,Px} is isotropic, then its norm is a positive ssMp. Hence from
the Lamperti representation of ‖X‖, the process ξ appearing in the representation
of {X,Px}, given in Theorem 1 is a possibly killed Lévy process. This fact can also
be derived directly from the identity {(θ, ξ), Py,z} = {(T (θ), ξ), PT−1(y),z}, where T is
any transformation of O(d) and Remark 2.

Remark 4. From an obvious extension of part 3 of Proposition 1, if there exists a
one-to-one measurable transformation ϕ : S → S such that the MAP {(ϕ(θ), ξ), Py,z}
is isotropic, then the MAP {(θ, ξ), Py,z} is reversible with respect to the measure
dϕ−1(s)dx, where dϕ−1(s) is the image by ϕ of the Lebesgue measure on Sd−1.

Remark 5. Lemma 1 provides a very simple means to construct a non reversible
MAP. Indeed, it suffices to consider a non reversible continuous time Markov chain
with values in a finite set of Sd−1 and to couple it with any independent Lévy process,
in the same way as in (3.8).
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Before stating the main result of this section, we need the following definitions.
Let π(dy) be any σ-finite measure on S, then we define the measure Λπ(dx) on H as
the image of the measure π(dy)dz by the function φ defined in (2.3). Now let {θ, ξ}
be a MAP which is reversible with respect to the measure π(dy)dz. As already
seen in the proof of Theorem 1, with the probability measures Px = Px/‖x‖,log ‖x‖, for
x ∈ H and P0 = Pδ, the process {Y,Px}, where Yt = θte

ξt , is an H-valued Markov
process absorbed at 0. Then following [23], see also p.240 in [24], for α > 0, we

define the measure ναπ associated to the additive functional t 7→ At :=
∫ t
0
‖Ys‖α ds

of {Y,Px} by ∫
H

f(x)ναπ (dx) = lim
t↓0

∫
H

Ex
(
t−1
∫ t

0

f(Ys)dAs

)
Λπ(dx) ,

where f is any positive Borel function, that is

(3.11) ναπ (dx) = ‖x‖αΛπ(dx) .

In the special case where π(dy) is absolutely continuous with density π(y), the
measure ναπ can be explicited as

(3.12) ναπ (dx) = π(x/‖x‖)‖x‖α−d dx .

Theorem 2. Let {X,Px} be a ssMp with values in H, with index α ≥ 0 and lifetime
ζc, and let {(θ, ξ), Py,z} be the MAP which is associated to {X,Px} through the
transformation of Theorem 1. Define the process

(3.13) X̂t =

{
Xγt
‖X‖2γt

, if t <
∫ ζc
0

ds
‖Xs‖2α ,

0 , if t ≥
∫ ζc
0

ds
‖Xs‖2α ,

where γt is the time change γt = inf
{
s :
∫ s
0
‖X‖−2αu du > t

}
, for t <

∫ ζc
0

ds
‖Xs‖2α .

Define also the probability measures P̂x := Px/‖x‖2, for x ∈ H and P̂0 := P0. Then

the process {X̂, P̂x} is a ssMp with values in H, with index α and lifetime
∫ ζc
0

ds
‖Xs‖2α .

The MAP which is associated to {X̂, P̂x} through the transformation of Theorem 1

is {(θ,−ξ), Py,−z}. Moreover, {X,Px} and {X̂, P̂x} are in duality with respect to the
measure ναπ (dx) defined in (3.11) if and only if the MAP {(θ, ξ), Py,z} is reversible
with respect to the measure π(ds)dx.

Proof. Recall the definition of the MAP {(θ,−ξ), Py,−z} given before Lemma 1.

Then let us define {Ŷ , P̂x}, where P̂x is as in the statement and Ŷt := θte
−ξt , if

t < ζp and Ŷt = 0, if t ≥ ζp. From the same arguments as those developed at the

beginning of the proof of Theorem 1, we obtain that {Ŷ , P̂x} is a standard Markov
process, which possesses a reference measure. Now set τ̂t = inf{s :

∫ s
0
e−αξu du > t}

and define {
Zt = θτ̂te

−ξτ̂t , if t <
∫ ζp
0
e−αξu du ,

Zt = 0 , if t ≥
∫ ζp
0
e−αξu du .

Since the process {Z, P̂x} is constructed from the MAP {(θ,−ξ), Py,−z} through
the transformation of Theorem 1, we derive from this theorem that it is a ssMp
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with index α, absorbed at 0. Moreover, it is clearly H-valued. Now let us check

that for t <
∫ ζp
0
e−αξu du, Zt =

Xγt
‖X‖2γt

. First note that from a change of vari-

ables,
∫ s
0

exp(−2αξτu) du =
∫ τs
0

exp(−αξu) du, so that with ζc =
∫ ζp
0

exp(αξu) du,

we obtain
∫ ζc
0

ds
‖Xs‖2α =

∫ ζp
0
e−αξu du. Besides it follows from the definitions that for

t <
∫ ζp
0
e−αξu du,

γt = inf{s,
∫ s

0

exp(−2αξτu) du > t} = inf{s,
∫ τs

0

exp(−αξu) du > t}

= τ−1(τ̂t) ,

where τ−1 is the right continuous inverse of τ . Therefore,

Xγt

‖X‖2γt
= θτ(γt)e

−ξτ(γt)

= θτ̂te
−ξτ̂t .

Then assume that the MAP {(θ, ξ), Py,z} is reversible with respect to the measure
π(ds)dx. Recall from the proof of Theorem 1, the definition of the standard process
{Y,Px} which is constructed from the MAP {(θ, ξ), Py,z}. From the assumption,

{Y,Px} and {Ŷ , P̂x} are in duality with respect to the measure Λπ(dx). Indeed, we
derive from obvious changes of variables and the definition of Λπ(dx) that for any
positive Borel functions f and g,∫

S×R
f(yez)Ey,z(g(θte

ξt))π(dy) dz =

∫
H

f(x)Ex(g(Yt)) Λπ(dx) ,

and ∫
S×R

g(yez)Ey,−z(f(θte
−ξt))π(dy) dz =

∫
H

g(x)Êx(f(Ŷt))Λπ(dx) .

Since {(θ, ξ), Py,z} is reversible, from Lemma 1 the MAP’s {(θ, ξ), Py,z} and {(θ,−ξ), Py,−z}
are in duality with respect to the measure π(dy) dz and we derive from the above
identities that ∫

H

f(x)Ex(g(Yt)) Λπ(dx) =

∫
H

g(x)Êx(f(Ŷt))Λπ(dx) ,

which proves the duality between {Y,Px} and {Ŷ , P̂x}, with respect to the measure
Λπ(dx). Then from this duality and Theorem 4.5, p. 241 in [24], we deduce that

{X,Px} and {X̂, P̂x} are Markov processes which are in duality with respect to the
measure ναπ (dx) = ‖x‖αΛπ(dx).

Conversely if {X,Px} and {X̂, P̂x} are in duality with respect to the measure

ναπ (dx), then Theorem 4.5, p. 241 in [24] can be applied to {X,Px} and {X̂, P̂x}
and to the additive functionals t 7→

∫ t
0

ds
‖Xs‖α and t 7→

∫ t
0

ds

‖X̂s‖α
which are strictly

increasing, on [0, ζc) and [0, ζ̂c), respectively, where ζ̂c =
∫ ζc
0

ds
‖Xs‖2α is the lifetime of

X̂. Then by reading the above arguments in reverse order, we prove that the MAP
{(θ, ξ), Py,z} is reversible with respect to the measure π(ds)dx. �
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Remark 6. It readily follows from the previous proof that the transformation of
Theorem 2 is invertible, namely, with obvious notation:

Xt =


X̂γ̂t
‖X̂‖2γ̂t

, if t <
∫ ζ̂c
0

ds

‖X̂s‖2α
,

0 , if t ≥
∫ ζ̂c
0

ds

‖X̂s‖2α
.

Remark 7. In the case where {X,Px} is a positive ssMp (i.e. d = 1 and S = {1}),
the fact that {X,Px} is in duality with respect to the positive ssMp associated with
the Lévy process −ξ, in the Lamperti representation, was proved in [3]. It is clear
that any positive ssMp satisfies the skew product property according to Definition 1,
so in this case the result follows from Proposition 1 and Theorem 2.

Remark 8. From Proposition 1, Theorem 2 also applies when {X,Px} is an isotropic
ssMp. The existence of a dual process with respect to the measure ‖x‖α−d dx in the
isotropic case was already obtained in [14], where the proof relies on the wrong ob-
servation that isotropic ssMp’s also satisfies the skew product property. In [21] the
authors proved that actually if {(θ, ξ), Py,z} is isotropic then θ and ξ are independent
(i.e. {(θ, ξ), Py,z} satisfies the skew product property) if and only if the processes (ξτt)
and (θt) do not jump together, Py,z-a.s. for all y, z. As noticed in [21], it is not the
case of isotropic stable Lévy processes which will be studied in Section 4.

Duality of ssMp’s with themselves is also an interesting property and jointly with
the duality of Theorem 2 it allows us to obtain excessive functions, as shown in the
next section. The next proposition which will be useful later on, asserts that this
self duality holds if and only if the same property holds for the underlying MAP.

Proposition 2. Let {X,Px} and {(θ, ξ), Py,z} be as in Theorem 1. Then the ssMp
{X,Px} is in duality with itself with respect to some measure M(dx) on H if and only
if the MAP {(θ, ξ), Py,z} is in duality with itself with respect to the image η(dy, dz)
on S × R of the measure ‖x‖−αM(dx) through the function φ−1, where φ is defined
in (2.3).

In particular, if M(dx) has a density which can be splitted as the product of an
angular and a radial part, that is

M(dx) = π(x/‖x‖)r(‖x‖) dx ,
where π and r are nonnegative Borel functions which are respectively defined on S
and R+, then the measure η on S × R has the following form,

η(dy, dz) = π(y)e(d−α)zr(ez) dydz .

If moreover the MAP {(θ, ξ), Py,z} satisfies the skew product property, then the
Markov process, {θ, Py,z} on S is in duality with itself with respect to the measure
π(y) dy on S.

Proof. Recall the notation of the proof of Theorem 2. Then for any positive Borel
functions f and g, we have∫

H

f(x)Ex(g(Xt))M(dx) =

∫
H

g(x)Ex(f(Xt))M(dx) .
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Applying Theorem 4.5, p. 241 in [24], we obtain that∫
H

f(x)Ex(g(Yt)) ‖x‖−αM(dx) =

∫
H

g(x)Ex(f(Yt))‖x‖−αM(dx) ,

which gives from a change of variables,∫
S×R

g(yez)Ey,z(f(θte
ξt)) η(dy, dz) =

∫
S×R

f(yez)Ey,z(g(θte
ξt)) η(dy, dz).

The other assertions are straightforward. �

4. Inversion and Doob h-transforms for ssMp’s

We begin this section with a simple observation on the relationship between du-
ality and Doob h-transform of Markov processes.

Lemma 2. Let (P
(1)
t ), (P

(2)
t ) and (P

(3)
t ) be the semigroups of three H-valued Markov

processes absorbed at 0. Assume that (P
(1)
t ) and (P

(2)
t ) are in weak duality with

respect to h1(x) dx and that (P
(1)
t ) and (P

(3)
t ) are in weak duality with respect to

h2(x) dx, where h1 and h2 are positive and continuous functions. Assume moreover

that P
(2)
t and P

(3)
t are Feller semigroups on H.

Then h := h1/h2 is excessive for (P
(3)
t ) and the Markov process with semigroup

(P
(2)
t ) is an h-process of the Markov process with semigroup (P

(3)
t ), with respect to

the function h, that is

(4.14) P
(2)
t g(x) =

1

h(x)
P

(3)
t (hg)(x) ,

for all t ≥ 0, x ∈ H and all positive Borel functions g.

Conversely, if (4.14) holds and if (P
(1)
t ) and (P

(2)
t ) are in weak duality with respect

to h1(x) dx, then (P
(1)
t ) and (P

(3)
t ) are in weak duality with respect to h2(x) dx.

Proof. From the assumption, for all positive Borel functions f and g,∫
H

P
(1)
t f(x)g(x)h1(x)dx =

∫
H

f(x)P
(2)
t g(x)h1(x)dx ,(4.15) ∫

H

P
(1)
t f(x)g(x)h2(x)dx =

∫
H

f(x)P
(3)
t g(x)h2(x)dx .

Replacing g by h1
h2
g in both members of the second equality gives for all f ,

(4.16)

∫
H

P
(1)
t f(x)g(x)h1(x)dx =

∫
H

f(x)
h2
h1

(x)P
(3)
t

h1
h2
g(x)h1(x)dx .

Identifying the second members of (4.15) and (4.16), yields (4.14) in the case where
g and h1

h2
g are bounded and continuous, thanks to the Feller property. Then we

extend (4.14) to all positive Borel functions from classical arguments.
The converse is proved in the same way. �

Then as an application of this lemma and Theorem 2 we can recover the results
recalled in the introduction, that is Theorem 1 in [5] and Theorem 4 in [19].
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Corollary 2. Let {X,Px} be a d-dimensional stable Lévy process, with index α ∈
(0, 2], which is absorbed at its first hitting time of 0 (absorbtion actually holds with
probability 1 if d = 1 and α > 1, and with probability 0 in the other cases). Recall

the definition of the process {X̂, P̂x}, from Theorem 2.

1. If d = 1 and if {X,Px} is not spectrally one sided, then the process {X̂, P̂x} is
an h-process of {−X,P−x} with respect to the function x 7→ π(x/|x|)|x|α−1,
where (π(−1), π(+1)) is the invariant measure of the first coordinate of the
MAP associated to {X,Px}.

2. If d > 1 and {X,Px} is isotropic, then the process {X̂, P̂x} is an h-process
of (X,Px) with respect to the function x 7→ ‖x‖α−d.

Proof. When d = 1 and {X,Px} is not spectrally one sided, we derive from Corollary
11, Section 4.1 in [7], that the MAP associated to the stable Lévy process {X,Px}
satisfies ∆ij

(d)
= ∆ji, i, j ∈ {−1,+1}, with the notation introduced in (2.5). Moreover,

since the continuous time Markov chain {θ, Py,z} is irreducible and takes only two
values, it is reversible with respect to some measure (π(−1), π(+1)). Then we derive
from part 1. of Proposition 1 that the MAP {(θ, ξ), Py,z} is reversible. Hence we

can apply Theorem 2 which ensures that {X,Px} and {X̂, P̂x} are in duality with
respect to the function x 7→ π(x/|x|)|x|α−1.

If d ≥ 1 and the process is isotropic, then again we derive from Proposition 1 and

Theorem 2 that {X,Px} and {X̂, P̂x} are in duality with respect to the function
x 7→ ‖x‖α−d.

Finally it is well known that stable Lévy processes satisfy the Feller property.
Then from the path construction in Theorem 2 and homogeneity of the increments

of {X,Px}, we derive that the process {X̂, P̂x} is itself a Feller process on Rd \ {0}.
Moreover it is well known that {X,Px} and {−X,P−x} are in duality with respect
to the Lebesgue measure (when d = 1 and α > 1, this duality is inherited from
the duality between the non absorbed Lévy processes with respect to the Lebesgue
measure on R). It remains to apply Lemma 2 in order to conclude in both cases
d = 1 and d > 1. �

Note that in the case d = 1, the probability measure (π(−1), π(+1)) has been made
explicit in Corollary 11 of [7] and in Theorem 4 of [19]. Besides, the h-process in-
volved in part 1 of Corollary 2 has been extensively investigated in [26] and [22],
where for α > 1, it is identified as the real Lévy process {−X,P−x} conditioned to
avoid 0.

Theorem 2 and Lemma 2 can be applied in the same way as in Corollary 2,

to any reversible ssMp {X,Px} provided {X̂, P̂x} has the Feller property on H and
(X,Px) is in duality with some other Feller process on H. Let us give three examples.

A. Conditioned Lévy processes: Let {X,Px} be a one dimensional stable Lévy
process, with index α ∈ (0, 2) and let us denote by X0 the process X which is
absorbed at 0 when it first hits the negative halfline, that is

X0
t = Xt1I{t<τ−} , t ≥ 0 ,
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where τ− = inf{t : Xt < 0}. It is well known, see [6] and the references therein, that
the functions h1(x) = xα(1−ρ) and h2(x) = xα(1−ρ)−1, where ρ = P0(X1 > 0), are
respectively invariant and excessive for the process (X0,Px). We denote the Doob
h-transforms of (X0,Px) associated to h1 and h2, respectively by

{X↑,P↑x} and {X↘,P↘x } .

The process {X↑,P↑x} is known as the Lévy process {X,Px} conditioned to stay
positive. It is a positive ssMp with index α, which satisfies limt→∞Xt = +∞, Px-
a.s., for all x > 0. In particular this process never hits 0. In the case of Brownian
motion, that is for α = 2, it corresponds to the three dimensional Bessel process. The
process {X↘,P↘x } is called the process {X,Px} conditioned to hit 0 continuously.
It is also a positive ssMp with index α. Its absorbtion time ζc is finite and satisfies
Xζc− = 0, P↘x -a.s. for all x > 0. Note that in the present case, H = (0,∞).

Then let us set Y := −X and denote by Px, x ∈ R, the family of probability
measures associated to Y . We denote by {Y ↑,P↑x} and {Y ↘,P↘x } the process {Y,Px}
conditioned to stay positive and conditioned to hit 0 continuously, respectively.
Since {Y,Px} is a stable Lévy process, these processes enjoy the same properties as
{X↑,P↑x} and {X↘,P↘x }.

The process {X,Px} conditioned to stay positive is related to the process {Y,Px}
conditioned to hit 0 continuously as follows.

Corollary 3. The process {X↑,P↑x} can by obtained from the paths of the process
{Y ↘,P↘x }, through the following transformation:

{X↑,P↑x} = {(1/Y ↘γt )t≥0,P
↘
1/x} ,

where the time change γt is defined by

γt = inf

{
s :

∫ s

0

du

(Y ↘u )2α
> t

}
, t ≥ 0 .

Proof. As a positive ssMp, the process {Y ↘,P↘x } satisfies the skew product property.

Therefore it is reversible and from Theorem 2, {Y ↘,P↘x } and {(1/Y ↘γt )t≥0,P
↘
1/x} are

in duality with respect to the measure xα−1 dx. Moreover, {Y ↘,P↘x } and {X↑,P↑x}
are also in duality with respect to the measure xα−1 dx. Indeed, let us denote
by Y 0 the process Y absorbed at 0 when it first hits the negative halfline. Then
{X0,Px} and {Y 0,Px} are in duality with respect to the Lebesgue measure on (0,∞)
(this duality is inherited from the duality between the Lévy processes {X,Px} and
{Y,Px} with respect to the Lebesgue measure on R). Therefore, for any positive
Borel functions f and g,∫ ∞

0

g(x)E↘x (f(Y ↘t ))xα−1 dx =

∫ ∞
0

g(x)Ex(Y
αρ−1
t f(Yt), t < τ−Y )xα(1−ρ) dx

=

∫ ∞
0

f(x)Ex(Xα(1−ρ)
t g(Xt), t < τ−)xαρ−1 dx

=

∫ ∞
0

f(x)E↑x(g(X↑t ))xα−1 dx ,
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where τ−Y = inf{t : Yt < 0} in right hand side of the above equality.

Then as positive ssMp’s, {X↑,P↑x} and {(1/Y ↘γt )t≥0,P
↘
1/x} satisfy the Feller prop-

erty on (0,∞), see Theorem 2.1 in [20]. Therefore applying Lemma 2, we conclude

that {X↑,P↑x} is an h process of the process {(1/Y ↘γt )t≥0,P
↘
1/x} with respect to the

function which is identically equal to 1, so that both processes are equal. �

It is straightforward that the same relationship exists between the processes {Y ↑,P↑x}
and {X↘,P↘x }. Let us also note that when α > 1 and {X,Px} has no positive
jumps, then {Y ↘,P↘x } = {Y 0,Px}. Therefore Corollary 3 and its proof allow us
to complete part 1 of Corollary 2, where completely asymmetric Lévy processes are

excluded, by stating that {X̂, P̂x} is an h-process of {−X,P−x} with respect to the

function x 7→ xα−1. We emphasize that here we consider {X̂, P̂x} and {−X,P−x}
as positive ssMp’s, that is H = (0,∞). Then in this case, {X̂, P̂x} corresponds to
the process {−X,P−x} conditioned to stay positive. This remark also allows us to
recover Theorem A.

B. Free d-dimensional Bessel processes: Let X = {(X1(t), X2(t), .., Xd(t)), t ≥
0}, where Xi(t) are independent BES(δ) processes of dimension δ > 0 and let us
consider the H-valued ssMp {X,Px} absorbed at 0, where H = (0,∞)d. It is well
known that for each i = 1, . . . , d, Xi is in duality with itself with respect to its
speed measure mi(dxi) = x1+2ν

i /|ν|dxi when ν 6= 0 and mi(dxi) = xidxi when ν = 0,
where ν = δ

2
− 1. This entails that {X,Px} is in duality with itself, with respect to

the measure D(x) dx, where

(4.17) D(x) =
d∏
i=1

xδ−1i = ||x||dδ−d
d∏
i=1

(
xi
||x||

)δ−1
, x ∈ H .

Let us observe that the process {X,Px} satisfies the skew product property. Indeed
we can argue similarly as for the skew product decomposition of Brownian motion,
see e.g. Chapter 7.15 in [16]. The generator of {X,Px} is equal to L =

∑d
i=1 Lxi ,

where Lxi = 1
2
∂2

∂x2i
+ 1

2
δ−1
xi

∂
∂xi

. Then we compute the spherical decomposition of L.

Set u = u(r, σ), where r = ‖x‖ and σ = x
‖x‖ are the spherical coordinates in Rd

and let ∆σ be the Laplacian on the unit sphere Sd−1. By the well-known formula

∆ = 1
2
∂2

∂r2
+ 1

2
d−1
r

∂
∂r

+ 1
r2

∆σ and by the chain rule, we obtain

Lu =
1

2

∂2u

∂r2
+

1

2

δd− 1

r

∂u

∂r
+

1

r2

[
∆σu+

δ − 1

2
(σ−1 − dσ) · ∇σu

]
,

where (σ−1)i = σ−1i . We notice that Lr := 1
2
∂2u
∂r2

+ 1
2
δd−1
r

∂u
∂r

is the generator of
‖X‖ ∼BES(δd).

We deduce from Propositions 1 and 2 that the free Bessel process {X,Px} is

reversible, with respect to the measure with density π(y) =
∏d

i=1 y
δ−1
i , y ∈ Sd−1∩H.

Indeed, it satisfies the skew product property and it is self dual with respect to the
measure D(x)dx which splits as the product of an angular part and a radial part,
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see (4.17). Therefore Lemma 2 and Theorem 2 can be applied to the free Bessel
process {X,Px} and we obtain the following result.

Corollary 4. Let {X,Px} be a free Bessel process with values in (0,∞)d and ab-

sorbed at 0. Recall the definition of the process {X̂, P̂x}, from Theorem 2. Then the

processes {X,Px} and {X̂, P̂} are in duality with respect to the measure with density

d∏
i=1

(
xi
‖x‖

)δ−1
‖x‖2−d.

Moreover, the process {X̂, P̂x} is a Doob h-transform of {X,Px} with respect to the
excessive function h(x) = ‖x‖2−dδ.

Remark 9. It is easy to check that for x ∈ H one has Lh = 0, i.e. h is L-harmonic
on its domain. However, h is not X-invariant when dδ > 2, i.e. (||Xt||2−dδ, t ≥ 0)
is a strict local martingale. See for instance the discussion on p. 330 of [12].

Remark 10. For δ > 2, we can give the following realization of the MAP corre-
sponding to the free Bessel process {X,Px}. There exists a d-dimensional Brownian
motion (W (1),W (2), · · · ,W (d)) such that

ξt =
d∑
j=1

∫ t

0

θ(j)s dW (j)
s +

(
dδ

2
− 1

)
t

and (θt) satisfies the SDE system

dθ
(i)
t = dW

(i)
t − θ

(i)
t

d∑
j=1

θ
(j)
t dW

(j)
t +

(
δ − 1

2

1

θ
(i)
t

− dδ − 1

2
θ
(i)
t

)
dt, i = 1, 2, . . . , d.

The processes (ξt) and (θt) are independent. The proof of this MAP representation
relies on the SDE representations of the processes Xi(t).

C. Dunkl processes: In what follows, we recall and use some properties of the
Dunkl processes which may be found in Chapters 2 and 3 of [8].

Let R be a finite root system on Rd and let R+ be a positive subsystem of R. Let
also k be a non-negative function on R, called multiplicity function. The generator
of the Dunkl process {X,Px} is Lk := 1

2
∆k where ∆k =

∑d
i=1 T

2
i is the Dunkl

Laplacian and Tif(x) := ∂if(x) +
∑

α∈R+ k(α)αi
f(x)−f(σαx)

α·x , i = 1, 2, · · · , d, are the
Dunkl derivatives.

Here σα are the symmetries with respect to the hyperplanes {α = 0}. Dunkl
processes are ssMp’s with index 2. In Dunkl analysis, an important role is played
by the so-called Dunkl weight function ωk(x) =

∏
α∈R |α · x|k(α) and the constant

γ = γ(k) =
∑

α∈R+ k(α). We see that ωk(x) is homogeneous of order 2γ.
Let us also mention that Dunkl processes have the skew product property: this

fact was proved by Chybiryakov in [8], see Theorem 8, p.156 therein. Besides, the
radial part Rt = ‖Xt‖ is a BES(d+ 2γ) process.
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We also observe that the Dunkl process {X,Px} is self-dual with respect to the
measure M(dx) = ωk(x) dx. This follows from the formula for the Dunkl transition
function, see (23) p.120 in [8],

(4.18) p
(k)
t (x, y) =

1

cktγ+d/2
exp

(
−‖x‖

2 + ‖y‖2

2t

)
Dk

(
x√
t
,
y√
t

)
ωk(y) ,

where Dk is the Dunkl kernel. The only non-symmetric factor in (4.18) is ωk(y);

hence the kernel p
(k)
t (x, y)ωk(x) is symmetric in x and y.

The density of the self-duality measure M factorizes as

ωk(x) = ωk(x/‖x‖)‖x‖2γ.
By Proposition 2, the Dunkl process {X,Px} is reversible with respect to the measure
π(y) = ωk(y), y ∈ Sd−1.

Note that contrary to the case of Brownian motion, the Dunkl process {X,Px}
with k 6= 0 is non-isotropic. Indeed, the process {X,Px} always jumps from a state
y to a symmetric state σα(y). Thus, like free Bessel processes, Dunkl processes are
a class of reversible non-isotropic self-similar processes. Then we derive the next
corollary as a consequence of Theorem 2.

Corollary 5. Let {X,Px} be a Dunkl process in Rd \ {0} and absorbed at 0. Recall

the definition of the process {X̂, P̂x}, from Theorem 2. The processes {X,Px} and

{X̂, P̂x} are in duality with respect to the measure with density

ωk(x/‖x‖)‖x‖2−d.

Moreover, the process {X̂, P̂x} is a Doob h-transform of {X,Px} with respect to the
excessive function h(x) = ‖x‖2−d−2γ.

Remark 11. The function h of Corollary 5 is always Dunkl-harmonic in the sense
that ∆kh = 0. This follows from the form of the Dunkl Laplacian in polar coordi-
nates, see [25]. This is confirmed by the well-known fact that (h(Xt), t ≤ ζc) is a
local martingale which is a true martingale only when d+ 2γ ≤ 2.
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[22] H. Pant́ı: On Lévy processes conditioned to avoid zero. Preprint arXiv:1304.3191, (2013).
[23] D. Revuz: Mesures associées aux fonctionnelles additives de Markov. I. Trans. Amer. Math.

Soc. 148, 501–531, (1970).
[24] J.B. Walsh: Markov processes and their functionals in duality. Z. Wahrscheinlichkeitstheorie

und Verw. Gebiete, 24, 229–246, (1972).



INVERSION, DUALITY AND DOOB h-TRANSFORMS FOR SSMP’S 21

[25] Y. Xu: Approximation by means of h-harmonic polynomials on the unit sphere. Adv. Comput.
Math. 21, no. 1-2, 37–58, (2004).

[26] K. Yano: Excursions away from a regular point for one-dimensional symmetric Lévy processes
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Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland.

E-mail address: tomasz.zak@pwr.edu.pl


