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Variations on chaos in physics: from unpredictabi-
lity to universal laws

Amaury Mouchet

The tremendous popular success of Chaos Theory shares some common points with
the not less fortunate Relativity : they both rely on a misunderstanding. Indeed, iron-
ically, the scientific meaning of these terms for mathematicians and physicists is quite
opposite to the one most people have in mind and are attracted by. One may suspect
that part of the psychological roots of this seductive appeal relies in the fact that with
these ambiguous names, together with some superficial clichés or slogans immediately
related to them (“the butterfly effect” or “everything is relative”), some have the more
or less secret hope to find matter that would undermine two pillars of science, namely
its ability to predict and to bring out a universal objectivity.

As noted by Planck1

As a matter of fact the concept of relativity is based on a more fundamen-
tal absolute than the erroneously assumed absolute which it has supplanted
[2, chap. VI, p. 195].

A position advocated of course by Einstein himself all along his writings, for instance

The belief in an external world independent of the perceiving subject is
the basis of all natural science [3, p. 66].

I will not say much about Relativity and more generally on how the notion of symmetry
reveals the objectivity of the world; this has been the subject of my contribution to the
previous volume of this series [4]. Here I propose to focus on Chaos Theory and illustrate
on several examples how, very much like Relativity, it strengthens the position it seems
to contend with at first sight: the failure of predictability can be overcome and leads to
precise, stable and even more universal predictions.

Far before it became a scientific notion, chaos describes an absence of structure, an
unorganised confusion. It is probably for encapsulating this amorphous state of matter
that the word “gas” was coined, with still an alchemical flavour, from the latin word
“chaos” by the flamish Jan Baptist van Helmont in the middle of the xvii

th Century [6,
pp. 67-69]. The greek word χάoς itself comes from an old Indo-European root ghen or
ghei meaning a lack, a gap or a vacuum. Bearing in mind this meaning, still overspread
in everyday life, talking about a theory, or about laws of chaos seems a self-contradiction
from the very beginning.

Amaury Mouchet
Laboratoire de Mathématiques et de Physique Théorique, Université François Rabelais de Tours
37200 Tours, France

1As soon as 1910, Felix Klein had already wrote that “theory of relativity is the theory of invariants
of the four dimensional space-time domain with respect to a particular group of collineations, more
precisely, to the Lorentz group” [1, § 3.1 p. 70].
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In the first section I will start with a simple example that allows to understand what
is meant by chaotic in the context of dynamical systems. In § 2, I will explain why
chaotic behaviours are met everywhere for any realistic physical systems. Then, before
I conclude with a historical comment on the butterfly effect, in § 3, I will illustrate how,
despite the unpredictability of one individual evolution, we can nevertheless establish
stable probabilistic properties and laws that emerge from a collective behaviour.

1 A simple example of physical chaotic system

Figure 1: The magnetic pendulum is made of a magnet attracted by three other identical
magnets, distinguished by a colour, which are fixed at the vertices of an equilateral
triangle (here, one edge is 6 cm long). The constant length of the thread is chosen in
order to avoid any contact between the magnets during the motion. This photography
shows the stable equilibrium point M3 near the blue magnet.

A usual simple frictionless pendulum (a mass attached to an unstretchable thread)
has a regular motion : the trajectories of small amplitudes follow an ellipse. If we now
take the mass to be a magnet and if, in addition to the gravity field, we create an external
magnetic field with some other fixed magnets, we generically get an irregular motion,
even if the field itself seems to be well-ordered with some symmetrical structures. For
instance, three attractive identical magnets can be placed at the vertices of an equilateral
triangle whose center lies below the vertical position of the pendulum. However, if
the magnets are strong enough, their attraction destabilises the vertical position; in
fact, there are now three stable equilibrium positions M1, M2, M3 inclined towards
each magnet (figure 1). If we let the pendulum evolve away from these equilibrium
positions we observe that the pendulum follows a rather complicated trajectory passing
through the neighbourhood of M1, M2, M3 several times before the friction eventually
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stops it at one of these three points (figure 2). Unless we remain in the immediate

Figure 2: Seen from above are shown the numerical simulation of two trajectories of the
magnetic pendulum: the attractive force between the pendulum and the fixed magnet
separated by distance r is taken to be proportionnal to −~r/r3 (Coulombian-like); in
addition there is the usual linear force due to gravity and directed towards the center of
the triangle (the stable equilibrium point when there is no magnet) and the friction force
is taken to be opposite to the speed). Starting with no initial speed from two close initial
positions on the left, the two trajectories diverge one from each other very quickly (after
a small fraction of second, which is the natural period of the pendulum without magnets)
and end at two different equilibrium positions. The one stopping at M1 (resp. M2) is
represented in red (resp. green) and a red (resp. green) spot indicates its starting point.

vicinity of one of the M ’s, it seems impossible to choose the initial conditions (position
and speed) in order to make the pendulum stop at a position chosen in advance. To
illustrate more quantitatively this difficulty, let us first distinguish the three magnets by
a colour. Then associate one of these colours to each initial position according to the
final position of the pendulum: starting above the point of Cartesian coordinates (x, y)
without initial speed, if the pendulum stops at M1 (respectively M2 or M3) then (x, y)
will be coloured in red (respectively green or blue). Experimentally we can only scan a
coarse-grained grid of possible initial positions (say 10× 10 like in figure 3a) but using a
computer simulation of a more or less realistic model one can get a very high resolution
pattern (figure 3e). Beyond the uniformely coloured areas surrounding M1, M2 and
M3, which reflect the stability of these equilibrium positions, we observe an intricate
fractal-like pattern where all the three colours are intertwined at arbitrarily small scales
(figures 3e-h). An infinitesimal shift from a red initial position may fall in a green area
and this means that the two corresponding trajectories of the pendulum are eventually
separated as far as possible one from the other (final position at M2 instead of M1).
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Figure 3: In a) a grid of 10× 10 possible initial positions is chosen and each of them is
coloured according to the final position the pendulum eventually stops at (red for M1,
green for M2, blue for M3) with the same model as the one used to compute figure 2.
In b), c), d) computations are done for a finer grid (25 × 25, 50 × 50 and 100 × 100).
In e) a 500 × 500 grid is used and the white squares indicate the portion of the picture
that is zoomed on the immediate right. At very smale scales like the one in h) one can
see that the borders always involve the three colours.

This is an illustration of the extreme sensitivity of the dynamics with respect to the
initial conditions, or to any kind of perturbation, and this behaviour characterises what
is called a chaotic system. More precisely, the linearisation ˙δ~r = Aδ~r of a differential
equation in the neighbourhood of a given solution — where A is a matrix independent of
the variation δ~r but generally depends on time t — leads generically to some exponential
behaviour of the shift δ~r(t) ∼ δ~r(0) et/τ where τ is a typical time scale (known as the
Lyapunov time).

Therefore, it is true that predictibility about one individual trajectory fails beyond
durations of order τ : it should require an irrealistic precision on all the experimental
conditions or on all the parameters of the modelisation to predict correctly the final
position of the pendulum for an arbitrary set of initial conditions. This may include the
gravitational perturbation due to the mass of a thundercloud moving above the place
where the pendulum is and, of course, the famous flap of a butterfly wing in Brazil [7].

2 Ubiquity of chaotic behaviour

As we have seen with the magnetic pendulum there is no need to consider a sys-
tem as complex as the Earth atmosphere to deal with a chaotic system (by the way,
Lorenz’climatic model was described by three parameters [9, eqs. (25), (26), (27)]). In
fact chaos is naturally the rule and regular motion is the exception: when dissipation is
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Figure 4: A ball bouncing without friction in a circular 2D-billiard has a regular mo-
tion. The difference between two different trajectories, in blue and green in a) and b),
is proportional to the elapsed time, unlike in chaotic systems where this growth is ex-
ponential. The two constants of motion (energy and angular momentum) impose some
selection rules that prevent most trajectories to explore the central zone of the billiard.
When the rotational symmetry is broken (by a bump for the billiard in the second line
or by stretching the circle into a stadium-shaped billiard in the third line), the number
of constants (only the energy) becomes lower than the number of degrees of freedom
(D=2) and the system becomes chaotic: as seen in c) and g) two trajectories split very
quickly and, as time grows, an individual trajectory explores all the area of the billiard.
From [8, figure 10.7].

negligible, for a system with D degrees of freedom it would require to have D indepen-
dent constants of motion to keep a regular motion (such systems are called integrable
because, unlike what occurs in chaotic systems, in principle the equations of motion can
be solved at least locally in an appropriate coordinate system). This can be understood
because the constants of motion (energy, linear momentum, angular momentum) can be
seen as constraints imposing some restrictions on the dynamics: during its evolution,
say, an isolated system does not explore all the possible configurations, just the ones
that correspond to the same energy as the one it had initially. As soon as a constant
of motion is lost, for instance, by virtue of Noether theorem, when a continuous sym-
metry is broken (see for instance [4, § 4]), the system becomes chaotic. The pendulum

5



has D = 2 degrees of freedom (say the coordinates (x, y) of the projection of its posi-
tion on a horizontal plane). The regularity of the frictionless simple pendulum comes
from the two constants of motion: its energy (due to time-translation invariance) and
its angular momentum (due to rotational invariance with respect to the vertical axis).
On the contrary, even if friction were still negligeable, the magnetic pendulum would
still be chaotic precisely because the external magnets break the continuous rotational
invariance2. Figure 4 provides another illustration of the importance of symmetries for
preserving a regular motion.

Figure 5: It is the chaotic nature
of the dynamics of rolling dices that
make them an appropriate random
generator machine.

The lost of predictatibility is therefore ubiq-
uitous and this leads to the concepts of chance
and contingency. Even if the dynamical equations
are perfectly deterministic, after a characteristic
time τ , the system behaves as if it were “at ran-
dom”, or more precisely what we call “random” or
“stochastic” reveals a lost of the information that
would be needed to predict the evolution of the
system with no surprise. From what we have just
discussed, it is therefore quite easy to get a physi-
cal random generator, even more simpler and re-
liable than the magnetic pendulum : a dice does
the job or even the toss of a coin or a lottery ball
(figure 5).

3 The stability of probabilities: the secret of the success of

statistical physics

The ubiquity of chaotic systems leads to two severe issues: (i) the first concerns pre-
dictability which is one of the cornerstone of science, (ii) the second concerns objectivity
since the lack of information that randomness represents depends a priori on the observer:
wouldn’t a cleverer observer with more skills in modeling, more ability of computing or
more memory space find less randomness in Nature? In 1814 Pierre-Simon de Laplace
proposed to pursue this logic up to an idealised intelligence for whom no chance would
exist3 [10, p. 2].

However, in practice, the exponential amplification of perturbations during the evo-
lution of a chaotic system simplifies the situation. Dividing the initial uncertainty δ~r(0)
by 10n increases linearly with n, more precisely by nτ ln 10, the time t when δ~r reaches
a given value. So even if we take the ratio of the size of the observable universe to the
radius of the proton for which n is about 42, we extend the duration of reliability by
less than 100τ which is less than one minute for the magnetic pendulum. Therefore
from a physicist point of view, the time at which a random behaviour appears is very
robust and does not depend much on the experimental conditions of the observation
and can be safely considered as objective. On the other hand, for times shorter than τ
predictions with simple models remain reliable. The most striking example, which is

2For the equilateral configuration considered in the previous section, there is still an invariance under
a 120

◦ rotation, which is reflected in the patterns of figure 3e), but the invariance by a rotation of an
arbitrary angle is broken.

3At that time, of course, the quantum indeterminism was not discovered yet.
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of first importance not only for having contributed to the development of science but,
above all, for having provided a stable enough environment for intelligent life to evolve
on Earth, is provided by celestial mechanics. The two-body gravitational problem leads
to the regular Keplerian ellipses which allow to reproduce the motion of the celestial
bodies with a great accuracy for centuries. However, as soon as a third body is involved
(not to speak of the eight main planets of the Solar System), there cannot be found
enough constants of motion to get a regular motion: the discovery, by Henri Poincaré
at the end of the xix

th Century, of what would be called chaos actually comes from his
mathematical studies on the motion of three bodies interacting by gravity. As far as the
Solar System is concern, τ is of order of hundreds of millions years [11] and predictability
is safe at mankind scale (if we take into account the small bodies like asteroids, that is
another story).

These matters of time-scales are not the end of the argument of course. One way
to answer to both issues (i) and (ii) is also to consider collective effects and establish
statistical laws. If the predictability of one specific event or of one trajectory may
truly be challenged by a chaotic behaviour, the probability laws and some collective
properties obtained by averaging on many degrees of freedom or on many observations
provide reliable predictions and objective facts. The origin of this stability can be traced
back to the law of large numbers: under general assumptions, the relative fluctuations
within a sequence of N independent events are of order 1/

√
N . For instance, whereas

we cannot predict the final position of the magnetic pendulum, we can safely say that
after N launching of the pendulum from various equidistributed initial positions one
will obtain about N/3 trajectories ending on each M in the equilateral configuration
and this number is expected to fluctuate within a margin of order

√
N as shown on the

following table where the number of coloured dots is extracted from the simulations in
figure 3.

Grid of initial positions N/3 Red Green Blue
10× 10 33 36 36 28
25× 25 208 220 218 187
50× 50 833 815 827 858
100× 100 3 333 3 335 3 321 3344
500× 500 83 333 83 125 82 965 83 910

A too large deviation would indicate that the configuration is biased and would indeed
provide a quantitative measure of this bias.

In statistical physics N is of the order of the Avogadro number NA ≃ 6 1023 and,
then, the relative fluctuations are of order 10−12 which is usually much below what is
experimentally accessible. Some quantities based on averages, like the temperature or
the pressure (figure 7), are therefore very relevant for describing physical properties at
macroscopic scales. Although they are not well-defined at microscopic scales (talking
of the temperature or the pressure for one molecule is far-fetched), at larger scales such
physical properties emerge from a collective effect. Although the statistical system is
fully chaotic at microscopic scales, the emergent properties at macroscopic scales are
insensitive to initial conditions. To comprehend a system one has to give up almost all
the information concerning its huge number of parts: not only keeping this information
is not feasible in practice but, above all, it would not be relevant for a global study. For
instance, all the existing memory space (books, hard drive, etc.) could not register the
positions and the velocities of all the molecules in one litre of air; had all these raw data
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Figure 6: A schematic device that is able to measure the recoil force due to one molecule
hitting a plate.

be measurable and stored, they would be completely over-abundant and would require
to be synthesized to know, say, if the container would resist when doubling the quantity
of gas inside it. Abandoning almost all the information is not an acknowledgement of
weakness in front of complexity but rather a necessity for bringing out the physical
quantities that are pertinent at large scales. These emergent stable properties define
most, if not all, the macroscopic objects and are involved in the physical laws governing
them. Pruning the information from one level of a hierarchy of physical structures (from
quarks to cosmic filaments of superclusters of galaxies, say) to the upper one helps to
gain in universality. The macroscopic quantities and the laws linking them become
independent of much more microscopic details than the position and the velocities of
its constituants. The law of perfect gas PV = nRT is independent of the nature of the
constituents as long as their interactions are negligible: it remains valid for a gas made
of elements as different as one simple Helium atom and a much more complex Carbon
Dioxide molecule. Another exemple of emergent property is the transparency: it can be
quantitatively defined for materials that, at the microscopical level, are as different as
water, diamond or glass, although it is a non-sense of talking about the transparency of
an individual molecule.

This is all the art of statistical physics to identify the properties that shoud be
extracted from a wide collection of microscopic variables4. Climbing up the probably
endless hierachy of physical systems is not less difficult or fundamental than following
the opposite way followed by the reductionnists.

4In cite[§§ 4.5.2, 4.6]Mouchet13c, I explain how symmetries can be of great help in finding them.
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Figure 7: The device in figure 6 is used to measure the force on the plate when the
number of molecules is increased. The more numerous the molecules, the more hits per
unit of time and the less fluctuating the force is. At macroscopic scales, no fluctuations
of the force can be detected and this constant average force per unit of surface is a stable
quantity independent on the microscopic events: thus emerges the pressure.

4 A concluding historical comment

More than one hundred years ago Poincaré was aware that the extreme sensitivity to
initial conditions would challenge meteorologists:

It may happen that small differences in the initial conditions produce
very great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossible,
and we have the fortuitous phenomenon. [. . . ]
We will borrow [an example] from meteorology. Why have meteorologists
such difficulty in predicting the weather with any certainty? Why is it that
showers and even storms seem to come by chance, so that many people
think it quite natural to pray for rain or fine weather, though they would
consider it ridiculous to ask for an eclipse by prayer? We see that great
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disturbances are generally produced in regions where the atmosphere is in
unstable equilibrium. The meteorologists see very well that the equilibrium
is unstable, that a cyclone will be formed somewhere, but exactly where they
are not in a position to say ; a tenth of a degree more or less at any given
point, and the cyclone will burst here and not there. [13, § II, p. 259-260]

In the communication whose title was to give birth to the notion of “butterfly effect”,
it is often forgotten that, beyond the chaotic behaviour of the Earth atmophere, Lorenz
was putting forward the stability of the statistics one may establish:

More generally, I am proposing that over the years minuscule disturbances
neither increase nor decrease the frequency of occurrences of various weather
events such as tornados; the most they may do is to modify the sequences in
which they occur. [7, 1st page]

I hope the present contribution have respected Lorenz original message.
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