
HAL Id: hal-01266581
https://hal.science/hal-01266581

Submitted on 4 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU Robot Motion Planning using Semi-Infinite
Nonlinear Programming

Benjamin Chrétien, Adrien Escande, Abderrahmane Kheddar

To cite this version:
Benjamin Chrétien, Adrien Escande, Abderrahmane Kheddar. GPU Robot Motion Planning using
Semi-Infinite Nonlinear Programming. IEEE Transactions on Parallel and Distributed Systems, 2016,
27 (10), pp.2926-2939. �10.1109/TPDS.2016.2521373�. �hal-01266581�

https://hal.science/hal-01266581
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 1

GPU Robot Motion Planning using Semi-Infinite
Nonlinear Programming

Benjamin Chrétien, Adrien Escande, and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—We propose a many-core GPU implementation of robotic motion planning formulated as a semi-infinite optimization
program. Our approach computes the constraints and their gradients in parallel, and feeds the result to a nonlinear optimization solver
running on the CPU. To ensure the continuous satisfaction of our constraints, we use polynomial approximations over time intervals.
Because each constraint and its gradient can be evaluated independently for each time interval, we end up with a highly parallelizable
problem that can take advantage of many-core architectures. Classic robotic computations (geometry, kinematics, and dynamics) can
also benefit from parallel processors, and we carefully study their implementation in our context. This results in having a full constraint
evaluator running on the GPU. We present several optimization examples with a humanoid robot. They reveal substantial
improvements in terms of computation performance compared to a parallel CPU version.

Index Terms—GPGPU, CUDA, nonlinear optimization, motion planning, robotics, parallel computing, HPC

F

1 INTRODUCTION

ROBOTIC technology processes numerical data to trans-
form them into physical actions: the essence of any

robotic system is motion. The science and engineering of
computing robot motions to achieve desired goals or tasks
is motion planning. Since the models used for motion com-
putations and the environment are prone to uncertainties,
planned motion are achieved in a closed-loop control. In
industrial robotics, since the tasks are predefined, the re-
quirements are to compute motions that maximize per-
formances in terms of speed, robustness, quality... under
constraints of motor performances, limitations in terms of
robot joint ranges, speed, collision avoidance, etc. Therefore
motion planning can be formulated as a solution of an
optimization program, e.g. [1]. Motion planning and control
formalized as optimization programs can be solved using
general-purpose optimization solvers. Yet, even for simple
robotic arms, optimizing a whole trajectory is time consum-
ing. Fortunately, for the well-structured environment of an
industrial automation, the computation time is not an issue
since motions are designed off-line.

The evolution of robotic technology is taking a path
reminiscent of computers history. Bill Gates1 and many

• B. Chrétien and A. Kheddar are with the CNRS-UM LIRMM, Interactive
Digital Human group, Montpellier, France.

• B. Chrétien, A. Escande and A. Kheddar are with the CNRS-AIST JRL,
UMI3218/RL, Tsukuba, Japan.

• Part of this work was presented (oral presentation only) at the Interna-
tional Conference on High Performance Scientific Computing (HPSC),
16-20 March 2015, Hanoi, Vietnam.

(c) 2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/ repub-
lishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse
of any copyrighted components of this work in other works. To access
the published version, please refer to the IEEE Xplore Digital Library:
http:// ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7390287
Digital Object Identifier no. 10.1109/TPDS.2016.2521373

1. A robot in every home, Scientific American, January 2007

other renowned fellows and companies (e.g. Google, In-
tel), foresee robotics to be the next technology revolution.
Indeed, recent research and developments tend to bring
robotic technology out of the classical large manufacturing
and production lines. Robots are being democratized to
invade much more application areas, including production
in small-scale flexible enterprises, homes, and a plethora
of other services where space is shared with humans. For
such perspectives, robot motions are not necessarily driven
by classical industrial needs and requirements in terms
of power and performance. Indeed, motions are rather
human-centric, stylized, smooth, “natural looking”, emo-
tional, “artistic”, safe, acceptable, etc. The constraints under
which the latter behavioral motions occur include similar in-
trinsic limitations with additional ones related to active per-
ception. Robots will also grow in complexity and shape (e.g.
humanoid, multi-arm or soft robots) and may offer redun-
dant structures that allow having several possible motions
to fulfill a given task or achieving multiple tasks at a time. In
these applications –see e.g. humanoid robots in daily home
services2, for frail person home assistance3, or in large-scale
manufacturing4–, motion planning will result from embed-
ded computation including real-time cognitive reasoning,
environment sensing, and more complex constraints with
robustness handling. Hence, service robotic systems must
process on-line larger amounts of information, may embed
the computational power, and, more importantly, quickly
plan their motion in a safe and reactive way in order to
adapt to fast-changing and varying environments.

As a direct consequence, most algorithms that are devel-
oped in terms of perception, knowledge processing, artificial
intelligence, motion planning and control must be thought
in terms of speed, exploiting parallel processing.

Our work focuses on motion planning. The ultimate way

2. www.robohow.eu
3. www.projetromeo.com
4. www.comanoid.eu

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7390287
www.robohow.eu
www.projetromeo.com
www.comanoid.eu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 2

in planning and control of behavioral dynamic motions is
to have a look-ahead horizon of time and a set of upcoming
tasks, and compute at each control loop the whole-body mo-
tion on this time horizon. If the computation power allows
computing such trajectories at high frequency, planning and
control can be merged. This is what the robotics community
is aiming for. In this work, we exploit the GPU architecture
in order to achieve dynamic motion planning with an ap-
plication to humanoid robots (as they are one of the most
complex robotic structures). We focus in this paper on the
implementation of the motion planning formulated as a
nonlinear semi-infinite program [2]. We report our results
and discuss some problems we faced when using GPU for
this purpose. We exploit several sources of parallelism that
are not classical in GPU computation. By doing so, we are
able to decrease computation times to a few seconds or less
for problems that may require several minutes on multi-core
CPUs, and expect a similar speedup for more complex sce-
narios with computation taking hours [2]. To be self-content
and to address non-robotic-specialist readers, we introduce
the necessary robotic knowledge in a comprehensive way to
explain the implementation choices we made.

2 PROBLEM FORMULATION

2.1 Robot definition
A robot is composed of a set of rigid objects, called links
or bodies, assembled by joints. We consider robots with
tree-like structures, i.e. the graph where the bodies are the
nodes and the joints are the edges, is a tree. This is called
a kinematic tree. For a robot with a fixed base, the base is
chosen as the root of the tree. For robots without a fixed
base, we consider only movements where at any time, at
least one body is fixed in the environment (no flight phase).
This body (which can be changed along the movement) is
taken as a root. For example, for a humanoid robot, when a
foot is on the floor, this foot is the root.
We note n the number of joints (so that there are n + 1
bodies).

2.2 Equation of Motion
The motion of a robot can be described by a function q of
the time, where q(t) is the vector of the joint parameters
(here angular values) at time t, which is called configuration.

Not all functions q are admissible though. They must
obey physics laws which, in robotics, are expressed by
the Equation of Motion (EoM) and contact with friction
modeling. For a robot without a fixed base yet with a fixed
body, the EoM writes (see also [3]):[

Mr(q)

Mj(q)

]
q̈ +

[
Br(q, q̇)

Bj(q, q̇)

]
=

[
0

I

]
τ +

[
Jᵀ
r(q)

Jᵀ
j (q)

]
f (1)

where M accounts for the inertia of the robot, B represents
the contribution of the gravity and the effect of speed
(Coriolis forces, etc.), τ is the vector of joint torques, f is
the vector obtained by stacking all forces fk (k ∈ [1, nf])
applied on the robot at points pk (including contact forces)
and J is the Jacobian matrix of all points pk, obtained by
stacking the matrices ∂pk

∂q . The upper part of this equation
(subscript r, for robot) is directly the Euler-Newton laws

expressing that the acceleration and change of angular rate
of the robot, seen as a single rigid object, are function of
the external forces. It does not appear for fixed-base robots.
The lower part (subscript j, for joint) relates the inertia and
external forces to the joint torques.
Some forces fk are further restricted by friction laws (we
use Coulomb’s laws) to live in a subset F , i.e. f ∈ F .

2.3 Cartesian quantities

At configuration q(t), the position and orientation of the
i-th body w.r.t. a global world frame are given by vec-
tor xi(q(t)) and an orientation matrix Θi(q(t)), so that
a point with coordinates p in the body’s frame has co-
ordinates Θi(q(t))p + xi(q(t)) in the world frame. The
spatial and angular velocities (resp. accelerations) of the
body are denoted by the vectors ẋ(q(t)) and ωi(q(t))
(resp. ẍi(q(t)) and ω̇i(q(t))), so that the speed of the
same point is ωi(q(t)) × p + ẋi(q(t)) (and the acceleration
ω̇i(q(t))×p+ ẍi(q(t))), where × denotes the cross product.
For the sake of clarity, we drop the dependency in q and
simply write xi(t), Θi(t), etc.

We denote by G(t) (geometry) the set of all xi(t) and
Θi(t), and by K(t) (kinematics) the set of all their first and
second derivatives.

2.4 General formulation

The problem we are interested in can be written as

min.
q,f,τ

h(q(t),f(t), τ (t), G(t),K(t)) (2)

s.t. eq. (1)
ci(q(t),f(t), τ (t), G(t),K(t)) ≥ 0 ∀t ∈ Ii,∀i = 1 · · ·m

with h and ci real-valued functions, m the number of
constraints, Ii ⊆ [0, T] the time interval (possibly a single
instant {ti}) on which the i-th constraint must be verified
and T the total duration of the movement. Whenever we
want to express an equality constraint c = 0, we replace
it by c + ε ≥ 0 and ε − c ≥ 0 with ε small enough to
have a good approximation but not too much to avoid over-
constraining the resolution of the problem (ε is typically a
fraction of the precision we want to achieve, e.g. 0.1mm on
a position constraint). This is for instance used to define
geometric contact conditions. Note that the unknowns of
this problem are functions of time.

Functions h and ci are written in their most generic
way here. Even though G and K are functions of q, we
make them appear explicitly to emphasize their role as
intermediate computation quantities. Each function does
not need to depend on all q, f τ , G and K .

2.5 Cost and constraints

The cost functions that are usually considered are:

• the jerk, for smoothness:
∫ T
0

...
q2,

• the energy, for efficiency:
∫ T
0 τ

2.
Minimizing the total motion time T is considered in [2], and
other costs are possible.

As for constraints, we can distinguish several types.
First, we use constraints on intrinsic robot’s limitations:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 3

Fig. 1. Variable dependency graph. While the geometry, kinematics and
dynamics depend on q(t) (plus f(t) for the dynamics), the kinematics
(resp. the dynamics) may reuse data from the geometry (resp. the
geometry and the kinematics).

• joint positions q− ≤ q(t) ≤ q+,
• joint speeds q̇− ≤ q̇(t) ≤ q̇+,
• joint torques τ− ≤ τ (t) ≤ τ+.

as well as constraints µ2
kf

2
k,n−

∥∥fk,t∥∥2 ≥ 0 (where fk,n and
fk,t are the normal and tangential part of the force fk and
µk the friction coefficient) to translate that f ∈ F . These
constraints write as c(q) ≥ 0, c(τ) ≥ 0, and c(f) ≥ 0.

Then we have constraints on the bodies positions
c(G) ≥ 0, typically requiring a point with coordinates p
in the i-th body to be at a position pdes in the world, i.e.
Θi(q(t))p + xi(q(t)) = pdes, or that the distance δ(bi,bj)(t)
between bodies i and j is greater than a safety margin, to
avoid collision.
Similar constraints c(K) ≥ 0 can be devised. Constraints on
body position and velocity are combined to translate high-
level tasks.

Finally, we can consider global constraints on the robot:

• position of the center of mass (CoM) xg(t),
• velocity of the CoM ẋg(t),
• acceleration of the CoM ẍg(t),
• Center of Pressure (CoP) at some contacts.

Some of these constraints are used to ensure the robot
satisfies a stability criterion, e.g. for walking, the CoP should
remain within the robot’s support polygon.

2.6 Parametrization of variables

The above optimization problem is not solvable because its
variables live in a function space of infinite dimension. To
make its resolution tractable, we need to restrain the search
space by approximating it. We do so by using parametrized
functions. The choice of parametrization must be made
carefully or there will not be any solution verifying eq. (1) at
all time. First, we can see from the lower part of eq. (1) that τ
can be directly obtained from q and f . This is called inverse
dynamics. We can therefore remove it from the variables
together with this part of the equation. Second, we show
in [3] how to parametrize q and f to satisfy the upper part
of eq. (1): any parametrization can be chosen for q and a
sub-part f̃ of f , the rest of f is deduced from q, f̃ and the
upper part of eq. (1).

We choose uniform B-Splines as parametrization for q
and f̃ : for each element yi = qi or yi = f̃ i, N control points

are chosen and

yi(t) =
N−1∑
j=0

pi,jBj,K(t) (3)

where Bj,K is a basis function of degree K and pi,j the
associated control point.

All quantities q, f τ , G and K depend on t and these
parameters pi,j (see also Fig. 1), thus the problem writes

min.
p

h(p, t) (4)

s.t. ci(p, t) ≥ 0 ∀t ∈ Ii, ∀i = 1 · · ·m

This problem is called a Semi-Infinite Program (SIP), because
while the search space is of finite dimension, the number
of constraints is infinite (each ci for a given t is a con-
straint). Furthermore, since we are dealing with nonlinear
constraints and cost functions, this problem is also a Nonlin-
ear Program (NLP).

2.7 Constraint approximation

Various possibilities exist to tackle SIP, the most classical
one being to enforce the constraints only at discrete instants
ti [4]. Between two such instants, constraints may be vio-
lated [5]. A trade-off must be made between the number of
instants (the closer the instants are, the smaller the violation
is) and the computation time due to the evaluation of
constraints at each instant.

The choice we make is to reformulate the constraint
ci(p, t) ≥ 0 ∀t ∈ Ii into mint∈Ii ci(p, t) ≥ 0. We thus end up
with a finite number of constraints, while still ensuring that
the original constraints are verified at all time. But evaluat-
ing the global minimum of a function over an interval can
be far too costly. We therefore make two transformations.
First, we split [0, T] into Nint intervals Tk, and reformulate
the constraints as mint∈Ii∩Tk

ci(p, t) ≥ 0 k = 1 · · ·Nint,
keeping a finite number of constraints. Second, we make
a polynomial approximation of ci over each Ii ∩ Tk. By
choosing a polynomial of at most degree 5, we are able
to compute analytically its global minimum cmin

i,k over the
interval (cmin

i,k is 0 if Ii ∩ Tk = ∅). We end up with an
approximation of our problem:

min.
p

h(p, t) (5)

s.t. cmin
i,k(p, t) ≥ 0 ∀k ∈ [1, Nint] , ∀i = 1 · · ·m

The accuracy of the polynomial approximation depends
on the duration of the time intervals and the polynomial
degree chosen. A bound of the error is easier to evaluate
than with the time-grid method, although computing it is
costly. Thus, we rely on the results presented in [2], and also
omit the error bound.

2.8 Optimization process

The desired behavior of the robot is defined by a set of tasks.
Each task can be written as a set of equality and/or inequal-
ity constraints involving appropriate robot model equations,
and so does the cost function. These constraints and the cost
function depend on q(t) and its time derivatives, which are
replaced by their B-Spline expressions and their derivatives.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 4

t"
Ci+1(q(k)(t))(

Op+miza+on(
solver((
k(=(k"+(1((p(0)(

p*,(q*(t)(

Task(1"

Task(n"

…
"

F(q(t))"

C((q(t))(

…
(

…
(

…
(

Problem(
formula+on(
(once)(

Assembly(of(all(
constraint(
evalua+ons(

P(k)(

q(k)(t)(

Geometry(

Kinema+cs(

Dynamics(

t"

Ci((q(k)(t))(

…(…(

Defini+on(
(once)(

so
lu+

on
(

Geometry(

Kinema+cs(

Dynamics(

Geometry(

Kinema+cs(

Dynamics(

Geometry(

Kinema+cs(

Dynamics(

Geometry(

Kinema+cs(

Dynamics(

Core(robot(computa+ons(

Constraint(evalua+ons(

CPU(GPU(

$$$F(k)($$$C(k)$$
∂F(k)(($$$∂C(k)$$$

Geometry(

Kinema+cs(

Dynamics(

Fig. 2. Optimization process.
The computation is split between the CPU (building the problem, optimization solver, matrices assembly) and the GPU (core computation, constraint
evaluations, gradient computation). The background patterns indicate different time intervals Tk, and the background colors refer to different
constraint types.

We now define how the constraints and the cost function
–most of which, if not all, are nonlinear–, are evaluated.

The Fig. 2 illustrates the process of the formulation
we adopted. Given a problem made of high-level tasks,
we build an optimization problem that consists in a cost
function and a set of (nonlinear) constraints. If a constraint
is to be enforced over a given time range Ii, we split it in
multiple constraints each spanning a different time interval
Ii ∩ Tk.

Given the optimization problem and an initial guess
p(0), the optimization solver can start its iterative process
to find the optimal solution p∗ and its associated optimal
joint trajectories q∗(t). At each iteration, the solver provides
a new vector of optimization parameters p(k), which is used
to update the joint B-splines q(k)(t). Then, the resulting
trajectories are split over the independent time intervals and
sent to the GPU-based evaluator.

We start by running the GPU-based dynamics evaluator
that comprises the core algorithms: for each time interval,
each geometry, kinematics and dynamics computation is
done if required by constraints on said interval. The com-
putation on a given interval is completely independent from
the other intervals, and the same can be said for the gradient
w.r.t. a given control point.

Next, having the factorized data, we evaluate the cost
function and constraints (as well as their gradients), still
on the GPU. Constraints of a similar type are processed
simultaneously and independently, based on the problem
definition. We may not have that many constraints of each
type to process in parallel, but the computation is usually
fast enough and unlikely to become a bottleneck.

Once constraints are evaluated, relevant data (cost func-
tion evaluation, constraint evaluations, and gradients) is
copied back to the CPU for a final processing step. Since
we compute data in a compact form on the GPU, we copy
data from our compact data structures to the adequate rows

and columns of the full Jacobian matrix. This is what we
refer to as assembly.

Finally, we feed the optimization solver with the cost
function’s evaluation F(k), its gradient ∂F(k), the con-
straints C(k) and the full constraint Jacobian matrix ∂C(k).
The solver will either end the optimization process or iterate
with a new p = p(k+1).

3 COMPUTATION

3.1 Geometry and kinematics
Given the joint trajectories q, we can compute the geometry
of the robot, that is the orientations (e.g. represented by
rotation matrices) and spatial positions x of its bodies. In
practice, we note Θi the matrix describing the rotation from
the i-th body frame to the global frame.

Let λ(i) be the parent index of the i-th body. The pre-
ceding joint index is i − 1, and we can write a recursive
formulation:

Θ0 = R0 (6)
Θi(t) = Θλ(i)(t)Si−1R(qi−1(t)) (7)

where R0 is the orientation of the root body, R(qi(t)) is the
rotation matrix associated with the i-th joint, Si is a static
orientation shift associated with the i-th joint. Similarly:

xi(t) = xλ(i)(t) + Li(Θλ(i)(t),Θi(t)) (8)

where Li is the vector from xλ(i) to xi in the world frame.
The kinematics involves computing ẋ, ẍ, ω and ω̇. Since

we deal with time polynomials as we will see in Sec. 3.3, a
simple polynomial derivation can be done.

3.2 Gradient
For gradient-based optimization solvers, the computational
bottleneck is likely to be the evaluation of the Jacobian ma-
trix, that is the matrix that contains all the ∂ci

∂pj
, where ci is a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 5

constraint of the problem. For large problems with hundreds
or thousands of parameters/constraints, this leads to a high
computational load.

The analytical expression of the gradients is also a source
of complexity. It is thus common to rely on either finite dif-
ferences (FD) or automatic differentiation (AD). However,
FD suffers from a lack of precision, which can be critical
to convergence. Additionally, both FD or AD can be quite
expensive computationally [2], even though GPU-based AD
is being actively investigated [6].

Also, let us consider the time derivatives Ẋ and Ẍ of
a variable X(q(p, t)), whose gradients are to be computed
w.r.t. the parameters pk of p. Let us suppose we want to have
a gradient pipeline relying on gradients w.r.t. qj , that we
convert to gradients w.r.t. pk at the very end. By Schwarz’s
theorem, we have:

∂X

∂pk
(t) =

nj−1∑
j=0

∂X

∂qj

∂qj
∂pk

=
∂X

∂q

∂q

∂pk

∂Ẋ

∂pk
(t) =

∂

∂t

(
∂X

∂pk

)
=
∂X

∂q

∂2q

∂t∂pk

∂Ẍ

∂pk
(t) =

∂2

∂t2

(
∂X

∂pk

)
=
∂X

∂q

∂3q

∂t2∂pk

Thus, we are left with the alternative to either compute
the pipeline w.r.t. pk, which implies a larger number of
threads used during the whole gradient pipeline compu-
tation, or compute it w.r.t. qj , and add a composition step
at the end that takes care of the transformation to gradients
w.r.t. pk, with sums over all the robot joints and multiplica-
tions with ∂qj

∂pk
and its time derivatives. We currently process

the geometry w.r.t. qj , and the composition is made before
computing the kinematics.

3.3 Polynomial approximation
The input of our geometry computation is joint splines,
i.e. piecewise polynomial functions. Thus, the computation
itself is done on polynomials. Furthermore, the entry point
of our computation is the transformation of joint trajectories
to rotation matrices, which involves cos(q(t)) and sin(q(t)).
Thus, we use a Taylor approximation at the mid-point
of each time interval, and continue the computation with
these polynomial approximations over time intervals. This
approximation is only valid on small time intervals, since
we discard polynomial coefficients of higher degree which
is only valid if |αKtK | � 1 ∀t ∈ Tk. Anytime an operator
such as cos, sin, square root, or even polynomial division
is required, a similar approximation is made. For a given
polynomial degree, the precision of such approximations
can be increased by taking shorter time intervals, thus
increasing the number of intervals to process.

For the choice of the polynomial degree K , two things
need to be considered. In Sec. 2.7 we choose K such
that an analytical expression of polynomial bounds can
be computed. However, since we want to be able to use
simple polynomial derivations for the kinematics and the
dynamics (e.g. ẋ(t), ẍ(t)), we approximate the rotations
with polynomials of degree K + 2, such that the values at
the end of our pipeline have the desired precision with a
degree K .

4 PARALLELIZATION

4.1 Main ideas

The CPU implementation of the problem in [2] used
automatic differentiation to compute the gradients, and
OpenMP-based multi-threading to process each interval of
the motion independently. The computation took from min-
utes for simple scenarios to hours for complex multi-contact
joint trajectories generation of the HRP-2 humanoid robot;
which is clearly not satisfactory. Instead, we investigate a
GPGPU approach to see if the computing power of GPUs is
beneficial to solve our motion planning problem.

Since most of the computation time is spent in the eval-
uation of the constraints and their gradients, we dedicated
our efforts in implementing this part of the computation. In
addition, keeping the separation between the solver and the
problem formulation allows to assess the latter using state-
of-the-art off-the-shelf nonlinear solvers. Moreover, there are
current studies on porting optimization solvers to GPUs [7],
and unless they can deal specifically with our problem, we
can still consider this part as a black box.

To speedup the computation needed to evaluate the
constraints, we consider the following:
Data-independent parallelism: Parts of the computation

can be evaluated in parallel and fully independently,
i.e. two distinct parallel evaluations will not share any
data at any point. This includes:
• Evaluations over time intervals,
• Evaluations of gradients w.r.t. different pi,
• Evaluations of constraints of the same type.

Data-dependent parallelism: Parts of the computation
may rely on parallel algorithms using shared data:
• Model-based parallelism that exploits the properties

of the kinematic tree describing the robot.
These different levels of parallelism can be studied

separately. Moreover, though the scope or the individual
speedup of each parallelization approach may be limited,
the cumulative speedup is what actually matters.

4.2 Data-independent parallelism

Each interval (as seen on Fig. 2) can be treated individually.
This was already accounted for in [2] where each CPU
thread handles a different interval. This is a direct result
of Sec. 3.3.

The same observation applies to the gradients w.r.t. the
optimization parameters. Let Nint be the number of time
intervals, K the order of the B-Splines, n the number of
joints; we need to evaluate Nint(K + 1)n gradients. Hence,
the number of gradients that need to be evaluated grows
linearly with Nint, and they can be computed separately as
well.

Time intervals are currently defined by the properties
of the B-splines used. If we consider a B-spline of order
K with Ncp control points, we can split the curve into
Nint = Ncp −K intervals (a.k.a. segments or bays) and each
control point only influences K + 1 intervals. Note that in
order to refine the polynomial approximation, our imple-
mentation can either increase the number of control points
or (equivalently) split these time intervals further, which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 6

would, in both cases, increase the number of constraints
applied to the problem.

4.3 Data-dependent parallelism
The development of efficient parallel dynamics algorithms
for robotics applications has been extensively considered
during the last decades [8], [9], [10], [11]. Current trends
exploit multi-core and many-core architectures to reduce the
computation time [12], [13]. The parallel methods usually
provide good speedup for long kinematic chains, but in the
case of actual robots, even complex ones, the number of
joints rarely exceeds 50 (e.g. humanoid HRP-2: 32 or up to
43 joints with the hands), split over multiple chains, which
makes the speedup with parallel methods not substantial.

Thus, we chose to use a parallel method that would
reduce synchronization steps as much as possible while
allowing the GPU to compute kernels in parallel. As a
consequence, we currently use a method inspired from
[14] where most of the calculation is done in parallel with
fully independent kernels, and the rest is made of prefix
operations that can be computed in a logarithmic parallel
approach. Such operations have been used for polynomial
interpolation [15] or even stream compaction [16], and are
good candidates for parallelization. If we consider a binary
operator ∗, then the (inclusive) prefix operation of ∗ on a
vector x = [x0, . . . , xn−1] gives:

PrefixOp(∗,x) = [x0, x0 ∗ x1, x0 ∗ x1 ∗ x2, . . .] (9)

Indeed, efficient parallel prefix operation algorithms exist
and are used on the GPU [16], [17], although these algo-
rithms only tackle the case of chain dependencies, while we
deal with a tree structure. In order to apply similar algo-
rithms, the values need to be represented in the same frame
(e.g. global frame), so that simple additions/multiplications
are possible without any expensive frame transformation.
Note that we only deal with 30 or 40 bodies, and the longest
chain of the kinematic tree is not likely to contain more than
half of the bodies, so the parallel speedup is not as important
as for prefix sums over large vectors.

5 GPU IMPLEMENTATION

5.1 Main ideas and choices
Using GPUs to accelerate scientific computation has been a
very active field of research during the past decade. Both
the introduction of NVIDIA’s GPGPU computing platform,
CUDA, in 2007, and the 2009 release of the OpenCL stan-
dard played a major role since it made general purpose
computation on GPUs more accessible than it used to be
with programmable shaders.

Several fields greatly benefited from GPU parallelization,
such as fluid dynamics [18] or machine learning, and the
advent of widely-accepted GPGPU standards made it more
accessible to researchers. Still, increased computational per-
formances thanks to new highly-parallel processors nearly
always involves rethinking both algorithms and data struc-
tures in play, in order to achieve important speedups.

In robotics, a GPU implementation of probabilistic mo-
tion planning is proposed in [19], [20]. Probabilistic planning
consists in sampling the configuration space and choosing

the best path through the samples that satisfy the tasks. The
number of samples scales with the number of threads, so
increasing the computing power of the GPU increases the
quality of the solution as well as the chances of finding
one. Sample-based methods usually generate jerky mo-
tions and are thus coupled with optimization-based post-
processing [21].

Instead, our approach plans smooth motions with guar-
anteed constraints satisfaction using a gradient-based non-
linear solver. This is known to be computationally ex-
pensive. Although the problem’s complexity makes it an
unusual candidate for such parallelization, it also exhibits
valuable properties such as strong data independence (e.g.
gradient w.r.t. pi is independent from gradient w.r.t. pj),
high-dimensionality (number of bodies in the robot, number
of time intervals, number of control points to parametrize
the problem). Solving the problem involves fully separate
computation mixed with graph traversal steps. We clearly
do not expect to reach the GPU’s peak performance with our
approach. Yet, our target is to bring the computations much
closer to online planning of whole-body dynamic trajecto-
ries, which implies computation that takes few seconds, or
ideally of a millisecond order to merge planning and control.

In order to ease our implementation, we use the RobOp-
tim library [22], which provides a unified computational
model for solving optimization problems. It also makes it
easy to switch between different off-the-shelf solvers such
as IPOPT [23], CFSQP or NAG, while providing useful fea-
tures, e.g. sparse matrix support, B-splines, finite-difference
checking, etc.

We can split our full computational pipeline into the
following distinct steps:

1) Initialize the problem with the robot model, and
the goal specification (cost function, constraints,
parametrization).

2) Run the iterative solver computation. For each iteration:
a) Update the computation pipeline with the current

iteration’s joint trajectories q(t).
b) Direct computation:

• Compute the geometry G(t).
• Compute the forward kinematics K(t).
• Compute the inverse dynamics D(t).

c) Gradient computation:
• Compute the gradient of the geometry.
• Compute the gradient of the forward kinematics.
• Compute the gradient of the inverse dynamics.

d) Evaluate the constraints and their gradients.
e) Copy constraints data back to the host.
f) Assemble and fill the solver’s data (cost, gradient of

cost, constraints, Jacobian matrix).
3) Return the optimal joint trajectories found.

All the memory allocation (on the CPU or the GPU) is
done once in 1): the structure of our problem is fixed and
does not change during the iterative optimization process.

In 2a) (resp. 2f)), we simply copy data from the CPU
to the GPU (resp. from the GPU to the CPU). It is common
to do one’s best to overlap data transfers with computation
on both the CPU and the GPU to maximize performance
by alleviating the PCIe bottleneck [24]. However, for the
update pipeline, the data to transfer at each iteration is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 7

limited to the polynomial expression of the joint trajectories,
which is extremely fast compared to the overall computation
time (∼40µs on a GeForce GT 650M for typical scenarios).
Hence, asynchronous copy while running another part of
the computation is not required.

Similarly, data copied back from the GPU is limited to
the constraints output (e.g. bounds of polynomials on time
intervals) and their gradients w.r.t. their relevant control
parameters. The cost of this copy is negligible.

2b) and 2c) is where the rigid body dynamics equations
and their gradient counterparts are computed. Here, we
depend on the fact that all the computation relies on pre-
vious parameters and fills our data structures (described in
Sec. 5.5) while traversing our computation graph. We try to
compute as much of it “fully” in parallel (i.e. without any
synchronization involved) to maximize throughput.

The evaluation of our constraints happens in 2d): it
consists in computing the bounds of polynomials over each
time intervals.

5.2 CUDA memory and threading model
Understanding the underlying processing model and mem-
ory architecture of any high-performance computing hard-
ware is essential to best take advantage of its computing
power [25]. This includes storage limits of the different
memory layers, their respective latencies, memory coalesc-
ing, caching, etc.

We use NVIDIA’s CUDA to parallelize our code on
the GPU, so we are using the associated nomenclature for
GPGPU programming. On the GPU, the code is executed in
groups of 32 threads called warps. These warps are parts of
thread blocks, and these blocks form a grid (see Fig. 3).

Fig. 3. CUDA threading model. Threads are grouped into warps (32
threads), warps are parts of thread blocks, and blocks are organized
into a block grid.

Although the GPU is often considered as a SIMD (Single
Instruction Multiple Data) architecture, describing it as a
SIMT (Single Instruction Multiple Threads) architecture is
more accurate since while threads of a warp do behave
like “true” SIMD processors, different GPU multiprocessors
with their distinct cores can process different instructions
simultaneously.

Loads from global memory are done with 32-, 64- or 128-
byte memory transactions. As a result, in order to achieve
the best performance possible, data locality and proper
alignment need to be guaranteed to prevent uncoalesced
memory accesses. For instance, this kind of memory access,
shown in Fig. 4, happens if:
• Memory access is misaligned, i.e. data does not start at

the beginning of a memory segment,

Fig. 4. Possible sources of uncoalesced memory accesses (from left to
right): misaligned memory, non-sequential access, strided access.

• Memory access is not sequential, i.e. sequential threads
of the same warp access data from the same page not
sequentially,

• Memory access is strided, i.e. thread i accesses data[n×
i] with n > 1.

Although more recent hardware is able to cope with non-
sequential accesses within the same segment, misaligned
data will likely lead to an extra load from global memory.
As for strided data access, it can severely lower bandwidth,
and this can be avoided by either (i) reorganizing data in
global memory to get optimal access patterns, or (ii) by
loading data from global memory to shared memory with
coalesced memory accesses, and then reading from that
shared memory since shared memory does not suffer from
strided load operations (but it suffers from bank conflicts
that need to be addressed instead). These problems need
to be considered when designing the data structures used
throughout our evaluation pipeline, otherwise we may not
be able to achieve our performance goals.

Since threads from the same warp must run the same
instructions at the same time, we also want to avoid thread
divergence caused by branching. For instance, if threads
from the same warp diverge to two branches with a similar
complexity, the overall computation will be twice as slow.
As a result, algorithms relying extensively on conditional
branching may suffer from important performance drops.
A notable example is linear algebra, more specifically per-
formance of dense versus sparse matrix computation on
the GPU, the latter being more challenging because of its
very limited regularity [26]. The nature of our problem is
such that only very specific parts are likely to suffer from
branching (e.g. solving polynomial equations analytically),
but this is still a strong constraint on what can be efficiently
added when extending our work.

5.3 Kinematics and dynamics evaluators
Our constraints can involve the geometry, the kinematics
and the dynamics of the robot, see Sec. 3.1. Thus, before
evaluating these constraints, we need to compute any data
required by the set of constraints defining our problem, see
dependencies in Fig. 1. The algorithms used to compute
data for geometry, kinematics and dynamics constraints are
detailed in Alg. 1, Alg. 2 and Alg. 3 respectively.

Parts of the computation where we need to visit the
kinematic tree to compute some values are represented as
parallel prefix operations as seen in Sec. 4.3. We consider
both 3D vector addition and 3D matrix multiplications
as operators. For now, prefix operations are done solely
with shared memory, but this could be improved using the
shuffle instruction over warps available since the Kepler

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 8

Algorithm 1 Geometry: with q(t), we compute the posi-
tions x(t) and orientations Θ(t) of the robot’s bodies, as
in Sec. 3.1. parfor is a parallel for loop, ParPrefixSum is a
parallel prefix sum, and ParPrefixMult is a parallel prefix
multiplication.
Input: q(t), robot data
Output: x(t),Θ(t)

1: parfor ji ∈ {joints} do
Rotation from body λ(i) to body i:

2: Compute Ri(t) = Rot(qi(t))
3: end parfor

Apply parallel prefix multiplication over kinematic tree
4: Θ(t) = ParPrefixMult (R(t), robot data)
5: parfor bi ∈ {bodies} do

Li(t) is the vector −−−−→xixi+1(t) expressed in the
world frame:

6: Compute Li(t)
7: end parfor

Apply parallel prefix sum over kinematic tree
8: x(t) = ParPrefixSum (L(t), robot data)
9: return x(t),Θ(t)

Algorithm 2 Forward kinematics: with the geometry, we
compute the velocities ẋ(t) and accelerations ẍ(t) of the
bodies. Theqoperator returns the vector x associated with a
skew-symmetric matrix x̂.
Input: x(t),θ(t),
Output: ẋ(t), ẍ(t),ω(t), ω̇(t)

1: parfor bi ∈ {bodies} do
Simple polynomial derivations:

2: ẋi(t) =
dxi
dt

(t) ωi(t) =
­

(
Θᵀ
i

dΘ

dt

)
(t)

3: ẍi(t) =
dẋi
dt

(t) ω̇i(t) =
dωi
dt

(t)

4: end parfor
5: return ẋ(t), ẍ(t),ω(t), ω̇(t)

architecture, especially if all the bodies fit inside a single
warp.

In Alg. 3, the expression of contact forces over time f(t)
is required, and this value will be provided by an extra block
that depends on the results of the forward kinematics and
an extra set of optimization parameters. The details on how
we will parametrize these forces and the algorithm that will
be used are available in [3].

5.4 Gradient computation

The analytical computation of our dynamics pipeline
brought some challenging bottlenecks. For instance, let us
consider the gradient of the absolute link orientations Θ
w.r.t. the control points of the joint splines. The main diffi-
culty here lies in the kinematic tree structure: the orientation
of the link located at a node of the tree depends on all the
relative rotations of its predecessors in the tree (cf. eq. (7)).

For the sake of conciseness, let us merge the static orien-
tations Si to R(qi). If we try to get the analytical expression

Algorithm 3 Inverse dynamics: with robot’s accelerations
ẍ(t) and the contact forces acting upon the robot f(t), we
compute the joint torques τ (t). Fi(t) is the general joint
force exerted on body i by children bodies {µ(i)}, Ti(t) is
the general joint torque exerted on body i by children bodies
{µ(i)}, iZi describes the i-th joint’s axis, Θi(t) transforms a
vector from the body frame to the global world frame, Ni(t)
is the resultant torque applied to a rigid body presented
in [27], ki (resp. li) is the distance from the body’s CoM to
the previous (resp. next) link,mi is the mass of the i-th body.
Input: ẍ(t),f(t), inertial parameters
Output: τ (t)

1: parfor bi ∈ {bodies} do
2: IFi(t) = mi(ẍi(t)− g)− f i(t)
3: end parfor

Apply parallel prefix sum over kinematic tree starting
from the leaves

4: F (t) = ParPrefixSum (IF (t))
5: parfor bi ∈ {bodies} do
6: Compute Ni(t)
7: Ki(t) = Θi(t)kiΘ

ᵀ
i (t)Fi(t)

8: Lµ(i)(t) = Θi(t)lµ(i)Θ
ᵀ
i (t)Fµ(i)(t)

9: ITi(t) = Ni(t)−Ki(t) +
∑

j∈{µ(i)}
Lj(t)

10: end parfor
Apply parallel prefix sum over kinematic tree starting
from the leaves

11: T (t) = ParPrefixSum (IT (t))
12: parfor ji ∈ {joints} do
13: τ i(t) = Θᵀ

i (t) Ti(t) · iZi
14: end parfor
15: return τ (t)

of the gradient of Θi w.r.t. a control point pj , we get:

∂Θi

∂pj
(q) =

∂Θλ(i)

∂pj
(q) R(qi−1) + Θλ(i)(q)

∂R(qi−1)

∂pj
(10)

We can rewrite this expression as follows:

γi = γλ(i) αi−1 + βi (11)

with:

αi = R(qi), βi = Θλ(i)(q)
∂R(qi−1)

∂pj
, and γi =

∂Θi

∂pj
(q)

By unrolling the recursion of eq. (12) for a simple chain
(Θ0 describes the constant orientation of the root link, and
the links are part of the same chain starting from the root),
we get:

γ0 = 0

γ1 = β1

γ2 = β1α1 + β2

γ3 = β1α1α2 + β2α2 + β3

γ4 = β1α1α2α3 + β2α2α3 + β3α3 + β4
...

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 9

In the case of a tree, this generalizes into:

γi =

len(bi)−2∑
j=1

βbi[j] len(bi)−2∏
k=j

αbi[k]

+ βi, ∀i ∈ [1, n]

(12)
where bi is the kinematic chain from the root to the i-th link,
and len(bi) its length.

Let B =
[
βi
]

and Πα =
[
πα[j, i]

]
where πα[i, j] =∏len(bi)−2

k=j αbi[k]. Both of these matrices can be computed in
parallel: B in O(1), and Πα in O(log 2 n).

For a simple kinematic chain, Πα can be represented as
a dense upper-triangular matrix. In the general case, the
columns of Πα do not reach the diagonal when branching
is involved (cf. Fig. 5). Moreover, Πα is to be evaluated
and stored only once per time interval, while B is to be
computed for each time interval as well as each control
point active on the time interval. We do not need to copy
these matrices back to the host, but this increases the global
memory requirements of our method.

Fig. 5. Parallel filling of Πα for the simplified HRP-2 model (cf. Fig. 7).
Each color represents a different computation step in the logarithmic
algorithm.

The computation of Πα relies on an iterative process
described in Alg. 5. The computation plan P (b) (what to
compute, with which data, and when) can be precomputed
once and for all, and this process is described in Alg. 4.

The logarithmic algorithm used for the computation of
Πα also provides Θi(q) for the direct computation of the
pipeline. Although nonlinear optimization solvers might
have specific queries (e.g. solvers like CFSQP may require
the evaluation of individual constraints), we usually end up
computing both the direct computation and the gradients
during a solver iteration. Thus, the computation of Πα could
also benefit to the direct computation pipeline.

Note that our dynamics simulator can also be used for
gradient-free methods: in this case, we would need a solver
able to generate multiple queries simultaneously to use the
GPU as effectively as possible. Thanks to RobOptim, this
can be achieved with any plugin supporting a gradient-free
algorithm (e.g. PaGMO’s generalized island model [28]).

5.5 Data structures and kernel launch strategy

During the optimization process, we need to store a wide
range of data depending on the kind of constraints consid-
ered. This can be the robot’s geometric data (links spatial
positions and orientations) or kinematics data (links veloci-
ties). Contact forces and weight, or more generally external

Algorithm 4 Initialization of P (b)

Input: list of kinematic chains b = {bi}
Output: P (b)

Maximum length of a chain:
1: lenmax = max(len(bi) for bi ∈ b)

Total number of steps for the logarithmic loop:
2: nsteps = ceil(log2(lenmax)))
3: P (b) = [{ } for k = 0 to nsteps − 1]
4: for bj ∈ b do
5: for i = 0 to len(bj)− 2 do
6: step = ceil(log2(len(bj)− 2− i)))

Body index:
7: idx = bj [i]

We take a predecessor in the same row:
8: v1 = (i,pred(idx, row = i))

We take a predecessor in the same column:
9: v2 = (pred(idx, col = j), j)

Πα[i, j] = v1 ∗ v2 at given step:
10: p = {i, j, v1, v2}
11: P (b)[step].add(p)
12: end for
13: end for
14: return P (b)

Algorithm 5 Parallel computation of Πα

Input: A = [αi], list of kinematic chains b = {bi}, computa-
tion plans for each step P (b)

Output: Πα

Initialization (parallel loop):
1: parfor bi ∈ b do
2: Πα[len(bi)− 1, i] = αi
3: end parfor

Maximum length of a chain:
4: lenmax = max(len(bi) for bi ∈ b)

Total number of steps for the logarithmic loop:
5: nsteps = ceil(log2(lenmax)))

Main (iterative) loop:
6: for k = 0 to nsteps − 1 do
7: parfor p ∈ P [k] do
8: Πα[p.row, p.col] = p.v1 ∗ p.v2
9: end parfor

10: end for
11: return Πα

forces, also need to be stored for the inverse dynamics. As
all of these data describe trajectories on time intervals, each
of them is stored as time polynomials.

Since we are dealing mostly with 3 × 3 polynomial
matrices related to each body of the kinematic tree, memory
requirements can be quite high. When multiplying such
matrices, we can either i) copy the result directly to global
memory, ii) use shared memory as a temporary buffer, or
iii) try to use only registers to buffer intermediate data
before copying the results back to global memory. Since the
quantity of shared memory used by each multiprocessor is
limited (48kB for our GPUs), the more shared memory each
block requires, the fewer blocks can be processed concur-
rently by the multiprocessor. Thus, the high-level strategy
that will minimize computation time depends greatly on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 10

the problem’s parameters (number of links, number of time
intervals etc.), and choosing an optimal strategy can be
difficult, especially since the CUDA compiler may rearrange
instructions and memory transactions extensively to reduce
memory latency and maximize throughput.

Based on the typical dimensions of our problem (∼30
or 40 bodies in our humanoid robots, ∼10 or 20 time
intervals if we want to generate a motion in an online
planning scenario), and the fact that steps where data are
to be shared across threads only involve different bodies;
we decided to map computation per time intervals and
per control points (for gradient computation) to individual
thread blocks, and each robot body is assigned to a different
thread index. Although this implies that we currently rely
on a low number of threads per block, a higher number of
threads can be used with more complex kinematic trees or
if multiple robots are processed simultaneously. The latter
could help support multistart efficiently, that is solving the
same problem simultaneously with multiple different initial
conditions to reduce the impact of local minima. Besides,
several kernels merely involve registers and global memory,
without any shared work between threads. For these ker-
nels, a simple heuristic that sets the number of threads per
blocks and the total number of blocks to increase occupancy
could be used.

In the meantime, going over 32 bodies leads to –at least–
twice the number of warps executed, but for scenarios
without any manipulation tasks, models with fixed hand
joints are below the threshold. In order to avoid uncoa-
lesced memory accesses, data for different robot bodies is
thus stored contiguously in memory. Moreover, since our
robot structures are constant, access patterns are known at
compilation time, which may help the compiler optimize
kernels even more.

Note that storage requirements could be critical for large
problems running on older GPUs without enough RAM, but
all hardware we have on hand satisfy our current needs.
Still, for a multistart scenario, the memory limits could
then become another bottleneck to take into account, since
computation would need to be split in multiple batches that
are processed serially.

Constant data, e.g. the robot’s inertial parameters or the
graph parameters used for the forward kinematics and the
inverse dynamics, are stored in texture memory. A similar
choice can be made for bounding volume geometries for
collision detection when it is implemented.

Each thread deals with polynomials, which leads to an
inner loop over the polynomial coefficients when perform-
ing operations on them. Since the polynomial size is fixed
during the compilation, we can unroll this inner loop, and
get improved performance thanks to instruction-level paral-
lelism (ILP) that helps hide some of the memory latency [29].
Granting the impact is limited since we are not dealing with
high-degree polynomials, it still provides good performance
at lower occupancy since all the computation is done with
such polynomials.

5.6 Sparsity structure

Exploiting the sparsity of the problem has several advan-
tages:

• it reduces the computation involved when querying the
constraint Jacobian,

• it reduces the memory footprint (less alloca-
tions/copies),

• it helps the solver optimize its computation.
If we look at the structures of the Jacobian matrices from
our example scenarios in Fig. 6, we can clearly distinguish
constraints that concern individual joints (e.g. limits on q
and q̇) from those that concern control points on different
joint trajectories (e.g. constraints on x). For the latter, we
currently consider a dense block over the corresponding
time interval, but this could be improved by applying a
filter based on the robot’s kinematic tree structure, e.g. the
position of a link only depends on the joints that link it to
the free-flying body. This would not change anything w.r.t.
the simulator, but would make filling the Jacobian faster and
help the solver to converge.

6 RESULTS

We assess our implementation using motion planning with
a humanoid robot. In the following examples, our optimiza-
tion parameters are the control points of the uniform cubic
B-splines used to parametrize the joint trajectories.

Tests are conducted on different NVIDIA GPUs whose
proprieties are summarized in Table 1. We compare the
performance of the optimization process when dealing with
single- or double-precision floating-point numbers, and
with the previous parallel CPU version.

6.1 Scenarios

Our test scenarios are made with the HRP-2 humanoid robot
with motions lasting several seconds. We use constraints
described in Sec. 2.5 without a cost function to evaluate the
performance of our library. We also froze some joints (e.g.
hands, neck) since there is no manipulation done. We end
up with a total number of 28 joints (29 bodies). The position
of the main contact link is given (right foot).
Scenario 1 The robot starts in the half-sitting configuration

with its right hand horizontal (must be kept so all the
time); then lowers its CoM below a given threshold
(while shifting it above the support polygon of its other
foot); then gets back to the original configuration. All of
it is done under joint position and speed limits.

Scenario 2 Same as the previous one, except that instead of
constraining the right hand, a constraint to keep its two
feet on the ground is used (i.e. additional equality con-
straints on the second foot for position and orientation).

Scenario 3 The robot achieves a kick motion with a mini-
mum velocity of 1m/s, while keeping its CoM above
its right foot, keeping its right hand fixed in position
and orientation (with a small margin of error) under
joint position and speed limits.

6.2 Timings

The reported timings are the time spent in the optimization
process, i.e. we clock the call to RobOptim’s solve()
method. The initialization time is not included, since the
allocations and preprocessing are done once and for all.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 11

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 6. Jacobian matrices for each scenario presented in Sec. 6.1. The left matrix describes the log10 of the Jacobian matrix’s amplitudes, and the
right one shows the actual sparsity structure taken into account. Dense blocks represent unfiltered constraints w.r.t. the interval’s control points.

Scenario 1 (start) Scenario 1 (end)

Scenario 2 (start) Scenario 2 (end)

Scenario 3 (start) Scenario 3 (end)

Fig. 7. Snapshots from whole-body motion planning with the HRP-2 humanoid robot, and the associated simplified kinematic tree (root = right foot).

Thus, timings include GPU computation, memory trans-
fers between host and device, solver data filling and com-
putation done in the NLP solver (IPOPT). Even though
computing the inverse dynamics is not mandatory (since
there is no contact forces), we still included its computation
to give a fair order of the computation time we expect,
even though adding contact forces will increase the number
of optimization parameters resulting in a more expensive
gradient computation for the inverse dynamics.

Three different setups are considered:
• Desktop with a Tesla C2070 GPU and an Intel Xeon

W5590 CPU @ 3.33GHz,
• Laptop with a GeForce GT 650M GPU and an Intel Core

i7-3740QM CPU @ 2.70GHz,
• Server with a GeForce GTX Titan Black GPU and an

Intel Core i7-4930K CPU @ 3.40GHz.
On the laptop running the optimization with the GeForce

GT 650M GPU, computation time (excluding the solver) for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 12

Model Tesla C2070 GeForce GT 650M GeForce GTX Titan Black
Microarchitecture Fermi Kepler
Compute Capability (CC) 2.0 3.0 3.5
Shared Multiprocessors (SMs) 14 2 15
cores/SM 32 192
Memory (MiB) 5375 2048 6144
GPU max clock rate (MHz) 1147 835 980
32-bit registers per thread 63 255
Maximum amount of shared memory per MP (KB) 48

TABLE 1
NVIDIA GPUs considered for these tests: older Tesla card, mobile GPU, and more recent high-end hardware.

Scenarios Scenario 1 Scenario 2 Scenario 3
n (input) 196 196 336
m (output) 1224 1524 1960
Nonzeros in the Jacobian 11424 34944 30688
Motion time (s) 4 4 5

TABLE 2
Scenarios with the HRP-2 humanoid model (29 bodies). We use cubic
B-splines for the parametrization of joint trajectories. 10 intervals were

chosen for the first and second scenarios, and 15 for the third one.

a typical iteration of the second scenario is classified as
follows:
• Direct computation: 9.27%
• Gradient computation: 75.27%
• Filling RobOptim’s sparse Jacobian matrix: 14.71%
• Others: 0.75%

We reached the point where simply fetching data copied
back from the GPU in compact form and filling the global
sparse Jacobian with it is no longer negligible w.r.t. the total
computation time. If we also take into account the average
time spent in the solver at each iteration, we get:
• Time spent in the parallel simulator: 91.69%
• Time spent in the solver (IPOPT): 8.31%
Although we can reduce the number of nonzeros in the

Jacobian matrix by taking the kinematic tree into account,
or optimize the sparse Jacobian filling process, time spent
inside the NLP solver is out of our control for we are using
off-the-shelf solvers.

Since historically, GPUs have been used for computer
graphics were high precision is rarely required, most GPUs
will have a much higher throughput in single precision than
in double precision. The theoretical ratio for peak perfor-
mance FP64/FP32 may vary from 1/2 to 1/32 depending
on the hardware. This difference is explained by a varying
number of cores dedicated to double-precision computation,
which is often lower for cards designed for the gaming
industry. Thus, we made the choice of supporting both,
since a higher precision may lead to a faster convergence
as seen with the third scenario in Table 3 (NLP solvers deal
with double-precision floats), but a lower precision allows
for faster computation on the GPU.

We disabled ECC (error-correcting code) support on the
Tesla card, since this feature is not available on the other
cards. It is not that relevant in this context: computation
lasts a few seconds, and the solver may be able to recover
from most single-bit errors should they happen. Still, if we
manage to reduce computation time even more and start
merging our planning with low-level control, it would be
worth reconsidering ECC errors that could potentially lead
to critical failures on the robot.

The previous parallel CPU version presented in [2] sup-
ported more features (e.g. contact forces, collision detection),
so we are currently unable to make a direct comparison for
the resolution of full problems. For similar scenarios how-
ever (no constraint on forces or torques, no cost function,
no collision detection, same number of intervals), a timing
comparison between the CPU and GPU versions is available
in Table 4. We summarize average timings per iteration to
compare the computational load independently from the
optimization process itself. For all the CPUs considered, the
maximum number of processors available was lower than
the number of time intervals.

As for more complex scenarios involving n ≈ 2000 op-
timization parameters and m ≈ 30000 constraints, scaling
was an issue for the CPU version, since it took several hours
to compute. Even though this represents highly challenging
problems, we still expect to run the computation with our
GPU approach in (at most) a matter of minutes for such
extreme scenarios. A lot of effort was also spent over the
years to optimize the performance of the CPU library (e.g.
avoiding costly allocations), which can still be done for our
GPU implementation.

6.3 Limitations
GPUs provide competitive accelerators that can speed
up computation time substantially for highly-parallelizable
problems. Yet, GPU parallelization remains a challenging
task for a wide range of applications. Making GPGPU com-
putation more accessible without sacrificing performance is
being actively researched [30]. GPGPU frameworks evolve
to improve usability: the introduction of Unified Virtual
Memory in CUDA reduces the quantity implementation
that had to be managed manually by the developers, for
GPUs with Compute Capability 3.0 or higher.

Most high-level GPGPU libraries such as Thrust or Ar-
rayFire rely on high-level abstractions to perform classical
operations (sum, scan, etc.) on simple data types (integer,
floats). Here, we are far from the traditional use case, i.e.
polynomial computation with multiple logical dimensions.
Moreover, we may be sacrificing performance for ease of
use by using generic implementations not adapted for our
use case. As a result, we developed our own low-level
polynomial GPU library customized for our problem.

Running our code on different architectures revealed
how difficult choosing the best implementation strategy
for a given kernel is. For instance, some accumulations
provide acceptable performance on the GT 650M card with
atomic operations on global memory, but the Tesla C2070
had a better throughput when relying on temporary shared
memory.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 13

Scenarios Scenario 1 Scenario 2 Scenario 3
Floating-point precision single double single double single double
IPOPT iterations 13 14 12 12 19 16

Computation time (s):
total (average per iter.)

Tesla C2070 0.422 (0.032) 0.833 (0.060) 0.541 (0.045) 0.872 (0.073) 1.027 (0.054) 1.508 (0.094)
GeForce GT 650M 0.787 (0.061) 1.535 (0.110) 0.865 (0.072) 1.485 (0.124) 1.833 (0.096) 2.755 (0.172)
GeForce GTX Titan Black 0.312 (0.024) 0.426 (0.030) 0.392 (0.033) 0.496 (0.041) 0.680 (0.036) 0.766 (0.048)

TABLE 3
Timings (total and average per iteration) for the HRP-2 scenarios with both single- and double-precision floats, for each GPU, and without any cost
function. This includes geometry, kinematics, dynamics (albeit not required), constraint evaluations and their gradient counterpart, and time spent
in the solver. Note that an IPOPT iteration may not always involve a constraint Jacobian query, so for two different scenarios, even if the number of

iterations is similar, the actual number of Jacobian evaluations may be different.

Computer Desktop (Tesla C2070) Laptop (GT 650M) Server (GTX Titan Black)
Avg. (ms/iter.) Speedup Avg. (ms/iter.) Speedup Avg. (ms/iter.) Speedup

CPU (1 thread) 2715 1.0 2178 1.0 2235 1.0
CPU (2 threads) 1747 1.6 1144 1.9 1255 1.8
CPU (4 threads) 1011 2.7 712 3.1 697 3.2
CPU (6 threads) - - 654 3.3 521 4.3
CPU (8 threads) - - 602 3.6 515 4.4
CPU (10 threads) - - - - 485 4.6
CPU (12 threads) - - - - 479 4.7
GPU (double) 94 28.9 172 12.7 48 46.6
GPU (single) 54 50.3 96 22.7 36 62.1

TABLE 4
Average time per iteration in ms for the parallel CPU version (for multiple thread counts) and our GPU version (for single- and double-precision

floats), with associated speedup relative to the single-threaded CPU version. The scenario considered has n ≈ 300, with geometry and kinematics
constraints (m ≈ 2000), and 15 time intervals. Computation on the CPU is done with double-precision floating numbers. This table gives an idea of

the speedup to expect for the core computation on different systems, and we expect an even better speedup once highly-parallelizable collision
constraints are added.

Also, when venturing off the beaten tracks, it is not un-
common to find errors in the dependencies of one’s project.
In our case, since our method is not usually ported to GPUs,
we encountered several bugs in the CUDA compiler, and the
long release cycle of proprietary software can then become
an extra problem that needs to be dealt with.

7 CONCLUSION

Our work lays outside the box of usual GPGPU problems. It
paves the way for a full-fledged GPU multi-contact motion
planning library dedicated to complex robotic systems. By
leveraging the high dimensionality as well as its sparsity
structure, and formulating the problem at best of what
could be parallelized, we managed to compute in a matter
of seconds or less continuous whole-body trajectories of
our motion planning on the GPU. This result brings us
closer to real-time and hence to a closed-loop whole-body
model preview controller (the Holy Grail researched in
robotics). There is still room for improvements regarding the
computation times. Ideally, the solver would also be part of
the GPU and even customized to robotic problems to gain
higher factors of performance.

Our future work involves integrating contact forces and
their parametrization to the optimization problem and the
GPU pipeline [3]. Since the sequence of contacts is found by
a contact planner [31] or given by the user, the numbers of
contacts and related parameters are known a priori. Plus,
we design the problem such that any change in the contact
configuration happens on interval boundaries, allowing us
to integrate them in the current framework. Contact forces
may be discontinuous on such changes. If continuity is
required by the motion design, it can be enforced with ad-
ditional constraints. As for collision avoidance, some inter-
esting works specifically target distance computation along

a trajectory (e.g. [32]), but rely on iterative computations
(GJK algorithm), while we would rather seek a closed-form
expression of the distance (of a chosen norm) that could be
easily integrated to our polynomial-based GPU pipeline. In
the long term, we also plan to embed at best performances
parts of the solver in the GPU architecture.

ACKNOWLEDGMENTS

This work is supported by EU FP7 IP RoboHow.Cog (www.
robohow.eu), and by the Japan Society for Promotion of
Science (JSPS): Postdoctoral Fellowship P13786, and Grant-
in-Aid for Scientific Research (B) 25280096.

REFERENCES

[1] M. Guilbert, L. Joly, and P.-B. Wieber, “Optimization of complex
robot applications under real physical limitations,” The Interna-
tional Journal of Robotics Research, vol. 27, no. 5, pp. 629–644, 2008.

[2] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation
of Whole-body Optimal Dynamic Multi-Contact Motions,” Inter-
national Journal of Robotics Research, vol. 32, no. 9-10, pp. 1104–1119,
Apr. 2013.

[3] B. Chrétien, A. Escande, and A. Kheddar, “Continuously satisfying
constraints with contact forces in trajectory optimization for hu-
manoid robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2015.

[4] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots - Application to the kick motion
of the HRP-2 robot,” in IEEE International Conference on Robotics
and Biomimetics, 2006, pp. 299–304.

[5] S. Lengagne, N. Ramdani, and P. Fraisse, “Guaranteed compu-
tation of constraints for safe path planning,” 2007 7th IEEE-RAS
International Conference on Humanoid Robots, 2007.

[6] G. Kozikowski and B. Kubica, “Interval Arithmetic and Auto-
matic Differentiation on GPU Using OpenCL,” in Applied Parallel
and Scientific Computing, ser. Lecture Notes in Computer Science,
P. Manninen and P. Öster, Eds. Springer Berlin Heidelberg, 2013,
vol. 7782, pp. 489–503.

www.robohow.eu
www.robohow.eu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016 14

[7] E. Smith, J. Gondzio, and J. Hall, “GPU Acceleration of the Matrix-
Free Interior Point Method,” in Parallel Processing and Applied
Mathematics. Springer, 2012, pp. 681–689.

[8] R. Featherstone, “A divide-and-conquer articulated-body algo-
rithm for parallel O(log(n)) calculation of rigid-body dynamics.
part 1: Basic algorithm,” The International Journal of Robotics Re-
search, vol. 18, no. 9, pp. 867–875, Sep. 1999.

[9] ——, “A divide-and-conquer articulated-body algorithm for par-
allel O(log(n)) calculation of rigid-body dynamics. Part 2: Trees,
loops, and accuracy,” The International Journal of Robotics Research,
vol. 18, no. 9, pp. 876–892, Sep. 1999.

[10] K. Yamane and Y. Nakamura, “Parallel O(logn) algorithm for dy-
namics simulation of humanoid robots,” in IEEE-RAS International
Conference on Humanoid Robots, 2006, pp. 554–559.

[11] ——, “Comparative Study on Serial and Parallel Forward Dy-
namics Algorithms for Kinematic Chains,” International Journal of
Robotics Research, vol. 28, no. 5, pp. 622–629, May 2009.

[12] A. Tasora, D. Negrut, and M. Anitescu, “GPU-based parallel
computing for the simulation of complex multibody systems
with unilateral and bilateral constraints: an overview,” Multibody
Dynamics, vol. 23, 2011.

[13] K. Bhalerao, J. Critchley, and K. Anderson, “An efficient parallel
dynamics algorithm for simulation of large articulated robotic
systems,” Mechanism and Machine Theory, 2012.

[14] J. J. Zhang, Y. F. Lu, and B. Wang, “A nonrecursive Newton-Euler
formulation for the parallel computation of manipulator inverse
dynamics,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 28, no. 3, pp. 467–471, 1998.

[15] O. Eğecioğlu, E. Gallopoulos, and C. K. Koç, “A parallel method
for fast and practical high-order newton interpolation,” BIT,
vol. 30, no. 2, pp. 268–288, Jun. 1990.

[16] M. Harris et al., “Optimizing parallel reduction in CUDA,”
NVIDIA Developer Technology, vol. 2, no. 4, 2007.

[17] S. W. Ha and T. D. Han, “A scalable work-efficient and depth-
optimal parallel scan for the GPGPU environment,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2324–
2333, 2013.

[18] E. Rustico, G. Bilotta, A. Herault, C. Del Negro, and G. Gallo,
“Advances in Multi-GPU Smoothed Particle Hydrodynamics Sim-
ulations,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 1, pp. 43–52, Jan 2014.

[19] J. Pan and D. Manocha, “GPU-based parallel collision detection for
fast motion planning,” The International Journal of Robotics Research,
vol. 31, no. 2, pp. 187–200, 2012.

[20] C. Park, J. Pan, and D. Manocha, “High-Dof Robots in Dynamic
Environments Using Incremental Trajectory Optimization,” Inter-
national Journal of Humanoid Robotics, vol. 11, no. 02, 2014.

[21] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,”
IEEE International Conference on Robotics and Automation, 2009.

[22] T. Moulard, B. Chrétien, and E. Yoshida, “Software Tools for Non-
linear Optimization– Modern Solvers and Toolboxes for Robotics,”
Journal of the Robotics Society of Japan, vol. 32, no. 6, pp. 536–541,
2014.

[23] A. Wächter and L. T. Biegler, “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming,” in Mathematical Programming. Springer-Verlag,
2006, vol. 106, no. 1, pp. 25–57.

[24] B. V. Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal, “Perfor-
mance models for CPU-GPU data transfers,” Proceedings - 14th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pp. 11–20, 2014.

[25] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through mi-
crobenchmarking,” in IEEE International Symposium on Performance
Analysis of Systems & Software, Mar. 2010, pp. 235–246.

[26] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multipli-
cation on CUDA,” Nvidia Technical Report, pp. 1–32, 2008.

[27] H. Hemami, “A state space model for interconnected rigid bod-
ies,” IEEE Transactions on Automatic Control, 1982.

[28] D. Izzo, M. Ruciski, and F. Biscani, “The generalized island
model,” in Parallel Architectures and Bioinspired Algorithms, ser.
Studies in Computational Intelligence. Springer Berlin Heidel-
berg, 2012, vol. 415, pp. 151–169.

[29] V. Volkov, “Better performance at lower occupancy,” Proceedings of
the GPU Technology Conference, vol. 10, 2010.

[30] T. Han and T. Abdelrahman, “hiCUDA: High-Level GPGPU Pro-
gramming,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 78–90, Jan 2011.

[31] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points
for humanoid robots,” Robotics and Autonomous Systems, vol. 61,
no. 5, pp. 428–442, 2013.

[32] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with
sequential convex optimization and convex collision checking,”
The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–
1270, 2014.

Benjamin Chrétien is a Doctoral student at
CNRS-UM LIRMM since October 2012. He re-
ceived his MSc degree in Aerospace Engineer-
ing from ISAE SUPAERO, Toulouse, France,
in 2012, and currently prepares his thesis un-
der the supervision of Abderrahmane Khed-
dar. His research interests include humanoid
robotics, high-performance computing, GPGPU
algorithms, numerical optimization and motion
planning.

Adrien Escande received the MSc degree in
2005 from École des Mines de Paris, France
and the PhD degree in 2008 in robotics from
Université d’Évry Val-d’Essonne, France af-
ter spending three years in the CNRS-AIST
Joint Robotics Laboratory (JRL), UMI3218/CRT,
Tsukuba, Japan. He then worked as a research
scientist in CEA-LIST at Fontenay-aux-Roses,
France, until the end of 2012 and is now back
at JRL. His current research interests include
whole-body planning and control for humanoid

robots and mathematical optimization for robotics.

Abderrahmane Kheddar received the BSCS
degree from the Institut National d’Informatique
(ESI), Algiers, the MSc and PhD degrees in
robotics, both from the University of Pierre and
Marie Curie, Paris 6. He is presently Directeur
de Recherche at CNRS. He is the Director of
the CNRS-AIST Joint Robotic Laboratory (JRL),
UMI3218/RL, Tsukuba, Japan; and the leader
of the Interactive Digital Humans (IDH) team at
CNRS-UM LIRMM, Montpellier, France. His re-
search interests include humanoid robotics, hap-

tics, and thought-based control using brain machine interfaces. He is a
founding member of the IEEE/RAS chapter on haptics, the co-chair and
co-founding member of the IEEE/RAS Technical committee on model-
based optimization. He is presently Editor of the IEEE Transactions on
Robotics, and the Journal of Intelligent and Robotic Systems; he is a
founding member of the IEEE Transactions on Haptics and served in its
editorial board in 2007-2010, he also served as associate editor in the
MIT Press PRESENCE. He coordinated or acted as a PI for several EU
projects. He is titular member of the National Academy of Technologies
of France (NATF) and a Senior Member of the IEEE Society.

	1 Introduction
	2 Problem Formulation
	2.1 Robot definition
	2.2 Equation of Motion
	2.3 Cartesian quantities
	2.4 General formulation
	2.5 Cost and constraints
	2.6 Parametrization of variables
	2.7 Constraint approximation
	2.8 Optimization process

	3 Computation
	3.1 Geometry and kinematics
	3.2 Gradient
	3.3 Polynomial approximation

	4 Parallelization
	4.1 Main ideas
	4.2 Data-independent parallelism
	4.3 Data-dependent parallelism

	5 GPU implementation
	5.1 Main ideas and choices
	5.2 CUDA memory and threading model
	5.3 Kinematics and dynamics evaluators
	5.4 Gradient computation
	5.5 Data structures and kernel launch strategy
	5.6 Sparsity structure

	6 Results
	6.1 Scenarios
	6.2 Timings
	6.3 Limitations

	7 Conclusion
	References
	Biographies
	Benjamin Chrétien
	Adrien Escande
	Abderrahmane Kheddar

