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1 Introduction:

√ n-Lemma

The Chernoff √ n-Lemma is a key point in the theory of semigroup approximations proposed in [START_REF] Chernoff | Product formulas, nonlinear semigroups and addition of un-bounded operators[END_REF]. For the reader convenience we recall this lemma below.

1 Lemma 1.1. Let C be a contraction on a Banach space X. Then {e t(C-1 } t≥0 is a norm-continuousn contraction semigroup on X and one has the estimate

(C n -e n(C-1) )x ≤ √ n (C -1)x . (1.1)
for all x ∈ X and n ∈ N.

Proof. To prove the inequality (1.1) we use the representation

C n -e n(C-1) = e -n ∞ m=0 n m m! (C n -C m ) . (1.2) 
To proceed we insert

(C n -C m )x ≤ (C |n-m| -1)x ≤ |m -n| (C -1)x , (1.3) 
into (1.2) to obtain by the Cauchy-Schwarz inequality the estimate:

(C n -e n(C-1) )x ≤ (C -1)x e -n ∞ m=0 n m m! |m -n| ≤ { ∞ m=0 e -n n m m! |m -n| 2 } 1/2 (C -1)x , x ∈ X , (1.4) 
Note that the sum in the right-hand side of (1.4) can be calculated explicitly. This gives the value n, which yields (1.1).

The aim of the present note is to revise the Chernoff √ n-Lemma in two directions. First, we improve the √ n-estimate (1.1) for contractions. Then we apply this new estimate to the proof of the Trotter product formula in the strong operator topology (Section 2). Second, we use the idea of Section 2 to lift these results in Section 3 to the operator-norm estimates for a special class of contractions: the quasisectorial contractions. √ n-Lemma 2.1 is better than (1.1). The scheme of the proof will be useful later (Section 3), when we use it for proving the convergence of Lie-Trotter product formula in the operator-norm topology.

Lemma 2.1. Let C be a contraction on a Banach space X. Then {e t(C-1 } t≥0 is a norm-continuous contraction semigroup on X and one has the estimate

(C n -e n(C-1) )x ≤ 1 n 2δ + n δ+1/2 (1 -C)x , n ∈ N. (2.1)
for all x ∈ X and δ ∈ R.

Proof. Since the operator C is bounded and C ≤ 1, (1 -C) is a generator of the norm-continuous semigroup, which is also a contraction:

e t(C-1) ≤ e -t ∞ m=0 t m m! C m ≤ 1 , t ≥ 0 .
To estimate (2.1) we use the representation

C n -e n(C-1) = e -n ∞ m=0 n m m! (C n -C m ) . (2.2) 
Let ǫ n := n δ+1/2 , n ∈ N. We split the sum (2.2) into two parts: the central part for |m -n| ≤ ǫ n and tails for |m -n| > ǫ n .

To estimate the tails we use the Tchebychev inequality. Let X n be a Poisson random variable of the parameter n, i.e., the probability P{X n = m} = n m e -n /m!. One obtains for the expectation E(X n ) = n and for the variance Var(X n ) = n. Then by the Tchebychev inequality:

P{|X n -E(X n )| > ǫ} ≤ Var(X n ) ǫ 2
, for any ǫ > 0 .

Now to estimate (2.2) we note that

(C n -C m )x = C n-k (C k -C m-n+k )x ≤ |m -n| C n-k (1 -C)x , k = 0, 1, . . . , n .
Put in this inequality k = [ǫ n ], here [•] denotes the integer part. Then by C ≤ 1 and by the Tchebychev inequality we obtain the estimate for tails:

e -n |m-n|>ǫn n m m! (C n -C m )x ≤ (2.3) (1 -C)x e -n |m-n|>ǫn n m m! |m -n| ≤ n ǫ 2 n (1 -C)x = 1 n 2δ (1 -C)x .
To estimate the central part of the sum (2.2), when |m -n| ≤ ǫ n , note that:

(C n -C m )x ≤ |m -n| C n-[ǫn] (1 -C)x (2.4) ≤ ǫ n (1 -C)x .
Then we obtain:

e -n |m-n|≤ǫn n m m! (C n -C m )x ≤ n δ+1/2 (1 -C)x ,
for n ∈ N. This last estimate together with (2.3) yield (2.1).

Note that for δ = 0 the estimate (2.1) gives for large n the same asymptotic as the Chernoff √ n-Lemma, whereas for optimal value δ = (-1/6) the asymptotic 2 3 √ n is better than (1.1). We call this result the 3 √ n-Lemma.

Theorem 2.2. Let Φ : t → Φ(t) be a function from R + to contractions on X such that Φ(0) = 1. Let {U A (t)} t≥0 be a contraction semigroup, and let D ⊂ dom(A) be a core of the generator A. If the function Φ(t) has a strong right-derivative Φ ′ (+0) at t = 0 and

Φ ′ (+0)u := lim t→+0 1 t (Φ(t) -1)u = -Au , for all u ∈ D, then lim n→∞ [Φ(t/n)] n x = U A (t) x , (2.5) 
for all t ∈ R + and x ∈ X Proof. Consider the bounded approximation A n of generator A:

A n (s) := 1 -Φ(s/n) s/n . (2.6)
This operator is accretive:

(A n (s) + ζ1) -1 ∈ L(X) and (A n (s) + ζ1) -1 ≤ (Re(ζ)) -1 for Re(ζ) > 0, and lim n→∞ A n (s) u = A u , (2.7) 
for all u ∈ D and for bounded s. Therefore, by virtue of the Trotter-Neveu-Kato generalised strong convergence theorem one gets:

lim n→∞ e -t An(s) x = U A (t) x , (2.8) 
i.e., the strong and the uniform in t and s convergence (2.8) of the approximants {e -t An(s) } n≥1 for s ∈ (0, s 0 ]. By Lemma 2.1 for contraction C := Φ(t/n) and for A n (s)| s=t we obtain

[Φ(t/n)] n x -e -t An(t) x = ([Φ(t/n)] n -e n(Φ(t/n)-1) ) x ≤ (2.9) ≤ 2 n 2δ x + n δ+1/2 (1 -Φ(t/n)) x .
Since for any u ∈ D and uniformly on [0, t 0 ] one gets 

lim n→∞ n δ+1/2 (1 -Φ(t/n)) u = lim n→∞ t n δ-1/2 A n (t) u = 0 , ( 2 
lim n→∞ [Φ(t/n)] n x = U A (t) x ,
which by density of D is extended to all x ∈ X, cf (2.5).

We call (2.5) the (strong) Chernoff approximation formula for the semigroup {U A (t)} t≥0 .

Proposition 2.3. [3](Lie-Trotter product formula) Let A, B and C be generators of contraction semigroups on X. Suppose that algebraic sum

Cu = Au + Bu , (2.12) 
is valid for all vectors u in a core D ⊂ dom C. Then the semigroup {U C (t)} t≥0 can be approximated on X in the strong operator topology (2.9) by the Lie-Trotter product formula:

e -tC x = lim n→∞ (e -tA/n e -tB/n ) n x , x ∈ X , (2.13) 
for all t ∈ R + and for C := (A + B), which is the closure of the algebraic sum (2.12).

Proof. Let us define the contraction R + ∋ t → Φ(t), Φ(0) = 1, by Φ(t) := e -tA e -tB .

(2.14) We comment that D α=π/2 = D (unit disc) and recall that a general contraction C verifies the weaker condition: W (C) ⊆ D.

Note that if u ∈ D, then derivative Φ ′ (+0)u = lim t→+0 1 t (Φ(t) -1) u = -(A + B) u . ( 2 
Note that if operator C is a quasi-sectorial contraction, then 1 -C is an m-sectorial operator with vertex z = 0 and semi-angle α. Then for C the limits: α = 0 and α = π/2, correspond respectively to self-adjoint and to standard contractions whereas for 1 -C they give a non-negative self-adjoint and an m-accretive (bounded) operators.

The resolvent of an m-sectorial operator A, with semi-angle α ∈ [0, α 0 ], α 0 < π/2, and vertex at z = 0, gives an example of the quasi-sectorial contraction.

Proposition 3.2. [2, 6] If C is a quasi-sectorial contraction on a Hilbert space H with semi-angle 0 ≤ α < π/2, then C n (1 -C) ≤ K n + 1 , n ∈ N . (3.2)
The property (3.2) implies that the quasi-sectorial contractions belong to the class of the so-called Ritt operators [START_REF] Ritt | A condition that lim n→∞ T n = 0[END_REF]. This allows to go beyond the

3 √ n -Lemma 2.1 to the ( 3 √ n) -1 -Theorem. Theorem 3.3. (( 3 √ n) -1 -Theorem) Let C be a quasi-sectorial contraction on H with numerical range W (C) ⊆ D α , 0 ≤ α < π/2. Then C n -e n(C-1) ≤ M n 1/3 , n = 1, 2, 3, . . . (3.3)
where M = 2K + 2 and K is defined by (3.2).

Proof. Note that with help of inequality (3.2) we can improve the estimate (2.4) in Lemma 2.1:

C n -C m ≤ |m -n| C n-[ǫn] (1 -C) ≤ ǫ n K n -[ǫ n ] + 1 ,
for ǫ n = n δ+1/2 . Then for δ < 1/2 there the above inequality together with (2.3) give instead of (2.1) (or (1.1)) the operator-norm estimate

C n -e n(C-1) ≤ 2 n 2δ + 2K n 1/2-δ , n ∈ N . (3.4) 
Then the estimate M/n 1/3 of the Theorem 3.3 results from the optimal choice of the value: δ = 1/6, in (3.4).

Similar to ( 3 √ n)-Lemma, the ( 3 √ n) -1
-Theorem is the first step in developing the operator-norm approximation formula à la Chernoff. To this end one needs an operator-norm analogue of Theorem 2.2. Since the last includes the Trotter-Neveu-Kato strong convergence theorem, we need the operator-norm extension of this assertion to quasi-sectorial contractions. Proposition 3.4. [2] Let {X(s)} s>0 be a family of m-sectorial operators in a Hilbert space H with W (X(s)) ⊆ S α for some 0 < α < π/2 and for all s > 0. Let X 0 be an m-sectorial operator defined in a closed subspace H 0 ⊆ H, with W (X 0 ) ⊆ S α . Then the two following assertions are equivalent: e -tX(s) -e -tX 0 P 0 = 0 , for t > 0 .

(a) lim s→+0 (ζ1 + X(s)) -1 -(ζ1 + X 0 ) -1 P 0 = 0 , for ζ ∈ S π-α , (b) lim 
Here P 0 denotes the orthogonal projection from H onto H 0 .

Proposition 3.5.

[2] Let {Φ(s)} s≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H, i.e. such that there exists 0 ≤ α < π/2 and W (Φ(s)) ⊆ D α , for all s ≥ 0. Let

X(s) := (1 -Φ(s))/s , (3.5) 
and let X 0 be a closed operator with non-empty resolvent set, defined in a closed subspace H 0 ⊆ H. Then the family {X(s)} s>0 converges, when s → +0, in the uniform resolvent sense to the operator X 0 if and only if lim n→∞ Φ(t/n) n -e -tX 0 P 0 = 0 , for t > 0 .

(3.6)

Here P 0 denotes the orthogonal projection onto the subspace H 0 .

Let A be an m-sectorial operator with semi-angle 0 < α < π/2 and with vertex at 0, which means that numerical range W (A) ⊆ S α = {z ∈ C : | arg(z)| ≤ α}. Then {Φ(t) := (1 + tA) -1 } t≥0 is the family of quasisectorial contractions, i.e. W (Φ(t)) ⊆ D α . Let X(s) := (1 -Φ(s))/s, s > 0, and X 0 := A. Then X(s) converges, when s → +0, to X 0 in the uniform resolvent sense with the asymptotic

(ζ1 + X(s)) -1 -(ζ1 + X 0 ) -1 = s A ζ1 + A + ζsA • A ζ1 + A = O(s),
for any ζ ∈ S π-α , since we have the estimate:

A ζ1 + A + ζsA • A ζ1 + A ≤ 1 + |ζ| dist (ζ(1 + sζ) -1 , -S α ) 1 + |ζ| dist(ζ, -S α )
.

Therefore, the family {Φ(t)} t≥0 satisfies the conditions of Proposition 3.5. This implies the operator-norm approximation of the exponential function , i.e. the semigroup for m-sectorial generator, by the powers of resolvent (the Euler approximation formula): Corollary 3.6. If A is an m-sectorial operator in a Hilbert space H, with semi-angle α ∈ (0, π/2) and with vertex at 0, then lim n→∞ (1 + tA/n) -n -e -tA = 0 , t ∈ S π/2-α .

(3.7)

Conclusion

Summarising we note that for the quasi-sectorial contractions instead of divergent Chernoff's estimate (1.1) we find the estimate (3.4), which converges for n → ∞ to zero in the operator-norm topology. Note that the rate O(1/n 1/3 ) of this convergence is obtained with help of the Poisson representation and the Tchebychev inequality in the spirit of the proof of Lemma 2.1, and that it is not optimal. The estimate M/n 1/3 in the ( 3 √ n) -1 -Theorem 3.3 can be improved by a more refined lines of reasoning. For example, by scrutinising our probabilistic arguments one can find a more precise Tchebychev-type bound for the tail probabilities. This improves the estimate (3.4) to the rate O( ln(n)/n), see [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasi-sectorial operators[END_REF].

On the other hand, a careful analysis of localisation the numerical range of quasi-sectorial contractions [START_REF] Zagrebnov | Quasi-sectorial contractions[END_REF][START_REF] Arlinski | Numerical range and quasi-sectorial contractions[END_REF], allows to lift the estimate in Theorem 3.3 and in Corollary 3.6 to the ultimate optimal rate O(1/n).

Note that the optimal estimate O(1/n) in (3.4) one can easily obtain with help of the spectral representation for a particular case of the self-adjoint quasi-sectorial contractions, i.e. for α = 0. This also concerns the optimal O(1/n) rate of convergence of the self-adjoint Euler approximation formula (3.7).
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  Quasi-sectorial contractions: ( 3 √ n) -1 -Theorem Definition 3.1. [2] A contraction C on the Hilbert space H is called quasisectorial with semi-angle α ∈ [0, π/2) with respect to the vertex at z = 1, if its numerical range W (C) ⊆ D α . Here D α := {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 -z)| ≤ α and |z -1| ≤ cos α}. (3.1)

  s→+0
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