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Abstract

The Chernoff
√
n-Lemma is revised. This concerns two aspects: an

improvement of the Chernoff estimate in the strong operator topol-
ogy and an operator-norm estimate for quasi-sectorial contractions.
Applications to the Lie-Trotter product formula approximation for
semigroups is presented.
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1 Introduction:
√
n-Lemma

The Chernoff
√
n-Lemma is a key point in the theory of semigroup approx-

imations proposed in [3]. For the reader convenience we recall this lemma
below.

Lemma 1.1. Let C be a contraction on a Banach space X. Then {et(C−1}t≥0

is a norm-continuousn contraction semigroup on X and one has the estimate

‖(Cn − en(C−1))x‖ ≤
√
n ‖(C − 1)x‖ . (1.1)

for all x ∈ X and n ∈ N.

Proof. To prove the inequality (1.1) we use the representation

Cn − en(C−1) = e−n
∞
∑

m=0

nm

m!
(Cn − Cm) . (1.2)

To proceed we insert

‖(Cn − Cm)x‖ ≤
∥

∥(C |n−m| − 1)x
∥

∥ ≤ |m− n|‖(C − 1)x‖ , (1.3)

into (1.2) to obtain by the Cauchy-Schwarz inequality the estimate:

‖(Cn − en(C−1))x‖ ≤ ‖(C − 1)x‖ e−n

∞
∑

m=0

nm

m!
|m− n| ≤

{
∞
∑

m=0

e−n nm

m!
|m− n|2}1/2‖(C − 1)x‖ , x ∈ X ,

(1.4)

Note that the sum in the right-hand side of (1.4) can be calculated explicitly.
This gives the value n, which yields (1.1).

The aim of the present note is to revise the Chernoff
√
n-Lemma in two

directions. First, we improve the
√
n-estimate (1.1) for contractions. Then

we apply this new estimate to the proof of the Trotter product formula in
the strong operator topology (Section 2).

Second, we use the idea of Section 2 to lift these results in Section 3 to
the operator-norm estimates for a special class of contractions: the quasi-
sectorial contractions.
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2 Revised
√
n-Lemma and Lie-Trotter prod-

uct formula

We start by a technical lemma. It is a revised version of the Chernoff
√
n-

Lemma 1.1. Our estimate (2.1) in 3
√
n-Lemma 2.1 is better than (1.1). The

scheme of the proof will be useful later (Section 3), when we use it for proving
the convergence of Lie-Trotter product formula in the operator-norm topol-
ogy.

Lemma 2.1. Let C be a contraction on a Banach space X. Then {et(C−1}t≥0

is a norm-continuous contraction semigroup on X and one has the estimate

‖(Cn − en(C−1))x‖ ≤
[

1

n2δ
+ nδ+1/2

]

‖(1− C)x‖, n ∈ N. (2.1)

for all x ∈ X and δ ∈ R.

Proof. Since the operator C is bounded and ‖C‖ ≤ 1, (1−C) is a generator
of the norm-continuous semigroup, which is also a contraction:

‖e t(C−1)‖ ≤ e−t‖
∞
∑

m=0

tm

m!
Cm‖ ≤ 1 , t ≥ 0 .

To estimate (2.1) we use the representation

Cn − en(C−1) = e−n
∞
∑

m=0

nm

m!
(Cn − Cm) . (2.2)

Let ǫn := nδ+1/2, n ∈ N. We split the sum (2.2) into two parts: the central
part for |m− n| ≤ ǫn and tails for |m− n| > ǫn.

To estimate the tails we use the Tchebychev inequality. Let Xn be a
Poisson random variable of the parameter n, i.e., the probability P{Xn =
m} = nme−n/m!. One obtains for the expectation E(Xn) = n and for the
variance Var(Xn) = n. Then by the Tchebychev inequality:

P{|Xn − E(Xn)| > ǫ} ≤ Var(Xn)

ǫ2
, for any ǫ > 0 .

Now to estimate (2.2) we note that

‖(Cn − Cm)x‖ = ‖Cn−k(Ck − Cm−n+k)x‖
≤ |m− n|‖Cn−k(1− C)x‖ , k = 0, 1, . . . , n .
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Put in this inequality k = [ǫn], here [·] denotes the integer part. Then by
‖C‖ ≤ 1 and by the Tchebychev inequality we obtain the estimate for tails :

e−n
∑

|m−n|>ǫn

nm

m!
‖(Cn − Cm)x‖ ≤ (2.3)

‖(1− C)x‖ e−n
∑

|m−n|>ǫn

nm

m!
|m− n| ≤ n

ǫ2n
‖(1− C)x‖ =

1

n2δ
‖(1− C)x‖ .

To estimate the central part of the sum (2.2), when |m − n| ≤ ǫn, note
that:

‖(Cn − Cm)x‖ ≤ |m− n|‖Cn−[ǫn](1− C)x‖ (2.4)

≤ ǫn ‖(1− C)x‖ .

Then we obtain:

e−n
∑

|m−n|≤ǫn

nm

m!
‖(Cn − Cm)x‖ ≤ nδ+1/2 ‖(1− C)x‖ ,

for n ∈ N. This last estimate together with (2.3) yield (2.1).

Note that for δ = 0 the estimate (2.1) gives for large n the same asymp-
totic as the Chernoff

√
n-Lemma, whereas for optimal value δ = (−1/6) the

asymptotic 2 3
√
n is better than (1.1). We call this result the 3

√
n-Lemma.

Theorem 2.2. Let Φ : t 7→ Φ(t) be a function from R+ to contractions on
X such that Φ(0) = 1. Let {UA(t)}t≥0 be a contraction semigroup, and let
D ⊂ dom(A) be a core of the generator A. If the function Φ(t) has a strong
right-derivative Φ′(+0) at t = 0 and

Φ′(+0)u := lim
t→+0

1

t
(Φ(t)− 1)u = −Au ,

for all u ∈ D, then
lim
n→∞

[Φ(t/n)]n x = UA(t) x , (2.5)

for all t ∈ R+ and x ∈ X
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Proof. Consider the bounded approximation An of generator A:

An(s) :=
1− Φ(s/n)

s/n
. (2.6)

This operator is accretive: (An(s) + ζ1)−1 ∈ L(X) and ‖(An(s) + ζ1)−1‖ ≤
(Re(ζ))−1 for Re(ζ) > 0, and

lim
n→∞

An(s) u = Au , (2.7)

for all u ∈ D and for bounded s. Therefore, by virtue of the Trotter-Neveu-
Kato generalised strong convergence theorem one gets:

lim
n→∞

e−t An(s) x = UA(t) x , (2.8)

i.e., the strong and the uniform in t and s convergence (2.8) of the ap-
proximants {e−t An(s)}n≥1 for s ∈ (0, s0]. By Lemma 2.1 for contraction
C := Φ(t/n) and for An(s)|s=t we obtain

‖[Φ(t/n)]n x− e−tAn(t) x‖ = ‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ ≤ (2.9)

≤ 2

n2δ
‖x‖+ nδ+1/2‖(1− Φ(t/n)) x‖ .

Since for any u ∈ D and uniformly on [0, t0] one gets

lim
n→∞

nδ+1/2‖(1− Φ(t/n)) u‖ = lim
n→∞

t nδ−1/2‖An(t) u‖ = 0 , (2.10)

for δ < 1/2 , equations (2.9) and (2.10) imply

lim
n→∞

‖[Φ(t/n)]n u− e−t An(t) u‖ = 0, u ∈ D . (2.11)

Then (2.8) and (2.11) together with estimate ‖[Φ(t/n)]n−e−t An(t)‖ ≤ 2 yield
uniformly in t ∈ [0, t0]:

lim
n→∞

[Φ(t/n)]n x = UA(t) x ,

which by density of D is extended to all x ∈ X, cf (2.5).

We call (2.5) the (strong) Chernoff approximation formula for the semi-
group {UA(t)}t≥0.
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Proposition 2.3. [3](Lie-Trotter product formula) Let A, B and C be gen-
erators of contraction semigroups on X. Suppose that algebraic sum

Cu = Au+Bu , (2.12)

is valid for all vectors u in a core D ⊂ domC. Then the semigroup {UC(t)}t≥0

can be approximated on X in the strong operator topology (2.9) by the Lie-
Trotter product formula:

e−tC x = lim
n→∞

(e−tA/ne−tB/n)n x , x ∈ X , (2.13)

for all t ∈ R+ and for C := (A +B), which is the closure of the algebraic
sum (2.12).

Proof. Let us define the contraction R+ ∋ t 7→ Φ(t), Φ(0) = 1, by

Φ(t) := e−tAe−tB . (2.14)

Note that if u ∈ D, then derivative

Φ′(+0)u = lim
t→+0

1

t
(Φ(t)− 1) u = −(A +B) u . (2.15)

Now we are in position to apply Theorem 2.2. This yields (2.13) for
C := (A+B).

Corollary 2.4. Extension of the strong convergent Lie-Trotter product for-
mula of Proposition 2.3 to quasi-bounded and holomorphic semigroups goes
through verbatim.

3 Quasi-sectorial contractions: ( 3
√
n)−1-Theorem

Definition 3.1. [2] A contraction C on the Hilbert space H is called quasi-
sectorial with semi-angle α ∈ [0, π/2) with respect to the vertex at z = 1, if
its numerical range W (C) ⊆ Dα. Here

Dα := {z ∈ C : |z| ≤ sinα} ∪ {z ∈ C : | arg(1− z)| ≤ α and |z − 1| ≤ cosα}.
(3.1)
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We comment that Dα=π/2 = D (unit disc) and recall that a general con-
traction C verifies the weaker condition: W (C) ⊆ D.

Note that if operator C is a quasi-sectorial contraction, then 1−C is an
m-sectorial operator with vertex z = 0 and semi-angle α. Then for C the
limits: α = 0 and α = π/2, correspond respectively to self-adjoint and to
standard contractions whereas for 1−C they give a non-negative self-adjoint
and an m-accretive (bounded) operators.

The resolvent of an m-sectorial operator A, with semi-angle α ∈ [0, α0],
α0 < π/2, and vertex at z = 0, gives an example of the quasi-sectorial
contraction.

Proposition 3.2. [2, 6] If C is a quasi-sectorial contraction on a Hilbert
space H with semi-angle 0 ≤ α < π/2, then

‖Cn(1− C)‖ ≤ K

n + 1
, n ∈ N . (3.2)

The property (3.2) implies that the quasi-sectorial contractions belong to
the class of the so-called Ritt operators [5]. This allows to go beyond the
3
√
n -Lemma 2.1 to the ( 3

√
n)−1-Theorem.

Theorem 3.3. (( 3
√
n)−1-Theorem) Let C be a quasi-sectorial contraction on

H with numerical range W (C) ⊆ Dα, 0 ≤ α < π/2. Then

∥

∥Cn − en(C−1)
∥

∥ ≤ M

n1/3
, n = 1, 2, 3, . . . (3.3)

where M = 2K + 2 and K is defined by (3.2).

Proof. Note that with help of inequality (3.2) we can improve the estimate
(2.4) in Lemma 2.1:

‖Cn − Cm‖ ≤ |m− n|‖Cn−[ǫn](1− C)‖ ≤ ǫn
K

n− [ǫn] + 1
,

for ǫn = nδ+1/2. Then for δ < 1/2 there the above inequality together with
(2.3) give instead of (2.1) (or (1.1)) the operator-norm estimate

∥

∥Cn − en(C−1)
∥

∥ ≤ 2

n2δ
+

2K

n1/2−δ
, n ∈ N . (3.4)

Then the estimate M/n1/3 of the Theorem 3.3 results from the optimal choice
of the value: δ = 1/6, in (3.4).
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Similar to ( 3
√
n)-Lemma, the ( 3

√
n)−1-Theorem is the first step in develop-

ing the operator-norm approximation formula à la Chernoff. To this end one
needs an operator-norm analogue of Theorem 2.2. Since the last includes the
Trotter-Neveu-Kato strong convergence theorem, we need the operator-norm
extension of this assertion to quasi-sectorial contractions.

Proposition 3.4. [2] Let {X(s)}s>0 be a family of m-sectorial operators in a
Hilbert space H with W (X(s)) ⊆ Sα for some 0 < α < π/2 and for all s > 0.
Let X0 be an m-sectorial operator defined in a closed subspace H0 ⊆ H, with
W (X0) ⊆ Sα. Then the two following assertions are equivalent:

(a) lim
s→+0

∥

∥(ζ1+X(s))−1 − (ζ1+X0)
−1P0

∥

∥ = 0 , for ζ ∈ Sπ−α ,

(b) lim
s→+0

∥

∥e−tX(s) − e−tX0P0

∥

∥ = 0 , for t > 0 .

Here P0 denotes the orthogonal projection from H onto H0.

Now ( 3
√
n)−1-Theorem 3.3 and Proposition 3.4 yield a desired generalisa-

tion of the operator-norm approximation formula:

Proposition 3.5. [2] Let {Φ(s)}s≥0 be a family of uniformly quasi-sectorial
contractions on a Hilbert space H, i.e. such that there exists 0 ≤ α < π/2
and W (Φ(s)) ⊆ Dα, for all s ≥ 0. Let

X(s) := (1− Φ(s))/s , (3.5)

and let X0 be a closed operator with non-empty resolvent set, defined in a
closed subspace H0 ⊆ H. Then the family {X(s)}s>0 converges, when s →
+0, in the uniform resolvent sense to the operator X0 if and only if

lim
n→∞

∥

∥Φ(t/n)n − e−tX0P0

∥

∥ = 0 , for t > 0 . (3.6)

Here P0 denotes the orthogonal projection onto the subspace H0.

Let A be an m-sectorial operator with semi-angle 0 < α < π/2 and
with vertex at 0, which means that numerical range W (A) ⊆ Sα = {z ∈
C : | arg(z)| ≤ α}. Then {Φ(t) := (1 + tA)−1}t≥0 is the family of quasi-
sectorial contractions, i.e. W (Φ(t)) ⊆ Dα. Let X(s) := (1− Φ(s))/s, s > 0,
and X0 := A. Then X(s) converges, when s → +0, to X0 in the uniform
resolvent sense with the asymptotic

‖(ζ1+X(s))−1 − (ζ1+X0)
−1‖ = s

∥

∥

∥

∥

A

ζ1+ A + ζsA
· A

ζ1+ A

∥

∥

∥

∥

= O(s),
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for any ζ ∈ Sπ−α, since we have the estimate:

∥

∥

∥

∥

A

ζ1+ A+ ζsA
· A

ζ1+ A

∥

∥

∥

∥

≤
(

1 +
|ζ |

dist (ζ(1 + sζ)−1,−Sα)

)(

1 +
|ζ |

dist(ζ,−Sα)

)

.

Therefore, the family {Φ(t)}t≥0 satisfies the conditions of Proposition 3.5.
This implies the operator-norm approximation of the exponential function ,
i.e. the semigroup for m-sectorial generator, by the powers of resolvent (the
Euler approximation formula):

Corollary 3.6. If A is an m-sectorial operator in a Hilbert space H, with
semi-angle α ∈ (0, π/2) and with vertex at 0, then

lim
n→∞

∥

∥(1+ tA/n)−n − e−tA
∥

∥ = 0 , t ∈ Sπ/2−α . (3.7)

4 Conclusion

Summarising we note that for the quasi-sectorial contractions instead of di-
vergent Chernoff’s estimate (1.1) we find the estimate (3.4), which converges
for n → ∞ to zero in the operator-norm topology. Note that the rate
O(1/n1/3) of this convergence is obtained with help of the Poisson repre-
sentation and the Tchebychev inequality in the spirit of the proof of Lemma
2.1, and that it is not optimal.

The estimate M/n1/3 in the ( 3
√
n)−1-Theorem 3.3 can be improved by a

more refined lines of reasoning.
For example, by scrutinising our probabilistic arguments one can find a

more precise Tchebychev-type bound for the tail probabilities. This improves
the estimate (3.4) to the rate O(

√

ln(n)/n), see [4].
On the other hand, a careful analysis of localisation the numerical range

of quasi-sectorial contractions [6, 1], allows to lift the estimate in Theorem
3.3 and in Corollary 3.6 to the ultimate optimal rate O(1/n).

Note that the optimal estimate O(1/n) in (3.4) one can easily obtain with
help of the spectral representation for a particular case of the self-adjoint
quasi-sectorial contractions, i.e. for α = 0. This also concerns the optimal
O(1/n) rate of convergence of the self-adjoint Euler approximation formula
(3.7).
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