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Finite Larmor radius approximation for collisional magnetized plasmas Approximation de rayon de Larmor fini pour les plasmas magnétisés collisionnels Mihaï BOSTAN a

Cette note présente la dérivation de l'approximation de rayon de Larmor fini, en prenant en compte les collisions. On se concentre sur le noyau linéaire de Boltzmann, de relaxation. Le principal sujet en est la recherche d'une expression explicite pour la gyromoyenne de cet opérateur. Cela revient à analyser la gyromoyenne d'une convolution en vitesse. L'opérateur moyenné qui en résulte n'est plus local en espace. La conservation de la masse et l'inégalité d'entropie sont vérifiées seulement globalement en espace et vitesse. C'est un premier travail dans cette direction. Il nous permettra d'aborder d'autres modèles plus réalistes pour la physique des plasmas, comme les noyaux de Fokker-Planck ou Fokker-Planck-Landau [3].

Abridged English version

The most important applications in plasma physics concern the energy production through thermonuclear fusion. The goal of this work is to study the gyrokinetic limits of strongly magnetized plasmas [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF], when collisions are taken into account. We investigate the linear problem, by neglecting the self-consistent electro-magnetic field. To simplify, we consider the bidimensional setting i.e., f = f (t, x 1 , x 2 , v 1 , v 2 ), E(x 1 , x 2 ) = (E 1 , E 2 , 0) and B ε = (0, 0, B/ε), where B > 0, 0 < ε << 1. We focus on the finite Larmor radius regime [START_REF] Frénod | The finite Larmor radius approximation[END_REF] meaning that : the cyclotronic period T ε c is small with respect to the observation time unit and the length unit (along the perpendicular directions to the magnetic lines) is of the same order as the Larmor radius ρ L associated to the typical velocity V obs

T ε c T obs = 2π ω ε c T obs ≈ ε, ω ε c = qB mε , L obs ≈ 2πρ L = V obs T ε c ≈ V obs T obs ε. (1) 
Under these hypotheses, the particle presence density f = f (t, x, v) satisfies

∂ t f ε + v ε • ∇ x f ε + q m E • ∇ v f ε + ω c ε ⊥ v • ∇ v f ε = Q(f ε ), (t, x, v) ∈ R + × R 2 × R 2 (2) 
f ε (0, x, v) = f in (x, v), (x, v) ∈ R 2 × R 2 (3) 
where Q stands for the collision operator, q is the particle charge, m the mass,

ω c = qB/m and ⊥ v = (v 2 , -v 1 ) for any v = (v 1 , v 2 ) ∈ R 2 .
We determine the limit when ε 0 of the family (f ε ) ε>0 when the collision mechanism is described by the relaxation Boltzmann operator

(Q B f (t, x, •))(v) = 1 τ R 2 s(v, v ) {M (v)f (t, x, v ) -M (v )f (t, x, v)} dv ( 4 
)
where τ is the relaxation time, s(v, v ) the scattering cross section and M (v) the Maxwellian of temperature θ > 0

M (v) = 1 2πθ/m e -m|v| 2 2θ , v ∈ R 2 .
Notice that the limit f = lim ε 0 f ε belongs to the kernel of the dominant transport operator

T := v • ∇ x + ω c ⊥ v • ∇ v .
We prove the convergence result.

Theorem 0.1 Assume that s(v, v ) = σ(|v-v |) for some function σ satisfying 0 < s 0 ≤ σ(•) ≤ S 0 < +∞ and that E(x) = -∇ x φ, φ ∈ W 2,∞ (R 2 ). Let us consider f in ≥ 0, f in ∈ L 1 (R 2 × R 2 ) ∩ L 2 (M -1 dxdv
) and denote by f ε the weak solution of (2), (3) with Q = Q B , for any ε > 0. Then the family (f ε ) ε>0 converges weakly in L ∞ (R + , L 2 (M -1 dxdv)) when ε 0 to the weak solution of

∂ t f + ⊥ E B • ∇ x f = Q B (f ), (t, x, v) ∈ R + × R 2 × R 2 (5) 
f (0, x, v) = (Proj ker T f in )(x, v), (x, v) ∈ R 2 × R 2 (6)
where the averaged relaxation operator is given by

( Q B f (t, •, •))(x, v) = ω 2 c τ R 2 R 2 S(|v|, |v |, z){M (v)f (t, x , v ) -M (v )f (t, x, v)} dv dx (7) with z = (ω c x + ⊥ v) -(ω c x + ⊥ v
) and the averaged scattering cross section writes

S(r, r , z) = σ(|z|)χ(r, r , z), χ(r, r , z) = 1 {|r-r |<|z|<r+r } π 2 |z| 2 -(r -r ) 2 (r + r ) 2 -|z| 2 , r, r ∈ R + , z ∈ R 2 .

Rayon de Larmor fini

Un des enjeux majeurs en physique des plasmas est la production d'énergie par fusion thermonucléaire. L'objectif de ce travail est d'étudier les limites gyrocinétiques d'un plasma fortement magnétisé, en prenant en compte les collisions. On considère une géométrie bi-dimensionnelle avec un champ magnétique stationnaire et homogène. On s'intéresse au régime du rayon de Larmor fini i.e., la période cyclotronique est petite devant l'unité de temps d'observation et l'unité de longueur dans les directions perpendiculaires au champ magnétique est comparable au rayon de Larmor cf. [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF]. Sous ces hypothèses la densité de particules f vérifie (2), (3). On souhaite étudier la limite quand ε 0 de la famille (f ε ) ε>0 . Pour ce faire on utilise la méthode classique de développement de Hilbert

f ε = f + εf 1 + ε 2 f 2 + . . . . En injectant ce développement dans (2) nous obtenons, à l'ordre dominant ε -1 et à l'ordre suivant ε 0 , le système T f = v • ∇ x f + ω c ⊥ v • ∇ v f = 0 (8) ∂ t f + q m E • ∇ v f + T f 1 = Q(f ). (9) La contrainte (8) indique qu'à tout temps t, la densité f (t, •, •) reste constante le long du flot (X, V )(s; x, v) associé à v • ∇ x + ω c ⊥ v • ∇ v dX ds = V (s), dV ds = ω c ⊥ V (s), X(0; x, v) = x, V (0; x, v) = v. (10) 
Par conséquent à tout temps t la densité ne dépend que des invariants de (10). Ainsi il existe g = g(t, y, r) telle que

f (t, x, v) = g t, y = x + ⊥ v ω c , r = |v| .
Le modèle pour f suit par l'élimination de f 1 dans (9). Pour cela on projette sur le noyau de T , qui est orthogonal à l'image de T . On démontre que cette projection coïncide avec la moyenne le long du flot (10), que l'on note • , et on obtient

∂ t f + q m E • ∇ v f = Q(f ) . (11) 
Comme la dérivation en temps commute avec

• et f = f (car T f = 0), nous obtenons ∂ t f = ∂ t f = ∂ t f . De ce fait (11) équivaut à ∂ t f + q m E • ∇ v f = Q(f ) . (12) 
Nous analysons dans cette note l'opérateur de relaxation de Boltzmann (4). Ce travail aboutit à la démonstration du Théorème 0.1.

Opérateur de moyenne

On note par b le champ de vecteurs b = (v, ω c ⊥ v) et on définit l'opérateur de transport T u = div x,v (ub) pour toute fonction u dans le domaine

D(T ) = u(x, v) ∈ L 2 (R 2 × R 2 ) : div x,v (ub) ∈ L 2 (R 2 × R 2 ) . Les caractéristiques (X, V )(s; x, v) associées à v • ∇ x + ω c ⊥ v • ∇ v satisfont d ds X + ⊥ V ω c = (0, 0), dV ds = ω c ⊥ V (s)
d'où, en notant par R(α) la rotation d'angle α, on en déduit que

V (s) = R(-ω c s)v, X(s) = x + ⊥ v ω c - ⊥ V (s) ω c , s ∈ R, (x, v) ∈ R 2 × R 2 .
Ces trajectoires sont T c = 2π/ω c -périodiques et on introduit l'opérateur de moyenne

• , pour tout u ∈ L 2 (R 2 × R 2 ) u = 1 T c Tc 0 u (X(s; x, v), V (s; x, v)) ds = 1 2π 2π 0 u x + ⊥ v ω c - ⊥ {R(α)v} ω c , R(α)v dα.
Clairement u dépend seulement des invariants x + ⊥ v ωc , |v| et appartient donc à ker T . La proposition suivante a été démontrée dans [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF], Proposition 2.1, voir aussi [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF] pour le cas d'un flot non périodique.

Proposition 2.1 L'opérateur de moyenne est linéaire borné sur L2 (R 2 × R 2 ) et coïncide avec la projection orthogonale sur le noyau de T

u ∈ ker T et R 2 R 2 (u -u )ϕdvdx = 0, ∀ϕ ∈ ker T .
Le modèle limite (5) suit de (12) après calcul des moyennes pour le terme de transport q m E • ∇ v f et le terme de collision Q B (f ) . On montre que pour toute densité f vérifiant la contrainte

T f = 0 nous avons q m E • ∇ v f = ⊥ E B • ∇ x f. (13) 
En utilisant la règle de dérivation des fonctions composées, il suffit d'établir (13) seulement pour les invariants x + ⊥ v/ω c , |v|. Ceci résulte facilement par calcul direct. La moyenne du terme de collision est étudiée dans la section suivante.

Opérateur de relaxation de Boltzmann

Dans cette partie nous analysons le noyau de relaxation (4) associé à une section de collision vérifiant

s(v, v ) = s(v , v), 0 < s 0 ≤ s(v, v ) ≤ S 0 < +∞, v, v ∈ R 2 . ( 14 
)
On rappelle les propriétés classiques de cet opérateur ; ici on note Q ± B les opérateurs de gain et perte

Q + B (f )(v) = 1 τ R 2 s(v, v )M (v)f (v )dv , Q - B (f )(v) = 1 τ R 2 s(v, v )M (v )f (v)dv .
Proposition 3.1 Supposons que la section de collision satisfait (14), alors (i) Les opérateurs de collision de gain et perte

Q ± B sont linéaires bornés sur L 2 (M -1 dv) avec Q ± B ≤ S0 τ
, et symétriques par rapport au produit scalaire de L 2 (M -1 dv). (ii) Les opérateurs de collision de gain et perte

Q ± B sont linéaires bornés sur L 1 (R 2 ) et pour tout f ∈ L 1 (R 2 ) on a R 2 Q(f ) dv = 0. (iii) Pour tout f ∈ L 2 (M -1 dv) on a R 2 Q B (f )(v)f (v) dv M = - 1 2τ R 2 R 2 s(v, v )M (v)M (v ) f (v) M (v) - f (v ) M (v )
Pour moyenner Q B f il faut calculer les moyennes de fonctions similaires à

R 2 C(v, v )f (x, v )dv où C(v, v
) est une fonction donnée. On remarque qu'on a seulement besoin de considérer des fonctions C laissées invariantes par les rotations de R 2 et donc ne dépendant que de |v|, |v | et de l'angle ϕ = arg v -arg v.

Proposition 3.2 Supposons que C(v, v ) = C (|v|, |v |, ϕ = arg v -arg v) ∈ L 2 (M -1 (v)M (v )dvdv ). Alors pour toute fonction f ∈ ker T ∩ L 2 (M -1 dxdv) on a R 2 C(v, v )f (x, v )dv (x, v) = ω 2 c R 2 R 2 C(|v|, |v |, (ω c x + ⊥ v) -(ω c x + ⊥ v ))f (x , v ) dv dx C(r, r , z) = C(r, r , ϕ) + C(r, r , -ϕ) 2 χ(r, r , z) où pour tout z ∈ (|r -r |, r + r ), ϕ ∈ (0, π) est l'unique angle tel que |z| 2 = r 2 + (r ) 2 -2rr cos ϕ. Preuve. Pour (x, v) ∈ R 2 × R 2 nous avons R 2 C(v, v )f (x, v ) dv 2 ≤ R 2 (C(v, v )) 2 M (v ) dv R 2 (f (x, v )) 2 M (v ) dv d'où R 2 C(v, v )f (x, v ) dv L 2 (M -1 dxdv) ≤ C L 2 (M -1 (v)M (v )dvdv ) f L 2 (M -1 dxdv) . Par conséquent on peut moyenner (x, v) → R 2 C(v, v )f (x, v ) dv dans L 2 M -1 dxdv . Pour (x, v) ∈ R 2 × R 2 on écrit, en utilisant la notation e iα = (cos α, sin α) ∈ R 2 I : = R 2 C(v, v )f (x, v ) dv (x, v) = 1 2π 2π 0 R 2 C(|v|e iα , v )f x + ⊥ v ω c - ⊥ {|v|e iα } ω c , v dv dα.
Pour tout α ∈ [0, 2π) on utilise les coordonnées cylindriques v = r e i(ϕ+α) , r ∈ R + , ϕ ∈ [-π, π) et alors

I = 1 2π 2π 0 π -π R+ C(|v|e iα , r e i(ϕ+α) ) f x + ⊥ v ω c - ⊥ {|v|e iα } ω c
, r e i(ϕ+α) r dr dϕdα.

(15)

Mais f ∈ ker T et par conséquent il existe g telle que f (x, v) = g x + ⊥ v/ω c , |v| d'où f x + ⊥ v ω c - ⊥ {|v|e iα } ω c , r e i(ϕ+α) = g x + ⊥ v ω c - ⊥ {|v|e iα } ω c + ⊥ {r e i(ϕ+α) } ω c , r .
Notons que r e i(ϕ+α) -|v|e iα = le i(ψ+α) avec l 2 = r 2 + (r ) 2 -2rr cos ϕ, r = |v| et ψ dépendant de r, r , ϕ mais pas de α. Comme C est laissée invariante par les rotations, on en déduit que

C(re iα , r e i(ϕ+α) ) = C(r, r , ϕ). L'application ϕ → l(ϕ) = r 2 + (r ) 2 -2rr cos ϕ définit un changement de coordonnées de ϕ ∈ (0, π) à l ∈ (|r -r |, r + r ) et dϕ = 2ldl l 2 -(r -r ) 2 (r + r ) 2 -l 2 .
Par le théorème de Fubini nous obtenons

I = 1 2π π -π R+ 2π 0 C(r, r , ϕ)g x + ⊥ v ω c + ⊥ {le i(ψ+α) } ω c , r r dαdr dϕ = 1 2π π -π R+ 2π 0 C(r, r , ϕ)g x + ⊥ v ω c + ⊥ {le iα } ω c , r r dαdr dϕ = 1 2π R+ 2π 0 π 0 { C(r, r , ϕ) + C(r, r , -ϕ)} g x + ⊥ v ω c + ⊥ {l(ϕ)e iα } ω c , r r dϕdαdr = 1 2π R+ 2π 0 r+r |r-r | C(r, r , ϕ(l)) + C(r, r , -ϕ(l)) l 2 -(r -r ) 2 (r + r ) 2 -l 2 g x + ⊥ v ω c + ⊥ {le iα } ω c
, r 2lr dldαdr .

Pour tout α ∈ [0, 2π) nous avons

g x + ⊥ v ω c + ⊥ {le iα } ω c , r = f x + ⊥ v ω c + ⊥ {le iα } ω c - ⊥ {r e iα } ω c
, r e iα et le changement de coordonnées v = r e iα conduit à

I = 1 2π 2 2π 0 R+ 2π 0 R+ { C(r, r , ϕ(l)) + C(r, r , -ϕ(l))} × f x + ⊥ v ω c + ⊥ {le iα } ω c - ⊥ {r e iα } ω c
, r e iα 1 {|r-r |<l<r+r } r dr dα ldldα

l 2 -(r -r ) 2 (r + r ) 2 -l 2 = 1 2π 2 2π 0 R+ R 2 { C(r, |v |, ϕ(l)) + C(r, |v |, -ϕ(l))} × f x + ⊥ v ω c + ⊥ {le iα } ω c - ⊥ v ω c , v 1 {| |v|-|v | |<l<|v|+|v |} dv ldldα l 2 -(|v| -|v |) 2 (|v| + |v |) 2 -l 2 .
Nous obtenons

I = R 2 2π 0 R+ C(|v|, |v |, -⊥ {le iα })f x + ⊥ v ω c + ⊥ {le iα } ω c - ⊥ v ω c , v ldldαdv .
Notre conclusion suit en prenant les nouvelles coordonnées

x = x + ⊥ v ω c + ⊥ {le iα } ω c - ⊥ v ω c et en observant que det ∂x ∂(l,α) = l ω 2 c . Corollaire 3.3 Soit s(v, v ) une section de la forme s(v, v ) = σ(|v -v |), v, v ∈ R 2 vérifiant (14). Alors pour toute fonction f ∈ ker T ∩ L 2 M -1 dxdv on a Q B f (x, v) = ω 2 c τ R 2 R 2 S(|v|, |v |, z) {M (v)f (x , v ) -M (v )f (x, v)} dv dx avec z = (ω c x + ⊥ v) -(ω c x + ⊥ v ) et S(r, r , z) = σ(|z|)χ(r, r , z).
La moyenne Q B f n'est pas locale en espace : sa valeur au point (x, v) fait intervenir les valeurs de f en tous les points de l'ensemble A 

x,v = {(x , v ) : | |v| -|v | | < |(ω c x + ⊥ v) -(ω c x + ⊥ v )| < |v| + |v |}. En particulier l'adhérence A x,v contient C x,v × R 2 , où C x,v = {x ∈ R 2 : |ω c x -(ω c x + ⊥ v)| = |v|}
Q B f := ω 2 c τ R 2 R 2 S(|v|, |v |, z){M (v)f (x , v ) -M (v )f (x, v)} dv dx . Par construction Q B est un prolongement de l'opérateur f → Q B f , f ∈ ker T ∩ L 2 M -1 dxdv .
Notons que ce prolongement est symétrique et vérifie la conservation de la masse et l'inégalité d'entropie, globalement en (x, v). La vérification de ces propriétés est immédiate, en utilisant la symétrie de la section S et le théorème de Fubini, exactement comme dans le cas d'un opérateur de relaxation classique. (ii) L'opérateur Q B est linéaire borné sur

L 1 (R 2 × R 2 ) et pour tout f ∈ L 1 (R 2 × R 2 ) nous avons R 2 R 2 Q B f dvdx = 0.
(iii) Pour tout f ∈ L 2 (M -1 dxdv) nous avons 

R 2 R 2 Q B f f M dvdx = - ω 2 c 2τ R 2 R 2 R 2 R 2 SM (v)M (v ) f (x, v) M (v) - f (x , v ) M (v )
∂ t T f + ⊥ E B • ∇ x T f = Q B T f.
Comme f (0) = Proj ker T f in = f in ∈ ker T nous avons T f (0) = 0, d'où T f (t) = 0, t > 0.
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  est le cercle de Larmor. Le Corollaire 3.3 suggère l'introduction de l'opérateur Q B défini pour toute fonction f ∈ L 2 M -1 dxdv (et donc pas seulement pour les fonctions f vérifiant la contrainte ker T = 0) par

Proposition 3 . 4

 34 Soit s(v, v ) une section de la forme s(v, v ) = σ(|v -v |), v, v ∈ R 2 vérifiant (14). Alors (i) L'opérateur Q B estlinéaire borné sur L 2 M -1 dxdv et symétrique par rapport au produit scalaire de L 2 M -1 dxdv .
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  dv dx dvdx ≤ 0. Preuve. (du Théorème 0.1) L'existence et l'unicité suivent par des arguments classiques, en faisant appel à l'inégalité d'entropie cf. Proposition 3.4 iii). Montrons seulement la propagation en temps de la contrainte T f = 0. On vérifie facilement que T commute avec ∂ t + ⊥ E B • ∇ x et Q B , d'où

dv dv ≤ 0.