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Abstract. The subject matter of this paper concerns the derivation of the finite Lar-

mor radius approximation, when collisions are taken into account. Several studies are

performed, corresponding to different collision kernels : the relaxation and the Fokker-

Planck operators. Gyroaveraging the relaxation operator leads to a position-velocity

integral operator, whereas gyroaveraging the linear Fokker-Planck operator leads to dif-

fusion in velocity but also with respect to the perpendicular position coordinates.

1. Introduction.

Many studies in plasma physics concern the energy production through thermonu-

clear fusion. In particular this reaction can be achieved by magnetic confinement i.e.,

a tokamak plasma is controlled by applying a strong magnetic field. Large magnetic

fields induce high cyclotronic frequencies corresponding to the fast particle dynamics

around the magnetic lines. We concentrate on the linear problem, by neglecting the
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self-consistent electro-magnetic field. The external electro-magnetic field is supposed to

be a given smooth field

E = −∇xφ, Bε =
B(x)
ε

b(x), |b| = 1

when ε > 0 is a small parameter, destinated to converge to 0, in order to describe strong

magnetic fields. The scalar function φ stands for the electric potential, B(x) > 0 is the

rescaled magnitude of the magnetic field and b(x) denotes its direction. As usual, we

appeal to the kinetic description for studying the evolution of the plasma. The notation

fε = fε(t, x, v) ≥ 0 stands for the presence density of a population of charged particles

with mass m and charge q. This density satisfies

∂tf
ε + v · ∇xfε +

q

m
(E + v ∧Bε) · ∇vfε = Q(fε), (t, x, v) ∈ R+ × R3 × R3 (1.1)

fε(0, x, v) = f in(x, v), (x, v) ∈ R3 × R3 (1.2)

where Q denotes a collision kernel. The interpretation of the density fε is straight-

forward : the number of charged particles contained at time t inside the infinitesimal

volume dxdv around the point (x, v) of the position-velocity phase space is given by

fε(t, x, v)dxdv. The equation (1.1) accounts for the fluctuation of the density fε due to

the transport but also to the collisions. We analyze here the linear relaxation operator.

The bilinear Fokker-Planck-Landau operator will be studied in [6] following similar lines.

When neglecting the collisions the limit model as ε ↘ 0 comes by averaging with

respect to the fast cyclotronic motion [15, 19, 10, 1, 2, 3, 4]. The problem reduces to

homogenization analysis and can be solved using the notion of two-scale convergence

[12, 13, 11].

We point out that a linearized and gyroaveraged collision operator has been written

in [20], but the implementation of this operator seems very hard. We refer to [8, 9] for a

general guiding-center bilinear Fokker-Planck collision operator. Another difficulty lies

in the relaxation of the distribution function towards a local Maxwellian equilibrium.

Most of the available model operators, in particular those which are linearized near a

Maxwellian, are missing this property. Very recently a set of model collision operators

has been obtained in [14], based on entropy variational principles [7].
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We study here the finite Larmor radius scaling i.e., the typical perpendicular spatial

length is of the same order as the Larmor radius and the parallel spatial length is much

larger. We assume that the magnetic field is homogeneous and stationary

Bε =
(

0, 0,
B

ε

)
for some constant B > 0 and therefore (1.1) becomes

∂tf
ε +

1
ε

(v1∂x1f
ε + v2∂x2f

ε) + v3∂x3f
ε +

q

m
E · ∇vfε +

ωc
ε

(v2∂v1f
ε − v1∂v2f

ε) = Q(fε)

(1.3)

where ωc = qB/m stands for the rescaled cyclotronic frequency. The density fε is

decomposed into a dominant density f and fluctuations of orders ε, ε2, ...

fε = f + εf1 + ε2f2 + ... (1.4)

Combining (1.3), (1.4) yields, with the notations x = (x1, x2), v = (v1, v2), ⊥v =

(v2,−v1)

T f := v · ∇xf + ωc
⊥v · ∇vf = 0 (1.5)

∂tf + v3∂x3f +
q

m
E · ∇vf + T f1 = Q(f) (1.6)

...

The equation (1.5) appears as a divergence constraint

divx,v{f(v, 0, ωc ⊥v, 0)} = 0.

Equivalently, (1.5) says that at any time t the density f(t, ·, ·) remains constant along

the flow associated to v · ∇x + ωc
⊥v · ∇v

dX
ds

= V (s),
dX3

ds
= 0,

dV
ds

= ωc
⊥V (s),

dV3

ds
= 0 (1.7)

and therefore, at any time t, the density f(t, ·, ·) depends only on the invariants of (1.7)

f(t, x, v) = g

(
t, x1 +

v2

ωc
, x2 −

v1

ωc
, x3, r = |v|, v3

)
.

The time evolution for f comes by eliminating f1 in (1.6). For doing that, we project onto

the kernel of T , which is orthogonal to the range of T . In order to get a explicit model

for f we need a simpler representation for the orthogonal projection on ker T . Actually



4 MIHAI BOSTAN AND CÉLINE CALDINI-QUEIROS

this projection appears as the average along the characteristic flow (1.7). Denoting by

〈·〉 this projection, we obtain

〈
∂tf + v3∂x3f +

q

m
E · ∇vf

〉
= 〈Q(f)〉 , (t, x, v) ∈ R+ × R3 × R3. (1.8)

By one hand, averaging ∂t + v3∂x3 + q
mE · ∇v leads to another transport operator

〈
∂tf + v3∂x3f +

q

m
E · ∇vf

〉
= ∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f.

The key point here is to choose as new coordinates the invariants of (1.7) and to observe

that the partial derivatives with respect to these invariants commute with the average

operator. More generally, for any smooth vector field ξ = (ξx, ξv), we obtain the following

commutation formula between the divergence and average operators, cf. Proposition 3.3

〈divx,vξ〉 = divx

{〈
ξx +

⊥ξv
ωc

〉
+
〈
ξv ·

⊥v

|v|

〉
v

ωc|v|
−
〈
ξv ·

v

|v|

〉 ⊥v

ωc|v|

}
+ ∂x3 〈ξx3〉

+ divv

{〈
ξv ·

⊥v

|v|

〉 ⊥v

|v|
+
〈
ξv ·

v

|v|

〉
v

|v|

}
+ ∂v3 〈ξv3〉 .

By the other hand we need to compute the average of the collision kernel Q which is a

more complicated task. We focus on the relaxation Boltzmann operator [16]

QB(f(t, x, ·))(v) =
1
τ

∫
R3
s(v, v′){M(v)f(t, x, v′)−M(v′)f(t, x, v)} dv′

where τ > 0 is the relaxation time, s(v, v′) is the scattering cross section and M is the

Maxwellian equilibrium with temperature θ

M(v) =
1

(2πθ/m)3/2
e−

m|v|2
2θ , v ∈ R3.

We need to average functions like (x, v) →
∫

R3 C(v, v′)f(x, v′) dv′, where C(v, v′) is

a given function. Since the invariants of the flow (X,V ) combines x and v, we get a

position-velocity integral operator cf. Proposition 4.2

〈∫
R3
C(v, v′)f(x, v′) dv′

〉
(x, v) = ω2

c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, z)f(x′, x3, v

′) dv′dx′1dx′2
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with z = ωcx+ ⊥v− (ωcx′ + ⊥v′). We prove that averaging QB will lead to a position-

velocity integral operator of the same form

〈QB〉 f(x, v) : = 〈QB(f)〉 (x, v)

=
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v)f(x′, x3, v

′)−M(v′)f(x, v)}dv′dx′1dx′2

(see Theorem 1.1 for the definition of S). Observe that 〈QB〉 is global in (x, v), but

remains local in x3. In particular it satisfies only a global mass balance, which comes

easily by Fubini theorem and the symmetry of S cf. Remark 4.6∫
R3

∫
R3
〈QB〉 f(x, v) dvdx = 0.

In the case of the relaxation operator QB we obtain the limit model

Theorem 1.1. Assume that the scattering cross section satisfies (4.2), (4.7) and that

E(x) = −∇xφ(x), φ ∈ W 2,∞(R3). Let us consider f in ≥ 0, f in ∈ L1(R3 × R3) ∩

L2
(
M−1dxdv

)
and denote by fε the weak solution of (1.3), (1.2) with Q = QB for

any ε > 0. We assume that (fε)ε>0 is bounded in L∞
(
R+, L

2
(
M−1dxdv

))
. Then the

family (fε)ε>0 converges weakly ? in L∞
(
R+, L

2
(
M−1dxdv

))
to the weak solution of

∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f = 〈QB〉 f, (t, x, v) ∈ R+ × R3 × R3 (1.9)

f(0, x, v) =
〈
f in
〉

(x, v), (x, v) ∈ R3 × R3 (1.10)

where the averaged relaxation operator is given by

〈QB〉 f(x, v) =
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v)f(x′, x3, v

′)−M(v′)f(x, v)} dv′dx′1dx′2

with z = ωcx+ ⊥v − (ωcx′ + ⊥v′) and the averaged scattering cross section writes

S(r, v3, r
′, v′3, z) = σ(

√
|z|2 + (v3 − v′3)2 ) χ(r, r′, z)

with

χ(r, r′, z) =
1{|r−r′|<|z|<r+r′}

π2
√
|z|2 − (r − r′)2

√
(r + r′)2 − |z|2

, r, r′ ∈ R+, v3, v
′
3 ∈ R, z ∈ R2.
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The averaging technique allows us to treat many different collision operators, for

example the Fokker-Planck kernel (see Appendix A for details)

QFP (f) =
θ

mτ
divv

(
∇vf +

m

θ
vf
)

=
θ

mτ
divv

{
M∇v

(
f

M

)}
.

Theorem 1.2. The limit model when ε↘ 0 of (1.3), (1.2) with Q = QFP is given by

∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f = 〈QFP 〉 f, (t, x, v) ∈ R+×R3×R3 (1.11)

f(0, x, v) =
〈
f in
〉

(x, v), (x, v) ∈ R3 × R3 (1.12)

where the averaged Fokker-Planck operator and the diffusion matrix L write

〈QFP 〉 f(x, v) =
θ

mτ
divωcx,v

{
ML∇ωcx,v

(
f

M

)}

L =

 2(I3 − e3 ⊗ e3) −E

E I3

 , E =


0 1 0

−1 0 0

0 0 0

 .

Notice that the averaged Fokker-Planck operator contains no derivatives with respect

to x3 since the diffusion matrix L has only zero entries on the third line and column;

averaging the Fokker-Planck operator leads to diffusion in velocity but also with respect

to the perpendicular position coordinates.

Our paper is organized as follows. In Section 2 we introduce the average operator

along a characteristic flow. Section 3 is devoted to the commutation properties between

average and first order differential operators. The average of the linear Boltzmann kernel

is computed in Section 4. We establish its main properties and we prove the convergence

result stated in Theorem 1.1.

2. Average operator. We recall briefly the definition and properties of the average

operator corresponding to the transport operator T , whose definition in the L2(R3×R3)

setting is

T u = divx,v(u b), b = (v, 0, ωc ⊥v, 0), ωc =
qB

m



FINITE LARMOR RADIUS REGIME FOR COLLISIONAL MAGNETIC CONFINEMENT 7

for any function u in the domain

D(T ) = {u(x, v) ∈ L2(R3 × R3) : divx,v(u b) ∈ L2(R3 × R3)}.

We denote by ‖ · ‖ the standard norm of L2(R3 ×R3).The characteristics (X,V )(s;x, v)

associated to v · ∇x + ωc
⊥v · ∇v, see (1.7), satisfy

d
ds

{
X +

⊥V

ωc

}
= 0,

dV
ds

= ωc
⊥V ,

dX3

ds
= 0,

dV3

ds
= 0

implying that

V (s) = R(−ωcs)v, X(s) = x+
⊥v

ωc
−
⊥V (s)
ωc

, X3(s) = x3, V3(s) = v3

where R(α) stands for the rotation of angle α

R(α) =

 cosα − sinα

sinα cosα

 .

All the trajectories are Tc = 2π/ωc periodic and we introduce the average operator, see

[2], for any function u ∈ L2(R3 × R3)

〈u〉 (x, v) =
1
Tc

∫ Tc

0

u(X(s;x, v), V (s;x, v)) ds

=
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{R(α)v}

ωc
, x3, R(α)v, v3

)
dα.

It is convenient to introduce the notation eiϕ for the R2 vector (cosϕ, sinϕ). Assume

that the vector v writes v = |v|eiϕ. Then R(α)v = |v|ei(α+ϕ) and the expression for 〈u〉

becomes

〈u〉 (x, v) =
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{|v|ei(α+ϕ)}

ωc
, x3, |v|ei(α+ϕ), v3

)
dα

=
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
, x3, |v|eiα, v3

)
dα. (2.1)

Notice that 〈u〉 depends only on the invariants x +
⊥v
ωc
, |v|, x3, v3 and therefore belongs

to ker T . The following two results are justified in [3], Propositions 2.1, 2.2. The first

one states that averaging reduces to orthogonal projection onto the kernel of T . The

second one concerns the invertibility of T on the subspace of zero average functions and

establishes a Poincaré inequality.
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Proposition 2.1. The average operator is linear continuous. Moreover it coincides with

the orthogonal projection on the kernel of T i.e.,

〈u〉 ∈ ker T and
∫

R3

∫
R3

(u− 〈u〉)ϕ dvdx = 0, ∀ ϕ ∈ ker T . (2.2)

Remark 2.1. Notice that (X,V ) depends only on s and (x, v) and thus the variational

characterization in (2.2) holds true at any fixed (x3, v3) ∈ R2. Indeed, for any ϕ ∈ ker T ,

(x3, v3) ∈ R2 we have∫
R2

∫
R2

(uϕ)(x, v) dvdx =
1
Tc

∫ Tc

0

∫
R2

∫
R2
u(x, v)ϕ(X(−s;x, v), x3, V (−s;x, v), v3) dvdxds

=
1
Tc

∫ Tc

0

∫
R2

∫
R2
u(X(s;x, v), x3, V (s;x, v), v3)ϕ(x, v) dvdxds

=
∫

R2

∫
R2
〈u〉 (x, v)ϕ(x, v) dvdx.

We have the orthogonal decomposition of L2(R3 × R3) into invariant functions along

the characteristics (1.7) and zero average functions

u = 〈u〉+ (u− 〈u〉),
∫

R3

∫
R3

(u− 〈u〉) 〈u〉 dvdx = 0.

Notice that T ? = −T and thus the equality 〈·〉 = Projker T implies

ker 〈·〉 = (ker T )⊥ = (ker T ?)⊥ = Range T .

In particular Range T ⊂ ker 〈·〉. Actually we show that Range T is closed, which will

give a solvability condition for T u = w (cf. [3], Propositions 2.2).

Proposition 2.2. The restriction of T to ker 〈·〉 is one to one map onto ker 〈·〉. Its

inverse belongs to L(ker 〈·〉 , ker 〈·〉) and we have the Poincaré inequality

‖u‖ ≤ 2π
|ωc|
‖T u‖, ωc =

qB

m
6= 0

for any u ∈ D(T ) ∩ ker 〈·〉.

The natural space when dealing with the linear Boltzmann kernelQB is L2
(
M−1dxdv

)
rather than L2(dxdv). Motivated by that we introduce the operator TM : D(TM ) ⊂
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L2
(
M−1dxdv

)
→ L2

(
M−1dxdv

)
given by TMu = divx,v(ub) for any function u in the

domain

D(TM ) = {u(x, v) ∈ L2
(
M−1dxdv

)
: divx,v(ub) ∈ L2

(
M−1dxdv

)
}.

Straightforward arguments show that u ∈ D(TM ) iff u/
√
M ∈ D(T ) and TM (u) =

√
MT (u/

√
M) for any u ∈ D(TM ). In particular we have ker TM =

√
M ker T . Notice

that formula (2.1) still defines a linear bounded operator on L2
(
M−1dxdv

)
, denoted by

〈·〉M , which coincides with the orthogonal projection on the kernel of TM , with respect to

the scalar product of L2
(
M−1dxdv

)
. Indeed, taking into account that M(v) is constant

along the characteristic flow of (1.7), we have for any u ∈ L2
(
M−1dxdv

)
〈u〉M =

√
M

〈
u√
M

〉
∈
√
M ker T = ker TM

and for any ϕ ∈ ker TM∫
R3

∫
R3

(u− 〈u〉M ) ϕ(x, v)
dxdv
M(v)

=
∫

R3

∫
R3

(
u√
M
−
〈

u√
M

〉)
ϕ√
M

dvdx = 0.

The Poincaré inequality holds also true, with the same constant, since for any u ∈

D(TM ) ∩ ker 〈·〉M we can write

‖u‖L2(M−1) =
∥∥∥∥ u√

M

∥∥∥∥ ≤ 2π
|ωc|

∥∥∥∥T ( u√
M

)∥∥∥∥ =
2π
|ωc|

∥∥∥∥TMu√M
∥∥∥∥ =

2π
|ωc|
‖TMu‖L2(M−1).

From now on, for the sake of simplicity, we will use only the notations T , 〈·〉, indepen-

dently of acting on L2(dxdv) or L2
(
M−1dxdv

)
.

3. Average and first order differential operators. We intend to average trans-

port operators, see (1.8). Moreover, in order to handle the Fokker-Planck kernel we will

need to average second order differential operators. For doing that it is convenient to

identify derivations which leave invariant ker T . It turns out that these derivations are

those along the invariants

ψ1 = x1 +
v2

ωc
, ψ2 = x2 −

v1

ωc
, ψ3 = x3, ψ4 =

√
(v1)2 + (v2)2, ψ5 = v3.
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We introduce also ψ0 = − α
ωc

, with v = |v|eiα, α ∈ [0, 2π[. Notice that ψ0 has a jump of

2π
ωc

across v ∈ R+ × {0} but not its gradient with respect to v

∇vα = −
⊥v

|v|2
, ∇vψ0 =

⊥v

ωc|v|2
, T ψ0 = 1.

The idea is to consider the fields (bi)0≤i≤5 such that

bi · ∇x,vψj = δij , 0 ≤ i, j ≤ 5.

Indeed, the map (x, v)→ (ψi(x, v))0≤i≤5 defines a change of coordinates

x1 = ψ1 +
ψ4

ωc
sin(ωcψ0), x2 = ψ2 +

ψ4

ωc
cos(ωcψ0), x3 = ψ3

v1 = ψ4 cos(ωcψ0), v2 = −ψ4 sin(ωcψ0), v3 = ψ5.

Therefore any function u = u(x, v) can be written u(x, v) = U(ψ(x, v)), ψ = (ψi)0≤i≤5

and thus, for any i ∈ {0, 1, ..., 5} we have

bi · ∇x,vu = bi ·
5∑
j=0

∂U

∂ψj
(ψ(x, v))∇x,vψj =

∂U

∂ψi
(ψ(x, v)).

In other words the derivations bi · ∇x,v act like ∂ψi , 0 ≤ i ≤ 5. In particular if u ∈ ker T ,

meaning that U does not depend on ψ0, then bi ·∇x,vu = ∂ψiU(ψ(x, v)) does not depend

on ψ0, saying that ker T is left invariant by bi · ∇x,v, 0 ≤ i ≤ 5. The following result

comes by direct computation and is left to the reader. For any smooth vector fields ξ, η

on R6, the notation [ξ, η] stands for their Poisson bracket i.e.,

[ξ, η] = (ξ · ∇x,v)η − (η · ∇x,v)ξ.

Proposition 3.1. The fields (bi)0≤i≤5 satisfying bi · ∇x,vψj = δij , 0 ≤ i, j ≤ 5 are given

by

b0 · ∇x,v = v · ∇x + ωc
⊥v · ∇v, b1 · ∇x,v = ∂x1 , b2 · ∇x,v = ∂x2 , b3 · ∇x,v = ∂x3

b4 · ∇x,v = −
⊥v

ωc|v|
· ∇x +

v

|v|
· ∇v, b5 · ∇x,v = ∂v3 .

Moreover the Poisson brackets between (bi)0≤i≤5 vanishes or equivalently the derivations

bi · ∇x,v, 0 ≤ i ≤ 5 are commuting.

Remark 3.1. Notice that (bi)i 6=4 are divergence free and divx,vb4 = 1
|v| .
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We claim that the operators u→ divx,v(ubi), with domain

D(divx,v(· bi)) = {u ∈ L2(R3 × R3) : divx,v(ubi) ∈ L2(R3 × R3)}, 0 ≤ i ≤ 5

are commuting with the average operator. More generally we establish the following

result.

Proposition 3.2. Assume that the field c · ∇x,v is in involution with b · ∇x,v = v · ∇x +

ωc
⊥v · ∇v i.e., [c, b] = 0. Then the operator divx,v(· c) is commuting with the average

operator associated to the flow of b · ∇x,v that is, for any function u ∈ D(divx,v(· c)) its

average 〈u〉 belongs to D(divx,v(· c)) and

divx,v(〈u〉 c) = 〈divx,v(uc)〉 .

Proof. Let us consider u ∈ D(divx,v(· c)). For any ϕ ∈ C1
c (R3 × R3) ∩ ker T we have∫

R3

∫
R3
〈divx,v(uc)〉ϕ dvdx =

∫
R3

∫
R3

divx,v(uc)ϕ dvdx = −
∫

R3

∫
R3
uc · ∇x,vϕ dvdx. (3.1)

But T (c · ∇x,vϕ) = c · ∇x,v(T ϕ) = 0 saying that c · ∇x,vϕ ∈ ker T and thus∫
R3

∫
R3
uc · ∇x,vϕ dvdx =

∫
R3

∫
R3
〈u〉 c · ∇x,vϕ dvdx. (3.2)

Combining (3.1), (3.2) we obtain for any ϕ ∈ C1
c (R3 × R3) ∩ ker T∫

R3

∫
R3
〈divx,v(uc)〉ϕ dvdx = −

∫
R3

∫
R3
〈u〉 c · ∇x,vϕ dvdx. (3.3)

Actually the previous equality holds also true for smooth functions ϕ ∈ ker 〈·〉. Indeed,

by Proposition 2.2, for any smooth function ϕ ∈ ker 〈·〉 there is ψ ∈ D(T ) ∩ ker 〈·〉 such

that T ψ = ϕ and thus c · ∇x,vϕ = c · ∇x,v(T ψ) = T (c · ∇x,vψ) ∈ Range T = ker 〈·〉.

Using now the orthogonality between ker T and ker 〈·〉 we deduce that∫
R3

∫
R3
〈divx,v(uc)〉ϕ dvdx = 0 = −

∫
R3

∫
R3
〈u〉 c · ∇x,vϕ dvdx, ϕ ∈ C1

c (R3 ×R3)∩ ker 〈·〉 .

Finally (3.3) is verified for any smooth ϕ, implying that

〈u〉 ∈ D(divx,v(· c)) and divx,v(〈u〉 c) = 〈divx,v(uc)〉 .

�



12 MIHAI BOSTAN AND CÉLINE CALDINI-QUEIROS

We want to average transport operators, which are written in conservative forms. In

order to obtain averaged model still written in conservative form, it is worth to establish

the following commutation formula between average and divergence. For the sake of

simplicity we discard all difficulties related to the required minimal smoothness.

Proposition 3.3. For any smooth field ξ = (ξx, ξv) ∈ R6 we have the equality

〈divx,vξ〉 = divx

{〈
ξx +

⊥ξv
ωc

〉
+
〈
ξv ·

⊥v

|v|

〉
v

ωc|v|
−
〈
ξv ·

v

|v|

〉 ⊥v

ωc|v|

}
+ ∂x3 〈ξx3〉

+ divv

{〈
ξv ·

⊥v

|v|

〉 ⊥v

|v|
+
〈
ξv ·

v

|v|

〉
v

|v|

}
+ ∂v3 〈ξv3〉 .

In particular we have for any smooth field ξx ∈ R3

〈divxξx〉 = divx 〈ξx〉

and for any smooth field ξv ∈ R3

〈divvξv〉 = divx

{〈⊥ξv
ωc

〉
+
〈
ξv ·

⊥v

|v|

〉
v

ωc|v|
−
〈
ξv ·

v

|v|

〉 ⊥v

ωc|v|

}
+ divv

{〈
ξv ·

⊥v

|v|

〉 ⊥v

|v|
+
〈
ξv ·

v

|v|

〉
v

|v|

}
+ ∂v3 〈ξv3〉 .

Proof. By construction we have
∑5
i=0 b

i ⊗∇x,vψi = I and thus

ξ =
5∑
i=0

(ξ · ∇x,vψi)bi.

The main statement follows thanks to Proposition 3.2, since we have

〈divx,vξ〉 =

〈
5∑
i=0

divx,v{(ξ · ∇x,vψi)bi}

〉
= divx,v

{
5∑
i=0

〈ξ · ∇x,vψi〉 bi
}
.

The other statements come by considering the fields (ξx, 0) and (0, ξv). �

A direct consequence of Proposition 3.3 is the computation of the average for the trans-

port operator in (1.6).

Proposition 3.4. Assume that the electric field derives from a smooth potential i.e.,

E = −∇xφ. Then for any f ∈ C1
c (R3 × R3) ∩ ker T we have〈

∂tf + v3∂x3f +
q

m
E · ∇vf + T f1

〉
= ∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f.
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Proof. We can write

〈
∂tf + v3∂x3f +

q

m
E · ∇vf + T f1

〉
= ∂tf + 〈v3∂x3f〉+

q

m
〈E · ∇vf〉

since
〈
T f1

〉
= 0 and 〈∂tf〉 = ∂t 〈f〉 = ∂tf . The average of v3∂x3f comes easily thanks

to Proposition 3.2

〈v3∂x3f〉 =
〈
divx,v{fv3b

3}
〉

= divx,v{〈fv3〉 b3} = divx,v{fv3b
3} = v3∂x3f.

Observe that T (fφ) = f v·∇xφ = −f v·E and thus
〈
f v · E

〉
= 0. Thanks to Proposition

3.3 one gets

〈divv{fE}〉 = divx

〈
f
⊥E

ωc

〉
+ T

〈
f
⊥v · E
ωc|v|2

〉
+ ∂v3 〈fE3〉

= divx

{
f

〈 ⊥E
ωc

〉}
+ ∂v3{f 〈E3〉}

implying that

q

m
〈divv{fE}〉 = divx

{
f

〈 ⊥E〉
B

}
+

q

m
∂v3{f 〈E3〉}.

Using again Proposition 3.2 notice that

∂v3 〈E3〉 = divx,v{〈E3〉 b5} =
〈
divx,v{E3b

5}
〉

= 〈∂v3E3〉 = 0

and

divx
〈 ⊥E〉 =

〈
divx ⊥E

〉
= 0

and our statement follows. �

Remark 3.2. We have proved that averaging the transport operator a · ∇x,v :=

v3∂x3 + q
mE · ∇v leads to A · ∇x,v := 〈

⊥E〉
B · ∇x + v3∂x3 + q

m 〈E3〉 ∂v3 which verifies

〈a · ∇x,vf〉 = A · ∇x,vf, f ∈ C1
c (R3 × R3) ∩ ker T .

By construction, the operator A · ∇x,v leaves invariant the subspace of smooth functions

of ker T . By antisymmetry (since divx,vA = 0) it is easily seen that A · ∇x,v also leaves

invariant the subspace of smooth functions in ker 〈·〉. Indeed, consider h a zero average
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smooth function and let us prove that 〈A · ∇x,vh〉 = 0 For any smooth f in ker T we

have ∫
R3

∫
R3
A · ∇x,vh f dvdx = −

∫
R3

∫
R3
hA · ∇x,vf dvdx = 0

by the orthogonality between ker 〈·〉 and ker T , and thus 〈A · ∇x,vh〉 = 0. Finally A ·∇x,v

is commuting with the average operator 〈A · ∇x,vf〉 = A · ∇x,v 〈f〉 for any smooth f .

4. The relaxation collision operator. In this section we analyze the linear Boltz-

mann collision kernel [18, 17]

QB(f)(x, v) =
1
τ

∫
R3
s(v, v′){M(v)f(x, v′)−M(v′)f(x, v)} dv′ (4.1)

where the scattering cross section satisfies

s(v, v′) = s(v′, v), 0 < s0 ≤ s(v, v′) ≤ S0 < +∞, v, v′ ∈ R3. (4.2)

We recall the standard properties of this operator. Here Q±B denote the gain/loss relax-

ation collision operators

Q+
B(f)(v) =

1
τ

∫
R3
s(v, v′)M(v)f(v′) dv′, Q−B(f)(v) =

1
τ

∫
R3
s(v, v′)M(v′)f(v) dv′.

Proposition 4.1. Assume that the scattering cross section satisfies (4.2). Then

1. The gain/loss collision operators Q±B are linear bounded operators on L2(M−1dv),

with ‖Q±B‖ ≤ S0/τ , and symmetric with respect to the scalar product of L2(M−1dv).

2. For any f ∈ L2(M−1dv) we have∫
R3
QB(f)(v)f(v)

dv
M

= − 1
2τ

∫
R3

∫
R3
s(v, v′)M(v)M(v′)

[
f(v)
M(v)

− f(v′)
M(v′)

]2

dv′ dv ≤ 0.

We want to average QB(f) for functions f satisfying the constraint (1.5). In this

section the operators T and 〈·〉 should be understood in the L2
(
M−1dxdv

)
framework.

We need to compute the average of functions like
∫

R3 C(v, v′)f(x, v′) dv′ where C(v, v′)

is a given function. The corresponding result in the bidimensional framework has been

announced in [5]. We will see that we only need to consider functions C which are
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left invariant by any rotation around e3 = (0, 0, 1). Therefore we assume that for any

orthogonal matrix O ∈M3(R) such that Oe3 = e3 we have

C(tOv, tOv′) = C(v, v′), v, v′ ∈ R3. (4.3)

These functions are precisely those depending only on |v|, v3, |v′|, v′3 and the angle be-

tween v and v′

C(v, v′) = C̃(|v|, v3, |v′|, v′3, ϕ), ϕ = arg v′ − arg v.

Proposition 4.2. Assume that the function C(v, v′) satisfies (4.3) and belongs to the

space L2(M−1(v)M(v′)dvdv′). Then for any function f ∈ ker T we have〈∫
R3
C(v, v′)f(x, v′) dv′

〉
(x, v) = ω2

c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, z)f(x′, x3, v

′) dv′dx′1dx′2

(4.4)

where z = ωcx+ ⊥v − (ωcx′ + ⊥v′)

C(r, v3, r
′, v′3, z) =

C̃(r, v3, r
′, v′3, ϕ) + C̃(r, v3, r

′, v′3,−ϕ)
2π2
√
|z|2 − (r − r′)2

√
(r + r′)2 − |z|2

1{|r−r′|<|z|<r+r′}

and for any |z| ∈ (|r − r′|, r + r′), ϕ ∈ (0, π) is the unique angle such that

|z|2 = r2 + (r′)2 − 2rr′ cosϕ.

Proof. For (x, v) ∈ R3 × R3 we have(∫
R3
C(v, v′)f(x, v′) dv′

)2

≤
∫

R3
(C(v, v′))2M(v′) dv′

∫
R3

(f(x, v′))2

M(v′)
dv′

implying that∥∥∥∥∫
R3
C(v, v′)f(x, v′) dv′

∥∥∥∥
L2(M−1dxdv)

≤ ‖C‖L2(M−1(v)M(v′)dvdv′)‖f‖L2(M−1dxdv).

Therefore the function (x, v) →
∫

R3 C(v, v′)f(x, v′) dv′ belongs to L2
(
M−1dxdv

)
and

can be averaged in L2
(
M−1dxdv

)
. Consider (x, v) ∈ R3×R3. By formula (2.1) we have

I : =
〈∫

R3
C(v, v′)f(x, v′) dv′

〉
(x, v)

=
1

2π

∫ 2π

0

∫
R3
C(|v|eiα, v3, v

′)f
(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
, x3, v

′
)

dv′dα.



16 MIHAI BOSTAN AND CÉLINE CALDINI-QUEIROS

For any fixed α ∈ [0, 2π) we use the cylindrical coordinates

v′ = (r′ei(ϕ+α), v′3), r′ ∈ R+, ϕ ∈ [−π, π)

and therefore

I =
1

2π

∫ 2π

0

∫
R

∫ π

−π

∫
R+

C(|v|eiα, v3, r
′ei(ϕ+α), v′3)

× f
(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
, x3, r

′ei(ϕ+α), v′3

)
r′dr′dϕdv′3dα. (4.5)

But f ∈ ker T and thus there is g such that

f(x, v) = g

(
x+

⊥v

ωc
, x3, |v|, v3

)
(4.6)

implying that

f

(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
, x3, r

′ei(ϕ+α), v′3

)
= g

(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
+
⊥{r′ei(ϕ+α)}

ωc
, x3, r

′, v′3

)
.

By one hand notice that r′ei(ϕ+α) − |v|eiα = lei(ψ+α) where l2 = r2 + (r′)2 − 2rr′ cosϕ,

r = |v| and ψ depends on r, r′, ϕ but not on α. By the other hand, since C is invariant

by rotation around e3 we deduce that

C(reiα, v3, r
′ei(ϕ+α), v′3) = C̃(r, v3, r

′, v′3, ϕ), ϕ = arg v′ − arg v.

The map ϕ → l(ϕ) =
√
r2 + (r′)2 − 2rr′ cosϕ defines a coordinate change between

ϕ ∈ (0, π) and l ∈ (|r − r′|, r + r′) and

dϕ =
2ldl√

l2 − (r − r′)2
√

(r + r′)2 − l2
.



FINITE LARMOR RADIUS REGIME FOR COLLISIONAL MAGNETIC CONFINEMENT 17

By Fubini theorem one gets

I =
1

2π

∫
R

∫ π

−π

∫
R+

∫ 2π

0

C̃(r, v3, r
′, v′3, ϕ)g

(
x+

⊥v

ωc
+
⊥{lei(ψ+α)}

ωc
, x3, r

′, v′3

)
r′ dαdr′dϕdv′3

=
1

2π

∫
R

∫ π

−π

∫
R+

∫ 2π

0

C̃(r, v3, r
′, v′3, ϕ)g

(
x+

⊥v

ωc
+
⊥{leiα}
ωc

, x3, r
′, v′3

)
r′ dαdr′dϕdv′3

=
1

2π

∫
R

∫
R+

∫ 2π

0

∫ π

0

{C̃(r, v3, r
′, v′3, ϕ) + C̃(r, v3, r

′, v′3,−ϕ)}

× g
(
x+

⊥v

ωc
+
⊥{l(ϕ)eiα}

ωc
, x3, r

′, v′3

)
r′ dϕdαdr′dv′3

=
1

2π

∫
R

∫
R+

∫ 2π

0

∫ r+r′

|r−r′|
{C̃(r, v3, r

′, v′3, ϕ(l)) + C̃(r, v3, r
′, v′3,−ϕ(l))}

× g
(
x+

⊥v

ωc
+
⊥{leiα}
ωc

, x3, r
′, v′3

)
2lr′ dldαdr′dv′3√

l2 − (r − r′)2
√

(r + r′)2 − l2
.

For any α′ ∈ [0, 2π) we have

g

(
x+

⊥v

ωc
+
⊥{leiα}
ωc

, x3, r
′, v′3

)
= f

(
x+

⊥v

ωc
+
⊥{leiα}
ωc

−
⊥{r′eiα′}

ωc
, x3, r

′eiα
′
, v′3

)

and performing the change of coordinates v′ = (r′eiα
′
, v′3) leads to

I =
1

2π2

∫ 2π

0

∫
R+

∫
R

∫ 2π

0

∫
R+

{C̃(r, v3, r
′, v′3, ϕ(l)) + C̃(r, v3, r

′, v′3,−ϕ(l))}

× f

(
x+

⊥v

ωc
+
⊥{leiα}
ωc

−
⊥{r′eiα′}

ωc
, x3, r

′eiα
′
, v′3

)
1{|r−r′|<l<r+r′}r′dr′dα′dv′3ldldα√

l2 − (r − r′)2
√

(r + r′)2 − l2

=
1

2π2

∫ 2π

0

∫
R+

∫
R3
{C̃(r, v3, |v′|, v′3, ϕ(l)) + C̃(r, v3, |v′|, v′3,−ϕ(l))}

× f
(
x+

⊥v

ωc
+
⊥{leiα}
ωc

−
⊥v′

ωc
, x3, v

′
) 1{| |v|−|v′| |<l<|v|+|v′|}dv

′ldldα√
l2 − (|v| − |v′|)2

√
(|v|+ |v′|)2 − l2

.

Using the notation

C(r, v3, r
′, v′3, z) =

C̃(r, v3, r
′, v′3, ϕ) + C̃(r, v3, r

′, v′3,−ϕ)
2π2
√
|z|2 − (r − r′)2

√
(r + r′)2 − |z|2

1{|r−r′|<|z|<r+r′}

where for any |z| ∈ (|r − r′|, r + r′), ϕ ∈ (0, π) is the unique angle such that

|z|2 = r2 + (r′)2 − 2rr′ cosϕ



18 MIHAI BOSTAN AND CÉLINE CALDINI-QUEIROS

one gets

I =
∫

R3

∫ 2π

0

∫
R+

C(|v|, v3, |v′|, v′3,−⊥{leiα})f
(
x+

⊥v

ωc
+
⊥{leiα}
ωc

−
⊥v′

ωc
, x3, v

′
)
ldldαdv′.

We take as new coordinates

x′ = x+
⊥v

ωc
+
⊥{leiα}
ωc

−
⊥v′

ωc

Observing that det ∂(x′1,x
′
2)

∂(l,α) = l
ω2
c

we deduce that

I = ω2
c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, (ωcx+ ⊥v)− (ωcx′ + ⊥v′))f(x′1, x

′
2, x3, v

′) dv′dx′1dx′2.

�

Remark 4.1. The constraint T f = 0 allows us to reduce the right hand side of (4.4)

to a four dimensional integral. Indeed, thanks to (4.6) we obtain, using the notation

y = x+
⊥v
ωc

I = ω2
c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, (ωcx+ ⊥v)− (ωcx′ + ⊥v′)) g

(
x′ +

⊥v′

ωc
, x3, |v′|, v′3

)
dv′dx′1dx′2

= ω2
c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, ωc(y − y′)) g(y′, x3, |v′|, v′3) dv′dy′1dy′2

= 2πω2
c

∫
R2

∫
R

∫
R+

C(|v|, v3, r
′, v′3, ωc(y − y′)) g(y′, x3, r

′, v′3) r′dr′dv′3dy′.

We prefer to keep the five dimensional integral representation since, in the sequel, we

will introduce similar integral terms, but with densities f not satisfying the constraint

T f = 0.

Remark 4.2. If the function C̃(r, v3, r
′, v′3, ϕ) is odd with respect to ϕ, then C = 0

and 〈∫
R3
C(v, v′)f(x, v′) dv′

〉
= 0, f ∈ ker T .

Remark 4.3. Let χ be the function

χ(r, r′, z) =
1{|r−r′|<|z|<r+r′}

π2
√
|z|2 − (r − r′)2

√
(r + r′)2 − |z|2

for any r, r′ ∈ R+, z ∈ R2. Then for every r, r′ ∈ R+, χ(r, r′, z)dz is a probability measure

on R2 ∫
R2
χ(r, r′, z) dz = 1, r, r′ ∈ R+
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and
〈∫

R3 C(v, v′)f(x, v′) dv′
〉

appears as a convolution with respect to the invariants

ωcx+ ⊥v. Indeed, using the formula

f(x′, x3, v
′) = g

(
x′ +

⊥v′

ωc
, x3, |v′|, v′3

)
we obtain〈∫

R3
C(v, v′)f(x, v′) dv′

〉
(x, v) =

∫
R3

∫
R2
C(|v|, v3, |v′|, v′3, (ωcx+ ⊥v)− (ωcx′ + ⊥v′))

× g
(
x′ +

⊥v′

ωc
, x3, |v′|, v′3

)
d(ωcx′ + ⊥v′)dv′.

Remark 4.4. The conclusion of Proposition 4.2 also holds true for bounded functions

f which are constant along the flow (1.7), provided that C(v, v′) ∈ L∞(dv;L1(dv′)) and

satisfies (4.3). Indeed, in this case f →
∫

R3 C(v, v′)f(x, v′) dv′ is bounded on L∞(dxdv)∥∥∥∥∫
R3
C(v, v′)f(x, v′) dv′

∥∥∥∥
L∞(dxdv)

≤ ‖C‖L∞(dv;L1(dv′)) ‖f‖L∞(dxdv)

and using the L∞ version of the average operator, the same computations as those in

the proof of Proposition 4.2 show that〈∫
R3
C(v, v′)f(x, v′) dv′

〉
(x, v) = ω2

c

∫
R2

∫
R3
C(|v|, v3, |v′|, v′3, z)f(x′, x3, v

′) dv′dx′1dx′2.

Corollary 4.1. Assume that the scattering cross section satisfies (4.2) and

s(v, v′) = σ(|v − v′|), v, v′ ∈ R3 (4.7)

for some function σ : R+ → R+. Then for any f ∈ ker T we have

〈QBf〉 (x, v) =
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v)f(x′, x3, v

′)−M(v′)f(x, v)} dv′dx′1dx′2

with z = ωcx+ ⊥v − (ωcx′ + ⊥v′) and

S(r, v3, r
′, v′3, z) = σ(

√
|z|2 + (v3 − v′3)2 )χ(r, r′, z).

Proof. Clearly the function C(v, v′) = σ(|v − v′|)M(v) satisfies (4.3), belongs to

L2(M−1(v)M(v′)dvdv′) and we have

s̃(r, v3, r
′, v′3, ϕ) = σ(

√
r2 + (r′)2 − 2rr′ cosϕ+ (v3 − v′3)2 )

S(r, v3, r
′, v′3, z) = σ(

√
|z|2 + (v3 − v′3)2 )χ(r, r′, z).
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Thanks to Proposition 4.2 we obtain, with z = (ωcx+ ⊥v)− (ωcx′ + ⊥v′)〈∫
R3
s(v, v′)M(v)f(x, v′) dv′

〉
= ω2

c

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v)f(x′, x3, v

′) dv′dx′1dx′2.

Since f belongs to L2
(
M−1dxdv

)
and remains constant along the flow (1.7) we have〈∫

R3
s(v, v′)M(v′)f(x, v) dv′

〉
= f(x, v)

〈∫
R3
s(v, v′)M(v′) dv′

〉
where the first average operator should be understood in the L2

(
M−1dxdv

)
setting

and the second one in the L∞(dxdv) setting. Remark 4.4 applied with C(v, v′) =

s(v, v′)M(v′) ∈ L∞(dv;L1(dv′)) and the constant function 1 ∈ L∞(dxdv) yields〈∫
R3
s(v, v′)M(v′) dv′

〉
= ω2

c

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v′) dv′dx′1dx′2.

Therefore we obtain〈∫
R3
s(v, v′)M(v′)f(x, v) dv′

〉
= ω2

c

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v′)f(x, v) dv′dx′1dx′2

and our statement follows immediately. �

We intend to extend the previous averaged collision operator to all densities f , not

only those satisfying the constraint T f = 0. Think that, when simulating numerically

these models, the particle density may not satisfy exactly T f = 0, and thus we need

to construct such a extension. One possibility consists to appeal to the decomposition

f = 〈f〉+ (f − 〈f〉) and to neglect the fluctuation f − 〈f〉, leading to the operator

f →Q̃Bf := 〈QB 〈f〉〉

=
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v) 〈f〉 (x′, x3, v

′)−M(v′) 〈f〉 (x, v)} dv′dx′1dx′2

for any f ∈ L2
(
M−1dxdv

)
. Clearly Q̃B coincides with 〈QBf〉 for any f ∈ ker T . Notice

that for any (x, v), (x′3, v
′
3) the function

(x′, v′)→ S(|v|, v3, |v′|, v′3, ωcx+ ⊥v − (ωcx′ + ⊥v′))M(v)

depends only on ωcx′+ ⊥v′, |v′| and therefore, thanks to Remark 2.1, we obtain a simpler

form

Q̃Bf =
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v)f(x′, x3, v

′)−M(v′) 〈f〉 (x, v)} dv′dx′1dx′2.
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Nevertheless notice that it is not possible to remove the average in the loss part of the

previous operator. Since QB and 〈·〉 are linear bounded operators on L2
(
M−1dxdv

)
we deduce that Q̃B is linear bounded on L2

(
M−1dxdv

)
. The properties of Q̃B come

immediately from the properties of QB , cf. Proposition 4.1. For example we have for

any f ∈ L2
(
M−1dxdv

)
∫

R3

∫
R3
Q̃Bf

f

M
dvdx =

∫
R3

∫
R3
〈QB 〈f〉〉

f

M
dvdx =

∫
R3

∫
R3
QB 〈f〉

〈f〉
M

dvdx

= − 1
2τ

∫
R3

∫
R3

∫
R3
s(v, v′)M(v)M(v′)

[
〈f〉 (x, v)
M(v)

− 〈f〉 (x, v
′)

M(v′)

]2

dv′dvdx ≤ 0.

Another possible extension is given by

〈QB〉 f :=
ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z){M(v)f(x′, x3, v

′)−M(v′)f(x, v)} dv′dx′1dx′2

(4.8)

for any f ∈ L2
(
M−1dxdv

)
, which is very similar to the operator QB in (4.1). We keep

this operator as extension for the operator in Corollary 4.1. The properties of 〈QB〉 are

summarized below

Proposition 4.3. Assume that the scattering cross section satisfies (4.2), (4.7). Then

1. The operator 〈QB〉 is linear bounded on L2
(
M−1dxdv

)
and symmetric with respect

to the scalar product of L2
(
M−1dxdv

)
.

2. For any f ∈ L2
(
M−1dxdv

)
we have

∫
R3

∫
R3
〈QB〉 (f)

f

M
dvdx = −ω

2
c

2τ

∫
R3

∫
R3

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v)M(v′)

×
[
f(x, v)
M(v)

− f(x′, x3, v
′)

M(v′)

]2

dv′dx′1dx′2 dvdx ≤ 0.

Proof. 1. The boundedness of the loss part follows easily since it is the multiplication

by the bounded function (see Remark 4.3)

ω2
c

τ

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v′) dv′dx′1dx′2 =

1
τ

∫
R3

∫
R2
S(|v|, v3, |v′|, v′3,−z′)M(v′) dz′dv′

≤ S0

τ
.
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For the gain part we use the inequalities

ω2
c

(∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)f(x′, x3, v

′) dv′dx′1dx′2

)2

≤
∫

R2

∫
R3
S f

2(x′, x3, v
′)

M(v′)
dv′dx′1dx′2 ω2

c

∫
R2

∫
R3
SM(v′) dv′dx′1dx′2

≤ S0

∫
R2

∫
R3
S f

2(x′, x3, v
′)

M(v′)
dv′dx′1dx′2.

Thanks to Remark 4.3 we deduce, with L2
M = L2

(
M−1dxdv

)
, that

∥∥∥∥ω2
c

τ

∫
R2

∫
R3
SM(v)f(x′, x3, v

′) dv′dx′1dx′2

∥∥∥∥2

L2
M

≤ ω2
c

τ2

∫
R3

∫
R3
M(v)S0

×
∫

R2

∫
R3
S f

2(x′, x3, v
′)

M(v′)
dv′dx′1dx′2 dvdx

=
S0

τ2

∫
R3
M(v)

∫
R3

∫
R3

f2(x′, x3, v
′)

M(v′)
ω2
c

∫
R2
S dx1dx2dv′dx′1dx′2dx3 dv

≤ S2
0

τ2

∫
R3

∫
R3

f2(x′1, x
′
2, x3, v

′)
M(v′)

dv′dx′1dx′2dx3 =
S2

0

τ2
‖f‖2L2

M
.

2. Interchanging (x′, v′) with (x, v) and observing that this change leaves invariant S,

yield for any f, g ∈ L2
(
M−1dxdv

)
(〈QB〉 f, g)L2

M

=
ω2
c

τ

∫
R3

∫
R3

∫
R2

∫
R3
SM(v)M(v′)

[
f(x′, x3, v

′)
M(v′)

− f(x, v)
M(v)

]
dv′dx′1dx′2

g(x, v)
M(v)

dvdx

= −ω
2
c

τ

∫
R3

∫
R3

∫
R2

∫
R3
SM(v)M(v′)

[
f(x′, x3, v

′)
M(v′)

− f(x, v)
M(v)

]
dvdx1dx2

× g(x′, x3, v
′)

M(v′)
dv′dx′1dx′2dx3

= −ω
2
c

2τ

∫
R3

∫
R3

∫
R2

∫
R3
SM(v)M(v′)

[
f(x′, x3, v

′)
M(v′)

− f(x, v)
M(v)

] [
g(x′, x3, v

′)
M(v′)

− g(x, v)
M(v)

]
dv′dx′1dx′2 dvdx

which justifies the symmetry of 〈QB〉 and its negativity. �
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Remark 4.5. Contrary to QB , the operator 〈QB〉 is non local in space. The value of

〈QB〉 f at the point (x, v) depends on all the values of f in the set

A(x, v) = {(x′1, x′2, x3, v
′) : S(|v|, v3, |v′|, v′3, (ωcx+ ⊥v)− (ωcx′ + ⊥v′) ) > 0}

= {(x′1, x′2, x3, v
′) : | |v| − |v′| | < |(ωcx+ ⊥v)− (ωcx′ + ⊥v′)| < |v|+ |v′|}.

Observe that if we denote by Cx,v the Larmor circle

Cx,v = {(x′1, x′2, x3) : | ωcx′ − (ωcx+ ⊥v) | = |v| }

then we have

Cx,v × {v′ : v′ ∈ R3} ⊂ A(x, v)

where X stands for the adherence of X in R6. In particular {x} × R3 ⊂ A(x, v).

Remark 4.6. The gain/loss parts of 〈QB〉 are bounded on L1(R3 × R3) and for any

f ∈ L1(R3×R3) we have the global balance of the mass
∫

R3

∫
R3〈QB〉 f dvdx = 0. Indeed,

we have

‖ 〈QB〉+ f‖L1 ≤ ω2
c

τ

∫
R3

∫
R3

∫
R2

∫
R3
S(|v|, v3, |v′|, v′3, z)M(v)|f(x′, x3, v

′)| dv′dx′1dx′2 dvdx

≤ S0

τ

∫
R3

∫
R3

∫
R3
M(v)|f(x′, x3, v

′)| dv′dx′1dx′2dx3dv

=
S0

τ
‖f‖L1

and similarly

‖ 〈QB〉− f‖L1 ≤ S0

τ
‖f‖L1 .

The global balance follows by interchanging (x′, v′) with (x, v).

Combining (1.6), Propositions 3.4, 4.1 and (4.8) yields the limit model in Theorem 1.1.

Proof. (of Theorem 1.1) Clearly 0 ≤ fε ∈ L∞
(
R+, L

1(R3 × R3)
)

and∫
R3

∫
R3
fε(t, x, v) dvdx =

∫
R3

∫
R3
f in(x, v) dvdx, t ∈ R+, ε > 0.

We consider a sequence (εk)k ⊂ R?+ converging to 0 such that limk→+∞ fεk = f weakly

? in L∞
(
R+, L

2
(
M−1dxdv

))
. Using the weak formulation of (1.3), (1.2) with test
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functions η(t)ϕ(x, v), η ∈ C1
c (R+), ϕ ∈ C1

c (R3 × R3), we deduce, after multiplication by

εk and letting k →∞, that the limit density satisfies the constraint

T f(t) = 0, t ∈ R+. (4.9)

Considering test functions like η(t)ϕ(x, v) with η ∈ C1
c (R+), ϕ ∈ C1

c (R3 × R3) ∩ ker T

one gets

∫
R+

∫
R3

∫
R3
fεk{η′ϕ+ ηv3∂x3ϕ+ η

q

m
E(x) · ∇vϕ} dvdxdt+

∫
R3

∫
R3
f inη(0)ϕ dvdx

= −
∫

R+

∫
R3

∫
R3
ηQB(fεk)ϕ dvdxdt.

(4.10)

The symmetry of QB cf. Proposition 4.1 allows us to write

lim
k→+∞

∫
R+

∫
R3

∫
R3
ηQB(fεk)ϕ dvdxdt = lim

k→+∞

∫
R+

∫
R3

∫
R3
ηfεkQB(ϕM)

dvdx
M

dt

=
∫

R+

∫
R3

∫
R3
ηfQB(ϕM)

dvdx
M

dt =
∫

R+

∫
R3

∫
R3
ηQB(f)ϕ dvdxdt

=
∫

R+

∫
R3

∫
R3
η 〈QB(f)〉ϕ dvdxdt =

∫
R+

∫
R3

∫
R3
η 〈QB〉 (f)ϕ dvdxdt

(4.11)

since f(t) ∈ ker T , t ∈ R+ and thus 〈QB(f)〉 = 〈QB〉 (f). For the other terms in (4.10)

we obtain thanks to Proposition 3.4, Remark 3.2

lim
k→+∞

∫
R+

∫
R3

∫
R3
fεk(∂t + a · ∇x,v)(ηϕ) dvdxdt =

∫
R+

∫
R3

∫
R3
f(∂t + a · ∇x,v)(ηϕ) dvdxdt

=
∫

R+

∫
R3

∫
R3
f(∂t +A · ∇x,v)(ηϕ) dvdxdt

(4.12)

and

∫
R3

∫
R3
f in(x, v)η(0)ϕ(x, v) dvdx =

∫
R3

∫
R3
η(0)

〈
f in
〉

(x, v)ϕ(x, v) dvdx. (4.13)
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Combining (4.10), (4.11), (4.12), (4.13) yields for any smooth test function η(t)ϕ(x, v)

with ϕ ∈ ker T .∫
R+

∫
R3

∫
R3
f(∂t +A · ∇x,v)(ηϕ) dvdxdt+

∫
R3

∫
R3

〈
f in
〉
η(0)ϕ(x, v) dvdx

= −
∫

R+

∫
R3

∫
R3
〈QB〉 (f)ηϕ dvdxdt. (4.14)

By Remark 3.2 we know that A · ∇x,v leaves invariant the subspace of zero average

functions and therefore it is easily seen that (4.14) is trivially satisfied for any test

function η(t)ψ(x, v), with ψ ∈ C1
c (R3 × R3) ∩ ker 〈·〉. Finally (4.14) holds true for any

smooth test function, saying that f solves (1.9), (1.10). We are done if we prove the

uniqueness for the solution of (1.9), (1.10) (and in this case all the family (fε)ε will

converge towards f , weakly ? in L∞
(
R+, L

2
(
M−1dxdv

))
). Assume that f solves (1.9)

with zero initial condition. By standard arguments one gets

∂t|f |+
〈 ⊥E〉
B

· ∇x|f |+ v3∂x3 |f |+
q

m
〈E3〉 ∂v3 |f | = 〈QB〉 (f) sgnf

implying that

d
dt

∫
R3

∫
R3
|f(t, x, v)| dvdx =

∫
R3

∫
R3
〈QB〉 (f) sgnf(t, x, v) dvdx, t ∈ R+.

Our conclusion comes by observing that∫
R3

∫
R3
〈QB〉 (f) sgnf dvdx

=
ω2
c

τ

∫
R3

∫
R3

∫
R2

∫
R3
S{M(v)f(t, x′, x3, v

′)−M(v′)f(t, x, v)}sgnf(t, x, v) dv′dx′1dx′2 dvdx

=
ω2
c

τ

∫
R3

∫
R3

∫
R2

∫
R3
SM(v′){f(t, x, v)sgnf(t, x′, x3, v

′)− |f(t, x, v)|} dv′dx′1dx′2 dvdx ≤ 0.

�

Remark 4.7. It is easily seen that the integro-differential operator in (1.9) propagates

the constraint T f = 0. We are done if we prove that fs = f for any s ∈ R, where

fs(t, x, v) = f(t,X(s;x, v), V (s;x, v)) and (X,V ) is the characteristic flow (1.7). A direct

computation shows that T and A · ∇x,v = 〈
⊥E〉
B · ∇x + v3∂x3 + q

m 〈E3〉 ∂v3 commute,

implying that

A · ∇x,vfs = (A · ∇x,vf)s.
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Observe also that

〈QB〉+ fs = 〈QB〉+ f = (〈QB〉+ f)s, 〈QB〉− fs = (〈QB〉− f)s

and therefore 〈QB〉 fs = (〈QB〉 f)s. Finally both f, fs satisfy (1.9), (1.10) and our

statement follows by the uniqueness that we have established before.

Clearly the transport equation (1.9) can be written in the reduced phase space (y =

x +
⊥v
ωc
, x3, r = |v|, v3) since, by the constraint T f = 0, we know that f(t, x, v) =

g(t, y, x3, r, v3). We obtain

∂tg +

〈 ⊥E〉
B

· ∇yg + v3∂x3g +
q

m
〈E3〉 ∂v3g = 2π

ω2
c

τ

∫
R2

∫
R

∫
R+

S(r, v3, r
′, v′3, ωc(y − y′))

× {M g(t, y′, x3, r
′, v′3)−M ′ g(t, y, x3, r, v3)} r′dr′dv′3dy′

where

M =
1

(2πθ/m)3/2
e−

m
2θ (r2+(v3)2), M ′ =

1
(2πθ/m)3/2

e−
m
2θ ((r′)2+(v′3)2).

Remark 4.8. The family (fε)0<ε≤1 remains bounded in L∞
(
R+, L

2
(
M−1dxdv

))
for

potentials of the form φ(x) = φ(x) +φ3(x3). Indeed, in this case observe that the energy

function W ε(x, v) := m|v|2
2 + q(ε φ(x) + φ3(x3)) satisfies

∂tW
ε +

1
ε

(v · ∇x + ωc
⊥v · ∇v)W ε + v3∂x3W

ε +
q

m
E(x) · ∇vW ε = 0

and therefore one gets{
∂t +

1
ε

(v · ∇x + ωc
⊥v · ∇v) + v3∂x3 +

q

m
E(x) · ∇v

}(
(fε)2

2M(v) exp(− qθ [ε φ(x) + φ3(x3)])

)

=
QB(fε)fε

M(v) exp(− qθ [ε φ(x) + φ3(x3)])
.

Integrating with respect to (x, v) yields the bound∫
R3

∫
R3

(fε(t, x, v))2

M(v) exp(− qθ [ε φ(x) + φ3(x3)])
dvdx ≤

∫
R3

∫
R3

(f in(x, v))2

M(v) exp(− qθ [ε φ(x) + φ3(x3)])
dvdx

implying the uniform estimate

‖fε‖L∞(R+,L2(M−1dxdv)) ≤ exp
(
|q| (‖φ‖L∞ + ‖φ3‖L∞)

θ

)
‖f in‖L2(M−1dxdv), 0 < ε ≤ 1.
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Appendix A. Proof of Theorem 1.2.

Proof. The Fokker-Planck kernel being a second order differential operator, we appeal

twice to Proposition 3.3. For any f ∈ ker T , taking ξv = M∇v (f/M) yields〈
divv

(
M∇v

(
f

M

))〉
(A.1)

= divωcx

{〈
M ⊥∇v

(
f

M

)〉
+
〈
M ∇v

(
f

M

)
·
⊥v

|v|

〉
v

|v|
−
〈
M ∇v

(
f

M

)
· v
|v|

〉 ⊥v

|v|

}
+ divv

{〈
M ∇v

(
f

M

)
·
⊥v

|v|

〉 ⊥v

|v|
+
〈
M ∇v

(
f

M

)
· v
|v|

〉
v

|v|

}
+ ∂v3

〈
M∂v3

(
f

M

)〉
.

Since ∂v3 commutes with 〈·〉 (cf. Proposition 3.2) we deduce

∂v3

〈
M∂v3

(
f

M

)〉
= ∂v3

{
M

〈
∂v3

(
f

M

)〉}
= ∂v3

{
M∂v3

〈
f

M

〉}
= ∂v3

{
M∂v3

(
f

M

)}
.

It remains to compute the averages〈
M ⊥∇v

(
f

M

)〉
,

〈
M ∇v

(
f

M

)
·
⊥v

|v|

〉
,

〈
M ∇v

(
f

M

)
· v
|v|

〉
.

These averages come easily, thanks to Proposition 3.3, observing that

∂v1

(
f

M

)
= divv

(
f

M
, 0, 0

)
, ∂v2

(
f

M

)
= divv

(
0,

f

M
, 0
)

∇v
(
f

M

)
· ⊥v = divv

(
f

M
⊥v

)
, ∇v

(
f

M

)
· v = divv

(
f

M
v

)
− 2

f

M
.

We obtain 〈
M ⊥∇v

(
f

M

)〉
= M ∇ωcx

(
f

M

)
(A.2)

〈
M ∇v

(
f

M

)
·
⊥v

|v|

〉
= M

(
(v, 0)
|v|

,
( ⊥v, 0)
|v|

)
· ∇ωcx,v

(
f

M

)
(A.3)

〈
M ∇v

(
f

M

)
· v
|v|

〉
= −M

(
( ⊥v, 0)
|v|

,− (v, 0)
|v|

)
· ∇ωcx,v

(
f

M

)
. (A.4)

Our conclusion follows by combining (A.1), (A.2), (A.3), (A.4). The diffusion matrix L

is positive and for any ξ = (ξx, ξv) ∈ R6 we have

Lξ · ξ = |ξx|2 + |ξx − ⊥ξv|2 + (ξv3)2 ≥ 0

with equality iff ξx = ξv = (0, 0) and ξv3 = 0. �
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