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Introduction

This paper is devoted to continuum models for the dynamics of systems involving living organisms such as flocks of birds, school of fish, swarms of insects, myxobacteria... The individuals of these groups are able to organize in the absence of a leader, even when starting from disordered configurations [START_REF] Parrish | Complexity, pattern and evolutionary trade-offs in animal aggregation[END_REF]. Several minimal models describing such self-organizing phenomenon have been derived [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Grégoire | On set of collective and cohesive motion[END_REF][START_REF] Couzin | Effective leadership and decision making in animal groups on the move[END_REF]. Most of these models include three basic effects: short-range repulsion, long-range attraction, and reorientation or alignment, in various ways, see [START_REF] Huth | The Simulation of the Movement of Fish Schools[END_REF] and particular applications to birds [START_REF] Hildenbrandt | Self-organised complex aerial displays of thousands of starlings: a model[END_REF] and fish [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF][START_REF] Barbaro | Modelling and simulations of the migration of pelagic fish[END_REF].

We first focus on populations of individuals driven by self-propelling forces and pairwise attractive and repulsive interaction [START_REF] Levine | Self-organization in systems of self-propelled particles[END_REF][START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF]. We consider self-propelled particles with Rayleigh friction [START_REF] Chuang | Multi-vehicle flocking : scalability of cooperative control algorithms using pairwise potentials[END_REF][START_REF] Chuang | State transitions and the continuum limit for a 2D interacting, self-propelled particle system[END_REF][START_REF] Carrillo | Double milling in a self-propelled swarms from kinetic theory[END_REF][START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF], leading to the Vlasov equation in d = 2, 3 dimensions:

∂ t f ε + v • ∇ x f ε + a ε (t, x) • ∇ v f ε + 1 ε div v {f ε (α -β|v| 2 )v} = 0, (t, x, v) ∈ R + × R d × R d (1)
where f ε = f ε (t, x, v) ≥ 0 represents the particle density in the phase space (x, v) ∈ R d × R d at any time t ∈ R + , a ε stands for the acceleration

a ε (t, •) = -∇ x U ρ ε (t, •), ρ ε (t, •) = R d f ε (t, •, v) dv ,
and U is the pairwise interaction potential modelling the repelling and attractive effects.

Here, the propulsion and friction forces coefficients α ε = α ε > 0, β ε = β ε > 0 are scaled in such a way that for ε → 0 particles will tend to move with asymptotic speed α β . These models have been shown to produce complicated dynamics and patterns such as mills, double mills, flocks and clumps, see [START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF]. Assuming that all individuals move with constant speed also leads to spatial aggregation, patterns, and collective motion [START_REF] Czirok | Spontaneously ordered motion of self-propelled particles[END_REF][START_REF] Ebeling | Nonequilibrium statistical mechanics of swarms of driven particles[END_REF].

Another source of models arises from introducing alignment at the modelling stage. A popular choice in the last years to include this effect is the Cucker-Smale reorientation procedure [START_REF] Cucker | Emergent behavior in flocks[END_REF]. Each individual in the group adjust their relative velocity by averaging with all the others. This velocity averaging is weighted in such a way that closer individuals in space have more influence than further ones. The continuum kinetic version of them leads to Vlasov-like models of the form [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF] in which the acceleration is of the form

a ε (t, •) = -H f ε (t, •) ,
where stands for the (x, v)-convolution, abusing a bit on the notation, with the nonnegative interaction kernel H : R 2d -→ R d . In the original Cucker-Smale work, the interaction is modelled by H(x, v) = h(x)v, with the weight function h being a decreasing radial nonnegative function. We refer to the extensive literature in this model for further details [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and meanfield limit[END_REF][START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF][START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF][START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF].

In this work, we will consider the Vlasov equation [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF] where the acceleration includes the three basic effects discussed above, and then takes the form:

a ε (t, •) = -∇ x U ρ ε (t, •) -H f ε (t, •) . (2) 
We will assume that the interaction potential U ∈ C 2 b (R d ), U bounded continuous with bounded continuous derivatives up to second order, and H(x, v) = h(x)v with h ∈ C 1 b (R d ) and nonnegative. Under these assumptions the model ( 1)-( 2) can be rigorously derived as a mean-field limit [START_REF] Neunzert | The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles[END_REF][START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF][START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] from the particle systems introduced in [START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF][START_REF] Cucker | Emergent behavior in flocks[END_REF].

We will first study in detail the linear problem, assuming that the acceleration a = a(t, x) is a given global-in-time bounded smooth field. We investigate the regime ε 0, that is the case when the propulsion and friction forces dominate the potential interaction between particles. At least formally we have

f ε = f + εf (1) + ε 2 f (2) + ... (3) 
where div v {f (α -β|v| 2 )v} = 0 (4)

∂ t f + div x (f v) + div v (f a(t, x)) + div v {f (1) (α -β|v| 2 )v} = 0 ,

up to first order. Therefore, to characterize the zeroth order term in the expansion we need naturally to work with solutions whose support lies on the sphere of radius r := α/β denoted by rS with S = {v ∈ R d : |v| = 1}. In turn, we need to work with measure solutions to (4) which makes natural to set as functional space the set of nonnegative bounded Radon

measures on R d × R d denoted by M + b (R d × R d
). We will be looking at solutions to (1) which are typically continuous curves in the space M + b (R d × R d ) with a suitable notion of continuity to be discussed later on. We will denote by f ε (t, x, v) d(x, v) the integration against the measure solution f ε (t, x, v) of (1) at time t. For the sake of clarity, this is done independently of being the measure f ε (t) absolutely continuous with respect to Lebesgue or not, i.e., having a L 1 (R d × R d ) density or not.

Proposition 1.1 Assume that (1 + |v| 2 )F ∈ M + b (R d ).
Then F is a solution to (4) if and only if supp F ⊂ {0} ∪ rS.

The condition (4) appears as a constraint, satisfied at any time t ∈ R + . The time evolution of the dominant term f in the Ansatz (3) will come by eliminating the multiplier f (1) in [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF], provided that f verifies the constraint [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF]. In other words we are allowed to use those test functions ψ(x, v) which remove the contribution of the term div v {f (1) (α -β|v| 2 )v} i.e.,

R d ×R d (α -β|v| 2 )v • ∇ v ψ f (1) (t, x, v) d(x, v) = 0.
Therefore we need to investigate the invariants of the field (α -β|v| 2 )v • ∇ v . The admissible test functions are mainly those depending on x and v/|v|, v = 0. The characteristic flow

(s, v) → V(s; v) associated to 1 ε (α -β|v| 2 )v • ∇ v dV ds = 1 ε (α -β |V(s; v)| 2 )V(s; v), V(0; v) = v
will play a crucial role in our study. It will be analyzed in detail in Section 3. Notice that the elements of {0} ∪ rS are the equilibria of (α -β|v| 2 )v • ∇ v . It is easily seen that the jacobian of this field

∂ v {(α -β|v| 2 )v} = (α -β|v| 2 )I -2βv ⊗ v
is negative on rS, saying that rS are stable equilibria. The point 0 is unstable,

∂ v {(α - β|v| 2 )v}| v=0 = αI. When ε 0 the solutions (f ε ) ε concentrate on R d × ({0} ∪ rS), leading to
a limit curve of measures even if (f ε ) ε were smooth solutions. We can characterize the limit curve as solution of certain PDE whenever our initial measure does not charge the unstable point 0.

Theorem 1.1 Assume that a ∈ L ∞ (R + ; W 1,∞ (R d )), (1+|v| 2 )f in ∈ M + b (R d ×R d ), supp f in ⊂ {(x, v) : |v| ≥ r 0 > 0}. Then (f ε ) ε converges weakly in L ∞ (R + ; M b (R d × R d )) towards the solution of the problem ∂ t f + div x (f v) + div v f I - v ⊗ v |v| 2 a = 0 (6) div v {f (α -β|v| 2 )v} = 0 (7)
with initial data f (0) = f in defined by

R d ×R d ψ(x, v) f in (x, v) d(x, v) = R d ×R d ψ x, r v |v| f in (x, v) d(x, v) , for all ψ ∈ C 0 c (R d × R d ).
In the rest, we will refer to f in as the projected measure on the sphere of radius r corresponding to f in . Let us point out that the previous result can be equivalently written in spherical coordinates by saying that f (t, x, ω) is the measure solution to the evolution equation on (x, ω) ∈ R d × rS given by

∂ t f + div x (f ω) + div ω f I - 1 r 2 (ω ⊗ ω) a = 0 .
These results for the linear problem, when a(t, x, v) is given, can be generalized to the nonlinear counterparts where a(t, x) is given by [START_REF] Barbaro | Modelling and simulations of the migration of pelagic fish[END_REF]. The main result of this work is (see Section 2 for the definition of P 1 ):

Theorem 1.2 Assume that U ∈ C 2 b (R d ), H(x, v) = h(x)v with h ∈ C 1 b (R d ) nonnegative, f in ∈ P 1 (R d × R d ), supp f in ⊂ {(x, v) : |x| ≤ L 0 , r 0 ≤ |v| ≤ R 0 } with 0 < r 0 < r < R 0 < ∞.
Then for all δ > 0, the sequence

(f ε ) ε converges in C([δ, ∞); P 1 (R d ×R d )) towards the measure solution f (t, x, ω) on (x, ω) ∈ R d × rS of the problem ∂ t f + div x (f ω) -div ω f I - 1 r 2 (ω ⊗ ω) (∇ x U ρ + H f ) = 0 ( 8 
)
with initial data f (0) = f in . Moreover, if the initial data f in is already compactly supported on B L 0 × rS, then the convergence holds in C(R + ; P 1 (R d × R d )).
Let us mention that the evolution problem (8) on R d × rS was also proposed in the literature as the continuum version [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] of the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF] without diffusion for the particular choice U = 0 and H(x, v) = h(x)v with h(x) some local averaging kernel. The original model in [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF] also includes noise at the particle level and was derived as the mean filed limit of some stochastic particle systems in [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF]. In fact, previous particle systems have also been studied with noise in [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] for the mean-field limit, in [START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF] for studying some properties of the Cucker-Smale model with noise, and in [START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF] for analyzing the phase transition in the Vicsek model.

In the case of noise, getting accurate control on the particle paths of the solutions is a complicated issue and thus, we are not able to show the corresponding rigorous results to Theorems 1.1 and 1.2. Nevertheless, we will present a simplified formalism, which allows us to handle more complicated problems to formally get the expected limit equations. This approach was borrowed from the framework of the magnetic confinement, where leading order charged particle densities have to be computed after smoothing out the fluctuations which correspond to the fast motion of particles around the magnetic lines [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | Mathematical models for strongly magnetized plasmas with mass disparate particles[END_REF]. We apply this method to the following (linear or nonlinear) problem

∂ t f ε + div x {f ε v} + div v {f ε a} + 1 ε div v {f ε (α -β|v| 2 )v} = ∆ v f ε (9) with initial data f ε (0) = f in where the acceleration a ∈ L ∞ (R + ; W 1,∞ (R d )) and f in ∈ M + b (R d × R d ).
By applying the projection operator • to (9), we will show that the limiting equation for the evolution of f (t, x, ω) on (x, ω) ∈ R d × rS is given by

∂ t f + div x (f ω) + div ω f I - 1 r 2 (ω ⊗ ω) a = ∆ ω f (10) 
where ∆ ω is the Laplace-Beltrami operator on rS.

Our paper is organized as follows. In Section 2 we investigate the stability of the characteristic flows associated to the perturbed fields v

• ∇ x + a • ∇ v + 1 ε (α -β|v| 2 )v • ∇ v .
The first limit result for the linear problem (cf. Theorem 1.1) is derived rigorously in Section 3.

Section 4 is devoted to the proof of the main Theorem 1.2. The new formalism to deal with the treatment of diffusion models is presented in Section 5. The computations to show that these models correspond to the Vicsek models, written in spherical coordinates, are presented in the Appendix A.

2 Measure solutions

Preliminaries on mass transportation metrics and notations

We recall some notations and result about mass transportation distances that we will use in the sequel. For more details the reader can refer to [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Carrillo | Contractive probability metrics and asymptotic behavior of dissipative kinetic equations[END_REF]. We denote by P 1 (R d ) the space of probability measures on R d with finite first moment.

We introduce the so-called Monge-Kantorovich-Rubinstein distance in P 1 (R d ) defined by

W 1 (f, g) = sup R d ϕ(u)(f (u) -g(u)) du , ϕ ∈ Lip(R d ), Lip(ϕ) ≤ 1
where Lip(R d ) denotes the set of Lipschitz functions on R d and Lip(ϕ) the Lipschitz constant of a function ϕ. Denoting by Λ the set of transference plans between the measures f and g, i.e., probability measures in the product space R d × R d with first and second marginals f and g respectively

f (y) = R d π(y, z) dz, g(z) = R d π(y, z) dy then we have W 1 (f, g) = inf π∈Λ R d ×R d |y -z| π(y, z) d(y, z)
by Kantorovich duality. P 1 (R d ) endowed with this distance is a complete metric space. Its properties are summarized below, see [START_REF] Villani | Topics in optimal transportation[END_REF].

Proposition 2.1 The following properties of the distance W 1 hold:

1) Optimal transference plan: The infimum in the definition of the distance W 1 is achieved. Any joint probability measure π o satisfying:

W 1 (f, g) = R d ×R d |y -z| dπ o (y, z)
is called an optimal transference plan and it is generically non unique for the W 1distance.

2) Convergence of measures: Given {f k } k≥1 and f in P 1 (R d ), the following two assertions are equivalent: a) W 1 (f k , f ) tends to 0 as k goes to infinity.

b) f k tends to f weakly as measures as k goes to infinity and

sup k≥1 |v|>R |v| f k (v) dv → 0 as R → +∞.
Let us point out that if the sequence of measures is supported on a common compact set, then the convergence in W 1 -sense is equivalent to standard weak-convergence for bounded Radon measures.

Finally, let us remark that all the models considered in this paper preserve the total mass.

After normalization we can consider only solutions with total mass 1 and therefore use the

Monge-Kantorovich-Rubinstein distance in P 1 (R d × R d ).
From now on we assume that the initial conditions has total mass 1.

Estimates on Characteristics

In this section we investigate the linear Vlasov problem

∂ t f ε + div x {f ε v} + div v {f ε a} + 1 ε div v {f ε (α -β|v| 2 )v} = 0, (t, x, v) ∈ R + × R d × R d (11) f ε (0) = f in (12) 
where

a ∈ L ∞ (R + ; W 1,∞ (R d )) and f in ∈ M + b (R d × R d ). Definition 2.1 Assume that a ∈ L ∞ (R + ; W 1,∞ (R d )) and f in ∈ M + b (R d × R d ). We say that f ε ∈ L ∞ (R + ; M b (R d × R d )) is a measure solution of (11)-(12) if for any test function ϕ ∈ C 1 c (R + × R d × R d ) we have R + R d ×R d {∂ t + v • ∇ x + a • ∇ v + 1 ε (α -β|v| 2 )v•∇ v }ϕf ε (t, x, v) d(x, v) dt + R d ×R d ϕ(0, x, v)f in (x, v) d(x, v) = 0.
We introduce the characteristics of the field v

• ∇ x + a • ∇ v + 1 ε (α -β|v| 2 )v • ∇ v dX ε ds = V ε (s), dV ε ds = a(s, X ε (s)) + 1 ε (α -β |V ε (s)| 2 )V ε (s) X ε (s = 0) = x, V ε (s = 0) = v.
We will prove that (X ε , V ε ) are well defined for any (s,

x, v) ∈ R + × R d × R d . Indeed, on any interval [0, T ] on which (X ε , V ε ) is well defined we get a bound sup s∈[0,T ] {|X ε (s)| + |V ε (s)|} < +∞
implying that the characteristics are global in positive time. For that we write 1 2

d|V ε | 2 ds = a(s, X ε (s)) • V ε (s) + 1 ε (α -β|V ε (s)| 2 )|V ε (s)| 2 . ( 13 
)
and then, we get the differential inequality

d|V ε | 2 ds ≤ 2 a L ∞ |V ε (s)| + 2 ε (α -β|V ε (s)| 2 )|V ε (s)| 2 for all s ∈ [0, T ], so that sup s∈[0,T ] |V ε (s)| < +∞, sup s∈[0,T ] |X ε (s)| ≤ |x| + T sup s∈[0,T ] |V ε (s)| < +∞.
Once constructed the characteristics, it is easily seen how to obtain a measure solution for the Vlasov problem ( 11)- [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF]. It reduces to push forward the initial measure along the characteristics, see [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] for instance.

Proposition 2.2 For any t ∈ R + we denote by f ε (t) the measure given by

R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) = R d ×R d ψ((X ε , V ε )(t; 0, x, v))f in (x, v) d(x, v) , (14) 
for all ψ ∈ C 0 c (R d × R d ). Then the application t → f ε (t), denoted f in #(X ε , V ε )(t; 0, •, •
) is the unique measure solution of (11), [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF], belongs to

C(R + ; M b (R d × R d )) and satisfies R d ×R d f ε (t, x, v) d(x, v) = R d ×R d f in (x, v) d(x, v), t ∈ R + .
Proof. The arguments are straightforward and are left to the reader. We only justify

that f ε ∈ C(R + ; M b (R d × R d )) meaning that for any ψ ∈ C 0 c (R d × R d ) the application t → R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) is continuous. Choose ψ ∈ C 0 c (R d × R d ).
Then, for any 0 ≤ t 1 < t 2 we have

R d ×R d ψ(x, v)f ε (t 2 , x, v) d(x, v) - R d ×R d ψ(x, v)f ε (t 1 , x, v) d(x, v) = R d ×R d [ψ((X ε , V ε )(t 2 ; t 1 , x, v)) -ψ(x, v)] f ε (t 1 , x, v) d(x, v).
Taking into account that (X ε , V ε ) are locally bounded (in time, position, velocity) it is easily seen that for any compact set

K ⊂ R d × R d there is a constant C(K) such that |X ε (t 2 ; t 1 , x, v) -x| + |V ε (t 2 ; t 1 , x, v) -v| ≤ |t 2 -t 1 |C(K), (x, v) ∈ K.
Our conclusion follows easily using the uniform continuity of ψ and that

f ε (t 1 ) M b = f in M b .
Notice also that the equality [START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF] holds true for any bounded continuous function ψ.

We intend to study the behavior of (f ε ) ε when ε becomes small. This will require a more detailed analysis of the characteristic flows (X ε , V ε ). The behavior of these characteristics depends on the roots of functions like

A + 1 ε (α -βρ 2 )ρ, with ρ ∈ R + , A ∈ R.
Proposition 2.3 Assume that A < 0 and 0 < ε < 2αr/(|A|3 √ 3). Then the equation

λ ε (ρ) := εA + (α -βρ 2 )ρ = 0 has two zeros on R + , denoted ρ ε 1 (A), ρ ε 2 (A), satisfying 0 < ρ ε 1 < r √ 3 < ρ ε 2 < r and lim ε 0 ρ ε 1 ε = |A| α , lim ε 0 r -ρ ε 2 ε = |A| 2α
where r = α/β.

Proof. It is easily seen that the function λ ε increases on [0, r/ √ 3] and decreases on

[r/ √ 3, +∞[ with change of sign on [0, r/ √ 3] and [r/ √ 3, r]. We can prove that (ρ ε 1 ) ε , (ρ ε 2 ) ε are monotone with respect to ε > 0. Take 0 < ε < ε < 2αr/(|A|3 √ 
3) and observe that λ ε > λ ε .

In particular we have

λ ε (ρ ε 1 ) < λ ε (ρ ε 1 ) = 0 = λ ε (ρ ε 1 ) implying ρ ε 1 < ρ ε 1 , since λ ε is strictly increasing on [0, r/ √ 3]. Similarly we have λ ε (ρ ε 2 ) < λ ε (ρ ε 2 ) = 0 < λ ε (ρ ε 2 )
and thus

ρ ε 2 > ρ ε 2 , since λ ε is strictly decreasing on [r/ √ 3, r]. Passing to the limit in λ ε (ρ ε k ) = 0, k ∈ {1, 2} it follows easily that lim ε 0 ρ ε 1 = 0, lim ε 0 ρ ε 2 = r.
Moreover we can write

α = d dρ {(α -βρ 2 )ρ}| ρ=0 = lim ε 0 [α -β(ρ ε 1 ) 2 ]ρ ε 1 ρ ε 1 = -lim ε 0 εA ρ ε 1 and -2α = d dρ {(α -βρ 2 )ρ}| ρ=r = lim ε 0 [α -β(ρ ε 2 ) 2 ]ρ ε 2 ρ ε 2 -r = -lim ε 0 εA ρ ε 2 -r saying that lim ε 0 ρ ε 1 ε = |A| α , lim ε 0 r -ρ ε 2 ε = |A| 2α .
The case A > 0 can be treated is a similar way and we obtain Proposition 2.4 Assume that A > 0 and ε > 0. Then the equation λ ε (ρ

) := εA + (α - βρ 2 )ρ = 0 has one zero on R + , denoted ρ ε 3 (A), satisfying ρ ε 3 > r, lim ε 0 ρ ε 3 -r ε = |A| 2α .
Using the sign of the function ρ → ε a L ∞ + (α -βρ 2 )ρ we obtain the following bound for the kinetic energy.

Proposition 2.5 Assume that a ∈ L ∞ (R + ; W 1,∞ (R d )), (1 + |v| 2 )f in ∈ M + b (R d × R d
) and let us denote by f ε the unique measure solution of (11), [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF]. Then we have

R d ×R d |v| 2 f ε (•, x, v) d(x, v) L ∞ (R + ) ≤ R d ×R d [(ρ ε 3 ) 2 + |v| 2 ]f in (x, v) d(x, v).
Proof. We know that

d dt |V ε | 2 ≤ 2 a L ∞ |V ε (t)| + 2 ε (α -β|V ε (t)| 2 )|V ε (t)| 2 = 2 ε |V ε (t)|λ ε (|V ε (t)|), t ∈ R + .
By comparison with the solutions of the autonomous differential equation associated to the righthand side, we easily deduce that

|V ε (t; 0, x, v)| ≤ max{|v|, ρ ε 3 ( a L ∞ )} , for any T ∈ R + , (x, v) ∈ R d × R d .
This yields the following bound for the kinetic energy

R d ×R d |v| 2 f ε (T, x, v) d(x, v) = R d ×R d |V ε (T ; 0, x, v)| 2 f in (x, v) d(x, v) ≤ R d ×R d [(ρ ε 3 ) 2 + |v| 2 ]f in (x, v) d(x, v).
The object of the next result is to establish the stability of V ε around |v| = r. We will show that the characteristics starting at points with velocities inside an annulus of length proportional to ε around the sphere rS get trapped there for all positive times for small ε.

Proposition 2.6 Assume that ε a L ∞ < 2αr/(3 √ 3) and that ρ ε 2 (-a L ∞ ) ≤ |v| ≤ ρ ε 3 ( a L ∞ ). Then, for any (t, x) ∈ R + × R d we have ρ ε 2 (-a L ∞ ) ≤ |V ε (t; 0, x, v)| ≤ ρ ε 3 ( a L ∞ ).
Proof. As in previous proof, we know that

d dt |V ε | 2 ≤ 2 ε |V ε (t)|λ ε (|V ε (t)|), t ∈ R + .
By comparison with the constant solution ρ ε 3 to the autonomous differential equation associated to the righthand side, we get that sup t∈R

+ |V ε (t; 0, x, v)| ≤ ρ ε 3 . Assume now that there is T > 0 such that |V ε (T )| < ρ ε
2 and we are done if we find a contradiction. Since

|V ε (0)| = |v| ≥ ρ ε 2 , we can assume that min t∈[0,T ] |V ε (t)| > ρ ε 1 > 0 by time continuity. Take now t ∈ [0, T ] a minimum point of t → |V ε (t)| on [0, T ]. Obviously t > 0 since |V ε (t)| ≤ |V ε (T )| < ρ ε 2 ≤ |v| = |V ε (0)|.
By estimating from below in [START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF] and

using that t is a minimum point of t → |V ε (t)| > 0 on [0, T ], we obtain 0 ≥ d dt |V ε (t)| ≥ -a L ∞ + (α -β|V ε (t)| 2 )|V ε (t)| ε = λ ε (|V ε (t)|) ε .
But the function λ ε has negative sign on [0,

ρ ε 1 ]∪[ρ ε 2 , +∞[. Since we know that min t∈[0,T ] |V ε (t)| > ρ ε 1 , it remains that min t∈[0,T ] |V ε (t)| = |V ε (t)| ≥ ρ ε 2 which contradicts the assumption |V ε (T )| < ρ ε 2 .

Let us see now what happens when the initial velocity is outside

[ρ ε 2 (-a L ∞ ), ρ ε 3 ( a L ∞ )].
In particular we prove that if initially v = 0, then V ε (t), t ∈ R + remains away from 0. We actually show that the characteristics starting away from zero speed but inside the sphere rS will increase their speed with respect to its initial value while those starting with a speed outside the sphere rS will decrease their speed with respect to its initial value, all for sufficiently small ε.

Proposition 2.7 Consider ε > 0 such that ε a L ∞ < 2αr/(3 √ 3). 1. Assume that ρ ε 1 (-a L ∞ ) < |v| < ρ ε 2 (-a L ∞ ). Then for any (t, x) ∈ R + × R d we have ρ ε 1 (-a L ∞ ) < |v| < |V ε (t; 0, x, v)| ≤ ρ ε 3 ( a L ∞ ). 2. Assume that ρ ε 3 ( a L ∞ ) < |v|. Then for any (t, x) ∈ R + × R d we have ρ ε 2 (-a L ∞ ) ≤ |V ε (t; 0, x, v)| < |v|. Proof. 1. Notice that if |V ε (T ; 0, x, v)| = ρ ε 2 for some T > 0, then we deduce by Proposition 2.6 that ρ ε 2 ≤ |V ε (t)| ≤ ρ ε 3 for any t > T and thus |V ε (t; 0, x, v)| ≥ ρ ε 2 > |v|, t ≥ T . It remains to establish our statement for intervals [0, T ] such that |V ε (t)| < ρ ε 2 for any t ∈ [0, T ]. We are done if we prove that t → |V ε (t)| is strictly increasing on [0, T ]. For any τ ∈]0, T ] let us denote by t a maximum point of t → |V ε (t)| > 0 on [0, τ ]. If t ∈ [0, τ [ we have d dt |V ε (t)| ≤ 0 and thus 0 ≥ d dt |V ε (t)| ≥ -a L ∞ + (α -β|V ε (t)| 2 )|V ε (t)| ε = λ ε (|V ε (t)|) ε . By construction |V ε (t)| < ρ ε 2 and moreover, |V ε (t)| = max [0,τ ] |V ε | ≥ |v| > ρ ε 1 ,
and thus,

λ ε (|V ε (t)|) > 0 for all t ∈ [0, T ]. Consequently, we infer that t → |V ε (t)| is strictly increasing on [0, T ] since d dt |V ε (t)| ≥ -a L ∞ + (α -β|V ε (t)| 2 )|V ε (t)| ε = λ ε (|V ε (t)|) ε > 0 . Therefore we have t = τ saying that |V ε (τ )| ≥ |v| for any τ ∈ [0, T ]. 2. As before, it is sufficient to work on intervals [0, T ] such that |V ε (t)| > ρ ε 3 ( a L ∞ ) for any t ∈ [0, T ]. We are done if we prove that t → |V ε (t)| is strictly decreasing on [0, T ]. We have for any t ∈ [0, T ] d dt |V ε (t)| ≤ a L ∞ + (α -β|V ε (t)| 2 )|V ε (t)| ε = λ ε (|V ε (t)|) ε < 0
where for the last inequality we have used

|V ε (t)| > ρ ε 3 , t ∈ [0, T ].

The limit model

We investigate now the stability of the family (f ε ) ε when ε becomes small. After extraction of a sequence (ε k ) k converging to 0 we can assume that (f ε k ) k converges weakly in

L ∞ (R + ; M b (R d × R d )), meaning that lim k→+∞ R + R d ×R d ϕ(t, x, v)f ε k (t, x, v) d(x, v) dt = R + R d ×R d ϕ(t, x, v)f (t, x, v) d(x, v) dt for any ϕ ∈ L 1 (R + ; C 0 c (R d ×R d )).
Using the weak formulation of ( 11)-( 12) with test functions

η(t)ϕ(x, v), η ∈ C 1 c (R + ), ϕ ∈ C 1 c (R d × R d ) one gets R + R d ×R d {η (t)ϕ + η(t)v • ∇ x ϕ + η(t)a • ∇ v ϕ}f ε k (t, x, v) d(x, v) dt + 1 ε k R + R d ×R d η(t)(α -β|v| 2 )v • ∇ v ϕf ε k (t, x, v) d(x, v) dt = - R d ×R d η(0)ϕ(x, v)f in (x, v) d(x, v).
Multiplying by ε k and passing to the limit for k → +∞ yields

R + R d ×R d η(t)(α -β|v| 2 )v • ∇ v ϕf (t, x, v) d(x, v) dt = 0
and therefore one gets for any

t ∈ R + and ϕ ∈ C 1 c (R d × R d ) R d ×R d (α -β|v| 2 )v • ∇ v ϕf (t, x, v) d(x, v) = 0.
Under the hypothesis (1

+ |v| 2 )f in ∈ M + b (R d × R d ) we deduce by Proposition 2.5 that (1 + |v| 2 )f (t) ∈ M + b (R d × R d
) and therefore, applying the (x, v) version of Proposition 1.1 (whose proof is detailed in the sequel), we obtain

supp f (t) ⊂ R d × ({0} ∪ rS), t ∈ R + .
The proof of Proposition 1.1 is based on the resolution of the adjoint problem

-(α -β|v| 2 )v • ∇ v ϕ = ψ(v), v ∈ R d
for any smooth righthand side ψ with compact support in c ({0} ∪ rS).

Proof. (of Proposition 1.1) It is easily seen that for any

F ∈ M + b (R d ×R d ), supp F ⊂ {0}∪rS and any ϕ ∈ C 1 c (R d ) we have R d (α -β|v| 2 )v • ∇ v ϕ(v)F (v) dv = 0
saying that div v {F (α -β|v| 2 )v} = 0. Assume now that div v {F (α -β|v| 2 )v} = 0 for some

F ∈ M + b (R d ×R d
) and let us prove that supp F ⊂ {0}∪rS. We introduce the flow

V = V(s; v) given by dV ds = (α -β|V(s; v)| 2 )V(s; v), V(0; v) = v. (15) 
A direct computation shows that v |v| are left invariant

(α -β|v| 2 )v • ∇ v v |v| = (α -β|v| 2 ) I - v ⊗ v |v| 2 v |v| = 0
and therefore Finally one gets

V(s; v) = |V(s; v)| v |v| , v = 0.
V(s; v) = re αs |v| 2 (e 2αs -1) + r 2 v, s ∈]S(v), +∞[ with S(v) = -∞ if 0 ≤ |v| ≤ r and S(v) = 1 2α ln 1 -r 2 |v| 2 < 0 if |v| > r.
Notice that the characteristics V(•; v) are well defined on R + for any v ∈ R d and we have

lim s→+∞ V(s; v) = r v |v| if v = 0, lim s→+∞ V(s; v) = 0 if v = 0 and lim s S(v) |V(s)| = 0 if 0 ≤ |v| < r, lim s S(v) |V(s)| = r if |v| = r, lim s S(v) |V(s)| = +∞ if |v| > r.
Let us consider a

C 1 function ψ = ψ(v) with compact support in c ({0} ∪ rS). We intend to construct a bounded C 1 function ϕ = ϕ(v) such that -(α -β|v| 2 )v • ∇ v ϕ = ψ(v), v ∈ R d .
Obviously, if such a function exists, we may assume that ϕ(0) = 0. Motivated by the equality

- d ds {ϕ(V(s; v))} = ψ(V(s; v)), 0 ≤ |v| < r, -∞ < s ≤ 0
and since we know that lim s→-∞ V(s; v) = 0 for any 0 ≤ |v| < r, we define

ϕ(v) = - 0 -∞ ψ(V(τ ; v)) dτ, 0 ≤ |v| < r. ( 16 
)
Let us check that the function ϕ in ( 16) is well defined and is C 1 in |v| < r. The key point is that ψ has compact support in c ({0} ∪ rS) and therefore there are 0 < r

1 < r 2 < r < r 3 < r 4 < +∞ such that supp ψ ⊂ {v ∈ R d : r 1 ≤ |v| ≤ r 2 } ∪ {v ∈ R d : r 3 ≤ |v| ≤ r 4 }. It is easily seen that τ → |V(τ ; v)| is strictly increasing for any 0 < |v| < r. Therefore, for any |v| ≤ r 1 we have |V(τ ; v)| ≤ |V(0; v)| = |v| ≤ r 1 , τ ≤ 0, implying that ϕ(v) = - 0 -∞ ψ(V(τ ; v)) dτ = 0, 0 ≤ |v| ≤ r 1 .
For any v with r 1 < |v| < r 2 there are

τ 1 < 0 < τ 2 such that |V(τ 1 ; v)| = r 1 < r 2 = |V(τ 2 ; v)|.
The time interval between τ 1 and τ 2 comes easily by writing

d dτ |V(τ )| (α -β|V(τ )| 2 )|V(τ )| = 1
implying that

|τ 2 | + |τ 1 | = τ 2 -τ 1 = r 2 r 1 dρ (α -βρ 2 )ρ .
From the equality

ϕ(v) = - τ 1 -∞ ψ(V(τ ; v)) dτ - 0 τ 1 ψ(V(τ ; v)) dτ = - 0 τ 1 ψ(V(τ ; v)) dτ , we deduce that |ϕ(v)| ≤ |τ 1 | ψ C 0 ≤ r 2 r 1 dρ (α -βρ 2 )ρ ψ C 0 . (17) 
Assume now that r 2 ≤ |v| < r. There is τ 2 ≥ 0 such that v = V(τ 2 ; r 2 v |v| ) and therefore

ϕ(v) = - 0 -∞ ψ(V(τ ; v)) dτ = - 0 -∞ ψ(V(τ + τ 2 ; r 2 v |v| )) dτ = - -τ 2 -∞ ψ(V(τ + τ 2 ; r 2 v |v| )) dτ = - 0 -∞ ψ(V(τ ; r 2 v |v| )) dτ = ϕ r 2 v |v| .
In particular, the restriction of ϕ on r 2 ≤ |v| < r satisfies the same bound as in ( 17)

|ϕ(v)| ≤ r 2 r 1 dρ (α -βρ 2 )ρ ψ C 0 , r 2 ≤ |v| < r. It is easily seen that ϕ is C 1 on 0 ≤ |v| < r. For that it is sufficient to consider r 1 ≤ |v| ≤ r 2 . Notice that ∂V ∂v (τ ; v) = |V(τ ; v)| |v| I - V(τ ; v) ⊗ V(τ ; v) r 2 (1 -e -2ατ )
and therefore the gradient of ϕ remains bounded on

r 1 ≤ |v| ≤ r 2 ∇ v ϕ(v) = - 0 τ 1 t ∂V ∂v (τ ; v)∇ψ(V(τ ; v)) dτ since on the interval τ ∈ [τ 1 , 0] we have |V(τ ; v)| ∈ [r 1 , |v|] ⊂ [r 1 , r 2 ]
. Taking now as definition

for |v| = r ϕ(v) = ϕ r 2 v |v| ,
we obtain a bounded C 1 function on |v| ≤ r satisfying

-(α -β|v| 2 )v • ∇ v ϕ = ψ(v), |ϕ(v)| ≤ r 2 r 1 dρ (α -βρ 2 )ρ ψ C 0 , |v| ≤ r.
We proceed similarly in order to extend the above function for |v| > r. We have for any s > 0

-ϕ(V(s; v)) + ϕ(v) = s 0 ψ(V(τ ; v)) dτ, |v| > r.
As lim s→+∞ V(s; v) = r v |v| we must take

ϕ(v) = lim s→+∞ ϕ(V(s; v)) + s 0 ψ(V(τ ; v)) dτ = ϕ r v |v| + +∞ 0 ψ(V(τ ; v)) dτ, |v| > r.
Clearly, for any |v| > r the function τ → |V(τ ; v)| is strictly decreasing. Therefore, for any r < |v| ≤ r 3 we have

ϕ(v) = ϕ r v |v| = ϕ r 2 v |v| since |V(τ ; v)| ≤ |v| ≤ r 3 and ψ(V(τ ; v)) = 0, τ ≥ 0. If r 3 < |v| < r 4 let us consider τ 4 < 0 < τ 3 such that |V(τ 3 ; v)| = r 3 < r 4 = |V(τ 4 ; v)|.
The time interval between τ 4 and τ 3 is given by

|τ 3 | + |τ 4 | = τ 3 -τ 4 = r 3 r 4 dρ (α -βρ 2 )ρ < +∞ ,
and therefore one gets for

r 3 < |v| < r 4 |ϕ(v)| ≤ ϕ r v |v| + τ 3 0 ψ(V(τ ; v)) dτ ≤ r 2 r 1 dρ (α -βρ 2 )ρ + r 3 r 4 dρ (α -βρ 2 )ρ ψ C 0 . (18) 
Consider now |v| ≥ r 4 . There is

τ 4 ≥ 0 such that r 4 v |v| = V(τ 4 ; v) implying that ϕ(v) = ϕ r v |v| + +∞ 0 ψ(V(τ ; v)) dτ = ϕ r v |v| + +∞ τ 4 ψ(V(τ ; v)) dτ = ϕ r v |v| + +∞ 0 ψ(V(τ ; V(τ 4 ; v))) dτ = ϕ r v |v| + +∞ 0 ψ(V(τ ; r 4 v |v| )) dτ = ϕ r 4 v |v| .
We deduce that the restriction of ϕ on {v : |v| ≥ r 4 } satisfies the same bound as in [START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF].

Moreover the function ϕ is C 1 on {v : |v| ≥ r}, with bounded derivatives. Indeed, it is sufficient to consider only the case r 3 ≤ |v| ≤ r 4 , observing that

∇ v ϕ(v) = r 2 |v| I - v ⊗ v |v| 2 ∇ v ϕ r 2 v |v| + τ 3 0 t ∂V ∂v (τ ; v)∇ψ(V(τ ; v)) dτ |V(τ ; v)| ∈ [r 3 , |v|] ⊂ [r 3 , r 4 ], τ ∈ [0, τ 3 ], |τ 3 | + |τ 4 | = r 3 r 4 dρ (α -βρ 2 )ρ < +∞. By construction we have -(α -β|v| 2 )v • ∇ v ϕ = ψ(v), |v| > r. Consider a C 1 decreasing function on R + such that χ| [0,1] = 1, χ [2,+∞[ = 0. We know that R d (α -β|v| 2 )v • ∇ v ϕ(v)χ |v| R F (v) dv = 0, R > 0 , saying that R d χ |v| R (α -β|v| 2 )v • ∇ v ϕ F (v) dv + R d (α -β|v| 2 )ϕ(v) |v| R χ |v| R F (v) dv = 0.
Since ϕ and ψ = -(α -β|v| 2 )v • ∇ v ϕ are bounded and F has finite mass and kinetic energy, we can pass to the limit for R → +∞, using the dominated convergence theorem. We obtain for any C 1 function ψ, with compact support in c ({0} ∪ rS)

R d ψ(v)F (v) dv = - R d (α -β|v| 2 )v • ∇ v ϕ F (v) dv = 0.
Actually the previous equality holds true for any continuous function ψ with compact support

in c ({0} ∪ rS), since R d F (v) dv < +∞, so that supp F ⊂ {0} ∪ rS.
In order to obtain stability for (f ε k ) k we need to avoid the unstable equilibrium v = 0. For that we assume that the initial support is away from zero speed: there is r 0 > 0 (eventually small, let us say r 0 < r) such that

supp f in ⊂ {(x, v) ∈ R d × R d : |v| ≥ r 0 }. ( 19 
)
Proposition 3.1 Under the hypothesis [START_REF] Couzin | Effective leadership and decision making in animal groups on the move[END_REF] we have for any ε > 0 small enough

supp f ε (t) ⊂ {(x, v) ∈ R d × R d : |v| ≥ r 0 }, t ∈ R + . Proof. Take ε > 0 such that ε a L ∞ < 2αr/(3 √ 3) and ρ ε 1 (-a L ∞ ) < r 0 . For any continu- ous function ψ = ψ(x, v) with compact support in R d × {v : |v| < r 0 } we have R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) = R d ×R d ψ(X ε (t; 0, x, v), V ε (t; 0, x, v))f in (x, v) d(x, v) = R d ×R d ψ(X ε (t; 0, x, v), V ε (t; 0, x, v))1 {|v|≥r 0 } f in (x, v) d(x, v). But for any |v| ≥ r 0 > ρ ε 1 we know by Proposition 2.7 that |V ε (t; 0, x, v)| > |v| ≥ r 0 , implying that ψ(X ε (t), V ε (t)) = 0. Therefore one gets R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) = 0 saying that supp f ε (t) ⊂ {(x, v) : |v| ≥ r 0 }.
We are ready now to establish the model satisfied by the limit measure f . The idea is to use the weak formulation of ( 11), [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF] with test functions which are constant along the flow of (α -β|v| 2 )v • ∇ v , in order to get rid of the term in 1 ε . These functions are those depending on x and v |v| . Surely, the invariants v |v| have no continuous extensions in v = 0, but we will see that we can use it, since our measures f ε vanish around v = 0.

Proof. (of Theorem 1.1) We already know that f satisfies [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF]. Actually, since supp

f ε (t) ⊂ {(x, v) : |v| ≥ r 0 }, t ∈ R + , ε > 0, we deduce that supp f (t) ⊂ {(x, v) : |v| ≥ r 0 } and finally supp f (t) ⊂ R d ×rS, t ∈ R + .
We have to establish [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF] and find the initial data. Consider a C 1

decreasing function χ on R + such that χ| [0,1] = 1, χ [2,+∞[ = 0. For any η = η(t) ∈ C 1 c (R + ), ϕ = ϕ(x, v) ∈ C 1 c (R d × R d ) we construct the test function θ(t, x, v) = η(t) 1 -χ 2|v| r 0 ϕ x, r v |v| .
Notice that θ is C 1 and θ = 0 for |v| ≤ r 0 2 . When applying the weak formulation of ( 11)-( 12) with θ, the term in 1 ε vanishes. Indeed, we can write

1 ε R + R d ×R d η(t)(α -β|v| 2 )v • ∇ v 1 -χ 2|v| r 0 ϕ x, r v |v| f ε (t, x, v) d(x, v) dt = 1 ε R + η(t) |v|≥r 0 (α -β|v| 2 )v • ∇ v ϕ x, r v |v| f ε (t, x, v) d(x, v) dt = 0.
For the term containing ∂ t θ we obtain the following limit when k → +∞

T k 1 := R + R d ×R d ∂ t θf ε k (t, x, v) d(x, v) dt → R + R d ×R d ∂ t θf (t, x, v) d(x, v) dt = R + η (t) |v|≥r 0 ϕ x, r v |v| f (t, x, v) d(x, v) dt = R + η (t) |v|=r ϕ x, r v |v| f (t, x, v) d(x, v) dt = R + η (t) |v|=r ϕ (x, v) f (t, x, v) d(x, v) dt = R + R d ×R d ∂ t (ηϕ)f (t, x, v) d(x, v) dt.
Similarly, one gets

T k 2 := R + R d ×R d v • ∇ x θf ε k (t, x, v) d(x, v) dt → R + R d ×R d v • ∇ x θf (t, x, v) d(x, v) dt = R + R d ×R d v • ∇ x (ηϕ)f (t, x, v) d(x, v) dt.
For the term containing a • ∇ v θ notice that on the set |v| ≥ r 0 we have

a • ∇ v θ = η(t)a • ∇ v ϕ x, r v |v| = η(t) r |v| a • I - v ⊗ v |v| 2 (∇ v ϕ) x, r v |v|
and therefore we obtain

T k 3 := R + R d ×R d a • ∇ v θf ε k (t, x, v) d(x, v) dt → R + R d ×R d a • ∇ v θf (t, x, v) d(x, v) dt = R + η(t) |v|≥r 0 r |v| I - v ⊗ v |v| 2 a • (∇ v ϕ) x, r v |v| f (t, x, v) d(x, v) dt = R + R d ×R d I - v ⊗ v |v| 2 a • ∇ v (ηϕ)f (t, x, v) d(x, v) dt.
For treating the term involving the initial condition, we write

T 4 := R d ×R d θ(0, x, v)f in (x, v) d(x, v) = R d ×R d η(0)ϕ x, r v |v| f in (x, v) d(x, v) = R d ×R d η(0)ϕ(x, v) f in (x, v) d(x, v).
Passing to the limit for k → +∞ in the weak formulation

T k 1 + T k 2 + T k 3 + T 4 = 0 yields the problem ∂ t f + div x {f v} + div v f I - v ⊗ v |v| 2 a = 0, f (0) = f in as desired.
Remark 3.1 The constraint (7) is propagated by the evolution equation [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF]. This comes by the fact that the flow (X, V ) associated to the field v

• ∇ x + I -v⊗v |v| 2 a • ∇ v leaves invariant R d × rS. Indeed, if (X, V ) solves dX ds = V (s), dV ds = I - V (s) ⊗ V (s) |V (s)| 2 a(s, X(s)) X(s; 0, x, v) = x, V (s; 0, x, v) = v = 0 then 1 2 d ds |V (s)| 2 = I - V (s) ⊗ V (s) |V (s)| 2 a(s, X(s)) • V (s) = 0 saying that |V (s; 0, x, v)| = |v| for any (s, x) ∈ R + × R d .
In particular, for any continuous

function ψ = ψ(x, v) with compact support in c (R d × rS) we have R d ×R d ψ(x, v)f (s, x, v) d(x, v) = R d ×R d ψ(X(s; 0, x, v), V (s; 0, x, v)) f in (x, v) d(x, v) = |v|=r ψ(X(s; 0, x, v), V (s; 0, x, v)) f in (x, v) d(x, v) = 0 since supp f in ⊂ R d × rS. Therefore for any s ∈ R + we have supp f (s) ⊂ R d × rS implying that div v {f (s)(α -β|v| 2 )v} = 0, s ∈ R + .
Remark 3.2 By the uniqueness of the solution for (6) with initial data f in , we deduce that all the family (f ε ) ε converges weakly in

L ∞ (R + ; M b (R d × R d )).

The non linear problem

Up to now we considered the stability of the linear problems ( 11)-( 12) for a given smooth

field a = a(t, x) ∈ L ∞ (R + ; W 1,∞ (R d ))
. We concentrate now on the non linear problem

∂ t f ε + div x {f ε v} + div v {f ε a ε } + 1 ε {f ε (α -β|v| 2 )v} = 0, (t, x, v) ∈ R + × R d × R d (20) with a ε = -∇ x U ρ ε -H f ε .
The well posedness of the non linear equation ( 20) comes by fixed point arguments in suitable spaces of measures, and it has been discussed in [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF] in the measure solution framework. We summarize next the properties of the solutions (f ε ) ε>0 .

Proposition 4.1 Assume h ∈ C 1 b (R d ), U ∈ C 2 b (R d ) and (1 + |v| 2 )f in ∈ M + b (R d × R d ). For all ε > 0, there is a unique solution (f ε , a ε ) ∈ C(R + ; P 1 (R d × R d )) × L ∞ (R + ; W 1,∞ (R d )) to ∂ t f ε + div x {f ε v} + div v {f ε a ε } + 1 ε div v {f ε (α -β|v| 2 )v} = 0, (t, x, v) ∈ R + × R d × R d (21) a ε = -∇ x U R d f ε dv -H f ε , H(x, v) = h(x)v (22) 
with initial data f ε (0) = f in , satisfying the uniform bounds

sup ε>0,t∈R + R d ×R d |v| 2 f ε (t, x, v) d(x, v) < +∞ sup ε>0 a ε L ∞ (R + ;L ∞ (R d )) =: A < +∞, sup ε>0 ∇ x a ε L ∞ (R + ;L ∞ (R d )) =: A 1 < +∞.
Moreover, if the initial condition satisfies

supp f in ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 , r 0 ≤ |v| ≤ R 0 }
for some L 0 > 0, 0 < r 0 < r < R 0 < +∞, then for any ε > 0 small enough we have

supp f ε (t) ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 + tR 0 , r 0 ≤ |v| ≤ R 0 }, t ∈ R + .
Proof. Here, we only justify the uniform bounds in ε, the rest is a direct application of the results in [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF]. The divergence form of ( 21) guarantees the mass conservation

R d ×R d f ε (t, x, v) d(x, v) = R d ×R d f in (x, v) d(x, v), t ∈ R + .
Notice that the term -div v {f ε H f ε } balances the momentum

R 2d vdiv v {f ε H f ε } d(x, v) = R 4d h(x -x )(v -v)f ε (t, x , v )f ε (t, x, v) d(x , v )d(x, v) = 0
and decreases the kinetic energy

R 2d |v| 2 div v {f ε H f ε } d(x, v) = 2 R 4d h(x -x )(v -v) • vf ε (t, x , v )f ε (t, x, v) d(x , v )d(x, v) = - R 4d h(x -x )|v -v | 2 f ε (t, x , v )f ε (t, x, v) d(x , v )d(x, v).
In particular, as

|v| 2 f in ∈ M + b (R d × R d ), then the kinetic energy R 2d |v| 2 f ε (t, x, v) d(x, v
) remains bounded, uniformly in time t ∈ R + and ε > 0. Indeed, using the continuity equation one gets

R d ×R d v • (∇ x U ρ ε )f ε (t, x, v) d(x, v) = 1 2 d dt R d (U ρ ε (t))(x)ρ ε (t, x) dx
and after multiplying (21) by |v| 2 2 together with [START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF], we obtain

d dt R d ×R d |v| 2 2 + U ρ ε 2 f ε (t, x, v) d(x, v) - 1 ε R d ×R d (α|v| 2 -β|v| 4 )f ε (t, x, v) d(x, v) = - 1 2 R 4d h(x -x )|v -v | 2 f ε (t, x , v )f ε (t, x, v) d(x , v )d(x, v) ≤ 0 . ( 23 
)
Consider now t ε a maximum point on [0, T ], T > 0, of the total energy

W ε (t) = R d ×R d |v| 2 2 + U ρ ε 2 f ε (t, x, v) d(x, v), t ∈ [0, T ].
If t ε = 0 then it is easily seen that for any t ∈ [0, T ]

R d ×R d |v| 2 2 f ε (t, x, v) d(x, v) ≤ R d ×R d |v| 2 2 f in (x, v) d(x, v) + U L ∞ R d ×R d f in d(x, v) 2 . If t ε ∈]0, T ] then d dt W ε (t ε ) ≥ 0 implying from (23) by moment interpolation in v that sup ε>0,T >0 R d ×R d (1 + |v| 4 )f ε (t ε , x, v) d(x, v) < +∞
and thus the inequality

W ε (t) ≤ W ε (t ε ), t ∈ [0, T ] yields sup ε>0,t∈[0,T ] R d ×R d |v| 2 2 f ε (t, x, v) d(x, v) ≤ sup ε>0,T >0 R d ×R d |v| 2 2 f ε (t ε , x, v) d(x, v) + U L ∞ R d ×R d f in d(x, v) 2 < +∞.
Therefore the kinetic energy remains bounded on [0, T ], uniformly with respect to ε > 0, and the bound does not depend on T > 0. The uniform bounds for a ε come immediately by convolution with ∇ x U and H, thanks to the uniform estimate

sup ε>0,t∈R + R d ×R d |v|f ε (t, x, v) < +∞.
We analyze the support of (f ε ) ε>0 . Take ε > 0 small enough such that εA < 2αr/(3 √ 3) and

ρ ε 1 (-A) < r 0 , ρ ε 3 (A) < R 0 . By Proposition 3.1 we already know that supp f ε (t) ⊂ {(x, v) ∈ R d × R d : |v| ≥ r 0 }, t ∈ R + .
For any continuous function

ψ = ψ(x, v) with compact support in R d × {v ∈ R d : |v| > R 0 } we have R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) = R d ×R d ψ(X ε (t), V ε (t))f in (x, v) d(x, v) = R d ×R d ψ(X ε (t), V ε (t))1 {r 0 ≤|v|≤R 0 } f in (x, v) d(x, v).
We distinguish several cases:

1. If r 0 ≤ |v| < ρ ε 2 (-A) we deduce by Proposition 2.7 that |v| < |V ε (t; 0, x, v)| ≤ ρ ε 3 (A) < R 0 , t ∈ R + , ε > 0. 2. If ρ ε 2 (-A) ≤ |v| ≤ ρ ε 3 (A) we obtain by Proposition 2.6 that ρ ε 2 (-A) ≤ |V ε (t; 0, x, v)| ≤ ρ ε 3 (A) < R 0 , t ∈ R + , ε > 0. 3. If ρ ε 3 (A) < |v| ≤ R 0 one gets thanks to Proposition 2.7 ρ ε 2 (-A) ≤ |V ε (t; 0, x, v)| < |v| ≤ R 0 .
In all cases (X ε , V ε )(t; 0, x, v) remains outside the support of ψ, implying that

R d ×R d ψ(x, v)f ε (t, x, v) d(x, v) = 0.
Thus for any t ∈ R + and ε > 0 small enough one gets

supp f ε (t) ⊂ {(x, v) ∈ R d × R d : r 0 ≤ |v| ≤ R 0 }. Consider θ ∈ C 1 (R) non decreasing, verifying θ(u) = 0 if u ≤ 0, θ(u) > 0 if u > 0.
Applying the weak formulation of ( 21)-( 22) with the test function θ(|x| -L 0 -tR 0 ) yields

R d ×R d θ(|x| -L 0 -tR 0 )f ε (t, x, v) d(x, v) = R d ×R d θ(|x| -L 0 )f in (x, v) d(x, v) + t 0 R d ×R d θ (|x| -L 0 -sR 0 ) v • x |x| -R 0 f ε (s, x, v) d(x, v)ds ≤ 0 implying that supp f ε (t) ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 + tR 0 }, t ∈ R + .
The uniform bound for the total mass allows us to extract a sequence (ε

k ) k ⊂ R + con- vergent to 0 such that (f ε k ) k converges weakly in L ∞ (R + ; M (R d × R d ))
. The treatment of the non linear term requires a little bit more, that is convergence in

C(R + ; P 1 (R d × R d )) or at least in C([δ, +∞[; P 1 (R d × R d )) for any δ > 0.
The key argument for establishing that is emphasized by the lemma Lemma 4.1 Consider ε > 0 small enough. A)] and we can write for any t ∈ [0, t ε 1 ]

For any

(x, v) ∈ R d × R d with r 0 ≤ |v| < ρ ε 2 (-A) -ε, the first time t ε 1 = t ε 1 (x, v) such that |V ε (t ε 1 ; 0, x, v)| = ρ ε 2 (-A) -ε satisfies t ε 1 ≤ ε 2βr 2 0 ln r -r 0 ε . 2. For any (x, v) ∈ R d × R d with ρ ε 3 (A) + ε < |v| ≤ R 0 , the first time t ε 2 = t ε 2 (x, v) such that |V ε (t ε 2 ; 0, x, v)| = ρ ε 3 (A) + ε satisfies t ε 2 ≤ ε 2βr 2 ln R 0 -r ε . Proof. 1. During the time [0, t ε 1 ] the velocity modulus |V ε (t)| remains in [r 0 , ρ ε 2 (-A) -ε] ⊂ [ρ ε 1 (-A), ρ ε 2 (-
ε d|V ε | dt -εA + (α -β|V ε (t)| 2 ) |V ε (t)| ≥ d|V ε | dt a ε (t, X ε (t)) • V ε (t) |V ε (t)| + 1 ε (α -β|V ε (t)| 2 ) |V ε (t)| = 1 since -εA + (α -βu 2 )u is positive for u ∈ [ρ ε 1 (-A), ρ ε 2 (-A)]. Integrating with respect to t ∈ [0, t ε 1 ] yields t ε 1 (x, v) ≤ ε ρ ε 2 (-A)-ε |v| du -εA + (α -βu 2 )u ≤ ε ρ ε 2 (-A)-ε r 0 du -εA + (α -βu 2 )u .
Recall that ρ ε 2 (-A) is one of the roots of u → -εA + (α -βu 2 )u and therefore a direct computation lead to

-εA+(α-βu 2 )u = β(ρ ε 2 -u)[u 2 +uρ ε 2 +(ρ ε 2 ) 2 -r 2 ] ≥ 2βr 2 0 (ρ ε 2 -u), u ∈ [r 0 , ρ ε 2 ], ε small enough implying that t ε 1 (x, v) ≤ ε 2βr 2 0 ρ ε 2 -ε r 0 du ρ ε 2 -u = ε 2βr 2 0 ln ρ ε 2 -r 0 ε ≤ ε 2βr 2 0 ln r -r 0 ε . 2. During the time [0, t ε 2 ] the velocity modulus |V ε (t)| remains in [ρ ε 3 (A)+ε, R 0 ] ⊂ [ρ ε 3 (A)
, +∞[ and we can write for any t ∈ [0, t ε 2 ]

ε d|V ε | dt εA + (α -β|V ε (t)| 2 ) |V ε (t)| ≥ d|V ε | dt a ε (t, X ε (t)) • V ε (t) |V ε (t)| + 1 ε (α -β|V ε (t)| 2 ) |V ε (t)| = 1 since εA + (α -βu 2 )u is negative for u ∈ [ρ ε 3 (A), +∞[. Integrating with respect to t ∈ [0, t ε 2 ] yields t ε 2 (x, v) ≤ ε ρ ε 3 (A)+ε |v| du εA + (α -βu 2 )u ≤ ε ρ ε 3 (A)+ε R 0 du εA + (α -βu 2 )u
.

By direct computation we obtain

εA+(α-βu 2 )u = -β(u-ρ ε 3 )[u 2 +uρ ε 3 +(ρ ε 3 ) 2 -r 2 ] ≤ -2βr 2 (u-ρ ε 3 ), u ≥ ρ ε 3 , ε small enough implying that t ε 2 (x, v) ≤ ε 2βr 2 R 0 ρ ε 3 +ε du u -ρ ε 3 = ε 2βr 2 ln R 0 -ρ ε 3 ε ≤ ε 2βr 2 ln R 0 -r ε .
We intend to apply Arzela-Ascoli theorem in C(R + ; P 1 (R d ×R d )) in order to extract a convergent sequence (f ε k ) k with lim k→+∞ ε k = 0. We need to establish the uniform equicontinuity of the family (f ε ) ε>0 . The argument below is essentially similar to arguments in [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF].

Proposition 4.2 1. If the initial data is well prepared i.e., supp f in ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 , |v| = r} then there is a constant C (not depending on t ∈ R + , ε > 0) such that W 1 (f ε (t), f ε (s)) ≤ C|t -s|, t, s ∈ R + , ε > 0. 2. If supp f in ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 , r 0 ≤ |v| ≤ R 0 } then there is a constant C (not depending on t ∈ R + , ε > 0)
such that for any δ > 0 we can find ε δ satisfying

W 1 (f ε (t), f ε (s)) ≤ C|t -s|, t, s ≥ δ, 0 < ε < ε δ . Proof. 1. Consider ϕ = ϕ(x, v) a Lipschitz function on R d × R d with Lip(ϕ) ≤ 1. For any t, s ∈ R + , ε > 0 we have R d ×R d ϕ(f ε (t) -f ε (s))d(x, v) = R d ×R d {ϕ(X ε (t), V ε (t)) -ϕ(X ε (s), V ε (s))}f in (x, v)d(x, v) ≤ R d ×R d {|X ε (t) -X ε (s)| + |V ε (t) -V ε (s)|}1 {|v|=r} f in d(x, v).
Thanks to Proposition 2.6 we have for any (τ,

x, v) ∈ R + × R d × rS ρ ε 2 (-A) -r ε ≤ |V ε (τ ; 0, x, v)| -r ε ≤ ρ ε 3 (A) -r ε
and it is easily seen, integrating the system of characteristics between s and t, that

|X ε (t; 0, x, v) -X ε (s; 0, x, v)| = t s V ε (τ ; 0, x, v) dτ ≤ R 0 |t -s| and |V ε (t; 0, x, v) -V ε (s; 0, x, v)| ≤ t s |a ε (τ, X ε (τ ))| + |α -β|V ε (τ )| 2 | |V ε (τ )| ε dτ ≤ |t -s| A + β(r + R 0 )R 0 max ρ ε 3 (A) -r ε , r -ρ ε 2 (-A) ε .
Our conclusion comes immediately by Propositions 2.

2. Consider δ > 0 and ε δ small enough such that ε

2βr 2 0 ln r-r 0 ε < δ, ε 2βr 2 ln R 0 -r ε < δ for 0 < ε < ε δ .
For any Lipschitz function ϕ with Lip(ϕ) ≤ 1 and any t, s ≥ δ we have

R d ×R d ϕ(f ε (t) -f ε (s)) d(x, v) ≤ R d ×R d {|X ε (t)-X ε (s)|+|V ε (t)-V ε (s)|}1 {r 0 ≤|v|≤R 0 } f in d(x, v).
For any (τ,

x) ∈ R + × R d , ρ ε 2 (-A) -ε ≤ |v| ≤ ρ ε 3 (A) + ε we have by Propositions 2.6, 2.7 ρ ε 2 (-A) -ε ≤ |V ε (τ ; 0, x, v)| ≤ ρ ε 3 (A) + ε.

The same conclusion holds true for any

τ ≥ δ, x ∈ R d and |v| ∈ [r 0 , ρ ε 2 (-A)-ε[∪]ρ ε 3 (A)+ε, R 0 ], thanks to Lemma 4.1, since δ > max{t ε 1 (x, v), t ε 2 (x, v)} (after a time δ, the velocity modulus |V ε (τ ; 0, x, v)| is already in the set {w : ρ ε 2 (-A) -ε < |w| < ρ ε 3 (A) + ε}).
Our statement follows as before, integrating the system of characteristics between s and t.

Applying Arzela-Ascoli theorem, we deduce that there is a sequence

(ε k ) k ⊂ R + , convergent to 0 such that lim k→+∞ W 1 (f ε k (t), f (t)) = 0 uniformly for t ∈ [0, T ], T > 0 for some f ∈ C(R + ; P 1 (R d × R d )) if supp f in ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 , |v| = r} and lim k→+∞ W 1 (f ε k (t), f (t)) = 0 uniformly for t ∈ [δ, T ], T > δ > 0 for some f ∈ C(R + ; P 1 (R d × R d )) if supp f in ⊂ {(x, v) ∈ R d × R d : |x| ≤ L 0 , r 0 ≤ |v| ≤ R 0 }.
It is easily seen that if the initial condition is well prepared then there is a constant C cf. Proposition 4.2 such that W 1 (f (t), f (s)) ≤ C|t -s|, t, s ∈ R + . The same is true for not prepared initial conditions f in . Take δ > 0 and ε δ as in Proposition 4.2. For any 0 < ε < ε δ

we have W 1 (f ε (t), f ε (s)) ≤ C|t -s|, t, s ≥ δ. For k large enough we have ε k < ε δ and therefore W 1 (f ε k (t), f ε k (s)) ≤ C|t -s|, t, s ≥ δ. Passing to the limit as k goes to infinity yields W 1 (f (t), f (s)) ≤ C|t -s|, t, s ≥ δ. Since the constant C does not depend on δ one gets W 1 (f (t), f (s)) ≤ C|t -s|, t, s > 0.
In particular we deduce that f has a limit as t goes to 0 since (P 1 (R d × R d ), W 1 ) is a complete metric space and therefore we can extend f by continuity at t = 0. The extended function, still denoted by f , belongs to C(R

+ ; P 1 (R d × R d )) and satisfies W 1 (f (t), f (s)) ≤ C|t -s|, t, s ∈ R + .
The above convergence allows us to handle the non linear terms. We use the following standard argument [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF].

Lemma 4.2 Consider f, g ∈ P 1 (R d × R d ) compactly supported supp f ∪ supp g ⊂ {(x, v) ∈ R d × R d : |x| ≤ L, |v| ≤ R},

and let us consider

a f = -∇ x U R d f dv -H f, a g = -∇ x U R d g dv -H g.

Then we have

a f -a g L ∞ (R 3 ×B R ) ≤ ∇ 2 x U L ∞ + h 2 L ∞ + 4R 2 ∇ x h 2 L ∞ 1/2 W 1 (f, g)
where B R stands for the closed ball in R d of center 0 and radius R.

Proof. Take π to be a optimal transportation plan between f and g. Then for any x ∈ R d we have, using the marginals of π

|(∇ x U f )(x) -(∇ x U g)(x)| = R d ×R d ∇ x U (x -x ){f (x , v ) -g(x , v )} d(x , v ) = R d ×R d R d ×R d [∇ x U (x -x ) -∇ x U (x -x )]dπ(x , v , x , v ) ≤ ∇ 2 x U L ∞ R d ×R d R d ×R d |x -x | dπ(x , v , x , v ) ≤ ∇ 2 x U L ∞ W 1 (f, g).
The estimate for H f -H g follows similarly observing that on the support of π, which is

included in {(x , v , x , v ) ∈ R 4d : |v | ≤ R, |v | ≤ R} we have |h(x -x )(v -v ) -h(x -x )(v -v )| ≤ |h(x -x )(v -v )| + |h(x -x ) -h(x -x )| |v -v | ≤ h 2 L ∞ + 4R 2 ∇ x h 2 L ∞ 1/2 |x -x | 2 + |v -v | 2 1/2 .
We are ready now to prove Theorem 1.2.

Proof. (of Theorem 1.

2) The arguments are the same as those in the proof of Theorem 1.1 except for the treatment of the non linear terms. We only concentrate on it. Consider (

f ε k ) k with lim k→+∞ ε k = 0 such that lim k→+∞ W 1 (f ε k (t), f (t)) = 0 uniformly for t ∈ [0, T ], T > 0 if supp f in ⊂ {(x, v) : |x| ≤ L 0 , |v| = r} and lim k→+∞ W 1 (f ε k (t), f (t)) = 0 uniformly for t ∈ [δ, T ], T > δ > 0 if supp f in ⊂ {(x, v) : |x| ≤ L 0 , r 0 ≤ |v| ≤ R 0 } for some function f ∈ C(R + ; P 1 (R d × R d ))
. Thanks to Proposition 1.1 we deduce (for both prepared or not initial data) that

supp f (t) ⊂ {(x, v) ∈ R d × R d : |v| = r}, t > 0.
The previous statement holds also true at t = 0, by the continuity of f . The time evolution for the limit f comes by using the particular test functions

θ(t, x, v) = η(t) 1 -χ 2|v| r 0 ϕ x, r v |v| with η ∈ C 1 c (R + ), ϕ ∈ C 1 c (R d × R d ).
From now on we consider only the not prepared initial data case (the other case is simpler). We recall the notation

a ε = -∇ x U R d f ε dv -H f ε and we introduce a = -∇ x U R d f dv -H f . Since f satisfies the same bounds as (f ε ) ε , we deduce that a L ∞ ≤ A, ∇ x a L ∞ ≤ A 1 .
For any δ > 0 we can write

R + R d ×R d {a ε k • ∇ v θ f ε k -a • ∇ v θ f } d(x, v)dt ≤ δ 0 R d ×R d a ε k • ∇ v θf ε k d(x, v)dt + δ 0 R d ×R d a • ∇ v θ f d(x, v)dt + +∞ δ R d ×R d {a ε k • ∇ v θ f ε k -a • ∇ v θ f } d(x, v)dt ≤ 2Aδ ∇ v θ C 0 R d ×R d f in d(x, v) + +∞ δ R d ×R d (a ε k -a) • ∇ v θ 1 {|v|≤R 0 } f ε k d(x, v)dt + +∞ δ R d ×R d a • ∇ v θ (f ε k -f ) d(x, v)dt . (24) 
We keep δ > 0 fixed and we pass to the limit when k goes to infinity. Lemma 4.2 implies that the second term in the last right hand side can be estimated as

a ε k -a L ∞ (R d ×B R 0 ) = a f ε k -a f L ∞ (R d ×B R 0 ) ≤ C(R 0 )W 1 (f ε k (t), f (t)) → 0 when k → +∞ uniformly for t ∈ [δ, T ], implying, for T large enough +∞ δ |v|≤R 0 (a ε k -a) • ∇ v θf ε k d(x, v)dt ≤ C(R 0 ) θ C 1 T δ W 1 (f ε k (t), f (t)) dt → 0
when k goes to infinity. For the third term in the right hand side of [START_REF] Dobrushin | Vlasov equations[END_REF] we use the weak

convergence lim k→+∞ f ε k (t) = f (t) in M + b (R d × R d ) for any t ≥ δ, cf. Proposition 2.1 lim k→+∞ R d ×R d a • ∇ v θ(f ε k (t) -f (t)) d(x, v) = 0, t ≥ δ
and we conclude by the Lebesgue dominated convergence theorem

lim k→+∞ +∞ δ R d ×R d a • ∇ v θ(f ε k (t, x, v) -f (t, x, v)) d(x, v)dt = 0 .
Passing to the limit in [START_REF] Dobrushin | Vlasov equations[END_REF] when k goes to infinity, we obtain

lim sup k→+∞ R + R d ×R d {a ε k • ∇ v θf ε k -a • ∇ v θf } d(x, v)dt ≤ 2Aδ ∇ v θ C 0 .
Sending δ to 0 we obtain that

lim k→+∞ R + R d ×R d a ε k • ∇ v θ f ε k d(x, v)dt = R + R d ×R d a • ∇ v θ f d(x, v)dt .

Diffusion models

We intend to introduce a formalism which will allow us to investigate in a simpler manner the asymptotic behavior of ( 11) and ( 9). This method comes from gyrokinetic models in plasma physics: when studying the magnetic confinement we are looking for averaged models with respect to the fast motion of particles around the magnetic lines. The analysis relies on the notion of gyro-average operator [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF], which is a projection onto the space of slow time depending functions. In other words, projecting means smoothing out the fluctuations with respect to the fast time variable, corresponding to the high cyclotronic frequency. This projection appears like a gyro-average operator. Here the arguments are developed at a formal level.

We first introduce rigorously the projected measure on the sphere rS for general measures.

Let f ∈ M + b (R d × R d ) be a non negative bounded measure on R d × R d . We denote by f the measure corresponding to the linear application

ψ → R d ×R d ψ(x, v) 1 v=0 f (x, v) d(x, v) + R d ×R d ψ x, r v |v| 1 v =0 f (x, v) d(x, v) , for all ψ ∈ C 0 c (R d × R d ), i.e., R d ×R d ψ(x, v) f (x, v) d(x, v) = v=0 ψ(x, v)f (x, v) d(x, v) + v =0 ψ x, r v |v| f (x, v) d(x, v) , for all ψ ∈ C 0 c (R d × R d ).
Observe that f is a non negative bounded measure,

R d ×R d f (x, v) d(x, v) = R d ×R d f (x, v) d(x, v), with supp f ⊂ R d × ({0} ∪ rS).
We have the following characterization.

Proposition 5.1 Assume that f is a non negative bounded measure on

R d × R d . Then f is the unique measure F satisfying supp F ⊂ R d × ({0} ∪ rS), v =0 ψ x, r v |v| F (x, v) d(x, v) = v =0 ψ x, r v |v| f (x, v) d(x, v), ψ ∈ C 0 c (R d × R d )
and

F = f on R d × {0}.
Proof. The measure f defined before satisfies the above characterization. Indeed, supp f ⊂

R d × ({0} ∪ rS). Taking now ψ(x, v) = ϕ(x)χ(|v|/δ) with ϕ ∈ C 0 c (R d ) and δ > 0 one gets R d ×R d ϕ(x)χ |v| δ f (x, v) d(x, v) = v=0 ϕ(x)f (x, v) d(x, v) + v =0 ϕ(x)χ |v| δ f (x, v) d(x, v).
Passing to the limit for δ 0 yields

v=0 ϕ(x) f (x, v) d(x, v) = v=0 ϕ(x)f (x, v) d(x, v), ϕ ∈ C 0 c (R d ) meaning that f = f on R d × {0}. Therefore one gets for any ψ ∈ C 0 c (R d × R d ) v =0 ψ x, r v |v| f (x, v) d(x, v) = |v|=r ψ(x, v) f (x, v) d(x, v) = v =0 ψ(x, v) f (x, v) d(x, v) = R d ×R d ψ f (x, v) d(x, v) - v=0 ψ f (x, v) d(x, v) = R d ×R d ψ f (x, v) d(x, v) - v=0 ψf (x, v) d(x, v) = v =0 ψ x, r v |v| f (x, v) d(x, v).
Conversely, let us check that the above characterization exactly defines the measure f . For

any ψ ∈ C 0 c (R d × R d ) we have R d ×R d ψ(x, v)F (x, v) d(x, v) = v=0 ψF (x, v) d(x, v) + v =0 ψF (x, v) d(x, v) = v=0 ψ(x, v)f (x, v) d(x, v) + v =0 ψ x, r v |v| F (x, v) d(x, v) = v=0 ψ(x, v)f (x, v) d(x, v) + v =0 ψ x, r v |v| f (x, v) d(x, v)
saying that F = f . By Proposition 5.1 it is clear that • leaves invariant the measures with support in

R d ∪({0}∪rS). Consider f ∈ M + b (R d ×R d ). We say that div v {f (α -β|v| 2 )v} ∈ M b (R d ×R d ) if and only if there is a constant C > 0 such that R d ×R d (α -β|v| 2 )v • ∇ v ψf (x, v) d(x, v) ≤ C ψ L ∞ , ψ ∈ C 1 c (R d × R d ).
In this case there is a bounded measure µ such that -

R d ×R d (α -β|v| 2 )v • ∇ v ψf (x, v) d(x, v) = R d ×R d ψµ, ψ ∈ C 1 c (R d × R d ).
By definition we take div v {f (α -β|v| 2 )v} = µ. The main motivation for the construction of the projection • is the following result.

Proposition 5.2 For any

f ∈ M + b (R d × R d ) such that div v {f (α -β|v| 2 )v} ∈ M b (R d × R d ) we have div v {f (α -β|v| 2 )v} = 0.
Proof. Let us take div v {f (α -β|v| 2 )v} = µ. We will check that the zero measure 0 satisfies the characterization of µ in Proposition 5.1. Clearly supp 0 = ∅ ⊂ R d × ({0} ∪ rS). For any

ϕ(x) ∈ C 0 c (R d ) we have v=0 ϕ(x)µ(x, v) d(x, v) = lim δ 0 R d ×R d ϕ(x)χ |v| δ µ(x, v) d(x, v) = -lim δ 0 R d ×R d ϕ(x)χ |v| δ |v| δ (α -β|v| 2 )f (x, v) d(x, v) = 0 by dominated convergence, since χ |v| δ |v| δ (α -β|v| 2 ) ≤ α sup u≥0 |χ (u)u| + βδ 2 sup u≥0 |χ (u)u 3 |. Therefore we deduce that div v {f (α-β|v| 2 )v} = 0 on R d ×{0}. Consider now ψ ∈ C 1 c (R d ×R d ) and lets us compute v =0 ψ x, r v |v| µ(x, v) d(x, v) = lim δ 0 R d ×R d ψ x, r v |v| 1 -χ |v| δ µ(x, v) d(x, v) = lim δ 0 R d ×R d ψ x, r v |v| χ |v| δ |v| δ (α -β|v| 2 )f (x, v) d(x, v) = 0 since v • ∇ v {ψ(x, r v |v| )} = 0.
By density, the same conclusion holds true for any ψ

∈ C 0 c (R d × R d ) and thus div v {f (α -β|v| 2 )v} = 0. Remark 5.1 When f ∈ M + b (R d × R d ) does not charge R d × {0}, f is given by supp f ⊂ R d × rS, v =0 ψ x, r v |v| f = v =0 ψ x, r v |v| f, ψ ∈ C 0 c (R d × R d )
or equivalently

R d ×R d ψ f = v =0 ψ x, r v |v| f, ψ ∈ C 0 c (R d × R d ). (25) 
Using Proposition 5.2 we can obtain, at least formally, the limit model satisfied by f = lim ε 0 f ε . By (4) we know that supp f ⊂ R d × ({0} ∪ rS). The time evolution of f comes by eliminating f (1) in ( 5). For that it is sufficient to project on the subspace of the measures satisfying the constraint (4), i.e., to apply • .

∂ t f + div x {f v} + div v {f a} = 0. (26) 
It is easily seen that

∂ t f = ∂ t f = ∂ t f since supp f ⊂ R d × ({0} ∪ 
rS) and therefore f = f . We need to compute the last two terms in [START_REF] Ebeling | Nonequilibrium statistical mechanics of swarms of driven particles[END_REF]. We show that Proposition 5.3 Assume that a = a(x) is a bounded continuous field. Then we have the following equalities

div x {f v} = div x {f v} if supp f ⊂ R d × ({0} ∪ rS) div v {f a} = div v f I - v ⊗ v |v| 2 a if supp f ⊂ R d × rS.
As a consequence, (26) yields the transport equation (6) obtained rigorously in Theorems 1.1 and 1.2.

Proof. For any

ψ ∈ C 1 c (R d × R d ) we have R d ×R d ψ div x {f v} = v=0 ψdiv x {f v} + v =0 ψ x, r v |v| div x {f v} = lim δ 0 R d ×R d ψχ |v| δ div x {f v} + lim δ 0 R d ×R d ψ x, r v |v| 1 -χ |v| δ div x {f v} = -lim δ 0 R d ×R d v • ∇ x ψχ |v| δ f -lim δ 0 R d ×R d v • ∇ x ψ x, r v |v| 1 -χ |v| δ f = - v=0 v • ∇ x ψf - v =0 v • ∇ x ψ x, r v |v| f = - R d ×R d v • ∇ x ψf = R d ×R d ψdiv x {f v} saying that div x {f v} = div x {f v}. Assume now that supp f ⊂ R d ×rS. It is easily seen that div v (f a) does not charge R d × {0}. Indeed, for any ψ ∈ C 0 c (R d × R d ) we have by dominated convergence v=0 ψdiv v (f a) = lim δ 0 R d ×R d ψχ |v| δ div v (f a) = -lim δ 0 R d ×R d a • ∇ v ψχ |v| δ f -lim δ 0 R d ×R d a • v |v| 1 δ χ |v| δ ψf = 0.
Therefore we can use ( 25)

R d ×R d ψ div v (f a) = v =0 ψ x, r v |v| div v (f a) = lim δ 0 R d ×R d 1 -χ |v| δ ψ x, r v |v| div v (f a) = -lim δ 0 R d ×R d 1 -χ |v| δ r |v| I - v ⊗ v |v| 2 a • (∇ v ψ) x, r v |v| f + lim δ 0 R d ×R d 1 δ χ |v| δ v |v| • aψ x, r v |v| f = - v =0 I - v ⊗ v |v| 2 a • ∇ v ψf = R d ×R d ψ div v f I - v ⊗ v |v| 2 a .
We investigate now the limit when ε 0 of the diffusion model [START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF]. We are done if we compute ∆ v f for a non negative bounded measure with support contained in R d × rS. As before we can check that ∆ v f does not charge R d × {0} and therefore, thanks to [START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF], we obtain after some computations

R d ×R d ψ ∆ v f = v =0 ψ x, r v |v| ∆ v f = v =0 ∆ v ψ x, r v |v| f, ψ ∈ C 2 c (R d ×R d ). ( 27 
)
Lemma 5.1 For any function ϕ ∈ C 2 (R d \ {0}) and any r > 0 we have

∆ v ϕ r v |v| = r |v| 2 I - v ⊗ v |v| 2 : ∂ 2 v ϕ r v |v| -2 r |v| v • ∇ v ϕ r v |v| |v| 2 , v = 0.
Combining [START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF], Lemma 5.1 and the fact that supp f ⊂ R d × rS we obtain

R d ×R d ψ(x, v) ∆ v f = v =0 I - v ⊗ v |v| 2 : ∂ 2 v ψ(x, v) -2 v • ∇ v ψ(x, v) |v| 2 f = R d ×R d ψ(x, v)div v div v f I - v ⊗ v |v| 2 + 2f v |v| 2 .
We deduce the formula

∆ v f = div v div v f I - v ⊗ v |v| 2 + 2f v |v| 2
for any f satisfying supp f ⊂ R d × rS and the limit of the Vicsek model ( 9) when ε 0 becomes

∂ t f + div x (f v) + div v f I - v ⊗ v |v| 2 a = div v div v f I - v ⊗ v |v| 2 + 2f v |v| 2 (28) 
with the initial condition f (0) = f in , as stated in [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF].

A Spherical coordinates and the Laplace-Beltrami operator

In this appendix, we show the computations to relate the equations written in original variables (x, v) to the equations in spherical coordinates (x, ω). Our limit densities have their support contained in R d × rS and thus reduce to measures on R d × rS. For example, let us consider the measure on R d × rS still denoted by f , given by 

div x (f v) = div x (F ω), div v (f a) = div ω F I - 1 r 2 (ω ⊗ ω) a , ∆ v f = ∆ ω F.
Proof. Thanks to Proposition 5.3 we have for any

ψ ∈ C 1 c (R d × rS) R d ×rS ψ(x, ω) div x (f v) = v =0 ψ x, r v |v| div x (f v) = - v =0 v • ∇ x ψ x, r v |v| f = - v =0 r v |v| • ∇ x ψ x, r v |v| f = - R d ×rS ω • ∇ x ψ(x, ω)F
and thus div x (f v) = div x (F ω). Similarly we can write

R d ×rS ψ(x, ω) div v (f a) = v =0 ψ x, r v |v| div v (f a) (d(x, v)) = v =0 ψ x, r v |v| div v f I - v ⊗ v |v| 2 a = - v =0 r |v| I - v ⊗ v |v| 2 a • I - v ⊗ v |v| 2 ∇ v ψ x, r v |v| f = - v =0 I - v ⊗ v |v| 2 a • I - v ⊗ v |v| 2 ∇ v ψ x, r v |v| f = - R d ×rS I - 1 r 2 (ω ⊗ ω) a • I - 1 r 2 (ω ⊗ ω) ∇ v ψ(x, ω)F = - R d ×rS I - 1 r 2 (ω ⊗ ω) a • ∇ ω ψ(x, ω)F = R d ×rS ψ(x, ω)div ω F I - 1 r 2 (ω ⊗ ω) a
and therefore div v (f a) = div ω F I -1 r 2 (ω ⊗ ω) a .

Here div ω stands for the divergence along rS (notice that I -1 r 2 (ω ⊗ ω) a is a tangent field of rS) and ∇ ω = I -1 r 2 (ω ⊗ ω) ∇ v is the gradient along rS. For the last assertion we appeal to the following well known result asserting that the Laplace-Beltrami operator coincides with the Laplacian of the degree zero homogeneous extension, see also [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF]. Therefore we have for any ω ∈ rS

∆ ω ϕ(ω) = ∆ v Φ(ω).
Let us come back to the proof of Proposition A.1. For any ψ ∈ C 2 c (R d × rS) we introduce its degree zero homogeneous extension Ψ(x, v) = ψ x, r v |v| . Thanks to Proposition A.2 we can write

R d ×rS ψ(x, ω) ∆ v f = v =0 ψ x, r v |v| ∆ v f = v =0 Ψ(x, v)∆ v f = v =0 ∆ v Ψf = |v|=r ∆ ω ψ(x, v)f = R d ×rS ∆ ω ψ(x, ω)F = R d ×rS ψ(x, ω)∆ ω F meaning that ∆ v f = ∆ ω F .
For the sake of completeness, we finally write the equations in spherical coordinates in 

∂ t F + ω • ∇ x F + 1 r ∂ θ (F a θ cos θ) cos θ + ∂ ϕ (F a ϕ ) = 1 r 2 1 cos θ ∂ ∂θ (cos θ ∂ θ F ) + 1 cos 2 θ ∂ 2 ϕ F .
We recall here the proof of Proposition A.2. It is a consequence of a more general result. 

∆ v ϕ(v) = 1 ρ N -1 ∂ ∂ρ (ρ N -1 ∂ ρ φ) + 1 ρ 2 ∆ σ φ(ρ, σ), ρ = |v| > 0, σ = v |v| .
Proof. Consider a smooth function ψ = ψ(v) ∈ C 2 with compact support in R N \ {0}, which writes in polar coordinates ψ(v) = ψ(ρ, σ), ρ = |v| > 0, σ = v |v| ∈ S. We have

∂ φ ∂ρ = ∇ v ϕ • σ, ∇ v ϕ = (∇ v ϕ • σ)σ + (I -σ ⊗ σ)∇ v ϕ = ∂ φ ∂ρ σ + ∇ ω=ρσ φ and ∂ ψ ∂ρ = ∇ v ψ • σ, ∇ v ψ = (∇ v ψ • σ)σ + (I -σ ⊗ σ)∇ v ψ = ∂ ψ ∂ρ σ + ∇ ω=ρσ ψ.
Integrating by parts yields -

R d ∆ v ϕ ψ(v) dv = R d ∇ v ϕ • ∇ v ψ dv = R + S N -1 ∂ φ ∂ρ ∂ ψ ∂ρ + 1 ρ 2 ∇ σ φ • ∇ σ ψ dσρ N -1 dρ = - S N -1 R + ψ ∂ ∂ρ ρ N -1 ∂ φ ∂ρ dρ dσ - R + ρ N -1 ρ 2 S N -1 ψ ∆ σ φ dσ dρ = - R d ψ(v) 1 ρ N -1 ∂ ∂ρ (ρ N -1 ∂ ρ φ) + 1 ρ 2 ∆ σ φ dv
and therefore 

∆ v ϕ(v) = 1 ρ N -1 ∂ ∂ρ (ρ N -1 ∂ ρ φ) + 1 ρ 2 ∆ σ φ(ρ,

Multiplying ( 15 )

 15 by V(s; v)/|V(s; v)| yields d ds |V| = (α -β|V(s; v)| 2 )|V(s; v)| whose solution is given by |V(s; v)| = |v| re αs |v| 2 (e 2αs -1) + r 2

  R d ×rS ψ(x, ω)f (x, ω) d(x, ω) = v =0 ψ x, r v |v| f (x, v) d(x, v) for any function ψ ∈ C 0 c (R d ×rS). In particular, to any f ∈ M + b (R d ×R d ) not charging R d ×{0} it corresponds f ∈ M + b (R d × R d ), with supp f ⊂ R d × rS, whose characterization is R d ×rS ψ(x, ω) f (x, ω) d(x, ω) = v =0 ψ x, r v |v| f (x, v) d(x, v).We intend to write the previous limit models (in Theorems 1.1, 1.2, and (28)) in spherical coordinates.Proposition A.1 Assume that f ∈ M + b (R d × R d ), supp f ⊂ R d ×rS and let us denote by F ∈ M + b (R d × rS) its corresponding measure on R d × rS. Therefore we have

Proposition A. 2

 2 Consider ϕ = ϕ(ω) a C 2 function on rS and we denote by Φ = Φ(v) its degree zero homogeneous extension on R d \ {0} Φ(v) = ϕ r v |v| , v = 0.

R 3 .ϕ cos 2 θ = 1 r ∂ θ u e θ + 1 r 3

 3113 We introduce the spherical coordinates ω = r(cos θ cos ϕ, cos θ sin ϕ, sin θ) with the angle variables (θ, ϕ) ∈] -π/2, π/2[×[0, 2π[, and the orthogonal basis of the tangent space to rS e θ = (-sin θ cos ϕ, -sin θ sin ϕ, cos θ), e ϕ = (-cos θ sin ϕ, cos θ cos ϕ, 0)with |e θ | = 1, |e ϕ | = cos θ.For any smooth function u on rS we have∇ ω u = (∇ ω u • e θ )e θ + (∇ ω u • e ϕ )e cos 2 θ ∂ ϕ u e ϕ and for any smooth tangent field ξ = ξ θ e θ + ξ ϕ e ϕ we havediv ω ξ = 1 r 1 cos θ ∂ θ (ξ θ cos θ) + ∂ ϕ ξ ϕ .The coordinates of the tangent field ξ := F I -1 r 2 (ω ⊗ ω) a are ξ θ = ξ • e θ = F a θ , ξ ϕ = ξ•eϕ cos 2 θ = F a ϕ and we obtain div v (f a) = div ω F I -1 r 2 (ω ⊗ ω) a = 1 r 1 cos θ ∂ θ (F a θ cos θ) + ∂ ϕ (F a ϕ ) .The spherical Laplacian is given by ∆ ω F = div ω (∇ ω F ) The limit transport equation obtained in (28) for R 3 is

Proposition A. 4

 4 Let us consider a functionϕ = ϕ(v) ∈ C 2 (R d ), d ≥ 2 which writes in polar coordinates ϕ(v) = φ(ρ, σ), ρ = |v| > 0, σ = v |v| ∈ S.Therefore for any v = 0 we have

  σ), ρ = |v| > 0, σ = v |v| .Proof. (of Proposition A.2) The degree zero homogeneous extension Φ(v) = ϕ r v |v| does not depend on the polar radius Φ(v) = Φ(σ) = ϕ(ω = rσ), σ = v |v| . Thanks to Proposition A.4, we deduce ∆ v Φ = 1 ρ 2 ∆ σ Φ = r 2 ρ 2 ∆ ω ϕ. Taking ρ = r, which means v = rσ = ω we obtain ∆ v Φ(ω) = ∆ ω ϕ(ω), ω ∈ rS.
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