Xavier Caruso
email: xavier.caruso@normalesup.org

David Roe

Tristan Vaccon
email: vaccon@rikkyo.ac.jp

Division and Slope Factorization of p-Adic Polynomials

Keywords: I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation -Algebraic Algorithms Algorithms, p-adic precision, Newton polygon, factorization

We study two important operations on polynomials defined over complete discrete valuation fields: Euclidean division and factorization. In particular, we design a simple and efficient algorithm for computing slope factorizations, based on Newton iteration. One of its main features is that we avoid working with fractional exponents. We pay particular attention to stability, and analyze the behavior of the algorithm using several precision models.

INTRODUCTION

Polynomial factorization is a fundamental problem in computational algebra. The algorithms used to solve it depend on the ring of coefficients, with finite fields, local fields, number fields and rings of integers of particular interest to number theorists. In this article, we focus on a task that forms a building block for factorization algorithms over complete discrete valuation fields: the decomposition into factors based on the slopes of the Newton polygon.

The Newton polygon of a polynomial f (X) = aiX i over such a field is given by the convex hull of the points (i, val(ai)) and the point (0, +∞). The lower boundary of this polygon consists of line segments (xj, yj) -(xj+1, yj+1) of slope sj. The slope factorization of f (X) expresses f (X) as a product of polynomials gj(X) with degree xj+1 -xj whose roots all have valuation -sj. Our main result is a new algorithm for computing these gj(X).

Polynomial factorization over local fields has seen a great deal of progress recently [START_REF] Guàrdia | Newton polygons of higher order in algebraic number theory[END_REF][START_REF] Guàrdia | Singlefactor lifting and factorization of polynomials over local fields[END_REF][START_REF] Montes | Polígonos de newton de orden superior y aplicaciones aritméticas[END_REF][START_REF] Pauli | Factoring polynomials over local fields II[END_REF] following an algorithm of Montes. Slope factorization provides a subroutine in such ACM ISBN 978-1-4503-2138-9. DOI: 10.1145/1235 algorithms [9, Section 2]. For the most difficult inputs, it is not the dominant contributor to the runtime of the algorithm, but in some circumstances it will be. We underline moreover that the methods introduced in this paper extend partially to the noncommutative setting and appear this way as an essential building block in several decomposition algorithms of p-adic Galois representations and p-adic differential equations [START_REF] Caruso | Slope factorization of ore polynomials[END_REF].

Any computation with p-adic fields must work with approximations modulo finite powers of p, and one of the key requirements in designing an algorithm is an analysis of how the precision of the variables evolve over the computation. We work with precision models developed by the same authors [3, Section 4.2], focusing on the lattice and Newton models. As part of the analysis of the slope factorization algorithm, we describe how the precision of the quotient and remainder depend on the input polynomials in Euclidean division.

Main Results. Suppose that the Newton polygon of P (X) = n i=0 aiX i has a break at i = d. Set A0 = d i=0 aiX i , V0 = 1 and Ai+1 = Ai + (ViP % Ai) Bi+1 = P / / Ai+1 Vi+1 = (2Vi -V 2 i Bi+1) % Ai+1. Our main result is Theorem 4.1, which states that the sequence (Ai) converges quadratically to a divisor of P . This provides a quasi-optimal simple-to-implement algorithm for computing slope factorizations. We moreover carry out a careful study of the precision and, applying a strategy coming from [START_REF] Caruso | Tracking p-adic precision[END_REF], we end up with an algorithm that outputs optimal results regarding to accuracy.

In order to prove Theorem 4.1, we also determine the precision of the quotient and remainder in Euclidean division, which may be of independent interest. These results are found in Section 3.2.

Organization of the paper. After setting notation, in Section 2 we recall various models for tracking precision in polynomial arithmetic. We give some background on Newton polygons and explain how using lattices to store precision can allow for extra diffuse p-adic digits that are not localized on any single coefficient.

In Section 3, we consider Euclidean division. We describe in Theorem 3.2 how the Newton polygons of the quotient and remainder depend on numerator and denominator. We use this result to describe in Proposition 3.3 the precision evolution in Euclidean division using the Newton precision model. We then compare the precision performance of Euclidean division in the jagged, Newton and lattice models experimentally, finding different behavior depending on the modulus.

Finally, in Section 4 we describe our slope factorization algorithm, which is based on a Newton iteration. Unlike other algorithms for slope factorization, ours does not require working with fractional exponents. In Theorem 4.1 we define a sequence of polynomials that will converge to the factors determined by an extremal point in the Newton polygon. We then discuss the precision behavior of the algorithm.

Notations. Throughout this paper, we fix a complete discrete valuation field K; we denote by val : K → Z ∪ {+∞} the valuation on it and by W its ring of integers (i.e. the set of elements with nonnegative valuation). We assume that val is normalized so that it is surjective and denote by π a uniformizer of K, that is an element of valuation 1. Denoting by S ⊂ W a fixed set of representatives of the classes modulo π and assuming 0 ∈ S, one can prove that each element in x ∈ K can be represented uniquely as a convergent series:

x = +∞ i=val(x) aiπ i with ai ∈ S. (1)
The two most important examples are the field of p-adic numbers K = Qp and the field of Laurent series K = k((t)) over a field k. The valuation on them are the p-adic valuation and the usual valuation of a Laurent series respectively. In what follows, the notation K[X] refers to the ring of univariate polynomials with coefficients in K. The subspace of polynomials of degree at most n (resp. exactly n) is denoted by K ≤n [X] (resp. K=n[X]).

PRECISION DATA

Elements in K (and a fortiori in K[X]) carry an infinite amount of information. They thus cannot be stored entirely in the memory of a computer and have to be truncated. Elements of K are usually represented by truncating Eq.(1) as follows:

x = N-1 i=v aiπ i + O(π N) (2
)
where N is an integer called the absolute precision and the notation O(π N) means that the coefficients ai for i ≥ N are discarded. If N > v and av = 0, the integer v is the valuation of x and the difference N -v is called the relative precision. Alternatively, one may think that the writing (2) represents a subset of K which consists of all elements in K for which the ai's in the range [v, N -1] are those specified.

From the metric point of view, this is a ball (centered at any point inside it).

It is worth noting that tracking precision using this representation is rather easy. For example, if x and y are known with absolute (resp. relative) precision Nx and Ny respectively, one can compute the sum x+y (resp. the product xy) at absolute (resp. relative) precision min(Nx, Ny). Computations with p-adic and Laurent series are often handled this way on symbolic computation softwares.

Precision for polynomials

The situation is much more subtle when we are working with a collection of elements of K (e.g. a polynomial) and not just a single one. Indeed, several precision data may be considered and, as we shall see later, each of them has its own interest. Below we detail three models of precision for the special case of polynomials.

Flat precision. The simplest method for tracking the precision of a polynomial is to record each coefficient modulo a fixed power of p. While easy to analyze and implement, this method suffers when applied to polynomials whose Newton polygons are far from flat.

Jagged precision. The next obvious approach is to record the precision of each coefficient individually, a method that we will refer to as jagged precision. Jagged precision is commonly implemented in computer algebra systems, since standard polynomial algorithms can be written for generic coefficient rings. However, these generic implementations often have suboptimal precision behavior, since combining intermediate expressions into a final answer may lose precision. Moreover, when compared to the Newton precision model, extra precision in the middle coefficients, above the Newton polygon of the remaining terms, will have no effect on any of the values of that polynomial.

Newton precision. We now move to Newton precision data. They can be actually seen as particular instances of jagged precision but there exist for them better representations and better algorithms. Remark 2.2. The datum of ϕ is equivalent to that of Epi(ϕ) and they can easily be represented and manipulated on a computer.

We recall that one can attach a Newton function to each polynomial. If P (X) = n i=0 anX n ∈ Kn[X], we define its Newton polygon NP(P) as the convex hull of the points (i, val(ai)) (1 ≤ i ≤ n) together with the point at infinity (0, +∞) and then its Newton function NF(P) : [0, n] → R as the unique function whose epigraph is NP(P). It is well known [5, Section 1.6] that:

NP(P + Q) ⊂ Conv NP(P) ∪ NP(Q) NP(P Q) = NP(P) + NP(Q)
where Conv denotes the convex hull and the plus sign stands for the Minkowski sum. This translates to:

NF(P + Q) ≥ NF(P) + NF(Q) NF(P Q) = NF(P) × NF(Q)
where the operations + and × are defined accordingly. There exist classical algorithms for computing these two operations whose complexity is quasi-linear with respect to the degree.

In a similar fashion, Newton functions can be used to model precision: given a Newton function ϕ of degree n, we agree that a polynomial of degree at most n is given at precision O(ϕ) when, for all i, its i-th coefficient is given at precision O π ⌈ϕ(i)⌉ (where ⌈•⌉ is the ceiling function). In the sequel, we shall write O(ϕ) = n i=0 O π ⌈ϕ(i)⌉ • X i and use the notation n i=0 aiX i + O(ϕ) (where the coefficients ai are given by truncated series) to refer to a polynomial given at precision O(ϕ).

It is easily checked that if P and Q are two polynomials known at precision O(ϕP) and O(ϕQ) respectively, then P + Q is known at precision O(ϕP + ϕQ) and P Q is known at precision O (ϕP × NF(Q)) + (NF(P) × ϕQ) . We notice that, under the conditions of the above definition, the Newton polygon of P is well defined. Indeed, if δP is any polynomial whose Newton function is not less than ϕP , we have NP(Papp + δP) = NP(Papp).

Lattice precision. The notion of lattice precision was developed in [START_REF] Caruso | Tracking p-adic precision[END_REF]. It encompasses the two previous models and has the decisive advantage of precision optimality. As a counterpart, it might be very space-consuming and timeconsuming for polynomials of large degree. Definition 2.4. Let V be a finite dimensional vector space over K. A lattice in V is a sub-W -module of V generated by a K-basis of V .

We fix an integer n. A lattice precision datum for a polynomial of degree n is a lattice H lying in the vector space K ≤n [X]. We shall sometimes denote it O(H) in order to emphasize that it should be considered as a precision datum. The notation Papp(X) + O(H) then refers to any polynomial in the W -affine space Papp(X) + H. Tracking lattice precision can be done using differentials as shown in [3, Lemma 3.4 and Proposition 3.12]: if f : K ≤n [X] → K ≤m [X] denotes any strictly differentiable function with surjective differential, under mild assumption on H, we have:

f (Papp(X) + H) = f (Papp(X)) + f ′ (Papp(X))(H)
where f ′ (Papp(X)) denotes the differential of f at Papp(X). The equality sign reflets the optimality of the method.

As already mentioned, the jagged precision model is a particular case of the lattice precision. Indeed, a precision of the shape n i=0 O(π N i)X i corresponds to the lattice generated by the elements π N i X i (0 ≤ i ≤ n). This remark is the origin of the notion of diffused digits of precision introduced in [START_REF]p-adic stability in linear algebra[END_REF]Definition 2.3]. We shall use it repeatedly in the sequel in order to compare the behaviour of the three aforementioned precision data in concrete situations.

EUCLIDEAN DIVISION

Euclidean division provides a building block for many algorithms associated to polynomials in one variable. In order to analyze the precision behavior of such algorithms, we need to first understand the precision attached to the quotient and remainder when dividing two polynomials. In the sequel, we use the notation A / / B and A % B for the polynomials satisfying A = (A / / B)•B+(A % B) and deg(A % B) < deg(B).

ϕ % ψ = ϕ |[0,d-1] + ψ |[0,d-1] + δ ϕ / / ψ : [0, n -d] → R ∪ {+∞} x → inf h≥0 ϕ(x + d + h) -λh.
Figure 1 illustrates the definition: if ϕ and ψ are the functions represented on the diagram, the epigraph of ϕ % ψ is the blue area whereas that of ϕ / / ψ is the green area translated by (-d, 0). It is an easy exercise (left to the reader) to design quasi-linear algorithms for computing ϕ % ψ and ϕ / / ψ. Theorem 3.2. Given A, B ∈ K[X] with B = 0, we have:

NF(A % B) ≥ NF(A) % NF(B)
(3) and NF(A / / B) ≥ NF(A) / / NF(B)

Proof. Write A = A <d + A ≥d where A <d (resp. A ≥d) consists of monomials of A of degree less than d (resp. at least d). Noting that:

A % B = A <d + (A ≥d % B) and A / / B = A ≥d / / B
we may assume that A = A ≥d .

Let us now prove Eq. (3). Replacing B by c -1 B where c denotes the leading coefficient of B, we may assume that B is monic. Using linearity, we may further assume that A is a monomial. Set Rn = X n % B. The relation we have to prove is:

NF(Rn)(x) ≥ NF(B)(x) -λ(n -d) for n ≥ d.
We proceed by induction. The initialisation is clear because R d agrees with (-B) up to degree d-1. We have the relation Rn+1 = XRn -cnB where cn is the coefficient in X d-1 of Rn. Thanks to the induction hypothesis, we have:

val(cn) ≥ NF(Rn)(d-1) ≥ NF(B)(d-1) -λ(n-d) = -λ(n+1-d) since λ = -NF(B)(d-1) because B is monic. Therefore NF(cnB)(x) ≥ NF(B)(x) -λ(n+1-d) for all x.
On the other hand, for all x, we have:

NF(XRn)(x) = NF(Rn)(x-1) ≥ NF(Rn)(x) -λ from what we get NF(XRn)(x) ≥ NF(B)(x) -λ(n+1-d).
As a consequence NF(Rn+1)(x) ≥ NF(B)(x) -λ(n+1-d) and the induction follows. Eq. (4) is now derived from:

NF(A / / B) × NF(B) ≥ NF(A) + NF(A % B)
using the estimation on NF(A % B) we have just proved (see Figure 1).

Tracking precision

Newton precision. Proof. Let δA (resp. δB) be a polynomial whose Newton function is not less than ϕA (resp. ϕB) and define δQ and δR by: Qapp + δQ = (Aapp + δA) / / (Bapp + δB) Rapp + δR = (Aapp + δA) % (Bapp + δB)

where Qapp = Aapp / / Bapp and Rapp = Aapp % Bapp. We have to show that NF(δQ) ≥ ϕ / / NF(B) and NF(δR) ≥ ϕ % NF(B). Set δX = δA -QappδB. Using Theorem 3.2, we obtain NF(Qapp) ≥ NF(A) / / NF(B) and consequently NF(δX) ≥ ϕ. On the other hand, an easy computation yields δX = (B + δB) • δQ + δR so that δQ = δX / / (B + δB) and δR = δX % (B + δB). Using again Theorem 3.2, we get the desired result.

With this result in hand, we may split the computation of Euclidean division into two pieces, first computing approximations Qapp and Rapp and separately computing δQ and δR. Both the approximations and the precision can be computing in time that is quasi-linear in the degree.

Lattice precision. We now move to lattice precision. We pick A and B two polynomials of respective degree n and d and assume that they are known at precision O(HA) and O(HB) respectively:

A = Aapp + O(HA) and B = Bapp + O(HB).
where HA ∈ K ≤n [X] and HB ∈ K ≤d [X] are lattices. According to the results of [START_REF] Caruso | Tracking p-adic precision[END_REF], in order to determine the precision on A / / B and A % B, we need to compute the differential of the mappings (X, Y) → X / / Y and (X, Y) → X % Y at the point (Aapp, Bapp). Writing Qapp = Aapp / / Bapp and Rapp = Aapp % Bapp, this can be done by expanding the relation:

Aapp + dA = (Bapp + dB)(Qapp + dQ) + (Rapp + dR)
and neglecting the terms of order ≥ 2. We get this way dA = BappdQ + QappdB + dR meaning that dQ and dR appears respectively as the quotient and the remainder of the Euclidean division of dX = dA -QappdB by Bapp.

Once this has been done, the strategy is quite similar to that explained for Newton precision: compute approximations and precision lattices separately for quotient and remainder.

An example: modular multiplication

For this example, we work over W = Z2 and fix a monic polynomial M ∈ Z[X] (known exactly) of degree 5. Our aim is to compare the numerical stability of the multiplication in the quotient Z2[X]/M depending on the precision model we are using. In order to do so, we pick n random polynomials P1, . . . , Pn in Z2[X]/M (X) (according to the Haar measure) whose coefficients are all known at precision O(2 N) for some integer N . We then compute the product of the Pi's using the following quite naive algorithm.

1. set P = 1 2. for i = 1, . . . , n do compute P = (P • Pi) % M 3. return P The table of Figure 2 reports the average gain of absolute precision G which is observed while executing the algorithm above for various modulus and n. The average is taken on a sample of 1000 random inputs. We recall that G is defined as follows:

• in the case of jagged and Newton precision, the precision on the output may be written into the form 4 i=0 O(2 N i)X i and G = 4 i=0 (Ni -N); • in the case of lattice precision, the precision on the output is a lattice H and G is the index of H in 2 N L where L = Z2[X]/M is the standard lattice; in that case, we write G as a sum G nd + G d where G d is the index of H in the largest lattice H0 contained in H which can be generated by elements of the shape 2 N i X i (0 ≤ i ≤ 4). (The term G d corresponds to diffused digits according to [START_REF]p-adic stability in linear algebra[END_REF]Definition 2.3].)

We observe several interesting properties. First of all, the gains for Newton precision and jagged precision always agree though one may have thought at first that Newton precision is weaker. Since performing precision computations in the Newton framework is cheaper, it seems (at least on this example) that using the jagged precision model is not relevant.

On the other hand, the lattice precision may end up with better results. Nevertheless this strongly depends on the modulus M . For instance, when M is irreducible modulo p = 2 or Eiseistein, there is apparently no benefit to using the lattice precision model. We emphasize that these two particular cases correspond to modulus that are usually used to define (unramified and totally ramified respectively) extensions of Q2.

For other moduli, the situation is quite different and the benefit of using the lattice precision model becomes more apparent. The comparison between the gain of precision in the jagged model and the number of not diffused digits in the lattice model makes sense: indeed the latter appears as a theoretical upper bound of the former and the difference between them quantifies the quality of the way we track precision in the jagged (or the Newton) precision model. We observe that this difference is usually not negligible (cf notably the case of M (X) = (X + 1) 5 + 2) meaning that this quality is not very good in general. As for diffused digits, they correspond to digits that cannot be "seen" in the jagged precision model. Their number then measures the intrinsic limitations of this model. We observe that it can be very important as well in several cases. The modulus (X + 1) 5 + 2 shows the advantage of working with lattice precision in intermediate computations. Indeed, the precision behavior using the lattice model closely parallels that of X 5 + 2, since the lattices are related by a change of variables. But this structure is not detected in the Newton or jagged models.

SLOPE FACTORIZATION

A well-known theorem [5, Theorem 6.1] asserts that each extremal point M in the Newton polygon NP(P) of a polynomial P ∈ K[X] corresponds to a factorization P = AB where the Newton polygon of A (resp. B) is given by the part of NP(P) located at the left (resp. the right) of M . Such a factorization is often called a slope factorization.

The aim of this section is to design efficient and stable algorithms for computing these factorizations. Precisely the algorithm we obtain has a quasi-optimal complexity (compared to the size of the input polynomial) and outputs a result whose precision is (close to be) optimal. Two of its important additional features are simplicity and flexibility.

A Newton iteration

The factor A defined above is usually obtained via a Newton iteration after having prepared our polynomial by flattening the first slope using a change of variables involving possibly rational exponents. We introduce here a variant of this iteration which does not require the flattening step and is entirely defined over K[X].

Theorem 4.1. Let P (X) = n i=0 aiX i be a polynomial of degree n with coefficients in K. We assume that NP(P) has an extremal point whose abscissa is d. We define the sequences (Ai) i≥0 and (Vi) i≥0 recursively by: The rest of this subsection is devoted to the proof of the theorem. If d = n (resp. d = 0), the sequence Ai is constant equal to P (resp. to the constant coefficient of P) and theorem is clear. We then assume 0 < d < n. We set: λ0 = NF(P)(d) -NF(P)(d-1) λ1 = NF(P)(d+1) -NF(P)(d), so that κ = λ1 -λ0. The existence of an extremal point of NP(P) located at abscissa d ensures that λ1 > λ0, i.e. κ > 0. For all indices i, we define:

A0 = d i=0 aiX i , V0 = 1 Ai+1 = Ai + (ViP % Ai), Vi+1 = (2Vi -V 2 i Bi+1) %
Qi = ViP / / Ai, Ri = ViP % Ai = Ai+1 -Ai, Si = P % Ai, Ti = (1 -ViBi) % Ai
and when is some letter, we put ∆ i = i+1i.

Lemma 4.3. The following relations hold:

∆Bi = -(RiBi+1) / / Ai, (6) ∆Si
= -(RiBi+1) % Ai, (7
) Si = (BiRi + TiSi-1 + Ti ∆Si-1) % Ai, (8) ∆Vi
= (ViTi -V 2 i ∆Bi) % Ai, (9) 1
-Qi = Ti -(ViSi) / / Ai, (10)
Ri+1 = (∆Vi Si+1 + (1-Qi)Ri) % Ai+1, (11)
Ti+1 = (Ti + Vi ∆Bi) 2 % Ai+1. (12)
Proof. From P = AiBi + Si = Ai+1Bi+1 + Si+1, we get -RiBi+1 = ∆Bi • Ai + ∆Si. Hence, by consideration of degree, we obtain (6) and [START_REF] Guàrdia | Singlefactor lifting and factorization of polynomials over local fields[END_REF]. On the other hand, from ViP = AiQi + Ri = Vi(AiBi + Si), we derive

(ViBi -Qi) • Ai = Ri -ViSi. (13)
Thus Ri = ViSi % Ai. Hence BiRi = (Si -SiTi) % Ai and Si = BiRi + SiTi % Ai, from which (8) follows directly By definition of Vi, we get ∆Vi = Vi(1 -ViBi+1) % Ai+1 and consequently [START_REF] Pauli | Factoring polynomials over local fields II[END_REF]. We now write 1 -Qi = Ti + (ViBi -Qi). Using (13) and noting that deg Ri < deg Ai = d, we get [START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF].

We have ViP = AiQi + Ri = (Ai+1 -Ri)Qi + Ri and Vi+1P = Ai+1Qi+1 + Ri+1. Thus:

Ri+1 = ∆Vi P + (1 -Qi)Ri = (∆Vi Si+1 + (1 -Qi)Ri) % Ai+1,
and (11) is proved. Finally

Ti+1 ≡ 1 -2ViBi+1 + V 2 i B 2 i+1 (mod Ai+1) ≡ (1 -ViBi+1) 2 (mod Ai+1) ≡ (Ti + Vi ∆Bi) 2 (mod Ai+1)
which concludes the proof.

If λ0 = -∞ or λ1 = +∞, the sequence (Ai) is constant and the theorem is obvious. We then assume that λ0 and λ1 are both finite.

We define the function ϕ : R + → R ∪ {+∞} by:

ϕ(x) = NF(P)(x) if x ≤ d λ0(x -d) + NF(P)(d) if x > d (14)
We notice that, when the polynomial P is changed into cP where c is a nonzero constant lying in a finite extension of K, the Ai's are all multiplied by c as well whereas the Bi's and the Vi's remained unchanged. Therefore, the theorem holds for P if and only if it holds for cP . As a consequence we may assume that P is normalized so that NF(P)(d) = dλ0, i.e. ϕ(x) = λ0x for x > d. For a polynomial Q ∈ K[X] of degree n, we further define:

bϕ(Q) = min x∈[0,n] NF(Q)(x) -ϕ(x) (15
(Q) ≤ b0(Q) for all polynomial Q. Simi- larly b1(Q) ≤ b0(Q) for all Q. Lemma 4.4. Let b ∈ {bϕ, b0, b1}. For Q1, Q2 ∈ K[X]: a) b(Q1 + Q2) ≥ min b(Q1), b(Q2) b) b(Q1Q2) ≥ min b(Q1) + b(Q2) c) bϕ(Q1Q2) ≥ bϕ(Q1) + b0(Q2) For Q, A ∈ K[X] with deg A = d and NF(A) = NF(P) |[0,d] : d) b(Q % A) ≥ b(Q) e) b0(Q / / A) ≥ bϕ(Q).
Proof. a) is clear. We skip the proof of b) which is similar to that of c). Let t1 (resp. t2) be the translation of vector (0, bϕ(Q1)) (resp. (0, b0(Q2)). It follows from the definition of bϕ that NP(Q1) is a subset of t1(Epi(ϕ)) where Epi(ϕ) denotes the epigraph of ϕ. Similarly NP(Q2) ⊂ t2(C) where C is the convex cone generated by the vectors starting from (0, 0) to (0, 1) and (1, λ0). Thus We are now going to prove by induction on i the conjonction of all equalities and inequalities below:

NF(Ai) = ϕ |[0,d] , b1(Vi) ≥ 0, bϕ(Ri) ≥ 2 i κ bϕ(Si) ≥ 0, b0(Ti) ≥ 2 i κ. (17)
Noting that A0 and P agree up to degree d and that NP(P) has an extremal point at abscissa d, we get NF(A0) = ϕ |[0,d] . Clearly b1(V0) ≥ 0 since V0 = 1. It follows from the definitions that R0 = S0 = P % A0 = (P -A0) % A0. We remark that P -A0 = n i=d+1 aiX i . Using Theorem 3.2, we obtain that bϕ(P -A0) ≥ κ and then bϕ(R0) = bϕ(S0) ≥ κ (see Figure 3). Finally observe that: T0 = (1 -B0) % A0 = (A0 -P) / / A0 % A0. Therefore b0(T0) ≥ κ results from bϕ(A0-P) ≥ κ thanks to Lemma 4.4. We have then established (17) when i = 0.

We now assume (17) for the index i. From Ai+1 = Ai +Ri and the estimation bϕ(Ri) ≥ 2 i κ > 0, we derive NF(Ai+1) = ϕ |[0,d] . Therefore, Lemma 4.4 applies with A = Ai and A = Ai+1. Now coming back to the the definition of Bi+1 and using Theorem 3.2, we get b0(Bi+1) ≥ b1(Bi+1) ≥ 0. As a consequence: bϕ(RiBi+1) ≥ bϕ(Ri) + b0(Bi+1) ≥ 2 i κ by Lemma 4.4 and the induction hypothesis. Using again Lemma 4.4, we then derive from (6) and (7) that b0(∆Bi) ≥ 2 i κ and bϕ(∆Si) ≥ 2 i κ. Similarly, using [START_REF] Montes | Polígonos de newton de orden superior y aplicaciones aritméticas[END_REF] and the estimations we already know, we obtain bϕ(Si) ≥ 2 i κ. Combining this with bϕ(∆Si) ≥ 2 i κ, we find bϕ(Si+1) ≥ 2 i κ as well. Applying again and again the same strategy, we deduce successively b0(∆Vi) ≥ 2 i κ using (9), b0(1-Qi) ≥ 2 i κ using [START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF], bϕ(Ri+1) ≥ 2 i+1 κ using [START_REF]New algorithms for relaxed multiplication[END_REF], and then b0(Ti+1) ≥ 2 i+1 κ using (12). Finally, coming back to the recurrence defining Vi+1 and remembering that b1(Vi) and b1(Bi+1) are both nonnegative, we find b1(Vi+1) ≥ 0. The equalities and inequalities of Eq. (17) have then all been established for the index i + 1 and the induction goes.

From the inequalities bϕ(Ri) ≥ 2 i κ, we deduce that the sequence (Ai) is Cauchy and therefore converges. Its limit A∞ certainly satisfies NF(A∞) = ϕ |[0,d] because all the Ai's do. Moreover we know that bϕ(Si) ≥ 2 i κ from what we derive that the sequence (Si) goes to 0. Coming back to the definition of Si, we find P % A∞ = 0, i.e. A∞ divides P . Finally, Eq. (5) giving the rate of convergence follows from the writing A∞-Ai = ∞ j=i Rj together with the facts that bϕ(Rj) ≥ 2 i κ and deg Rj ≤ d-1 for all j ≥ i. Remark 4.5. It follows from the proof above that the sequence (Vi) i≥0 converges as well. Its limit V∞ is an inverse of B∞ = P / / A∞ modulo A∞ and it satisfies in addition b1(V∞) ≥ 0.

Moreover, the conclusion of Theorem 4.1 is still correct if A0 is any polynomial of degree d with leading coefficient a d and V0 is any polynomial as soon as they satisfy: bϕ V0P % A0 > 0 and b0 (1 -V0B0) % A0 > 0 except that the constant κ giving the rate of convergence should be now κ = min bϕ V0P % A0 , b0 (1-V0B0) % A0 .

Definition 2 . 1 .

 21 A Newton function of degree n is a convex function ϕ : [0, n] → R ∪ {+∞} which is piecewise affine, which takes a finite value at n and whose epigraph Epi(ϕ) have extremal points with integral abscissa.

Definition 2 . 3 .

 23 Let P = Papp + O(ϕP). We say that the Newton precision O(ϕP) on P is nondegenerate if ϕP ≥ NF(Papp) and ϕP (x) > y for all extremal point (x, y) of NP(Papp).

Figure 1 :

 1 Figure 1: Euclidean division of Newton functions

Proposition 3 . 3 .

 33 We first analyze the precision behavior of Euclidean division in the Newton model. Concretely, we pick A, B ∈ K[X] two polynomials which are known at precision O(ϕA) and O(ϕB) respectively:A = Aapp + O(ϕA) and B = Bapp + O(ϕB)Here Aapp and Bapp are some approximations of A and B respectively and ϕA and ϕB denotes two Newton functions of degree deg A and deg B respectively. We are interested in determining the precision on A % B and A / / B. The following proposition gives a theoretical answer under mild assumptions. We keep the above notations and assume that the Newton precisions O(ϕA) and O(ϕB) on A and B respectively are both nondegenerate (cf Definition 2.3). Then, setting:ϕ = ϕA + ϕB × NF(A) / / NF(B)the polynomials A / / B and A % B are known at precision O(ϕ / / NF(B)) and O(ϕ % NF(B)) respectively.

Figure 2 :

 2 Figure 2: Precision for modular multiplication

5) 4 . 2 .

 542 Ai+1 where Bi+1 = P / / Ai+1. Then the sequence (Ai) converges to a divisor A∞ of P of degree d whose leading coefficient is a d and whose Newton function agrees with NF(P) on [0, d]. Moreover, setting: κ = NF(P)(d+1) + NF(P)(d-1) -2 • NF(P)(d) (with NF(P)(-1) = NF(P)(n+1) = +∞ if necessary), we have κ > 0 and the following rate of convergence: ∀i ≥ 0, NF(A∞ -Ai) ≥ NF(P) |[0,d-1] + 2 i κ. (Remark The divisor A is uniquely determined by the conditions of Theorem 4.1. Indeed, consider two divisors A and A ′ of P such that NF(A) = NF(A ′) = NF(P) |[0,d] .Then L = lcm(A, A ′) is a divisor of P as well and the slopes of its Newton polygon are all at most λ0 = NF(P)(d) -NF(P)(d-1). Therefore deg L = d and L differs from A and A ′ by a multiplicative nonzero constant. Then, if A and A ′ share in addition the same leading coefficient, they must coincide.

) and bi(Q) = min x∈[0,n] NF(Q)(x) -λix for i ∈ {0, 1}. (16) Set also bϕ(0) = b0(0) = b1(0) = +∞ by convention. With the normalization of P we chose above, we have b0(P) = bϕ(P) = 0 and bϕ

Figure 3 :

 3 Figure 3: Bound on NF(R0) and NF(S0)

A slope factorization algorithm

Let P ∈ Kn[X] and d be the abscissa of an extremal point of NP(P). Previously (cf Theorem 4.1), we have defined a sequence (Ai, Vi) converging to (A, V) where A is a factor of P whose Newton function is NF(P) |[0,d] and V is the inverse of B = P/A modulo A. We now assume that P is known up to some finite precision: P = Papp + O(• • •) where the object inside the O depends on the chosen precision model. We address the two following questions: [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] what is the precision on the factor A, and (2) how can one compute in practice A at this precision?

In the sequel, it will be convenient to use a different normalization on A and B: if a d is the coefficient of P of degree d, we set A (1) = a -1 d A and B (1) = a d B so that A (1) is monic and P = A (1) B (1) . We shall also always assume that P is monic in the sense that its leading coefficient is exactly 1; the precision datum on P then only concerns the coefficients up to degree n-1. Similarly, noting that A (1) and B (1) are monic as well, they only carry a precision datum up to degree d-1 and n-d-1 respectively. Newton precision. We assume that the precision on the input P has the shape O(ϕP) where ϕP is a Newton function of degree n-1. From now on, we assume that the precision O(ϕP) is nondegenerate in the sense of Definition 2.3. This ensures in particular that the Newton polygon of P is well defined. We import the notations ϕ, bϕ and b0 from §4.1 and refer to Eqs. (14)-(16) for the definitions. Proposition 4.6. We keep all the above notations and assumptions. We set:

and assume that δ > 0. Then the factor A (1) is known with precision at least O(ϕ

app and A (1) be the monic factors of Papp and Papp + δP respectively whose Newton functions are ϕ |[0,d] -ϕ(d).

We define the sequences (Ai) and (Vi) by the recurrence:

where Aapp and Vapp are those related to Papp. Note that

By Remark 4.5, we know that the sequence (Ai) converges to A = a d • A (1) and furthermore:

and we are done.

Remark 4.7. Under the hypothesis (H) introduced below, a correct precision on A (1) is also O(ψ A (1)) where:

This follows from Proposition 4.9 using

It follows in addition from Remark 4.5 that NF(Vapp) is bounded from below by x → λ1x. This yields the bound

We can now move to the second question we have raised before, i.e. the design of an algorithm for computing A (1) with the precision given by Proposition 4.6. Our strategy consists in computing first the precision and applying then the Newton iteration until the expected precision is reached. Below is the precise description of our algorithm.

Algorithm slope_factorisation_Newton

a break point d of NP(P) Output: the factor A described above 1. Compute the functions NF(P) and ϕ

lift Ai, Vi and P at enough precision 7.

compute

Remark 4.8. The precision needed at line 6 is of course governed by the computation performed at line 7. Note that it can be either computed a priori by using Proposition 3.3 or dynamically by using relaxed algorithms from [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF][START_REF]New algorithms for relaxed multiplication[END_REF]. In both cases, it is in O(π N i) with Ni = O(2 i κ+min NF(P)).

It follows from Theorem 4.1, Remark 4.5 and Proposition 4.6 that Algorithm slope_factorisation_Newton is correct and stable. Using the standard soft-O notation O˜(•) for hiding logarithmic factor, our algorithm performs at most O˜(n) combinatorial operations and O˜(n) operations in K at precision O(π N) with N = O(max ϕP -min NF(P)) if one uses quasi-optimal algorithms for multiplication and Euclidean division of polynomials.

Lattice precision. The precision datum is given here by a lattice HP in K ≤n-1 [X]; we shall then write P = Papp + O(HP) where Papp is a monic approximation of the inexact polynomial P we want to factor. We assume from now that HP is sufficiently small so that the Newton polygon of P is well defined. We then can define the function:

mapping a polynomial P to the couple (A (1) , B (1)) obtained from it. We set (A

app) = F (Papp). We make the following hypothesis (H):

The lattice HP is a first order lattice at every point of Papp + HP in the sense of [START_REF] Caruso | Tracking p-adic precision[END_REF]Definition 3.3], i.e. for all P ∈ Papp + HP :

F (P + HP) = F (P) + F ′ (P)(HP).

Obviously (H) gives an answer to the first question we have raised above: the precision on the couple A (1) is the lattice H A (1) defined as projection on the first component of F ′ (Papp)(HP). It turns out that it can be computed explicitely as shown by the next proposition.

Proposition 4.9. The application FA : P → A (1) is of class C 1 on Papp + HP and its differential at some point P is the linear mapping dP → dA (1) = (V (1) dP) % A (1) where (A (1) , B (1)) = F (P) and V (1) is the inverse of B (1) modulo A (1) .

Proof. The function F is injective and a left inverse of it is G : (A (1) , B (1)) → A (1) B (1) . Clearly G is of class C 1 and its differential is given by (dA (1) , dB (1)) → dP = A (1) dB (1) + B (1) dA (1) .

(18)

Thanks to Bézout Theorem, it is invertible as soon as A (1) and B (1) are coprime, which is true because NP(A (1)) and NP(B (1)) do not shape a common slope. As a consequence F is of class C 1 and its differential is obtained by inverting Eq. (18). Reducing modulo A (1) , we get dP ≡ B (1) dA (1) (mod A (1)). The claimed result follows after having noticed that dA (1) has degree at most d-1.

A remarkable Corollary of Proposition 4.9 asserts the optimality of Proposition 4.6 in a particular case.

Corollary 4.10. We assume (H). Let δ ∈ R. When the precision of P is given by O(NF(P) |[0,d-1] +δ), the precision of A (1) given by Proposition 4.6 is optimal.

Proof. First remark that the δ defined in the statement of Proposition 4.6 coincide with the δ introduced in the Corollary. Define ϕ

) be the lattice consisting of polynomials of degree at most n-1 (resp. at most d-1) whose Newton function is not less that ϕP = NF(P) |[0,d-1] + δ (resp. ϕ A (1)). We have to show that F ′ A (Papp)(HP) = H A (1) . According to Proposition 4.9 the mapping G :

dA (1) → (B [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] app dA (1)) % A [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] app is a right inverse of F ′ A (Papp). It is then enough to prove that G takes H A (1) to HP , which can be done easily using Theorem 3.2.

As for the second question, the discussion is similar to the case of Newton precision expect that we need a new stopping criterion. It is given by the following proposition. Proposition 4.11. We assume (H).

(

Proof. (i) Set P = Ã(1) B(1) . We know by assumption that P = Papp + O(HP). Thus F (P) is well defined. The unicity of the slope factorization (cf Remark 4.2) further implies that F (P) = (Ã(1) , B(1)). The claimed result now follows from the hypothesis (H).

(ii) By applying (H) with P = P and replacing F ′ (P) by its expression given by Proposition 4.9, we find: As a conclusion, the algorithm we propose consists in computing the Newton sequences (Ai) and (Vi) (following the strategy of the algorithm slope_factorisation_Newton regarding to precision) until we find a couple (Ã(1) , Ṽ (1)) satisfying the requirements (i) and (ii) of Proposition 4.11. Once this couple has been found, one may safely output Ã(1) + O Ṽ (1) • HP % Ã(1) under (H). The resulting algorithm has quasi-optimal running time and optimal stability.