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Abstract. We prove the existence of a countable family of Delaunay type domains

Ωt ⊂Mn × R,
t ∈ N, where Mn is the Riemannian manifold Sn or Hn and n ≥ 2, bifurcating from
the cylinder Bn × R (where Bn is a geodesic ball of radius 1 in Mn) for which the first
eigenfunction of the Laplace-Beltrami operator with zero Dirichlet boundary condition
also has constant Neumann data at the boundary. The overdetermined problem

∆g u+ λu = 0 in Ωt

u = 0 on ∂Ωt

g(∇u, ν) = const on ∂Ωt

has a bounded positive solution for some positive constant λ, where g is the standard
metric in Mn×R. The domains Ωt are rotationally symmetric and periodic with respect
to the R-axis of the cylinder and the sequence {Ωt}t converges to the cylinder Bn × R.

1. Introduction and statement of the result

A long-standing open problem is to classify (smooth) domains Ω ⊆ Rn, n ≥ 2, for
which the overdetermined elliptic problem

(1)



∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

〈∇u, ν〉 = constant on ∂Ω

admits a solution u ∈ C2(Ω), where f is a given Lipschitz function, ν is the normal vector
to ∂Ω, and 〈·, ·〉 denotes the usual scalar product.
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By Serrin’s Theorem [28], if Ω is bounded, then Ω must be a ball and the solution
u is radial (see also [25]). Such a result has many applications to Physics. For exam-
ple, problem (1), when f is constant, describes a viscous incompressible fluid moving in
straight parallel streamlines through a straight pipe of given cross section Ω (see [28]),
and Serrin’s Theorem shows then that the tangential stress per unit area on the pipe wall
is the same at all points of the wall if and only if the pipe has a circular cross section.
Problem (1) is used in the linear theory of torsion of a solid straight bar of cross section
Ω (see [31]). In this setting Serrin’s Theorem implies that when a solid straight bar is
subject to torsion, the magnitude of the resulting traction which occurs at the surface of
the bar is independent of the position if and only if the bar has a circular cross section.

Overdetermined boundary conditions arise naturally also in free boundary problems,
when the variational structure imposes suitable conditions on the separation interface
(see for example [3]). In this context it is important to underline that several methods
for studying locally the regularity of solutions of free boundary problems are often based
on blow-up techniques applied to the intersection of Ω with a small ball centered in a
point of ∂Ω, which lead then to the study of an elliptic problem in an unbounded domain.
Problem (1) in unbounded domains was considered by H. Berestycki, L. Caffarelli and L.
Nirenberg in [5].

For some types of functions f the structure of the family of domains Ω where the overde-
termined problem (1) can be solved shares many similarities with the class of embedded
constant mean curvatures surfaces (CMC surfaces). For the bounded case, the analogy
is very simple: the only compact embedded CMC surfaces in Rn are the round spheres
(very well known result by A.D. Alexandrov [2]) and the only bounded domains in Rn

where problem (1) can be solved are balls by Serrin’s Theorem. For the unbounded case,
a very well known family of CMC surfaces is the family of Delaunay onduloids, see [7]. In
[29] P. Sicbaldi showed the existence of Delaunay type domains, i.e. perturbations of the
straight solid cylinder in Rn which are rotationally symmetric and periodic in the vertical
direction, where it is possible to solve problem (1) for the linear function f(t) = λ t. In
[27], F. Schlenk and P. Sicbaldi showed that the previous unbounded domains belong in
fact to a smooth 1-parameter family, a property enjoyed also by Delaunay onduloids.

In order to show that the analogy with the CMC surfaces is even deeper, we remark
that domains where problem (1) with f = 0 can be solved arise as limits under scaling of
sequences of domains where problem (1) with f(t) = λ t can be solved, just like minimal
surfaces arise as limits under scaling of sequences of CMC surfaces. In a recent paper,
[32], M. Traizet shows a one-to-one correspondence between 2-dimensional domains (with
finite connectivity) where problem (1) with f = 0 can be solved and a special class of
minimal surfaces.

The analogy between problem (1) and CMC surfaces has been explored in a systematic
way by A. Ros and P. Sicbaldi in [26]. In particular they obtain, for 2-dimensional
domains where (1) can be solved, a half-space theorem and also, for some functions f ,
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the boundedness of the ends of the domain, paralleling analogous results valid for CMC
surfaces.

One of the most remarkable recent achievements in the field of Differential Geometry
is the extension of the classical theory of CMC surfaces in the Euclidean space to other
ambient spaces, and in particular to the the eight Thurston’s 3-dimensional geometries:
the Euclidean space R3, the round sphere S3, the hyperbolic space H3, the product spaces
S2 × R and H2 × R, the Heisenberg group Nil3, the universal covering of PSL2(R) and
the Lie group Sol3. The importance of the classification of CMC surfaces in such ambient
spaces comes from the outstanding Thurston’s Geometrization Conjecture (which includes
in particular the Poincaré’s Conjecture), proved finally by G. Perelman in 2003 [22, 23, 24]
using Ricci flow with surgery, according to which every closed 3-dimensional manifold can
be decomposed in a canonical way into pieces in order that each piece has one of the
eight Thurston’s geometric structures. For a survey on the Thurston’s Geometrization
Conjecture we refer to [4]. The number of results in the framework of CMC surfaces
in Thurston’s 3-dimensional geometries is very large, and we cite only the works by U.
Abresch, H. Rosenberg and W. H. Meeks [1, 17, 18] which have set the direction of the
subsequent research in the field.

As for CMC surfaces, overdetermined problems can be considered also in a Riemannian
manifold, and in this framework problem (1) becomes

(2)



∆gu+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

g(∇u, ν) = constant on ∂Ω ,

where g denotes the metric of the manifold and ∆g is the Laplace-Beltrami operator.

First, we remark that unlike CMC surfaces, where the lowest possible dimension for
the ambient space is 3, in the case of overdetermined elliptic problems the lowest possible
dimension for the ambient space is 2. In dimension 2 the equivalent of the Thurston’s
Geometrization Conjecture is the Riemann’s Uniformization Theorem, according to which
every 2-dimensional Riemannian manifold is a quotient of one of the following manifolds
by a free action of a discrete subgroup of their isometries group: the round sphere S2, the
Euclidean space R2 and the hyperbolic plane H2 (remark that in the case of dimension
2 it is not necessary to decompose the manifold in pieces and this is the reason why the
2-dimensional case is much simpler than the 3-dimensional one).

Serrin’s Theorem for overdetermined elliptic problems in Rn has been generalized by
R. Molzon [19] and S. Kumaresan and J. Prajapat [15] to the round sphere Sn and the



4 FILIPPO MORABITO, PIERALBERTO SICBALDI

hyperbolic space Hn, for every dimension n ≥ 2: assuming that Ω is a bounded domain
in Hn or that Ω is a domain contained in a hemisphere of Sn, and that problem (2) has
a solution u ∈ C2(Ω), then Ω is a ball. In the round sphere Sn there exists nontrivial
(bounded) domains (not contained in a hemisphere) where problem (2) can be solved, see
[12]. Such results parallel analogous results about CMC surfaces in Sn and Hn, see [2].

In 3-dimensional Riemannian manifolds, results on overdetermined elliptic problems
are expected in particular for the remaining five Thurston’s geometries: S2 × R, H2 × R,
Nil3, the universal covering of PSL2(R) and Sol3. Up to now very few results are known.

In this paper we generalize the construction of Delaunay type domains of P. Sicbaldi in
[29] to the product spaces Sn×R and Hn×R (and in particular our result holds in the two
Thurston’s 3-dimensional geometries S2×R and H2×R). In fact, we prove that the solid
straight cylinder Bn

R×R (where Bn
R is a geodesic ball of radius R properly contained in Sn

or Hn) can be perturbed in order to obtain new domains where problem (2) can be solved
for the function f(t) = λ t for some positive constant λ. The boundary of such domains
is rotationally symmetric with respect to the R-axis of the cylinder, and is periodic in
the vertical direction. The parallel of our result in the framework of CMC surfaces is the
construction of Delaunay surfaces in Sn × R and Hn × R, done by R. Pedrosa and M.
Ritoré [21].

In order to state our result, let Mn denote the Riemannian manifold Sn or Hn, i.e the
n-dimensional manifolds of constant sectional curvature equal to 1 or -1. Points of Mn×R
are denoted by (x, t), x ∈Mn and t ∈ R. Let us fix a point 0 (origin) in Mn and let r(x)
denote the distance of x ∈Mn to the origin 0 ∈Mn. Our main result is the following:

Theorem 1.1. Let R > 0 and BR a geodesic ball of radius R centered at 0 such that
BR ( Mn. There exist a real positive number T∗, a sequence of real positive numbers
Tj −→ T∗ and a sequence of nonconstant functions vj ∈ C2,α(R) (of small norm, of
period Tj, and converging to 0 in C2,α(R)) such that the domains

Ωj = {(x, t) ∈Mn × R , r(x) < R + vj(t)}

have a positive solution uj ∈ C2,α(Ωj) to the problem (2). Moreover

∫ Tj

0

vj dt = 0.

The reader will notice that the condition BR ( M is an empty condition when M = H
and is equivalent to ask R < π when M = S.

Remark 1. More generally, the same construction can be done in the spaces Mn(k)×R,
where Mn(k), k ∈ R, is the n-dimensional space form of constant sectional curvature k.
In other words, Theorem 1.1 still holds when we replace Mn with Mn(k). The case k = 0
corresponds to the Euclidean one, settled in [27, 29], and here we will consider only the
cases k 6= 0. We recall that the condition BR ( Mn(k) is again an empty condition when

k ≤ 0 and is equivalent to R < π
√

1/k when k > 0. Sections 6 and 7, which play a crucial
role in this paper, have been redacted using Mn(k) instead of Mn. In the other sections
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we consider Sn × R or Hn × R, but we always point out the main changes to do in order
to adapt the formulas to the ambient space Mn(k)× R, k 6= 0.

The previous result leaves two open interesting questions:

(1) We do not have a smooth one-parameter family of domains, but only a sequence
of domains converging to the straight cylinder. According with the case of Rn [27]
and the analogous case of CMC surfaces in Mn×R [21], it is tempting to conjecture
that the domains in Theorem 1.1 belong in fact to a smooth one-parameter family
of domains.

(2) In the framework of Mn(k)× R, it would be very interesting to study the depen-
dence on k of the domains Ωj, and understand their behavior as k changes sign.
We trust that this is a very nontrivial question.

In order to simplify the redaction, we will prove Theorem 1.1 in the case R = 1, and we
will show, according to Remark 1, that the construction can be done also in the more
general space Mn(k)× R, for all k 6= 0. There is no loss of generality in choosing R = 1.
Indeed, the problem of finding overdetermined domains does not depend on the value of
k, and perturbations of BR × R in Mn(k) × R turn equivalently into perturbations of
B1 × R in Mn(k′)× R, for some real number k′ of the same sign of k.

The strategy of the proof of our result is the one adopted in [29], and the real novelty
here stays in the tools used to solve the central step of the proof. If (x, t) are the points of
Mn×R, or more generally Mn(k)×R (where k satisfies the condition that B1 ( Mn(k)),
we construct the domain CT

1+v as the interior of the radial graph over the cylinder of
radius 1 of a periodic function v(t) with period T (Section 2). We consider the operator
that to the function v associates the normal derivative of the first eigenfunction φ of the
Laplace-Beltrami operator on CT

1+v with zero Dirichlet boundary condition. In order to
find nontrivial solutions v such that the normal derivative of φ at ∂CT

1+v is constant, we
need to study the linearized operator with respect to the variable v (Sections 3 and 4) and
show that for some value of the parameter T it has a nontrivial kernel. In [29] such step
could be easily solved because the study of the linearized operator led to solving a Bessel
ODE. In our case, we have to handle a much more difficult situation, and we are able
to study the linearized operator by using some large classes of complex valued functions
known as Legendre and Ferrer’s functions, with complex argument and depending on two
parameters. For convenience of the reader, in Section 5 we recollect the basic facts about
such classes of functions, their asymptotics and related differential equations, and this
material will be used in the study of the linearized operator in Sections 6 and 7. The
final step of the proof uses the Lyapunov-Schmidt reduction and a bifurcation argument
(Section 8).
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2. Rephrasing the problem

Given a continuous function v : R/2πZ 7−→ (0,+∞) whose L∞-norm is small enough,
we define

CT
1+v := {(x, t) ∈Mn × R/TZ : 0 ≤ r(x) < 1 + v(2πt/T )} .

Our aim is to show that there exists a positive real number T∗, a sequence Tj → T∗ and
a sequence of nonconstant functions vj ∈ C2,α(R/2πZ) of mean value equal to zero and
converging to the zero function in the C2,α-norm, such that the overdetermined problem

(3)


∆g φ+ λφ = 0 in CT

1+v

φ = 0 on ∂CT
1+v

g(∇φ, ν) = constant on ∂CT
1+v

has a nontrivial positive solution (φ, λ) = (φj, λj) for the sequence (vj, Tj). Here ν denote
the normal vector field to ∂CT

1+v, λ is a positive constant, and g is the product metric of
Mn × R/T Z (in particular the second factor is equipped with the metric induced by the
standard metric of R).

We remark that the symmetry of the problem allow us to require the function v to be
even.

Let gMn denote the usual metric on Mn. Let λ1 be the first eigenvalue of the Laplace-
Beltrami operator with zero Dirichlet boundary condition in the unit geodesic ball

B1 = {x ∈Mn : r(x) < 1} .

Let φ̃1 denote the associated eigenfunction

(4)

 ∆gMn φ̃1 + λ1 φ̃1 = 0 in B1

φ̃1 = 0 on ∂B1

which is normalized to have L2(B1)-norm equal to 1/2π. Then φ1(x, t) = φ̃1(x) solves the
problem

(5)

 ∆gφ1 + λ1 φ1 = 0 in CT
1

φ1 = 0 on ∂CT
1

and

(6)

∫
C2π

1

φ2
1 dvolg = 1.

As φ1 do not depend on t, sometimes we will write simply φ1(x).
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Let C2,α
even,0(R/2πZ) be the set of even functions on R/2πZ of mean value equal to zero.

For all function v ∈ C2,α
even,0(R/2πZ) whose norm is small enough, the domain CT

1+v is well
defined for all T > 0 and standard results on Dirichlet eigenvalue problem (see [10] and
[6]) apply to give the existence, for all T > 0, of a unique positive function

φ = φv,T ∈ C2,α
(
CT

1+v

)
and a constant λ = λv,T ∈ R such that φ is a solution to the problem

(7)

 ∆g φ+ λφ = 0 in CT
1+v

φ = 0 on ∂CT
1+v

which is normalized by

(8)

∫
C2π

1+v

(
φ

(
x,

T

2π
t

))2

dvolg = 1

In addition φ and λ depend smoothly on the function v, and φ = φ1, λ = λ1 when v ≡ 0.

After canonical identification of ∂CT
1+v with Sn−1 × R/TZ, we define the Dirichlet-to-

Neumann operator N :

N(v, T ) = g(∇φ, ν) |∂CT1+v −
1

Volg(∂CT
1+v)

∫
∂CT1+v

g(∇φ, ν) dvolg ,

where ν denotes the unit normal vector field to ∂CT
1+v and φ is the solution of (7). A

priori N(v, t) is a function defined over Sn−1×R/TZ, but it is easy to see that it depends
only on the variable t ∈ R/TZ because v has such a property. For the same reason it is
an even function, and moreover it is clear that its mean vanishes. If now we operate a
rescaling and we define

(9) F (v, T ) (t) = N(v, T )

(
T

2π
t

)
,

Schauder’s estimates imply that F is well defined in a neighborhood of (0, T ) in the
space C2,α

even,0(R/2πZ) × R, and takes its values in C1,α
even,0(R/2πZ). Our aim is to find a

positive real number T∗, a sequence Tj → T∗ and a sequence of nonconstant functions
vj ∈ C2,α(R/2πZ) of mean equal to zero and converging to the zero function in the C2,α-
norm, such that F (vj, Tj) = 0. Observe that, with this condition, φ = φvj ,Tj will be the
solution to the problem (3) and our Theorem 1.1 will be proved.

3. The linearized operator

Let k the sectional curvature of the manifold Mn (i.e. k = 1 if Mn = Sn and k = −1
if Mn = Hn). If we choose spherical coordinates (r, θ), with θ ∈ Sn−1 and r ∈ [0,+∞) if
k < 0 and r ∈ [0, π] if k > 0, the usual metric in Mn can be written as

gMn = dr2 + Sk(r)
2 dθ2
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where

Sk(r) =

{
sinh r if k = −1

sin r if k = 1

(see [6], Section II.5, Theorem 1).

Remark 2. According to Remark 1, when we consider Mn(k) instead of Mn, we use

spherical coordinates (r, θ), with θ ∈ Sn−1 and r ∈ [0,+∞) if k < 0 and r ∈ [0, π/
√
k) if

k > 0, and then the usual metric in Mn(k) is

gMn(k) = dr2 + Sk(r)
2 dθ2

where

Sk(r) =


1√
−k

sinh(
√
−k r) if k < 0

1√
k

sin(
√
k r) if k > 0

(see [6], Section II.5, Theorem 1). The computations that follow are true in general for
the manifold Mn(k) × R, under the hypothesis that Mn(k) contains properly a geodesic
ball B1 of radius 1. For the convenience of the reader, we consider only the cases k = 1
and −1 till Section 5, but Sections 6 and 7, which are the crucial part of this paper, will
be established for any k 6= 0.

For all v ∈ C2,α
even,0(R/2πZ) and all T > 0, let ψ be the (unique) solution (periodic with

respect to the variable t) of

(10)

 ∆gψ + λ1 ψ = 0 in CT
1

ψ = −∂rφ1 v(2πt/T ) on ∂CT
1

which is L2(CT
1 )-orthogonal to φ1. The function φ1 = φ1(r) is the solution on CT

1 , for any
T > 0, of (5) with L2-norm equal to 1. We define

(11) H̃T (v) :=

(
∂rψ + ∂2

rφ1 v

(
2πt

T

))∣∣∣∣
∂CT1

.

By symmetry it is clear that H̃T (v) is a function only depending on t, then changing the
variable we can define

(12) HT (v)(t) := H̃T (v)

(
T

2π
t

)
.

The main result of this section is the:

Proposition 3.1. The linearization of the operator F with respect to v computed at the
point (0, T ) is given by HT .



DELAUNAY TYPE DOMAINS FOR AN OVERDETERMINED ELLIPTIC PROBLEM 9

Proof. To linearize the operator F (see (9)) with respect to v at (0, T ) we will compute

lim
s→0

F (sw, T )− F (0, T )

s
.

Precisely we determine the first order approximation of F (sw, T ) with respect to the
variable s. Let {e1, . . . , en} denote an orthonormal basis of the tangent space to Mn at
the origin 0. Suppose that y = (y1, y2, . . . , yn) are geodesic normal coordinates at 0 ∈Mn,
and let x denote the point of Mn whose geodesic coordinates are y. We parameterize
CT

1+sw on C2π
1 by

Y (x, t) :=

(
Exp0

(
(1 + s χ(y)w)

n∑
1

yiei

)
,
T t

2π

)
for x ∈ Mn and t ∈ R and where χ is a cutoff function identically equal to 0 when
|y| ≤ 1/4 and identically equal to 1 when |y| ≥ 1/2. If we use the coordinates (r, θ, t),
being (r, θ) the coordinates introduced at the beginning of Section 3, the map Y reduces
to

(r, θ, t)→
(

(1 + s χ(r)w) r , θ ,
T t

2π

)
.

The metric induced by Y will be denoted by

(13) ĝ := Y ∗g .

If φ solves (7) and (8), then φ̂ = Y ∗φ is solution (smoothly depending on the real parameter
s) of

(14)

 ∆ĝ φ̂+ λ̂ φ̂ = 0 in C2π
1

φ̂ = 0 on ∂C2π
1

with λ̂ = λ and satisfying

(15)

∫
C2π

1

φ̂2 dvolĝ = 1.

Consider the function φ1 defined in (5) and (6). Clearly the function φ̂1 := Y ∗φ1 solves

∆ĝ φ̂1 + λ1 φ̂1 = 0

and

(16) φ̂1(x, t) = φ1

(
Exp0

(
(1 + sw)

n∑
1

yiei

)
,
T t

2π

)



10 FILIPPO MORABITO, PIERALBERTO SICBALDI

for |y| ≥ 1
2
. Writing φ̂ = φ̂1 + ψ̂ and λ̂ = λ1 + µ, we find out that ψ̂ solves

(17)

 ∆ĝ ψ̂ + (λ1 + µ) ψ̂ + µ φ̂1 = 0 in C2π
1

ψ̂ = −φ̂1 on ∂C2π
1

with

(18)

∫
C2π

1

(2 φ̂1 ψ̂ + ψ̂2) dvolĝ =

∫
C2π

1

φ2
1 dvolg −

∫
C2π

1+sw

φ2
1 dvolg.

Obviously ψ̂ and µ are smooth functions of s. If s = 0, then CT
1+sw = CT

1 and in particular

we have φ = φ1 = φ̂1, λ = λ1, ψ̂ ≡ 0, µ = 0 and ĝ = g. We set

ψ̇ := ∂sψ̂|s=0 and µ̇ := ∂sµ|s=0.

Differentiating (17) with respect to s and evaluating the result at s = 0, we obtain

(19)

 ∆g ψ̇ + λ1 ψ̇ + µ̇ φ1 = 0 in C2π
1

ψ̇ = −∂rφ1w on ∂C2π
1

because from (16), differentiation with respect to s at s = 0 yields ∂sφ̂1|s=0 = ∂rφ1w,
where r = r(x).

Differentiating (18) with respect to s and evaluating the result at s = 0, we obtain

(20)

∫
C2π

1

φ1 ψ̇ dvolg = 0.

Indeed, the derivative of the right hand side of (18) with respect to s vanishes when s = 0
since φ1 vanishes identically on ∂C2π

1 .

If we multiply the first equation of (19) by φ1 and we integrate it over C2π
1 , using (20)

we get: ∫
C2π

1

(φ1 ∆gψ̇ + µ̇ φ2
1) dvolg = 0.

By Gauss-Green Theorem and the boundary conditions φ1 = 0, ψ̇ = −∂rφ1w, we deduce
the following identity∫

C2π
1

φ1 ∆gψ̇ dvolg =

∫
C2π

1

ψ̇∆gφ1 dvolg +

∫
∂C2π

1

w ∂νφ1 ∂rφ1 dvolg ,

where ∂νφ1 is the normal derivative of φ1 and ν is the unit normal vector to ∂C2π
1 . The

first term of right hand side is easily seen to vanish by multiplying by ψ̇ the equation
satisfied by φ1 and integrating. As s = 0, then the formula (21) shown below, says that
the ∂νφ1 = ∂rφ1 on ∂C2π

1 . Since on this set ∂νφ1 is constant and the average of w is 0

we conclude that µ̇ = 0. Consequently the 2π-periodic function ψ̇(x, t) is related to the
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solution ψ(x, t) of (10) by the identity ψ(x, t) := ψ̇(x, 2πt/T ), using v = w. We proved
that

φ̂(x, t) = φ̂1(x, t) + s ψ(x, T t/2π) +O(s2).

In particular, in C2π
1 \ C2π

3/4, we have

φ̂(x, t) = φ1

(
Exp0

(
(1 + sw)

n∑
1

yiei

)
, T t/2π

)
+ s ψ(x, T t/2π) +O(s2)

= φ1 (x, T t/2π) + s (w r(x) ∂rφ1 + ψ(x, T t/2π)) +O(s2).

To complete the proof of the result, we will compute ĝ(∇φ̂, ν̂) on the boundary of C2π
1 .

Such a function is the normal derivative of φ̂ when the normal is computed with respect
to the metric ĝ. We now use the coordinates (r, θ, t). In C2π

1 \ C2π
3/4 the metric ĝ equals

ĝ = (1 + sw)2dr2 + 2sr w′ (1 + sw) drdt+

((
T

2π

)2

+ s2 r2 (w′)2

)
dt2 + S2

k((1 + sw)r) dθ2.

It follows from this expression that the unit normal vector field to ∂C2π
1 for the metric ĝ

is given by

(21) ν̂ =
(
(1 + sw)−1 +O(s2)

)
∂r +O(s) ∂t.

As a result, on ∂C2π
1 ,

ĝ(∇φ̂, ν̂) = ∂rφ1 + s
(
w ∂2

rφ1 + ∂rψ(x, T t/2π)
)

+O(s2).

On ∂C2π
1 the term w ∂2

rφ1 + ∂rψ(x, T t/2π) has mean equal to zero and ∂rφ1 is constant.

Using ĝ(∇φ̂, ν̂) to compute F (sw), we get that the linearized of F is HT . 2

4. The structure of the linearized operator

Let v ∈ C2,α
even,0(R/2πZ). Recalling that the mean of v is zero and the fact that v is

even, by Fourier expansion v can be written as

(22) v =
∑
j≥1

aj cos(jt).

Observe that in principle φ1 is only defined in the cylindrical domain C2π
1 , however,

this function being radial in the first n variables and not depending on t, it is a solution
of a second order ordinary differential equation and then it can be extended at least in a
neighborhood of ∂C2π

1 .

We will need the following:
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Lemma 4.1. Assume that v ∈ C2,α
even,0(R/2πZ) and write v as in (22). For T > 0 we

define

φ0(x, t) = ∂rφ1(x) v(2πt/T )

where r = r(x). Then

(23) ∆gφ0 + λ1 φ0 = ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos

(
2πjt

T

) [
n− 1−

(
2πj

T

)2

Sk(r)
2

]
.

Proof : The Laplace-Beltrami operator for the metric g can be written as

∆g = ∂2
r + (n− 1)

Ck(r)

Sk(r)
∂r +

1

Sk(r)2
∆Sn−1 + ∂2

t

where

Ck(r) =

{
cosh r if k = −1

cos r if k = 1

(see [6], Section II.5, Theorem 1). Then it is easy to compute

∆g ∂rφ1 = −λ1 ∂rφ1 +
n− 1

S2
k(r)

∂rφ1

and

∆gφ0 = −λ1 φ0 + ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos

(
2πjt

T

) [
n− 1−

(
2πj

T

)2

Sk(r)
2

]
.

This completes the proof of the result. 2

Remark 3. With respect to Remark 2 we give the formula of Ck(r) when k /∈ {−1, 1}.
In fact, we have

Ck(r) =

{
cosh(

√
−k r) if k < 0

cos(
√
k r) if k > 0 .

We investigate now the structure of the linearized operator HT . The main result of this
section is the:

Proposition 4.2. For all T > 0, the operator

HT : C2,α
even,0(R/2πZ) −→ C1,α

even,0(R/2πZ),

is a self adjoint, first order elliptic operator preserving, for all j ∈ N\{0}, the eigenspace
Vj spanned by the function cos(jt).
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Proof. The fact that HT is a first order elliptic operator is standard since it is the sum
of the Dirichlet-to-Neumann operator for ∆g + λ1 and a constant times the identity. In
particular, elliptic estimates yield

‖HT (w)‖C1,αeven,0(R/2πZ) ≤ c ‖w‖C2,α
even,0(R/2πZ).

The fact that the operator HT is (formally) self-adjoint is easy. Let ψ1 (resp. ψ2) the

solution of (10) corresponding to the function w1 (resp. w2). Let ψ̃i(x, t) = ψi(x, T t/2π).
We compute

∂rφ1(1)

∫ 2π

0

(HT (w1)w2 − w1HT (w2)) dt = ∂rφ1(1)

∫ 2π

0

(∂rψ̃1w2 − ∂rψ̃2w1) dt

=

∫ 2π

0

(ψ̃1 ∂rψ̃2 − ψ̃2 ∂rψ̃1) dt

=
1

Volg(Sn−1)

∫
C2π

1

(ψ̃1 ∆gψ̃2 − ψ̃2∆g ψ̃1) dvolg

= 0.

To prove the other statements, we define for all v ∈ C2,α
even,0(R/2πZ) written as in (22),

Ψ to be the continuous solution of
(24)

∆gΨ + λ1 Ψ = ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos

(
2πjt

T

) [
n− 1−

(
2πj

T

)2

Sk(r)
2

]
in CT

1

Ψ = 0 on ∂CT
1 .

Observe that ∂rφ1 vanishes at first order at r = 0 and hence the right hand side is smaller
than a constant times r−1 near the origin. Standard elliptic estimates then imply that
the solution Ψ is at least continuous near the origin (the right side of (24) belongs to the
space Lp(CT

1 ) for each p < n, then the solution Ψ belongs to the Sobolev space W 2,p(CT
1 )

for each p < n, and by the Sobolev embedding theorem for a compact domain Ω we
have W 2,p(Ω) ⊆ C0,α(Ω) for p ≥ n

2−α). A straightforward computation using the result of
Lemma 4.1 and writing Ψ(x, t) = ψ(x, t) + ∂rφ1(x) v(2πt/T ), shows that

(25) H̃T (v) = ∂rΨ|∂CT1 .

By this alternative definition, it is clear that HT preserves the eigenspaces Vj and in
particular, HT maps into the space of functions whose mean is zero. 2

By the previous proposition

(26) H̃T (v) =
∑
j≥1

σj(T ) aj cos

(
2πjt

T

)
,



14 FILIPPO MORABITO, PIERALBERTO SICBALDI

where σj(T ) are the eigenvalues of HT with respect to the eigenfunctions cos(jt). From
(11), (26) and (10) we deduce that

ψ =
∑
j≥1

cj(r) aj cos

(
2πjt

T

)
,

where cj is the continuous solution on [0, 1] of

(27)

(
∂2
r + (n− 1)

Ck(r)

Sk(r)
∂r + λ1

)
cj −

(
2πj

T

)2

cj = 0,

with cj(1) = −∂rφ1(1). Then

(28) σj(T ) = ∂rcj(1) + ∂2
rφ1(1).

Our next task is to find the kernel of the operator HT . For this it is enough to study
the eigenvalues σj. We remark that if we set

j

T
=

1

D
,

for T > 0, from (27) we obtain that

σj(T ) = σ1(D).

Then, in order to study the kernel of the linearized operator, it suffices to consider only
the first eigenvalue σ1. For this aim we will use Legendre and Ferrers functions.

To simplify the notation, in the sequel we will drop the lower index 1, and we set σ1 = σ.

5. Recollection on Legendre and Ferrers functions

In what follows we shall use several properties of associated Legendre and Ferrers func-
tions. For the convenience of the reader, we recall their definitions and some properties.
This section can be skipped by the reader who is familiar with these functions. For more
details we refer to [8, 16, 20].

5.1. Legendre functions. The (general) Legendre equation in the variable z ∈ C (see
[20], 5.12) is

(29) (1− z2)
d2w

dz2
− 2z

dw

dz
+

[
ν(ν + 1)− µ2

1− z2

]
w = 0

where µ, ν are complex parameters. To solve this equation one considers special solutions
to the hypergeometric equation:

z(1− z)
d2u

dz2
+ {c− (a+ b+ 1)z}du

dz
− abu = 0,
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where a, b, c ∈ C. The solutions to this equation can be found by the power series method.
If we consider a series centered at z = 0 we find a series which is convergent for |z| < 1
and whose sum is known as hypergeometric function:

F (a, b; c; z) =
∞∑
s=0

(a)s(b)s
(c)s

zs

s!
,

where c > 0 (see [20], 9.02, p.159). Let Γ be the Gamma function and let (·)s denote the
Pochammer symbol

(q)n =

{
1 if n = 0

q (q + 1) (q + 2) · · · (q + n− 1) if n ≥ 1
.

The Olver hypergeometric function F (see [20], 9.03, p.159) is defined by

F(a, b; c; z) =
F (a, b; c; z)

Γ(c)
=
∞∑
s=0

(a)s(b)s
Γ(c+ s)

zs

s!

for |z| < 1 and extended to |z| ≥ 1 by analytic continuation. Such a function presents the
advantage of being defined for all values of c. Using the Olver hypergeometric function
we can construct a first solution of (29):

(30) P−µν (z) =

(
z − 1

z + 1

)µ/2
F

(
ν + 1 , −ν ; µ+ 1 ;

1− z
2

)
.

A second solution can be built from the first one by using the fact that also

(−z)a F

(
a, 1 + a− c, 1 + a− b, 1

z

)
is a solution to the hypergeometric equation and replacing a = ν + 1, b = −ν, c = µ + 1
and z by 1−z

2
. We get (after multiplication by 2ν Γ(ν + 1)):

(31) Qµ
ν (z) = 2ν Γ(ν + 1)

(z − 1)µ/2−ν−1

(z + 1)µ/2
F

(
ν + 1 , ν − µ+ 1 ; 2ν + 2 ;

2

1− z

)
.

Because the Legendre equation is unchanged by replacing µ by −µ or ν by −ν − 1,
functions

P±µν (z),P±µ−ν−1(z),Q±µν (z),Q±µ−ν−1(z) ,

are all solutions, but only the following four of them are distinct:

P±µν (z),Qµ
ν (z),Qµ

−ν−1(z) .
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Moreover only two of them are linearly independent, as one can see by the two following
connection formulas:

(32)

2 sin(µπ)

π
Qµ
ν (z) =

Pµν (z)

Γ(ν + µ+ 1)
− P−µν (z)

Γ(ν − µ+ 1)

cos(νπ)P−µν (z) =
Qµ
−ν−1(z)

Γ(ν + µ+ 1)
− Qµ

ν (z)

Γ(µ− ν)
.

The functions P±µν (z) are called associated Legendre functions of first kind. The functions
Q±µν (z) are called associated Legendre functions of second kind1. Such functions exist for
all values of ν, µ, z, except possibly the singular points z = ±1 and ∞. They are multi-
valued functions of z with branch points at z = ±1 and ∞. The principal branches of
both solutions are obtained by introducing a cut along the real axis from z = −∞ to
z = +1, and assigning the principal value to each function.

5.2. Ferrers functions. Suppose that P−µν (z) and Qµ
ν (z) are real valued on the real

interval [1,+∞) (it is the case when ν, µ ∈ R). On the cut from −∞ to 1 there are
two possible values for each function, depending whether the cut is approached from the
upper or lower side. Replacing z by x, these values are denoted by

P−µν (x+ i0), P−µν (x− i0), Qµ
ν (x+ i0), Qµ

ν (x− i0).

For |x| < 1, it is possible to define four real valued functions if ν and µ are real. They
are known as associated Ferrers functions. Two of such functions are defined as follows
under the assumption −(ν + µ) /∈ N∗ (here N∗ = {1, 2, 3, ...}):

(33)

Pµ
ν (x) = eiµπ/2Pµν (x+ i0) = e−iµπ/2Pµν (x− i0)

Qµ
ν (x) =

1

2
Γ(ν + µ+ 1)

[
e−iµπ/2 Qµ

ν (x+ i0) + eiµπ/2 Qµ
ν (x− i0)

]
.

The two other associated Ferrers functions are P−µν (x) and Q−µν (x). It is possible to show
that

Pµ
ν (x) =

(
1 + x

1− x

)µ/2
F

(
ν + 1 , −ν ; 1− µ ;

1− x
2

)
.

Such a formula allows to extend the definition of Pµ
ν (x) to complex values of ν, µ and x :

cuts are introduced along the real intervals (−∞,−1] and [1,+∞). The expression for
other Ferrers functions can be derived using the connection formulas:

(34)

Pµ
ν =

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

[
cos(µπ) P−µν +

2 sin(µπ)

π
Q−µν

]
Qµ
ν =

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

[
cos(µπ) Q−µν −

π sin(µπ)

2
P−µν

]
.

1For more clarity the associated Legendre functions of first kind are denoted by P±µ
ν (x). We do not

adopt the standard notation P±µ
ν (x) which is very similar to P±µ

ν (x), that denotes the associated Ferrers
function of first kind.
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In particular the formula we get for Qµ
ν is used to extend Qµ

ν (x) to complex values of ν, µ
and x in the same way as for Pµ

ν (x).

5.3. Asymptotics. We recall now some asymptotics about Legendre and Ferrers func-
tions that we will need through the paper.

Lemma 5.1. (see [8], Section 14.8, or [20] p. 186 and [9] p. 163) The associated Legendre
functions Pµν (x), Qµ

ν (x) defined on (1,+∞) have the following asymptotic behaviour for
x→ 1+:

Pµν (x) ∼ 1

Γ(1− µ)

(
2

x− 1

)µ
2

if µ /∈ N∗(35)

Pµν (x) ∼ Γ(ν + µ+ 1)

Γ(ν − µ+ 1)µ!

(
x− 1

2

)µ
2

if µ ∈ N∗,−(ν ± µ) /∈ N∗(36)

Qµ
ν (x) ∼ Γ(µ)

2Γ(ν + µ+ 1)

(
2

x− 1

)µ
2

if Re(µ) > 0,−(ν + µ) /∈ N∗(37)

Q0
ν(x) = − ln(x− 1)

2Γ(ν + 1)
+

ln
√

2− γ − ψ(ν + 1)

Γ(ν + 1)
+O (x− 1) if − ν /∈ N∗,(38)

where γ is the Euler-Mascheroni constant and ψ(x) = Γ′(x)/Γ(x). Associated Ferrers
functions Pµ

ν (x), Qµ
ν (x) have the following asymptotic behaviour for x→ 1−:

Pµ
ν (x) ∼ 1

Γ(1− µ)

(
2

1− x

)µ
2

, µ /∈ N∗(39)

Pµ
ν (x) ∼ Γ(ν + µ+ 1) (−1)µ

Γ(ν − µ+ 1)µ!

(
1− x

2

)µ
2

, µ ∈ N∗, ν 6= µ− 1, µ− 2, ...,−µ(40)

Qµ
ν (x) ∼ 1

2
cos(πµ)Γ(µ)

(
2

1− x

)µ/2
, µ /∈

(
N∗ − 1

2

)
(41)

Qµ
ν (x) ∼ π Γ(ν + µ+ 1) (−1)µ+ 1

2

2 Γ(µ+ 1)Γ(ν − µ+ 1)

(
1− x

2

)µ
2

, µ ∈
(
N∗ − 1

2

)
,−(ν ± µ) /∈ N∗(42)

where N∗ − 1

2
=

{
1

2
,
3

2
,
5

2
, ...

}
Q0
ν(x) =

1

2
ln

(
2

1− x

)
− γ − ψ(ν + 1) +O (1− x) if − ν /∈ N∗.(43)
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6. Finding a formula for σ(T ) via Legendre and Ferrers functions

We are going now to study the first eigenvalue σ1(T ) = σ(T ) of the linearized operator
HT . For this we need a formula of σ(T ). Recall that

(44) σ(T ) = c′(1) + φ′′(1) ,

where φ(r) is the bounded solution of the ordinary differential equation

(45) u′′(r) + (n− 1)
Ck(r)

Sk(r)
u′(r) + λ1 u(r) = 0

such that φ(1) = 0 and φ(r) > 0 on [0, 1), and normalized by (6), and c(r) is the continuous
solution on [0, 1] of the ordinary differential equation

(46) u′′(r) + (n− 1)
Ck(r)

Sk(r)
u′(r) +

[
λ1 −

(
2π

T

)2
]
u(r) = 0

such that c(1) = −φ′(1). We observe that φ′(1) 6= 0 otherwise φ(r) ≡ 0. Indeed the
solution of (45) satisfying also φ(1) = φ′(1) = 0 is the function identically equal to zero.

The general solution of (45) can be found as follows. The function

p(r) := Sk(r)
n
2
−1 u(r)

satisfies:

p′′(r) +
Ck(r)

Sk(r)
p′(r) +

{
λ1 + k

(n
2
− 1
)

+

[(n
2
− 1
) Ck(r)
Sk(r)

]2
}
p(r) = 0.

By the change of variable x = x(r) = Ck(r), we get that the function

w(x) = p(r(x))

satisfies (29) after replacing z by the real variable x and setting

µ =
n− 2

2
, ν = −1

2
+

√
(n− 1)2

4
+
λ1

k
.

When (n−1)2

4
+ λ1

k
< 0 then we will always consider the square root having positive

imaginary part. In other terms Im(ν) > 0. The general solution to (29) can be expressed
as linear combination of Pµν (x),Qµ

ν (x) if k < 0 and of Pµ
ν (x),Qµ

ν (x) if k > 0. Consequently
the general solution to (45) is:

(47) u(r) =

 a (Sk(r))
1−n

2 Pµ
ν (Ck(r)) + b (Sk(r))

1−n
2 Qµ

ν (Ck(r)) if k > 0

a (Sk(r))
1−n

2 Pµν (Ck(r)) + b (Sk(r))
1−n

2 Qµ
ν (Ck(r)) if k < 0.

Lemma 5.1 says that such functions are, in some cases, unbounded on [0, 1]. They can
diverge as r tends to 0, as specified below. Qµ

ν (Ck(r)) is unbounded for: a) Re(µ) > 0 and
µ+ ν 6= −1,−2,−3, . . .; b) µ = 0. Pµν (Ck(r)) is unbounded if µ is half-integer (that is n is
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odd). Qµ
ν (Ck(r)) is unbounded if µ is integer (that is n is even). Pµ

ν (Ck(r)) is unbounded
if µ is half-integer (that is n is odd). Furthermore, the function Qµ

ν (Ck(r)) is bounded if
µ is half-integer, but it is a complex valued function.

If µ is half-integer, then a bounded real valued solution to equation (45) is P−µν (x) if
k < 0, and P−µν (x) if k > 0 (see (35), (40) with µ replaced by −µ). Formulas (32) and
(34) show that the function P−µν (x) is a linear combination of Pµν (x),Qµ

ν (x), and P−µν (x)
is a linear combination of Pµ

ν (x), Qµ
ν (x). Consequently:

φ(r) =


s (Sk(r))

1−n
2 Pµ

ν (Ck(r)), if k > 0, µ integer

s (Sk(r))
1−n

2 P−µν (Ck(r)), if k > 0, µ half-integer

s (Sk(r))
1−n

2 Pµν (Ck(r)), if k < 0, µ integer

s (Sk(r))
1−n

2 P−µν (Ck(r)), if k < 0, µ half-integer

where s is a constant chosen in order to ensure the conditions φ(r) > 0 for r ∈ [0, 1) and
(6). The value of eigenvalue λ1 which appears in ν is the smallest positive real number
so that φ(1) = 0.

In order to find the function c(r) we set

ν∗ = −1

2
+

√
(n− 1)2

4
+
λ1 − 4π2

T 2

k
.

When (n−1)2

4
+

λ1− 4π2

T2

k
< 0 then we will always suppose that the imaginary part of ν∗ is

positive. By the same reasoning we did for φ, we find that the solution of (46) is given by

(48) c(r) =


A (Sk(r))

1−n
2 Pµ

ν∗(Ck(r)), if k > 0, µ integer

A (Sk(r))
1−n

2 P−µν∗ (Ck(r)), if k > 0, µ half-integer

A (Sk(r))
1−n

2 Pµν∗(Ck(r)), if k < 0, µ integer

A (Sk(r))
1−n

2 P−µν∗ (Ck(r)), if k < 0, µ half-integer

where A is a constant that can be determined using the boundary condition c(1) = −φ′(1).

In the next two sections we will study σ(T ). An essential ingredient will be the following:

Proposition 6.1. The following facts hold:

(1) Let r0 > 0 be the n-th zero of the associated Legendre function Pµ− 1
2

+iτ
(Ck(r)). If

τ ∈ R+, then r0 is a decreasing function of τ.
(2) Let r0 ∈ (0, π) be the n-th zero of the associated Ferrers function Pµ

− 1
2

+iτ
(Ck(r)).

If τ ∈ R+, then r0 is a decreasing function of τ.
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Proof. We follow the proof of Theorem 7.6.4 in [20]. Suppose that z0 = cosh(r0) and
ν = −1/2 + iτ. If we differentiate Pµ−1/2+iτ (z0) = 0, we get

(49) (Pµ− 1
2

+iτ
)′(z0)

dz0

dτ
+
∂Pµ− 1

2
+iτ

∂τ
(z0) = 0.

The differential equation satisfied by the function Pµν is

[(1− x2)(Pµν )′]′ +

(
ν(ν + 1)− µ

1− x2

)
Pµν = 0.

We multiply it by Pµη , with η 6= ν, and we subtract from the expression we get this way,
the differential equation satisfied by Pµη multiplied by P µ

ν . We get:

[(1− x2)((Pµν )′Pµη − (Pµη )′Pµν )]′ + (ν(ν + 1)− η(η + 1))PµνPµη = 0.

If η = −1
2

+ iρ, then ν(ν + 1)− η(η + 1) = ρ2 − τ 2. In conclusion, if ρ 6= τ,∫
PµνPµη dx =

(x2 − 1)((Pµν )′Pµη − (Pµη )′Pµν )

ρ2 − τ 2
.

If we let ρ tend to τ, then using the l’Hôpital rule, we get:∫
(Pµν )2dx =

(x2 − 1)

2τ

(
(Pµν )′

∂(Pµν )

∂τ
− ∂(Pµν )

∂τ

′

Pµν
)
.

If we set the integration bounds equal to 1 and z0 then

(50)

∫ z0

1

(Pµν )2dx =
(z2

0 − 1)

2τ
(Pµν )′(z0)

∂(Pµν )

∂τ
(z0).

In other terms:
∂(Pµν )

∂τ
(z0) =

2τ

(z2
0 − 1)

1

(Pµν )′(z0)

∫ z0

1

(Pµν )2dx

which replaced in (49) gives:

dz0

dτ
= − 2τ

(z2
0 − 1)

1

((Pµν )′(z0))2

∫ z0

1

(Pµν )2dx < 0.

As z0 = cosh(r0) then
dz0

dτ
=
dz0

dr0

dr0

dτ
= sinh(r0)

dr0

dτ
.

So
dr0

dτ
=

1

sinh(r0)

dz0

dτ
< 0.

The proof of the monotonicity for the zeros of Pµ
ν is essentially the same. Suppose that

z0 = cos(r0). As z0 ∈ (−1, 1), we set the bounds of integration equal to −1 and z0. In this
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case instead of (50) we have:∫ z0

−1

(Pµ
ν )2dx =

(z2
0 − 1)

2τ
(Pµ

ν )′(z0)
∂(Pµ

ν )

∂τ
(z0).

Plugging it into (49) (which is true also for Pµ
ν ), we get:

dz0

dτ
= − 2τ

(z2
0 − 1)

1

((Pµ
ν )′(z0))2

∫ z0

−1

(Pµ
ν )2dx > 0.

Now we consider the identity z0 = cos(r0) then

dz0

dτ
=
dz0

dr0

dr0

dτ
= − sin(r0)

dr0

dτ
.

As a consequence:
dr0

dτ
= − 1

sin(r0)

dz0

dτ
< 0.

This completes the proof of the proposition. 2

7. Study of σ(T )

It is easy to see that σ(T ) is analytic. This fact comes from the following remark: if K
is an invertible operator and I is the identity, then for T > 0 and any continuous function
v, the solution u of (

K − 1

T 2
ρ I

)
u = v

is analytic with respect to T for each constant ρ (this follows from the equality

(I − sK)−1 =
∑
n≥0

snKn

for each s ∈ R). Then to prove that c is analytic it suffices to take

K =

(
∂2
r + (n− 1)

Ck(r)

Sk(r)
∂r + λ1

)
, v = 0, ρ = (2π)2 .

We conclude that c′(1) is analytic with respect to T , and from (28) follows the analyticity
of σ. The following proposition shows the behavior of σ at 0+ and +∞.

Proposition 7.1. The function σ(T ) satisfies

lim
T→0+

σ(T ) = +∞ and lim
T→+∞

σ(T ) = −∞.

Proof. We consider independently four cases, according if the dimension n is odd or even
and if the curvature k of Mn is positive (Sn) or negative (Hn). According to remark 2,
we could use k 6= 0 instead of k ∈ {−1, 1}. For this reason, in the following computation
we will distinguish the case k < 0 and k > 0 and we do not replace k by its value.
Furthermore, as σ(T ) = c′(1) + φ′′(1) and φ′′(1) does not depend on T and it is bounded,
then it suffices to study the behavior of c′(1).
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First case: n even and k negative. If n is even then µ is integer. So, we are in the
case k < 0 and µ integer, and then the derivative of c(r) is

c′(r) = A
(

1− n

2

)
S
−n

2
k (r)Ck(r)Pµν∗(Ck(r))− k AS

2−n
2

k (r) (Pµν∗)′(Ck(r)) .

The last summand can be expressed in terms of Pµν∗ and Pµ+1
ν∗ using formula 7.12.17, page

195 [16]:

(51) (Pµν∗(x))′ =
1

x2 − 1

[√
(x2 − 1)Pµ+1

ν∗ (x) + µxPµν∗(x)
]
.

If x = Ck(r) then C2
k(r)− 1 = −k S2

k(r) and
√
C2
k(r)− 1 =

√
−k Sk(r). As a consequence

(Pµν∗)′(Ck(r)) =
1

−k S2
k(r)

[√
−k Sk(r)Pµ+1

ν∗ (Ck(r)) + µCk(r)Pµν∗(Ck(r))
]

and

c′(r) = A
(

1− n

2

)
S
−n

2
k (r)Ck(r)Pµν∗(Ck(r)) +

+AS
−n

2
k (r)

[√
−k Sk(r)Pµ+1

ν∗ (Ck(r)) + µCk(r)Pµν∗(Ck(r))
]

=

= AS
−n

2
k (r)

[
Ck(r)Pµν∗(Ck(r))

(
1− n

2
+ µ
)

+
√
−k Sk(r)Pµ+1

ν∗ (Ck(r))
]

= A
√
−k S1−n

2
k (r)Pµ+1

ν∗ (Ck(r)) .

If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above
shows also that

φ′(r) = s
√
−k S1−n

2
k (r)Pµ+1

ν (Ck(r)) .

As

A = − φ′(1)

S
1−n

2
k (1)Pµν∗(Ck(1))

= −s
√
−kPµ+1

ν (Ck(1))

Pµν∗(Ck(1))
,

then the function c′(r) is

c′(r) =
s kPµ+1

ν (Ck(1))

Pµν∗(Ck(1))
S

1−n
2

k (r)Pµ+1
ν∗ (Ck(r)) .

Consequently

c′(1) + φ′′(1) = s k S
1−n

2
k (1)

Pµ+1
ν (Ck(1))

Pµν∗(Ck(1))
Pµ+1
ν∗ (Ck(1)) + φ′′(1) .

We remark that
lim

T→+∞
ν∗ = ν .

Consequently the numerator of c′(1) tends to

s k S
1−n

2
k (1) (Pµ+1

ν (Ck(1)))2
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when T goes to +∞. We observe that

ν = −1

2
+

√
(n− 1)2

4
+
λ1

k

has a non-vanishing imaginary part because k < 0 and λ1 > −k (n−1)2

4
. As Im(ν∗) <

Im(ν), then Proposition 6.1 ensures that the first positive zero of Pµν∗(Ck(r)) is bigger
than 1. Indeed from the definition of φ and φ(1) = 0, it is easily seen that Pµν (Ck(1)) =
0. Furthermore Pµν∗(Ck(1)) > 0 if Pµν (Ck(r)) > 0 for r ∈ [0, 1) or Pµν∗(Ck(1)) < 0 if
Pµν (Ck(r)) < 0 for r ∈ [0, 1). By definition, s has the same sign as Pµν (Ck(r)) on r ∈ [0, 1).
Then, if s > 0,

lim
ν∗→ν

Pµν∗(Ck(1)) = 0+(= Pµν (Ck(1))),

i.e.

lim
ν∗→ν

1

Pµν∗(Ck(1))
= +∞ .

Similarly

lim
ν∗→ν

1

Pµν∗(Ck(1))
= −∞ ,

if s < 0. We conclude that

lim
T→+∞

σ(T ) = lim
T→+∞

[c′(1) + φ′′(1)] = −∞.

Now we consider the limit of σ(T ) as T → 0+. As k < 0 then

lim
T→0+

ν∗ = lim
T→0+

−1

2
+

√
(n− 1)2

4
+
λ1 − 4π2

T 2

k
:= ν∞ = +∞.

That says also that for T small enough, ν∗ is real. Let us observe that c′(1) can be written
in the following form:

c′(1) = −φ′(1)
√
−k P

µ+1
ν∗ (Ck(1))

Pµν∗(Ck(1))
.

Formula 14.15.13 [8] provides the asymptotic behaviour of P−µν∗ with respect to ν∗:

(52) P−µν∗ (Ck(1)) ∼ 1

(ν∗)µ

√
1

sinh(1)
Iµ

(
ν∗ +

1

2

)
where Iµ denotes the modified Bessel function of first kind (we refer to [16] for basic
facts about Bessel functions). To get the asymptotic expression for Pµν∗(Ck(1)) we use the
following identity

(53) Pµν∗ =
Γ(ν∗ + µ+ 1)

Γ(ν∗ − µ+ 1)
P−µν∗
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which follows from (32) using the fact that µ is integer. Notice that Γ(ν∗+µ+1)
Γ(ν∗−µ+1)

∼ (ν∗)t for

ν∗ big, where t = 2µ if µ is integer and t = 2µ+ 1 if µ is not integer. We are considering
the case µ is integer, then from (52) we get

(54) Pµν∗(Ck(1)) ∼ (ν∗)µ

√
1

sinh(1)
Iµ

(
ν∗ +

1

2

)
for ν∗ big. Observe that

(55) Iµ

(
ν∗ +

1

2

)
∼ eν

∗+ 1
2√

π(2ν∗ + 1)

for ν∗ big. This implies that

Pµ+1
ν∗ (Ck(1))

Pµν∗(Ck(1))
∼ ν∗

Iµ+1

(
ν∗ + 1

2

)
Iµ
(
ν∗ + 1

2

) ∼ ν∗

for ν∗ big, and in conclusion

c′(1) ∼ −φ′(1)
√
−k ν∗

for ν∗ big. As φ′(1) < 0, we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.

Second case: n odd and k negative. If n is odd, then µ is half-integer. If k < 0
and µ is half-integer, then c(r) is given by

c(r) = AS
1−n

2
k (r)P−µν∗ (Ck(r))

where A is the constant such that c(1) = −φ′(1). Moreover

φ(r) = s S
1−n

2
k (r)P−µν (Ck(r))

where s is a constant such that φ(r) > 0 for r ∈ [0, 1) and (6). Moreover we have φ(1) = 0.
Using (51) with µ replaced by −µ, we get:

(P−µν∗ )′(Ck(r)) =
1

−k S2
k(r)

[√
−k Sk(r)P−µ+1

ν∗ (Ck(r))− µCk(r)P−µν∗ (Ck(r))
]

and

c′(r) = A
(

1− n

2

)
S
−n

2
k (r)Ck(r)P−µν∗ (Ck(r)) +

+AS
−n

2
k (r)

[√
−k Sk(r)P−µ+1

ν∗ (Ck(r))− µCk(r)P−µν∗ (Ck(r))
]

= AS
−n

2
k (r)

[
Ck(r)P−µν∗ (Ck(r))

(
1− n

2
− µ

)
+
√
−k Sk(r)P−µ+1

ν∗ (Ck(r))
]

= A [
√
−k S1−n

2
k (r)P−µ+1

ν∗ (Ck(r))− 2µCk(r)S
−n

2
k (r)P−µν∗ (Ck(r))]
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If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above
shows also that

φ′(r) = s [
√
−k S1−n

2
k (r)P−µ+1

ν (Ck(r))− 2µCk(r)S
−n

2
k (r)P−µν (Ck(r))].

As a consequence

φ′(1) = s
√
−k S1−n

2
k (1)P−µ+1

ν (Ck(1))

because P−µν (Ck(1)) = 0. From c(1) = −φ′(1), we get the value of the constant A:

A = − φ′(1)

S
1−n

2
k (1)P−µν∗ (Ck(1))

= −s
√
−k P

−µ+1
ν (Ck(1))

P−µν∗ (Ck(1))
.

If T → 0+, then ν∗ → +∞. If ν∗ is big enough, then (52) gives the asymptotic behaviour
for ν∗ big:

P−µν∗ (Ck(1)) ∼ 1

(ν∗)µ

√
1

sinh(1)
Iµ

(
ν∗ +

1

2

)
.

The asymptotic behaviour of Iµ is described by (55). Consequently

c′(1) = A[
√
−k S1−n

2
k (1)P−µ+1

ν∗ (Ck(1))− 2µCk(1)S
−n

2
k (1)P−µν∗ (Ck(1))]

=
−φ′(1)

S
1−n

2
k (1)P−µν∗ (Ck(1))

√
−k S1−n

2
k (1)P−µ+1

ν∗ (Ck(1))

∼ −φ′(1)
√
−k (ν∗)µ

(ν∗)µ−1

Iµ
(
ν∗ + 1

2

)
Iµ−1

(
ν∗ + 1

2

)
∼ −φ′(1)

√
−k ν∗

As φ′(1) < 0, k < 0, we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.

It remains to study the behaviour of σ(T ) as T → +∞. In this case ν∗ → ν. Proposition
6.1 ensures that, the first positive zero of P−µν∗ (Ck(r)) is bigger than 1. Consequently

lim
ν∗→ν

1

Pµν∗(Ck(1))
= +∞

if Pµν (Ck(r)) > 0 on [0, 1) (that is s > 0) and

lim
ν∗→ν

1

Pµν∗(Ck(1))
= −∞

if Pµν (Ck(r)) < 0 on [0, 1) (that is s > 0). In other terms such a limit has the same sign
as s. Moreover the numerator of c′(1) tends to

−s S1−n
2

k (1) [
√
−kP−µ+1

ν (Ck(1))]2.
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Then

lim
T→+∞

σ(T ) = lim
T→+∞

[c′(1) + φ′′(1)] = −∞ .

Third case: n even and k positive. If n is even then µ is integer. If k > 0 and µ is
integer then the function c(r) is given by the first line of (48). As a consequence

c′(r) = A
(

1− n

2

)
S
−n

2
k (r)Ck(r) Pµ

ν∗(Ck(r))− k AS
2−n

2
k (r) (Pµ

ν∗)
′(Ck(r)).

The derivative (Pµ
ν∗)
′(x) is expressed in terms of Pµ+1

ν∗ (x) and Pµ
ν∗(x) using

(56) (Pµ
ν (x))′ =

1

x2 − 1

(√
1− x2 Pµ+1

ν (x) + xµPµ
ν (x)

)
.

Replacing x by Ck(r) we get:

(Pµ
ν )′(Ck(r)) =

1

−k S2
k(r)

[√
k Sk(r) Pµ+1

ν (Ck(r)) + Ck(r)µPµ
ν (Ck(r))

]
.

from which it follows:

c′(r) = A
(
1− n

2

)
S
−n

2
k (r)Ck(r) Pµ

ν∗(Ck(r)) +

+AS
−n

2
k (r)

[√
k Sk(r) Pµ+1

ν∗ (Ck(r)) + µCk(r) Pµ
ν∗(Ck(r))

]
= AS

−n
2

k (r)
[
Ck(r) Pµ

ν∗(Ck(r)) (1− n
2

+ µ)−
√
k Sk(r) Pµ+1

ν∗ (Ck(r))
]

= A
√
k S

1−n
2

k (r) Pµ+1
ν∗ (Ck(r)).

The constant A is determined in order to have c(1) = −φ′(1). The function φ is defined
by

φ(r) = s S
1−n

2
k (r) Pµ

ν (Ck(r)),

where s is the constant such that φ(r) > 0 for r ∈ [0, 1). To get the expression of its
derivative, we replace A by s and ν∗ by ν in the expression of c′(r) :

φ′(r) = s
√
k S

1−n
2

k (r) Pµ+1
ν (Ck(r)).

The value of the constant A is given by

A = − φ′(1)

S
1−n

2
k (1) Pµ

ν∗(Ck(1))
= −s

√
k

Pµ+1
ν (Ck(1))

Pµ
ν∗(Ck(1))

.

So c′(1) is given by

c′(1) = −φ′(1)
√
k

Pµ+1
ν∗ (Ck(1))

Pµ
ν∗(Ck(1))

= −s k Pµ+1
ν (Ck(1))

Pµ
ν∗(Ck(1))

S
1−n

2
k (r) Pµ+1

ν∗ (Ck(1)) .
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In conclusion, if k > 0 and µ is integer, then σ(T ) = c′(1) + φ′′(1) equals

(57) −s k S1−n
2

k (1)
Pµ+1
ν (Ck(1))

Pµ
ν∗(Ck(1))

Pµ+1
ν∗ (Ck(1)) + φ′′(1).

For T big enough ν∗ is a real valued increasing function of T. If T → +∞, then ν∗ → ν
(which is a real number in this case). If Pµ

ν (Ck(r)) > 0 for r ∈ [0, 1), (that is s > 0) then,
from Proposition 6.1, we get

lim
ν∗→ν

Pµ
ν∗(Ck(1)) = 0+(= Pµ

ν (Ck(1))).

So

lim
T→+∞

1

Pµ
ν∗(Ck(1))

= +∞ .

Similarly, if Pµ
ν (Ck(r)) < 0 for r ∈ [0, 1), (that is s < 0), then

lim
T→+∞

1

Pµ
ν∗(Ck(1))

= −∞ .

In other terms the sign of such a limit is the same as s. When T → +∞, the numerator
of c′(1) tends to

−s k S1−n
2

k (1) [Pµ+1
ν (Ck(1))]2 .

Consequently, as k > 0,

lim
T→+∞

σ(T ) = lim
T→+∞

[c′(1) + φ′′(1)] = −∞ .

Now we study the limit of σ(T ) as T → 0+. If T → 0+ then ν∗ → ν∞ := −1/2 + i∞.
We set ν∗ = −1/2 + iτ. In this case we use the following asymptotic formula (exercise
13.4, page 473 [20]):

P−µ− 1
2

+iτ
(Ck(1)) =

1

τµ

√
1

sin(1)
Iµ(τ)

(
1 +O

(
1

τ

))
when τ goes to infinity. To get the corresponding formula for Pµ

− 1
2

+iτ
(Ck(1)) we use the

following identity (formula 14.9.2 [8]):

(58) Pµ
ν∗ =

Γ(ν∗ + µ+ 1)

Γ(ν∗ − µ+ 1)

[
cos(µπ) P−µν∗ +

2 sin(µπ)

π
Q−µν∗

]
.

As µ is integer, then (58) reduces to:

Pµ
ν∗(x) = (−1)µ

Γ(ν∗ + µ+ 1)

Γ(ν∗ − µ+ 1)
P−µν∗ (x) .
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We need to estimate the limit as T → 0+ of

(59)

Pµ+1
ν∗ (x)

Pµ
ν∗(x)

= −Γ(ν∗ + µ+ 2)

Γ(ν∗ − µ)

Γ(ν∗ − µ+ 1)

Γ(ν∗ + µ+ 1)

P−µ−1
ν∗ (x)

P−µν∗ (x)

= −(ν∗ + µ+ 1)(ν∗ − µ)
P−µ−1
ν∗ (x)

P−µν∗ (x)
.

Observe that

(ν∗ + µ+ 1)(ν∗ − µ) = (ν∗)2 + ν∗ − µ− µ2 =

(
−1

2
+ iτ

)2

− 1

2
+ iτ − µ− µ2 =

−1

4
− τ 2 − µ− µ2 < 0.

This implies that

(60)
Pµ+1
ν∗ (Ck(1))

Pµ
ν∗(Ck(1))

∼ τ 2 τµ

τµ+1

Iµ+1(τ)

Iµ(τ)
∼ τ,

for τ big, since

Iµ(τ) ∼ eτ√
2πτ

(formula 5.16.5 [16]). In conclusion for τ big,

c′(1) ∼ −φ′(1)
√
k

Pµ+1
ν∗ (Ck(1))

Pµ
ν∗(Ck(1))

∼ −φ′(1)
√
k τ.

As φ′(1) < 0, then we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.

Fourth case: n odd and k positive. If n is odd then µ is half-integer. If k > 0 and
µ is half-integer, then c(r) is given by

c(r) = AS
1−n

2
k (r) P−µν∗ (Ck(r))

where A is the constant such that c(1) = −φ′(1). Moreover

φ(r) = s S
1−n

2
k (r) P−µν (Ck(r))

where s is the constant such that φ(r) > 0 for r ∈ (0, 1) and (6). Moreover we have
φ(1) = 0. Using (56) with µ replaced by −µ, we get:

(P−µν∗ )′(Ck(r)) =
1

−k S2
k(r)

[√
k Sk(r) P−µ+1

ν∗ (Ck(r))− µCk(r) P−µν∗ (Ck(r))
]
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and

c′(r) = A
(

1− n

2

)
S
−n

2
k (r)Ck(r) P−µν∗ (Ck(r)) +

+AS
−n

2
k (r)

[√
k Sk(r) P−µ+1

ν∗ (Ck(r))− µCk(r) P−µν∗ (Ck(r))
]

= AS
−n

2
k (r)

[
Ck(r) P−µν∗ (Ck(r))(1−

n

2
− µ) +

√
k Sk(r) P−µ+1

ν∗ (Ck(r))
]

= A [
√
k S

1−n
2

k (r) P−µ+1
ν∗ (Ck(r))− 2µCk(r)S

−n
2

k (r) P−µν∗ (Ck(r))].

If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above
shows also that

φ′(r) = s[
√
k S

1−n
2

k (r) P−µ+1
ν (Ck(r))− 2µCk(r)S

−n
2

k (r) P−µν (Ck(r))]

from which

φ′(1) = s
√
k S

1−n
2

k (1) P−µ+1
ν (Ck(1)) .

From c(1) = −φ′(1), we get the value of the constant A:

A =
−φ′(1)

S
1−n

2
k (r) P−µν∗ (Ck(r))

= −s
√
k

P−µ+1
ν (Ck(1))

P−µν∗ (Ck(1))
.

If T → 0+ then Im(ν∗) → τ∞ = +∞. For T big enough, ν∗ is a real number and if
T → +∞, then ν∗ → ν ∈ R. If ν∗ is big enough, then (52) gives the asymptotic behaviour
for ν∗ big:

P−µν∗ (Ck(1)) ∼ 1

(ν∗)µ

√
1

sinh(1)
Iµ((ν∗ + 1/2)).

The asymptotic behaviour of Iµ is described by (55). Consequently

c′(1) = A[
√
kS

1−n
2

k (1)P−µ+1
ν∗ (Ck(1))− 2µCk(1)S

−n
2

k (1)P−µν∗ (Ck(1))] ∼

−φ′(1)
√
k

P−µ+1
ν∗ (Ck(1))

P−µν∗ (Ck(1))
∼ −φ′(1)

√
k

(ν∗)µ

(ν∗)µ−1

Iµ((ν∗ + 1/2))

Iµ−1((ν∗ + 1/2))
∼ −φ′(1)

√
kν∗.

As −φ′(1) > 0, then we conclude that

lim
T→0

[c′(1) + φ′′(1)] = +∞.

It remains to study the behaviour of σ(T ) as T → +∞. If T → +∞ then ν∗ → ν
increasing (for T big enough ν∗ is real). Proposition 6.1 ensures that, the first positive
zero of P−µν∗ (Ck(r)) is bigger than 1. Consequently

lim
ν∗→ν

1

Pµ
ν∗(Ck(1))

= +∞
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if P µ
ν (Ck(r)) > 0 on [0, 1) (that is s > 0) and

lim
ν∗→ν

1

Pµ
ν∗(Ck(1))

= −∞

if Pµ
ν (Ck(r)) < 0 on [0, 1) (that is s < 0). In other terms such a limit has the same sign

as s. The numerator of c′(1) tends to

−s k S1−n
2

k (1) [P−µ+1
ν (Ck(1))]2 .

As a conclusion

lim
T→+∞

σ(T ) = lim
T→+∞

[c′(1) + φ′′(1)] = −∞ .

This completes the proof of the proposition. 2

8. Lyapunov-Schmidt reduction and bifurcation

In view of the analyticity of σ (showed in section 7) and Proposition 7.1, σ has at least
a zero and the set of the zeros of σ is finite. Let {01, 02, ..., 0p} denotes the set of the
zeros of σ, and let T∗ be the smallest zero such that σ changes sign at T∗, say T∗ = 0q
(the existence of T∗ follows also from the analyticity of σ and Proposition 7.1). It is
clear then the eigenspace V1 (defined in Proposition 4.2) belongs to the kernel of HT∗ .
As σj(T ) = σ(T/j) we obtain that σj is analytic on T and the set of the zeros of σj is
{j 01, j 02, ..., j 0p}. It is clear that if j is big enough then T∗ /∈ {j 01, j 02, ..., j 0p}, and
this means that Vj does not belong to the kernel of HT∗ for almost all j. This implies
that the kernel of HT∗ is of the form Vj1 ⊕ · · · ⊕ Vjl with 1 = j1 < · · · < jl. Moreover
if Vji ⊂ Ker(HT∗) and ji 6= 1 then the function σji(T ) does not change sign at T∗ by the
definition of T∗.

We summarize such facts in the following proposition, where we use also the ellipticity
of the linearized operator HT given by Proposition 4.2.

Proposition 8.1. There exists a positive real number T∗ such that the kernel of HT∗ is
given by Vj1 ⊕ · · · ⊕ Vjl, with 1 = j1 < · · · < jl. Moreover the eigenvalue associated to
the eigenspace V1, considered as a function on T , changes sign at T∗, and the eigenvalues
associated to the other eigenspaces Vj2 , ..., Vjl, always considered as functions on T , do not
change sign at T∗. There exists a constant c > 0 such that

‖w‖C2,α
even,0(R/2πZ) ≤ c ‖HT∗(w)‖C1,αeven,0(R/2πZ) ,

provided w is L2(R/2πZ)-orthogonal to V0⊕Vj1⊕· · ·⊕Vjl, where V0 is the space of constant
functions.

Such proposition says us that the operator HT∗ has finite-dimensional kernel, and that
it is an isomorphism from the orthogonal to its kernel over its image (see also Proposition
4.2 and its proof). We are going to use now these two properties.
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Consider the space C2,α
even,0(R/2πZ)× (0,+∞). Clearly the curve

Ξ = {(v, T ) : v ≡ 0}
in C2,α

even,0(R/2πZ)× (0,+∞) belongs to the zero level set of the operator F , i.e. its points
solve the equation

F (v, T ) = 0.

In this section we prove that (0, T∗) is a bifurcation point of Ξ for the zero level set of the
operator F .

Proposition 8.1 ensures that the kernel of the operator HT∗ is finite-dimensional and
it equals Vj1 ⊕ · · · ⊕ Vjl . Let Q be the projection operator onto the image of HT∗ and

Q ◦ F the composition of operators F and Q. We write a function v ∈ C2,α
even,0(R/2πZ) as

v = v‖ + v⊥ with v‖ ∈ KerHT∗ and v⊥ ∈ (KerHT∗)
⊥. The next result (that represent the

classical Lyapunov-Schmidt reduction for our problem) follows from the implicit function
Theorem:

Proposition 8.2. For all v‖ ∈ KerHT∗ whose norm is small enough and for all T suffi-
ciently close to T∗ there exists a unique function v⊥ = v⊥(v‖, T ) such that

Q ◦ F
(
v‖ + v⊥, T

)
= 0.

Proof. Define the operator J as follows:

J(v‖, v⊥, T ) = Q ◦ F
(
v‖ + v⊥, T

)
from KerHT∗×(KerHT∗)

⊥×(0,+∞) into the image of HT∗ . By Proposition 8.1 the implicit
function theorem applies to get the existence of a unique function

v⊥(v‖, T ) ∈ (KerHT∗)
⊥

smoothly depending on v‖ and T in a neighborhood of (0, T∗) such that

J(v‖, v⊥(v‖, T ), T ) = 0.

This completes the proof of the proposition. 2

Now we can define the operator

G(v‖, T ) = (I −Q) ◦ F
(
v‖ + v⊥(v‖, T ), T

)
= 0.

where I is the identity operator and v⊥(v‖, T ) is the function given by Proposition 8.1.
G is a finite-dimensional operator from KerHT∗ × (0,+∞) into the space orthogonal to
the image of HT∗ . We remark that our main theorem 1.1 will be proved if we show that
(0, T∗) is a bifurcation point for the zero level set of G. In fact, it is easy to prove that
the curve

Γ = {(v‖, T ) ∈ KerHT∗ × (0,+∞) : v‖ = 0}
is a solution of G(v‖, T ) = 0 with v⊥(0, T ) = 0. Then, the fact that (0, T∗) is a bifurcation
point of Γ for the zero level set of G means that in every neighborhood of (0, T∗) in
KerHT∗ × (0,+∞) contains solutions of the equation G(v‖, T ) = 0 which are not in Γ, i.e.
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there exists a sequence (v
‖
i , Ti) ∈ KerHT∗ × (0,+∞) with v

‖
i 6= 0 such that G(v

‖
i , Ti) = 0.

Hence

Q ◦ F
(
v
‖
i + v⊥(v

‖
i , Ti), Ti

)
= 0

and

(I −Q) ◦ F
(
v
‖
i + v⊥(v

‖
i , Ti), Ti

)
= 0

that imply

F
(
v
‖
i + v⊥(v

‖
i , Ti), Ti

)
= 0

and vi := v
‖
i + v⊥(v

‖
i , Ti) 6= 0.

Let us prove that (0, T∗) is a bifurcation point of Γ for the zero level set of G. We start
by recalling a useful result about bifurcation (see [14] and [30] for details). Let L be an
operator on B1 × Λ into B2, where B1 and B2 are Banach spaces (or subspaces) and Λ is
an interval of R. Thus suppose that Γ = (x(s), s) is a curve of solutions of the equation
L(x, s) = 0. Let (x0, s0) = (x(s0), s0) be an interior point on this curve with the property
that every neighborhood of (x0, s0) in B1×Λ contains solutions of the equation L(x, s) = 0
which are not in Γ, i.e. it is a bifurcation point of Γ for the zero level set of L. In our
case B1 = C2,α

even,0(R/2πZ), Λ = (0,+∞), B2 = C1,α
even,0(R/2πZ) and x(s) = 0 for all s. A

necessary condition for bifurcation at (0, s0) is that 0 is an isolated eigenvalue of finite
algebraic multiplicity, say l, of the operator obtained by linearizing L with respect to x at
(0, s0), which can be denoted by DxL(0, s0). It is crucial to know how the eigenvalue 0 of
DxL(0, s0) changes when s varies in a neighborhood of s0. It is possible to show (see [13])
that the generalized eigenspace Es0 of the eigenvalue 0 of DxL(0, s0) having dimension l
is perturbed to an invariant space Es of DxL(0, s) of dimension l too, and all perturbed
eigenvalues near 0 (the so-called 0-group) are eigenvalues of the finite-dimensional operator
DxL(0, s) restricted to the l-dimensional invariant space Es. Moreover the eigenvalues in
that 0-group depend continuously on s. Let us give the definition of odd crossing number:

Definition 8.3. We set Θ(s) to be equal to 1 if there are no negative real eigenvalues in
the 0-group of DxL(0, s). Otherwise

Θ(s) = (−1)l1+···+lh

if µ1, . . . , µh are all the negative real eigenvalues of the 0-group having algebraic multiplicity
l1, . . . , lh, respectively. If DxL(0, s) is regular in a neighborhood of s0 (naturally except in
the point s0) and Θ(s) changes the sign at s0 then DxL(0, s) is said to have an odd crossing
number at s0.

In presence of an odd crossing number, a standard result known as the Krasnosel’skii
Bifurcation Theorem (see [14] for the proof) applies:

Theorem 8.4. If DxL(0, s) has an odd crossing number at s0, then (0, s0) is a bifurcation
point for L(x, s) = 0 with respect to the curve {(0, s) | s in a neighborhood of s0}.
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The fact that (0, T∗) is a bifurcation point for the operator G follows then from the
Krasnosel’skii Bifurcation Theorem and the following:

Proposition 8.5. Dv‖G(0, T ) has an odd crossing number at T∗.

Proof. We observe that we can write

v‖ =
l∑

i=1

aki cos(ki t)

where 1 = k1 < · · · < kl. It is clear, from the definition of G, that Dv‖G(0, T ) preserves
the eigenspaces, and

Dv‖G(0, T ) = HT |Vj1⊕···⊕Vjl .
Then the 0-group of eigenvalues is given by σj1(T ), . . . , σjl(T ), where σj1(T ) = σ(T ). For
T = T∗ they are all equal to 0. Moreover, by the proposition 8.1 only σj1(T ) changes sign
at T∗, and the corresponding eigenspace has dimension 1. This means that Dv‖G(0, T )
has a crossing number at T∗ and completes the proof of the proposition. 2
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[21] R. Pedrosa, M. Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply

connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 n. 4
(1999), 1357–1394.

[22] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
arXiv:math.DG/0211159 (2002).

[23] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109 (2003).
[24] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,

arXiv:math.DG/0307245 (2003)
[25] P. Pucci, J. Serrin, The maximum principle, Progress in Nonlinear Differential Equations and Their

Applications, Birkhauser, Basel, 2007.
[26] A. Ros, P. Sicbaldi, Geometry and Topology for some overdetermined elliptic problems, J. Diff.

Equations 255, n. 5 (2013) 951–977.
[27] F. Schlenk, P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian, Ad-

vances in Mathematics 229, 602–632, 2012.
[28] J. Serrin, A Symmetry Theorem in Potential Theory, Arch. Rational Mech. Anal. 43 (1971), 304–318.
[29] P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var.

Partial Diff. Equations 37, (2010) 329–344.
[30] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wis-

senschaften, A Series of Comprehensive Studies in Mathematics, Vol. 258, 2nd Edition, Springer 1983,
1994.

[31] I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill Book Company, Inc., New York-
Toronto-London, 1956.

[32] M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, Geom.
Func. Analysis 24, (2014) 690–720.

Filippo Morabito

Department of Mathematical Sciences, KAIST, Korea Advanced Institute of Science
and Technology, Daejeon, South Korea

&

Korea Institute for Advanced Study, School of Mathematics, Seoul, South Korea
E-mail address: morabito@kaist.ac.kr

Pieralberto Sicbaldi
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