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DELAUNAY TYPE DOMAINS FOR AN OVERDETERMINED ELLIPTIC PROBLEM IN S n × R AND H n × R

We prove the existence of a countable family of Delaunay type domains Ω t ⊂ M n × R, t ∈ N, where M n is the Riemannian manifold S n or H n and n ≥ 2, bifurcating from the cylinder B n × R (where B n is a geodesic ball of radius 1 in M n ) for which the first eigenfunction of the Laplace-Beltrami operator with zero Dirichlet boundary condition also has constant Neumann data at the boundary. The overdetermined problem

has a bounded positive solution for some positive constant λ, where g is the standard metric in M n × R. The domains Ω t are rotationally symmetric and periodic with respect to the R-axis of the cylinder and the sequence {Ω t } t converges to the cylinder B n × R.

Introduction and statement of the result

A long-standing open problem is to classify (smooth) domains Ω ⊆ R n , n ≥ 2, for which the overdetermined elliptic problem (1)

                   ∆u + f (u) = 0 in Ω u > 0 in Ω u = 0 on ∂Ω ∇u, ν = constant on ∂Ω admits a solution u ∈ C 2 (Ω)
, where f is a given Lipschitz function, ν is the normal vector to ∂Ω, and •, • denotes the usual scalar product.
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The first author was supported by Basic Science Research Program through the National Research Foundation of South Korea (NRF) funded by the Ministry of Education, Grant NRF-2013R1A1A1013521. The second author was supported by GDRE Geometric Analysis (France-Spain), University of Marseille and ANR-11-IS01-0002 grant. By Serrin's Theorem [START_REF] Serrin | A Symmetry Theorem in Potential Theory[END_REF], if Ω is bounded, then Ω must be a ball and the solution u is radial (see also [START_REF] Pucci | The maximum principle[END_REF]). Such a result has many applications to Physics. For example, problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF], when f is constant, describes a viscous incompressible fluid moving in straight parallel streamlines through a straight pipe of given cross section Ω (see [START_REF] Serrin | A Symmetry Theorem in Potential Theory[END_REF]), and Serrin's Theorem shows then that the tangential stress per unit area on the pipe wall is the same at all points of the wall if and only if the pipe has a circular cross section. Problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] is used in the linear theory of torsion of a solid straight bar of cross section Ω (see [START_REF] Sokolnikoff | Mathematical theory of elasticity[END_REF]). In this setting Serrin's Theorem implies that when a solid straight bar is subject to torsion, the magnitude of the resulting traction which occurs at the surface of the bar is independent of the position if and only if the bar has a circular cross section.

Overdetermined boundary conditions arise naturally also in free boundary problems, when the variational structure imposes suitable conditions on the separation interface (see for example [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF]). In this context it is important to underline that several methods for studying locally the regularity of solutions of free boundary problems are often based on blow-up techniques applied to the intersection of Ω with a small ball centered in a point of ∂Ω, which lead then to the study of an elliptic problem in an unbounded domain. Problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] in unbounded domains was considered by H. Berestycki, L. Caffarelli and L. Nirenberg in [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF].

For some types of functions f the structure of the family of domains Ω where the overdetermined problem (1) can be solved shares many similarities with the class of embedded constant mean curvatures surfaces (CMC surfaces). For the bounded case, the analogy is very simple: the only compact embedded CMC surfaces in R n are the round spheres (very well known result by A.D. Alexandrov [START_REF] Alexandrov | Uniqueness theorems for surfaces in the large[END_REF]) and the only bounded domains in R n where problem (1) can be solved are balls by Serrin's Theorem. For the unbounded case, a very well known family of CMC surfaces is the family of Delaunay onduloids, see [START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF]. In [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF] P. Sicbaldi showed the existence of Delaunay type domains, i.e. perturbations of the straight solid cylinder in R n which are rotationally symmetric and periodic in the vertical direction, where it is possible to solve problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] for the linear function f (t) = λ t. In [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF], F. Schlenk and P. Sicbaldi showed that the previous unbounded domains belong in fact to a smooth 1-parameter family, a property enjoyed also by Delaunay onduloids.

In order to show that the analogy with the CMC surfaces is even deeper, we remark that domains where problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] with f = 0 can be solved arise as limits under scaling of sequences of domains where problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] with f (t) = λ t can be solved, just like minimal surfaces arise as limits under scaling of sequences of CMC surfaces. In a recent paper, [START_REF] Traizet | Classification of the solutions to an overdetermined elliptic problem in the plane[END_REF], M. Traizet shows a one-to-one correspondence between 2-dimensional domains (with finite connectivity) where problem [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] with f = 0 can be solved and a special class of minimal surfaces.

The analogy between problem (1) and CMC surfaces has been explored in a systematic way by A. Ros and P. Sicbaldi in [START_REF] Ros | Geometry and Topology for some overdetermined elliptic problems[END_REF]. In particular they obtain, for 2-dimensional domains where (1) can be solved, a half-space theorem and also, for some functions f , the boundedness of the ends of the domain, paralleling analogous results valid for CMC surfaces.

One of the most remarkable recent achievements in the field of Differential Geometry is the extension of the classical theory of CMC surfaces in the Euclidean space to other ambient spaces, and in particular to the the eight Thurston's 3-dimensional geometries: the Euclidean space R 3 , the round sphere S 3 , the hyperbolic space H 3 , the product spaces S 2 × R and H 2 × R, the Heisenberg group N il 3 , the universal covering of P SL 2 (R) and the Lie group Sol 3 . The importance of the classification of CMC surfaces in such ambient spaces comes from the outstanding Thurston's Geometrization Conjecture (which includes in particular the Poincaré's Conjecture), proved finally by G. Perelman in 2003 [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF][START_REF] Perelman | Ricci flow with surgery on three-manifolds[END_REF][START_REF] Perelman | Finite extinction time for the solutions to the Ricci flow on certain three-manifolds[END_REF] using Ricci flow with surgery, according to which every closed 3-dimensional manifold can be decomposed in a canonical way into pieces in order that each piece has one of the eight Thurston's geometric structures. For a survey on the Thurston's Geometrization Conjecture we refer to [START_REF] Bessières | Geometrisation of 3-manifolds[END_REF]. The number of results in the framework of CMC surfaces in Thurston's 3-dimensional geometries is very large, and we cite only the works by U. Abresch, H. Rosenberg and W. H. Meeks [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF][START_REF] Meeks | The theory of minimal surfaces in M × R, Comment[END_REF][START_REF] Meeks | Stable minimal surfaces in M × R[END_REF] which have set the direction of the subsequent research in the field.

As for CMC surfaces, overdetermined problems can be considered also in a Riemannian manifold, and in this framework problem (1) becomes (2)

                   ∆ g u + f (u) = 0 in Ω u > 0 in Ω u = 0 on ∂Ω g(∇u, ν) = constant on ∂Ω ,
where g denotes the metric of the manifold and ∆ g is the Laplace-Beltrami operator.

First, we remark that unlike CMC surfaces, where the lowest possible dimension for the ambient space is 3, in the case of overdetermined elliptic problems the lowest possible dimension for the ambient space is 2. In dimension 2 the equivalent of the Thurston's Geometrization Conjecture is the Riemann's Uniformization Theorem, according to which every 2-dimensional Riemannian manifold is a quotient of one of the following manifolds by a free action of a discrete subgroup of their isometries group: the round sphere S 2 , the Euclidean space R 2 and the hyperbolic plane H 2 (remark that in the case of dimension 2 it is not necessary to decompose the manifold in pieces and this is the reason why the 2-dimensional case is much simpler than the 3-dimensional one).

Serrin's Theorem for overdetermined elliptic problems in R n has been generalized by R. Molzon [START_REF] Molzon | Symmetry and overdetermined boundary value problems[END_REF] and S. Kumaresan and J. Prajapat [START_REF] Kumaresan | Serrin's result for hyperbolic space and sphere[END_REF] to the round sphere S n and the hyperbolic space H n , for every dimension n ≥ 2: assuming that Ω is a bounded domain in H n or that Ω is a domain contained in a hemisphere of S n , and that problem (2) has a solution u ∈ C 2 (Ω), then Ω is a ball. In the round sphere S n there exists nontrivial (bounded) domains (not contained in a hemisphere) where problem (2) can be solved, see [START_REF] Karlovitz | Some solutions to overdetermined boundary value problems on subsets of spheres[END_REF]. Such results parallel analogous results about CMC surfaces in S n and H n , see [START_REF] Alexandrov | Uniqueness theorems for surfaces in the large[END_REF].

In 3-dimensional Riemannian manifolds, results on overdetermined elliptic problems are expected in particular for the remaining five Thurston's geometries: S 2 × R, H 2 × R, N il 3 , the universal covering of P SL 2 (R) and Sol 3 . Up to now very few results are known.

In this paper we generalize the construction of Delaunay type domains of P. Sicbaldi in [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF] to the product spaces S n ×R and H n ×R (and in particular our result holds in the two Thurston's 3-dimensional geometries S 2 × R and H 2 × R). In fact, we prove that the solid straight cylinder B n R × R (where B n R is a geodesic ball of radius R properly contained in S n or H n ) can be perturbed in order to obtain new domains where problem (2) can be solved for the function f (t) = λ t for some positive constant λ. The boundary of such domains is rotationally symmetric with respect to the R-axis of the cylinder, and is periodic in the vertical direction. The parallel of our result in the framework of CMC surfaces is the construction of Delaunay surfaces in S n × R and H n × R, done by R. Pedrosa and M. Ritoré [START_REF] Pedrosa | Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems[END_REF].

In order to state our result, let M n denote the Riemannian manifold S n or H n , i.e the n-dimensional manifolds of constant sectional curvature equal to 1 or -1. Points of M n ×R are denoted by (x, t), x ∈ M n and t ∈ R. Let us fix a point 0 (origin) in M n and let r(x) denote the distance of x ∈ M n to the origin 0 ∈ M n . Our main result is the following: Theorem 1.1. Let R > 0 and B R a geodesic ball of radius R centered at 0 such that B R M n . There exist a real positive number T * , a sequence of real positive numbers T j -→ T * and a sequence of nonconstant functions v j ∈ C 2,α (R) (of small norm, of period T j , and converging to 0 in C 2,α (R)) such that the domains

Ω j = {(x, t) ∈ M n × R , r(x) < R + v j (t)} have a positive solution u j ∈ C 2,α (Ω j ) to the problem (2). Moreover T j 0 v j dt = 0.
The reader will notice that the condition B R M is an empty condition when M = H and is equivalent to ask R < π when M = S. Remark 1. More generally, the same construction can be done in the spaces M n (k) × R, where M n (k), k ∈ R, is the n-dimensional space form of constant sectional curvature k. In other words, Theorem 1.1 still holds when we replace M n with M n (k). The case k = 0 corresponds to the Euclidean one, settled in [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF][START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF], and here we will consider only the cases k = 0. We recall that the condition B R M n (k) is again an empty condition when k ≤ 0 and is equivalent to R < π 1/k when k > 0. Sections 6 and 7, which play a crucial role in this paper, have been redacted using M n (k) instead of M n . In the other sections we consider S n × R or H n × R, but we always point out the main changes to do in order to adapt the formulas to the ambient space M n (k) × R, k = 0.

The previous result leaves two open interesting questions:

(1) We do not have a smooth one-parameter family of domains, but only a sequence of domains converging to the straight cylinder. According with the case of R n [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF] and the analogous case of CMC surfaces in M n ×R [START_REF] Pedrosa | Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems[END_REF], it is tempting to conjecture that the domains in Theorem 1.1 belong in fact to a smooth one-parameter family of domains. (2) In the framework of M n (k) × R, it would be very interesting to study the dependence on k of the domains Ω j , and understand their behavior as k changes sign. We trust that this is a very nontrivial question.

In order to simplify the redaction, we will prove Theorem 1.1 in the case R = 1, and we will show, according to Remark 1, that the construction can be done also in the more general space M n (k) × R, for all k = 0. There is no loss of generality in choosing R = 1. Indeed, the problem of finding overdetermined domains does not depend on the value of k, and perturbations of

B R × R in M n (k) × R turn equivalently into perturbations of B 1 × R in M n (k ) × R,
for some real number k of the same sign of k.

The strategy of the proof of our result is the one adopted in [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF], and the real novelty here stays in the tools used to solve the central step of the proof. If (x, t) are the points of M n × R, or more generally M n (k) × R (where k satisfies the condition that B 1 M n (k)), we construct the domain C T 1+v as the interior of the radial graph over the cylinder of radius 1 of a periodic function v(t) with period T (Section 2). We consider the operator that to the function v associates the normal derivative of the first eigenfunction φ of the Laplace-Beltrami operator on C T 1+v with zero Dirichlet boundary condition. In order to find nontrivial solutions v such that the normal derivative of φ at ∂C T 1+v is constant, we need to study the linearized operator with respect to the variable v (Sections 3 and 4) and show that for some value of the parameter T it has a nontrivial kernel. In [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF] such step could be easily solved because the study of the linearized operator led to solving a Bessel ODE. In our case, we have to handle a much more difficult situation, and we are able to study the linearized operator by using some large classes of complex valued functions known as Legendre and Ferrer's functions, with complex argument and depending on two parameters. For convenience of the reader, in Section 5 we recollect the basic facts about such classes of functions, their asymptotics and related differential equations, and this material will be used in the study of the linearized operator in Sections 6 and 7. The final step of the proof uses the Lyapunov-Schmidt reduction and a bifurcation argument (Section 8).

Rephrasing the problem

Given a continuous function v : R/2πZ -→ (0, +∞) whose L ∞ -norm is small enough, we define

C T 1+v := {(x, t) ∈ M n × R/T Z : 0 ≤ r(x) < 1 + v(2πt/T )} .
Our aim is to show that there exists a positive real number T * , a sequence T j → T * and a sequence of nonconstant functions v j ∈ C 2,α (R/2πZ) of mean value equal to zero and converging to the zero function in the C 2,α -norm, such that the overdetermined problem

(3)            ∆ g φ + λ φ = 0 in C T 1+v φ = 0 on ∂C T 1+v g(∇φ, ν) = constant on ∂C T 1+v
has a nontrivial positive solution (φ, λ) = (φ j , λ j ) for the sequence (v j , T j ). Here ν denote the normal vector field to ∂C T 1+v , λ is a positive constant, and g is the product metric of M n × R/T Z (in particular the second factor is equipped with the metric induced by the standard metric of R).

We remark that the symmetry of the problem allow us to require the function v to be even.

Let g M n denote the usual metric on M n . Let λ 1 be the first eigenvalue of the Laplace-Beltrami operator with zero Dirichlet boundary condition in the unit geodesic ball

B 1 = {x ∈ M n : r(x) < 1} .
Let φ1 denote the associated eigenfunction

(4)    ∆ g M n φ1 + λ 1 φ1 = 0 in B 1 φ1 = 0 on ∂B 1 which is normalized to have L 2 (B 1 )-norm equal to 1/2π. Then φ 1 (x, t) = φ1 (x) solves the problem (5)    ∆ g φ 1 + λ 1 φ 1 = 0 in C T 1 φ 1 = 0 on ∂C T 1 and (6) C 2π 1 φ 2 1 dvol g = 1.
As φ 1 do not depend on t, sometimes we will write simply φ 1 (x).

Let C 2,α even,0 (R/2πZ) be the set of even functions on R/2πZ of mean value equal to zero. For all function v ∈ C 2,α even,0 (R/2πZ) whose norm is small enough, the domain C T 1+v is well defined for all T > 0 and standard results on Dirichlet eigenvalue problem (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF]) apply to give the existence, for all T > 0, of a unique positive function

φ = φ v,T ∈ C 2,α C T 1+v and a constant λ = λ v,T ∈ R such that φ is a solution to the problem (7)    ∆ g φ + λ φ = 0 in C T 1+v φ = 0 on ∂C T 1+v which is normalized by (8) C 2π 1+v φ x, T 2π t 2 dvol g = 1
In addition φ and λ depend smoothly on the function v, and φ = φ 1 , λ = λ 1 when v ≡ 0.

After canonical identification of ∂C T 1+v with S n-1 × R/T Z, we define the Dirichlet-to-Neumann operator N :

N (v, T ) = g(∇φ, ν) | ∂C T 1+v - 1 Vol g (∂C T 1+v ) ∂C T 1+v g(∇φ, ν) dvol g ,
where ν denotes the unit normal vector field to ∂C T 1+v and φ is the solution of [START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF]. A priori N (v, t) is a function defined over S n-1 × R/T Z, but it is easy to see that it depends only on the variable t ∈ R/T Z because v has such a property. For the same reason it is an even function, and moreover it is clear that its mean vanishes. If now we operate a rescaling and we define ( 9)

F (v, T ) (t) = N (v, T ) T 2π t ,
Schauder's estimates imply that F is well defined in a neighborhood of (0, T ) in the space C 2,α even,0 (R/2πZ) × R, and takes its values in C 1,α even,0 (R/2πZ). Our aim is to find a positive real number T * , a sequence T j → T * and a sequence of nonconstant functions v j ∈ C 2,α (R/2πZ) of mean equal to zero and converging to the zero function in the C 2,αnorm, such that F (v j , T j ) = 0. Observe that, with this condition, φ = φ v j ,T j will be the solution to the problem (3) and our Theorem 1.1 will be proved.

The linearized operator

Let k the sectional curvature of the manifold

M n (i.e. k = 1 if M n = S n and k = -1 if M n = H n ). If we choose spherical coordinates (r, θ), with θ ∈ S n-1 and r ∈ [0, +∞) if k < 0 and r ∈ [0, π] if k > 0, the usual metric in M n can be written as g M n = dr 2 + S k (r) 2 dθ 2 where S k (r) = sinh r if k = -1 sin r if k = 1
(see [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], Section II.5, Theorem 1).

Remark 2. According to Remark 1, when we consider

M n (k) instead of M n , we use spherical coordinates (r, θ), with θ ∈ S n-1 and r ∈ [0, +∞) if k < 0 and r ∈ [0, π/ √ k) if k > 0, and then the usual metric in M n (k) is g M n (k) = dr 2 + S k (r) 2 dθ 2 where S k (r) =        1 √ -k sinh( √ -k r) if k < 0 1 √ k sin( √ k r) if k > 0
(see [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], Section II.5, Theorem 1). The computations that follow are true in general for the manifold M n (k) × R, under the hypothesis that M n (k) contains properly a geodesic ball B 1 of radius 1. For the convenience of the reader, we consider only the cases k = 1 and -1 till Section 5, but Sections 6 and 7, which are the crucial part of this paper, will be established for any k = 0.

For all v ∈ C 2,α even,0 (R/2πZ) and all T > 0, let ψ be the (unique) solution (periodic with respect to the variable t) of ( 10)

   ∆ g ψ + λ 1 ψ = 0 in C T 1 ψ = -∂ r φ 1 v(2πt/T ) on ∂C T 1 which is L 2 (C T 1 )-orthogonal to φ 1 . The function φ 1 = φ 1 (r)
is the solution on C T 1 , for any T > 0, of (5) with L 2 -norm equal to 1. We define [START_REF] Hélein | A note on some overdetermined problems[END_REF] HT (v

) := ∂ r ψ + ∂ 2 r φ 1 v 2πt T ∂C T 1 .
By symmetry it is clear that HT (v) is a function only depending on t, then changing the variable we can define

(12) H T (v)(t) := HT (v) T 2π t .
The main result of this section is the:

Proposition 3.1.
The linearization of the operator F with respect to v computed at the point (0, T ) is given by H T .

Proof. To linearize the operator F (see ( 9)) with respect to v at (0, T ) we will compute

lim s→0 F (s w, T ) -F (0, T ) s .
Precisely we determine the first order approximation of F (s w, T ) with respect to the variable s. Let {e 1 , . . . , e n } denote an orthonormal basis of the tangent space to M n at the origin 0. Suppose that y = (y 1 , y 2 , . . . , y n ) are geodesic normal coordinates at 0 ∈ M n , and let x denote the point of M n whose geodesic coordinates are y. We parameterize

C T 1+sw on C 2π 1 by Y (x, t) := Exp 0 (1 + s χ(y) w) n 1 y i e i , T t 2π
for x ∈ M n and t ∈ R and where χ is a cutoff function identically equal to 0 when |y| ≤ 1/4 and identically equal to 1 when |y| ≥ 1/2. If we use the coordinates (r, θ, t), being (r, θ) the coordinates introduced at the beginning of Section 3, the map Y reduces to

(r, θ, t) → (1 + s χ(r) w) r , θ , T t 2π .
The metric induced by Y will be denoted by [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] ĝ := Y * g .

If φ solves ( 7) and [START_REF]Digital Library of Mathematical Functions[END_REF], then φ = Y * φ is solution (smoothly depending on the real parameter s) of ( 14)

   ∆ ĝ φ + λ φ = 0 in C 2π 1 φ = 0 on ∂C 2π 1
with λ = λ and satisfying (15)

C 2π 1 φ2 dvol ĝ = 1.
Consider the function φ 1 defined in ( 5) and [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF]. Clearly the function φ1 := Y * φ 1 solves

∆ ĝ φ1 + λ 1 φ1 = 0 and (16) φ1 (x, t) = φ 1 Exp 0 (1 + s w) n 1 y i e i , T t 2π
for |y| ≥ 1 2 . Writing φ = φ1 + ψ and λ = λ 1 + µ, we find out that ψ solves

(17)    ∆ ĝ ψ + (λ 1 + µ) ψ + µ φ1 = 0 in C 2π 1 ψ = -φ1 on ∂C 2π 1 with (18) 
C 2π 1 (2 φ1 ψ + ψ2 ) dvol ĝ = C 2π 1 φ 2 1 dvol g - C 2π 1+sw φ 2 1 dvol g .
Obviously ψ and µ are smooth functions of s. If s = 0, then C T 1+sw = C T 1 and in particular we have φ = φ 1 = φ1 , λ = λ 1 , ψ ≡ 0, µ = 0 and ĝ = g. We set ψ := ∂ s ψ| s=0 and μ := ∂ s µ| s=0 .

Differentiating ( 17) with respect to s and evaluating the result at s = 0, we obtain

(19)    ∆ g ψ + λ 1 ψ + μ φ 1 = 0 in C 2π 1 ψ = -∂ r φ 1 w on ∂C 2π 1
because from ( 16), differentiation with respect to s at s = 0 yields ∂ s φ1 | s=0 = ∂ r φ 1 w, where r = r(x).

Differentiating ( 18) with respect to s and evaluating the result at s = 0, we obtain (20)

C 2π 1 φ 1 ψ dvol g = 0.
Indeed, the derivative of the right hand side of ( 18) with respect to s vanishes when s = 0 since φ 1 vanishes identically on ∂C 2π 1 . If we multiply the first equation of ( 19) by φ 1 and we integrate it over C 2π 1 , using (20) we get:

C 2π 1 (φ 1 ∆ g ψ + μ φ 2 1 ) dvol g = 0.
By Gauss-Green Theorem and the boundary conditions φ 1 = 0, ψ = -∂ r φ 1 w, we deduce the following identity

C 2π 1 φ 1 ∆ g ψ dvol g = C 2π 1 ψ ∆ g φ 1 dvol g + ∂C 2π 1 w ∂ ν φ 1 ∂ r φ 1 dvol g ,
where ∂ ν φ 1 is the normal derivative of φ 1 and ν is the unit normal vector to ∂C 2π 1 . The first term of right hand side is easily seen to vanish by multiplying by ψ the equation satisfied by φ 1 and integrating. As s = 0, then the formula [START_REF] Pedrosa | Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems[END_REF] shown below, says that the

∂ ν φ 1 = ∂ r φ 1 on ∂C 2π
1 . Since on this set ∂ ν φ 1 is constant and the average of w is 0 we conclude that μ = 0. Consequently the 2π-periodic function ψ(x, t) is related to the solution ψ(x, t) of ( 10) by the identity ψ(x, t) := ψ(x, 2πt/T ), using v = w. We proved that φ(x, t) = φ1 (x, t) + s ψ(x, T t/2π) + O(s 2 ).

In particular, in

C 2π 1 \ C 2π 3/4 , we have φ(x, t) = φ 1 Exp 0 (1 + s w) n 1 y i e i , T t/2π + s ψ(x, T t/2π) + O(s 2 ) = φ 1 (x, T t/2π) + s (w r(x) ∂ r φ 1 + ψ(x, T t/2π)) + O(s 2 ).
To complete the proof of the result, we will compute ĝ(∇ φ, ν) on the boundary of C 2π 1 . Such a function is the normal derivative of φ when the normal is computed with respect to the metric ĝ. We now use the coordinates (r, θ, t).

In C 2π 1 \ C 2π 3/4 the metric ĝ equals ĝ = (1 + sw) 2 dr 2 + 2sr w (1 + sw) drdt + T 2π 2 + s 2 r 2 (w ) 2 dt 2 + S 2 k ((1 + sw)r) dθ 2 .
It follows from this expression that the unit normal vector field to ∂C 2π 1 for the metric ĝ is given by

(21) ν = (1 + s w) -1 + O(s 2 ) ∂ r + O(s) ∂ t .
As a result, on ∂C 2π 1 ,

ĝ(∇ φ, ν) = ∂ r φ 1 + s w ∂ 2 r φ 1 + ∂ r ψ(x, T t/2π) + O(s 2 ). On ∂C 2π
1 the term w ∂ 2 r φ 1 + ∂ r ψ(x, T t/2π) has mean equal to zero and ∂ r φ 1 is constant. Using ĝ(∇ φ, ν) to compute F (sw), we get that the linearized of F is H T . 2

The structure of the linearized operator

Let v ∈ C 2,α even,0 (R/2πZ). Recalling that the mean of v is zero and the fact that v is even, by Fourier expansion v can be written as

(22) v = j≥1 a j cos(jt).
Observe that in principle φ 1 is only defined in the cylindrical domain C 2π 1 , however, this function being radial in the first n variables and not depending on t, it is a solution of a second order ordinary differential equation and then it can be extended at least in a neighborhood of ∂C 2π

1 . We will need the following:

Lemma 4.1. Assume that v ∈ C 2,α
even,0 (R/2πZ) and write v as in [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF]. For T > 0 we define

φ 0 (x, t) = ∂ r φ 1 (x) v(2πt/T )
where r = r(x). Then

(23) ∆ g φ 0 + λ 1 φ 0 = ∂ r φ 1 j≥1 a j 1 S k (r) 2 cos 2πjt T n -1 - 2πj T 2 S k (r) 2 .
Proof : The Laplace-Beltrami operator for the metric g can be written as

∆ g = ∂ 2 r + (n -1) C k (r) S k (r) ∂ r + 1 S k (r) 2 ∆ S n-1 + ∂ 2 t where C k (r) = cosh r if k = -1 cos r if k = 1
(see [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], Section II.5, Theorem 1). Then it is easy to compute

∆ g ∂ r φ 1 = -λ 1 ∂ r φ 1 + n -1 S 2 k (r) ∂ r φ 1 and ∆ g φ 0 = -λ 1 φ 0 + ∂ r φ 1 j≥1 a j 1 S k (r) 2 cos 2πjt T n -1 - 2πj T 2 S k (r) 2 .
This completes the proof of the result. 2

Remark 3. With respect to Remark 2 we give the formula of C k (r) when k / ∈ {-1, 1}. In fact, we have

C k (r) = cosh( √ -k r) if k < 0 cos( √ k r) if k > 0 .
We investigate now the structure of the linearized operator H T . The main result of this section is the: Proposition 4.2. For all T > 0, the operator

H T : C 2,α even,0 (R/2πZ) -→ C 1,α even,0 (R/2πZ
), is a self adjoint, first order elliptic operator preserving, for all j ∈ N\{0}, the eigenspace V j spanned by the function cos(jt).

Proof. The fact that H T is a first order elliptic operator is standard since it is the sum of the Dirichlet-to-Neumann operator for ∆ g + λ 1 and a constant times the identity. In particular, elliptic estimates yield

H T (w) C 1,α even,0 (R/2πZ) ≤ c w C 2,α even,0 (R/2πZ
) . The fact that the operator H T is (formally) self-adjoint is easy. Let ψ 1 (resp. ψ 2 ) the solution of (10) corresponding to the function w 1 (resp. w 2 ). Let ψi (x, t) = ψ i (x, T t/2π). We compute

∂ r φ 1 (1) 2π 0 (H T (w 1 ) w 2 -w 1 H T (w 2 )) dt = ∂ r φ 1 (1) 2π 0 (∂ r ψ1 w 2 -∂ r ψ2 w 1 ) dt = 2π 0 ( ψ1 ∂ r ψ2 -ψ2 ∂ r ψ1 ) dt = 1 Vol g (S n-1 ) C 2π 1 ( ψ1 ∆ g ψ2 -ψ2 ∆ g ψ1 ) dvol g = 0.
To prove the other statements, we define for all v ∈ C 2,α even,0 (R/2πZ) written as in ( 22), Ψ to be the continuous solution of ( 24)

       ∆ g Ψ + λ 1 Ψ = ∂ r φ 1 j≥1 a j 1 S k (r) 2 cos 2πjt T n -1 - 2πj T 2 S k (r) 2 in C T 1 Ψ = 0 on ∂C T 1 .
Observe that ∂ r φ 1 vanishes at first order at r = 0 and hence the right hand side is smaller than a constant times r -1 near the origin. Standard elliptic estimates then imply that the solution Ψ is at least continuous near the origin (the right side of (24) belongs to the space L p (C T 1 ) for each p < n, then the solution Ψ belongs to the Sobolev space W 2,p (C T 1 ) for each p < n, and by the Sobolev embedding theorem for a compact domain Ω we have W 2,p (Ω) ⊆ C 0,α (Ω) for p ≥ n 2-α ). A straightforward computation using the result of Lemma 4.1 and writing Ψ(x, t) = ψ(x, t)

+ ∂ r φ 1 (x) v(2πt/T ), shows that (25) HT (v) = ∂ r Ψ| ∂C T 1 .
By this alternative definition, it is clear that H T preserves the eigenspaces V j and in particular, H T maps into the space of functions whose mean is zero.
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By the previous proposition

(26) HT (v) = j≥1 σ j (T ) a j cos 2πjt T ,
where σ j (T ) are the eigenvalues of H T with respect to the eigenfunctions cos(jt). From ( 11), ( 26) and [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] we deduce that

ψ = j≥1 c j (r) a j cos 2πjt T ,
where c j is the continuous solution on [0, 1] of ( 27)

∂ 2 r + (n -1) C k (r) S k (r) ∂ r + λ 1 c j - 2πj T 2 c j = 0, with c j (1) = -∂ r φ 1 (1). Then (28) σ j (T ) = ∂ r c j (1) + ∂ 2 r φ 1 (1).
Our next task is to find the kernel of the operator H T . For this it is enough to study the eigenvalues σ j . We remark that if we set

j T = 1 D ,
for T > 0, from [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF] we obtain that

σ j (T ) = σ 1 (D).
Then, in order to study the kernel of the linearized operator, it suffices to consider only the first eigenvalue σ 1 . For this aim we will use Legendre and Ferrers functions.

To simplify the notation, in the sequel we will drop the lower index 1 , and we set σ 1 = σ.

Recollection on Legendre and Ferrers functions

In what follows we shall use several properties of associated Legendre and Ferrers functions. For the convenience of the reader, we recall their definitions and some properties. This section can be skipped by the reader who is familiar with these functions. For more details we refer to [START_REF]Digital Library of Mathematical Functions[END_REF][START_REF] Lebedev | Special functions and their applications[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF]. 5.1. Legendre functions. The (general) Legendre equation in the variable z ∈ C (see [START_REF] Olver | Asymptotics and special functions[END_REF], 5.12) is

(29) (1 -z 2 ) d 2 w dz 2 -2z dw dz + ν(ν + 1) - µ 2 1 -z 2 w = 0
where µ, ν are complex parameters. To solve this equation one considers special solutions to the hypergeometric equation:

z(1 -z) d 2 u dz 2 + {c -(a + b + 1)z} du dz -abu = 0,
where a, b, c ∈ C. The solutions to this equation can be found by the power series method.

If we consider a series centered at z = 0 we find a series which is convergent for |z| < 1 and whose sum is known as hypergeometric function:

F (a, b; c; z) = ∞ s=0 (a) s (b) s (c) s z s s! ,
where c > 0 (see [START_REF] Olver | Asymptotics and special functions[END_REF], 9.02, p.159). Let Γ be the Gamma function and let (•) s denote the Pochammer symbol

(q) n = 1 if n = 0 q (q + 1) (q + 2) • • • (q + n -1) if n ≥ 1 .
The Olver hypergeometric function F (see [START_REF] Olver | Asymptotics and special functions[END_REF], 9.03, p.159) is defined by

F(a, b; c; z) = F (a, b; c; z) Γ(c) = ∞ s=0 (a) s (b) s Γ(c + s) z s s!
for |z| < 1 and extended to |z| ≥ 1 by analytic continuation. Such a function presents the advantage of being defined for all values of c. Using the Olver hypergeometric function we can construct a first solution of ( 29):

(30)

P -µ ν (z) = z -1 z + 1 µ/2 F ν + 1 , -ν ; µ + 1 ; 1 -z 2 .
A second solution can be built from the first one by using the fact that also

(-z) a F a, 1 + a -c, 1 + a -b, 1 z
is a solution to the hypergeometric equation and replacing a = ν + 1, b = -ν, c = µ + 1 and z by 1-z 2 . We get (after multiplication by 2 ν Γ(ν + 1)):

(31) Q µ ν (z) = 2 ν Γ(ν + 1) (z -1) µ/2-ν-1 (z + 1) µ/2 F ν + 1 , ν -µ + 1 ; 2ν + 2 ; 2 1 -z .
Because the Legendre equation is unchanged by replacing µ by -µ or ν by -ν -1, functions

P ±µ ν (z), P ±µ -ν-1 (z), Q ±µ ν (z), Q ±µ -ν-1 (z)
, are all solutions, but only the following four of them are distinct:

P ±µ ν (z), Q µ ν (z), Q µ -ν-1 (z) .

Finding a formula for σ(T ) via Legendre and Ferrers functions

We are going now to study the first eigenvalue σ 1 (T ) = σ(T ) of the linearized operator H T . For this we need a formula of σ(T ). Recall that ( 44)

σ(T ) = c (1) + φ (1) ,
where φ(r) is the bounded solution of the ordinary differential equation ( 45)

u (r) + (n -1) C k (r) S k (r) u (r) + λ 1 u(r) = 0
such that φ(1) = 0 and φ(r) > 0 on [0, 1), and normalized by [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], and c(r) is the continuous solution on [0, 1] of the ordinary differential equation ( 46)

u (r) + (n -1) C k (r) S k (r) u (r) + λ 1 - 2π T 2 u(r) = 0 such that c(1) = -φ (1)
. We observe that φ (1) = 0 otherwise φ(r) ≡ 0. Indeed the solution of (45) satisfying also φ(1) = φ (1) = 0 is the function identically equal to zero.

The general solution of (45) can be found as follows. The function

p(r) := S k (r) n 2 -1 u(r) satisfies: p (r) + C k (r) S k (r) p (r) + λ 1 + k n 2 -1 + n 2 -1 C k (r) S k (r) 2 p(r) = 0.
By the change of variable x = x(r) = C k (r), we get that the function w(x) = p(r(x))

satisfies [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF] after replacing z by the real variable x and setting

µ = n -2 2 , ν = - 1 2 + (n -1) 2 4 + λ 1 k .
When (n-1) 2
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+ λ 1 k < 0 then we will always consider the square root having positive imaginary part. In other terms Im(ν) > 0. The general solution to (29) can be expressed as linear combination of

P µ ν (x), Q µ ν (x) if k < 0 and of P µ ν (x), Q µ ν (x) if k > 0.
Consequently the general solution to (45) is:

(47) u(r) =    a (S k (r)) 1-n 2 P µ ν (C k (r)) + b (S k (r)) 1-n 2 Q µ ν (C k (r)) if k > 0 a (S k (r)) 1-n 2 P µ ν (C k (r)) + b (S k (r)) 1-n 2 Q µ ν (C k (r)) if k < 0.
Lemma 5.1 says that such functions are, in some cases, unbounded on [0, 1]. They can diverge as r tends to 0, as specified below. Q µ ν (C k (r)) is unbounded for: a) Re(µ) > 0 and

µ + ν = -1, -2, -3, . . .; b) µ = 0. P µ ν (C k (r)) is unbounded if µ is half-integer (that is n is odd). Q µ ν (C k (r)) is unbounded if µ is integer (that is n is even). P µ ν (C k (r)) is unbounded if µ is half-integer (that is n is odd). Furthermore, the function Q µ ν (C k (r)) is bounded if µ is half-integer, but it is a complex valued function.
If µ is half-integer, then a bounded real valued solution to equation ( 45) is P -µ ν (x) if k < 0, and P -µ ν (x) if k > 0 (see ( 35), (40) with µ replaced by -µ). Formulas ( 32) and (34) show that the function P -µ ν (x) is a linear combination of P µ ν (x), Q µ ν (x), and P -µ ν (x) is a linear combination of P µ ν (x), Q µ ν (x). Consequently:

φ(r) =              s (S k (r)) 1-n 2 P µ ν (C k (r)), if k > 0, µ integer s (S k (r)) 1-n 2 P -µ ν (C k (r)), if k > 0, µ half-integer s (S k (r)) 1-n 2 P µ ν (C k (r)), if k < 0, µ integer s (S k (r)) 1-n 2 P -µ ν (C k (r)), if k < 0, µ half-integer
where s is a constant chosen in order to ensure the conditions φ(r) > 0 for r ∈ [0, 1) and ( 6). The value of eigenvalue λ 1 which appears in ν is the smallest positive real number so that φ(1) = 0.

In order to find the function c(r) we set

ν * = - 1 2 + (n -1) 2 4 + λ 1 -4π 2 T 2
k .

When (n-1) 2 4 + λ 1 -4π 2 T 2 k
< 0 then we will always suppose that the imaginary part of ν * is positive. By the same reasoning we did for φ, we find that the solution of ( 46) is given by ( 48)

c(r) =              A (S k (r)) 1-n 2 P µ ν * (C k (r)), if k > 0, µ integer A (S k (r)) 1-n 2 P -µ ν * (C k (r)), if k > 0, µ half-integer A (S k (r)) 1-n 2 P µ ν * (C k (r)), if k < 0, µ integer A (S k (r)) 1-n 2 P -µ ν * (C k (r)), if k < 0, µ half-integer
where A is a constant that can be determined using the boundary condition c(1) = -φ (1).

In the next two sections we will study σ(T ). An essential ingredient will be the following:

Proposition 6.1. The following facts hold:

(1) Let r 0 > 0 be the n-th zero of the associated Legendre function P µ -1

case instead of (50) we have:

z 0 -1 (P µ ν ) 2 dx = (z 2 0 -1) 2τ (P µ ν ) (z 0 ) ∂(P µ ν ) ∂τ (z 0 ).
Plugging it into (49) (which is true also for P µ ν ), we get:

dz 0 dτ = - 2τ (z 2 0 -1) 1 ((P µ ν ) (z 0 )) 2 z 0 -1 (P µ ν ) 2 dx > 0.
Now we consider the identity z 0 = cos(r 0 ) then

dz 0 dτ = dz 0 dr 0 dr 0 dτ = -sin(r 0 ) dr 0 dτ .
As a consequence:

dr 0 dτ = - 1 sin(r 0 ) dz 0 dτ < 0.
This completes the proof of the proposition. 2

Study of σ(T )

It is easy to see that σ(T ) is analytic. This fact comes from the following remark: if K is an invertible operator and I is the identity, then for T > 0 and any continuous function v, the solution u of K -1 T 2 ρ I u = v is analytic with respect to T for each constant ρ (this follows from the equality

(I -sK) -1 = n≥0 s n K n
for each s ∈ R). Then to prove that c is analytic it suffices to take

K = ∂ 2 r + (n -1) C k (r) S k (r) ∂ r + λ 1 , v = 0, ρ = (2π) 2 .
We conclude that c (1) is analytic with respect to T , and from (28) follows the analyticity of σ. The following proposition shows the behavior of σ at 0 + and +∞.

Proposition 7.1. The function σ(T ) satisfies

lim T →0 + σ(T ) = +∞ and lim T →+∞ σ(T ) = -∞.
Proof. We consider independently four cases, according if the dimension n is odd or even and if the curvature k of M n is positive (S n ) or negative (H n ). According to remark 2, we could use k = 0 instead of k ∈ {-1, 1}. For this reason, in the following computation we will distinguish the case k < 0 and k > 0 and we do not replace k by its value. Furthermore, as σ(T ) = c (1) + φ (1) and φ (1) does not depend on T and it is bounded, then it suffices to study the behavior of c (1).

First case: n even and k negative. If n is even then µ is integer. So, we are in the case k < 0 and µ integer, and then the derivative of c(r) is

c (r) = A 1 - n 2 S -n 2 k (r) C k (r) P µ ν * (C k (r)) -k A S 2-n 2 k (r) (P µ ν * ) (C k (r)) .
The last summand can be expressed in terms of P µ ν * and P µ+1 ν * using formula 7.12.17, page 195 [START_REF] Lebedev | Special functions and their applications[END_REF]:

(51) (P µ ν * (x)) = 1 x 2 -1 (x 2 -1) P µ+1 ν * (x) + µ x P µ ν * (x) . If x = C k (r) then C 2 k (r) -1 = -k S 2 k (r) and C 2 k (r) -1 = √ -k S k (r). As a consequence (P µ ν * ) (C k (r)) = 1 -k S 2 k (r) √ -k S k (r) P µ+1 ν * (C k (r)) + µ C k (r) P µ ν * (C k (r))
and

c (r) = A 1 - n 2 S -n 2 k (r) C k (r) P µ ν * (C k (r)) + + A S -n 2 k (r) √ -k S k (r) P µ+1 ν * (C k (r)) + µ C k (r) P µ ν * (C k (r)) = = A S -n 2 k (r) C k (r) P µ ν * (C k (r)) 1 - n 2 + µ + √ -k S k (r) P µ+1 ν * (C k (r)) = A √ -k S 1-n 2 k (r) P µ+1 ν * (C k (r)
) . If we replace ν * by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ (r) = s √ -k S 1-n 2 k (r) P µ+1 ν (C k (r)) . As A = - φ (1) S 1-n 2 k (1)P µ ν * (C k (1)) = - s √ -k P µ+1 ν (C k (1)) P µ ν * (C k (1)) , then the function c (r) is c (r) = s k P µ+1 ν (C k (1)) P µ ν * (C k (1)) S 1-n 2 k (r) P µ+1 ν * (C k (r)) . Consequently c (1) + φ (1) = s k S 1-n 2 k (1) P µ+1 ν (C k (1)) P µ ν * (C k (1)) P µ+1 ν * (C k (1)) + φ (1) .
We remark that lim

T →+∞ ν * = ν .
Consequently the numerator of c (1) tends to

s k S 1-n 2 k (1) (P µ+1 ν (C k (1))) 2
when T goes to +∞. We observe that

ν = - 1 2 + (n -1) 2 4 + λ 1 k
has a non-vanishing imaginary part because k < 0 and λ 1 > -k (n-1) 2
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. As Im(ν * ) < Im(ν), then Proposition 6.1 ensures that the first positive zero of P µ ν * (C k (r)) is bigger than 1. Indeed from the definition of φ and φ(1) = 0, it is easily seen that ). By definition, s has the same sign as

P µ ν (C k (1)) = 0. Furthermore P µ ν * (C k (1)) > 0 if P µ ν (C k (r)) > 0 for r ∈ [0, 1) or P µ ν * (C k (1)) < 0 if P µ ν (C k (r)) < 0 for r ∈ [0, 1
P µ ν (C k (r)) on r ∈ [0, 1). Then, if s > 0, lim ν * →ν P µ ν * (C k (1)) = 0 + (= P µ ν (C k (1))), i.e. lim ν * →ν 1 P µ ν * (C k (1)) = +∞ . Similarly lim ν * →ν 1 P µ ν * (C k (1)) = -∞ , if s < 0. We conclude that lim T →+∞ σ(T ) = lim T →+∞ [c (1) + φ (1)] = -∞.
Now we consider the limit of σ(T ) as T → 0 + . As k < 0 then

lim T →0 + ν * = lim T →0 + - 1 2 + (n -1) 2 4 + λ 1 -4π 2 T 2 k := ν ∞ = +∞.
That says also that for T small enough, ν * is real. Let us observe that c (1) can be written in the following form:

c (1) = -φ (1) √ -k P µ+1 ν * (C k (1)) P µ ν * (C k (1)) 
. Formula 14.15.13 [START_REF]Digital Library of Mathematical Functions[END_REF] provides the asymptotic behaviour of P -µ ν * with respect to ν * :

(52)

P -µ ν * (C k (1)) ∼ 1 (ν * ) µ 1 sinh(1) I µ ν * + 1 2
where I µ denotes the modified Bessel function of first kind (we refer to [START_REF] Lebedev | Special functions and their applications[END_REF] for basic facts about Bessel functions). To get the asymptotic expression for P µ ν * (C k (1)) we use the following identity (53)

P µ ν * = Γ(ν * + µ + 1) Γ(ν * -µ + 1) P -µ ν *
which follows from (32) using the fact that µ is integer. Notice that Γ(ν * +µ+1) Γ(ν * -µ+1) ∼ (ν * ) t for ν * big, where t = 2µ if µ is integer and t = 2µ + 1 if µ is not integer. We are considering the case µ is integer, then from (52) we get (54)

P µ ν * (C k (1)) ∼ (ν * ) µ 1 sinh(1) I µ ν * + 1 2
for ν * big. Observe that (55)

I µ ν * + 1 2 ∼ e ν * + 1 2 π(2ν * + 1)
for ν * big. This implies that

P µ+1 ν * (C k (1)) P µ ν * (C k (1)) ∼ ν * I µ+1 ν * + 1 2 I µ ν * + 1 2 ∼ ν * for ν * big, and in conclusion c (1) ∼ -φ (1) √ -k ν * for ν * big. As φ (1) < 0, we conclude that lim T →0 + σ(T ) = lim T →0 + [c (1) + φ (1)] = +∞.
Second case: n odd and k negative. If n is odd, then µ is half-integer. If k < 0 and µ is half-integer, then c(r) is given by

c(r) = A S 1-n 2 k (r) P -µ ν * (C k (r))
where A is the constant such that c(1) = -φ (1). Moreover

φ(r) = s S 1-n 2 k (r) P -µ ν (C k (r))
where s is a constant such that φ(r) > 0 for r ∈ [0, 1) and ( 6). Moreover we have φ(1) = 0. Using (51) with µ replaced by -µ, we get:

(P -µ ν * ) (C k (r)) = 1 -k S 2 k (r) √ -k S k (r) P -µ+1 ν * (C k (r)) -µ C k (r) P -µ ν * (C k (r))
and

c (r) = A 1 - n 2 S -n 2 k (r) C k (r)P -µ ν * (C k (r)) + + A S -n 2 k (r) √ -k S k (r) P -µ+1 ν * (C k (r)) -µ C k (r) P -µ ν * (C k (r)) = A S -n 2 k (r) C k (r) P -µ ν * (C k (r)) 1 - n 2 -µ + √ -k S k (r) P -µ+1 ν * (C k (r)) = A [ √ -k S 1-n 2 k (r) P -µ+1 ν * (C k (r)) -2µ C k (r) S -n 2 k (r) P -µ ν * (C k (r))]
If we replace ν * by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ (r) = s [ √ -k S 1-n 2 k (r) P -µ+1 ν (C k (r)) -2µ C k (r)S -n 2 k (r) P -µ ν (C k (r))]. As a consequence φ (1) = s √ -k S 1-n 2 k (1) P -µ+1 ν (C k (1)) because P -µ ν (C k (1)) = 0. From c(1) = -φ (1)
, we get the value of the constant A:

A = - φ (1) 
S 1-n 2 k (1) P -µ ν * (C k (1)) = -s √ -k P -µ+1 ν (C k (1)) P -µ ν * (C k (1)) 
.

If T → 0 + , then ν * → +∞. If ν * is big enough, then (52) gives the asymptotic behaviour for ν * big:

P -µ ν * (C k (1)) ∼ 1 (ν * ) µ 1 sinh(1) I µ ν * + 1 2 .
The asymptotic behaviour of I µ is described by (55). Consequently

c (1) = A[ √ -k S 1-n 2 k (1) P -µ+1 ν * (C k (1)) -2µ C k (1) S -n 2 k (1)P -µ ν * (C k (1))] = -φ (1) S 1-n 2 k 
(1)

P -µ ν * (C k (1)) √ -k S 1-n 2 k (1) P -µ+1 ν * (C k (1)) ∼ -φ (1) √ -k (ν * ) µ (ν * ) µ-1 I µ ν * + 1 2 I µ-1 ν * + 1 2 ∼ -φ (1) √ -k ν *
As φ (1) < 0, k < 0, we conclude that

lim T →0 + σ(T ) = lim T →0 + [c (1) + φ (1)] = +∞.
It remains to study the behaviour of σ(T ) as T → +∞. In this case ν * → ν. Proposition 6.1 ensures that, the first positive zero of P -µ ν * (C k (r)) is bigger than 1. Consequently lim

ν * →ν 1 P µ ν * (C k (1)) = +∞ if P µ ν (C k (r)) > 0 on [0, 1) (that is s > 0) and lim ν * →ν 1 P µ ν * (C k (1)) = -∞ if P µ ν (C k (r)) < 0 on [0, 1) (that is s > 0)
. In other terms such a limit has the same sign as s. Moreover the numerator of c (1) tends to

-s S 1-n 2 k (1) [ √ -k P -µ+1 ν (C k (1))] 2 .
Then lim

T →+∞ σ(T ) = lim T →+∞ [c (1) + φ (1)] = -∞ .
Third case: n even and k positive. If n is even then µ is integer. If k > 0 and µ is integer then the function c(r) is given by the first line of (48). As a consequence

c (r) = A 1 - n 2 S -n 2 k (r) C k (r) P µ ν * (C k (r)) -k A S 2-n 2 k (r) (P µ ν * ) (C k (r)).
The derivative (P µ ν * ) (x) is expressed in terms of P µ+1 ν * (x) and P µ ν * (x) using

(56) (P µ ν (x)) = 1 x 2 -1 √ 1 -x 2 P µ+1 ν (x) + x µ P µ ν (x) .
Replacing x by C k (r) we get:

(P µ ν ) (C k (r)) = 1 -k S 2 k (r) √ k S k (r) P µ+1 ν (C k (r)) + C k (r) µ P µ ν (C k (r)) .
from which it follows:

c (r) = A 1 -n 2 S -n 2 k (r) C k (r) P µ ν * (C k (r)) + +A S -n 2 k (r) √ k S k (r) P µ+1 ν * (C k (r)) + µ C k (r) P µ ν * (C k (r)) = A S -n 2 k (r) C k (r) P µ ν * (C k (r)) (1 -n 2 + µ) - √ k S k (r) P µ+1 ν * (C k (r)) = A √ k S 1-n 2 k
(r) P µ+1 ν * (C k (r)). The constant A is determined in order to have c(1) = -φ (1). The function φ is defined by

φ(r) = s S 1-n 2 k (r) P µ ν (C k (r))
, where s is the constant such that φ(r) > 0 for r ∈ [0, 1). To get the expression of its derivative, we replace A by s and ν * by ν in the expression of c (r) :

φ (r) = s √ k S 1-n 2 k (r) P µ+1 ν (C k (r)).
The value of the constant A is given by

A = - φ (1) 
S 1-n 2 k (1) P µ ν * (C k (1)) = -s √ k P µ+1 ν (C k (1)) P µ ν * (C k (1))
.

So c (1) is given by c (1) = -φ (1)

√ k P µ+1 ν * (C k (1)) P µ ν * (C k (1)) = -s k P µ+1 ν (C k (1)) P µ ν * (C k (1)) S 1-n 2 k (r) P µ+1 ν * (C k (1)) .
We need to estimate the limit as T → 0 + of (59)

P µ+1 ν * (x) P µ ν * (x) = - Γ(ν * + µ + 2) Γ(ν * -µ) Γ(ν * -µ + 1) Γ(ν * + µ + 1) P -µ-1 ν * (x) P -µ ν * (x) = -(ν * + µ + 1)(ν * -µ) P -µ-1 ν * (x) P -µ ν * (x)
.

Observe that

(ν * + µ + 1)(ν * -µ) = (ν * ) 2 + ν * -µ -µ 2 = - 1 2 + iτ 2 - 1 2 + iτ -µ -µ 2 = - 1 4 -τ 2 -µ -µ 2 < 0.
This implies that (60)

P µ+1 ν * (C k (1)) P µ ν * (C k (1)) ∼ τ 2 τ µ τ µ+1 I µ+1 (τ ) I µ (τ ) ∼ τ,
for τ big, since I µ (τ ) ∼ e τ √ 2πτ (formula 5.16.5 [START_REF] Lebedev | Special functions and their applications[END_REF]). In conclusion for τ big, c (1) ∼ -φ (1)

√ k P µ+1 ν * (C k (1)) P µ ν * (C k (1)) ∼ -φ (1) √ k τ.
As φ (1) < 0, then we conclude that

lim T →0 + σ(T ) = lim T →0 + [c (1) + φ (1)] = +∞.
Fourth case: n odd and k positive. If n is odd then µ is half-integer. If k > 0 and µ is half-integer, then c(r) is given by

c(r) = A S 1-n 2 k (r) P -µ ν * (C k (r)) where A is the constant such that c(1) = -φ (1). Moreover φ(r) = s S 1-n 2 k (r) P -µ ν (C k (r))
where s is the constant such that φ(r) > 0 for r ∈ (0, 1) and ( 6). Moreover we have φ(1) = 0. Using (56) with µ replaced by -µ, we get:

(P -µ ν * ) (C k (r)) = 1 -k S 2 k (r) √ k S k (r) P -µ+1 ν * (C k (r)) -µ C k (r) P -µ ν * (C k (r))
and

c (r) = A 1 - n 2 S -n 2 k (r) C k (r) P -µ ν * (C k (r)) + + A S -n 2 k (r) √ k S k (r) P -µ+1 ν * (C k (r)) -µ C k (r) P -µ ν * (C k (r)) = A S -n 2 k (r) C k (r) P -µ ν * (C k (r))(1 - n 2 -µ) + √ k S k (r) P -µ+1 ν * (C k (r)) = A [ √ k S 1-n 2 k (r) P -µ+1 ν * (C k (r)) -2µ C k (r) S -n 2 k (r) P -µ ν * (C k (r))
]. If we replace ν * by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ (r) = s[ √ k S 1-n 2 k (r) P -µ+1 ν (C k (r)) -2µ C k (r) S -n 2 k (r) P -µ ν (C k (r))] from which φ (1) = s √ k S 1-n 2 k (1) P -µ+1 ν (C k (1)) .
From c(1) = -φ (1), we get the value of the constant A:

A = -φ (1) S 1-n 2 k (r) P -µ ν * (C k (r)) = -s √ k P -µ+1 ν (C k (1)) P -µ ν * (C k (1)) 
.

If T → 0 + then Im(ν * ) → τ ∞ = +∞.
For T big enough, ν * is a real number and if T → +∞, then ν * → ν ∈ R. If ν * is big enough, then (52) gives the asymptotic behaviour for ν * big:

P -µ ν * (C k (1)) ∼ 1 (ν * ) µ 1 sinh(1) I µ ((ν * + 1/2)).
The asymptotic behaviour of I µ is described by (55). Consequently

c (1) = A[ √ kS 1-n 2 k (1)P -µ+1 ν * (C k (1)) -2µC k (1)S -n 2 k (1)P -µ ν * (C k (1))] ∼ -φ (1) 
√ k P -µ+1 ν * (C k (1)) P -µ ν * (C k (1)) ∼ -φ (1) √ k (ν * ) µ (ν * ) µ-1 I µ ((ν * + 1/2)) I µ-1 ((ν * + 1/2)) ∼ -φ (1) 
√ kν * .

As -φ (1) > 0, then we conclude that lim T →0

[c (1) + φ (1)] = +∞.

It remains to study the behaviour of σ(T ) as T → +∞. If T → +∞ then ν * → ν increasing (for T big enough ν * is real). Proposition 6.1 ensures that, the first positive zero of P -µ ν * (C k (r)) is bigger than 1. Consequently lim

ν * →ν 1 P µ ν * (C k (1)) = +∞ if P µ ν (C k (r)) > 0 on [0, 1) (that is s > 0) and lim ν * →ν 1 P µ ν * (C k (1)) = -∞ if P µ ν (C k (r)) < 0 on [0, 1 
) (that is s < 0). In other terms such a limit has the same sign as s. The numerator of c (1) tends to

-s k S 1-n 2 k (1) [P -µ+1 ν (C k (1))] 2 .

As a conclusion lim

T →+∞ σ(T ) = lim T →+∞ [c (1) + φ (1)] = -∞ .
This completes the proof of the proposition. 2

Lyapunov-Schmidt reduction and bifurcation

In view of the analyticity of σ (showed in section 7) and Proposition 7.1, σ has at least a zero and the set of the zeros of σ is finite. Let {0 1 , 0 2 , ..., 0 p } denotes the set of the zeros of σ, and let T * be the smallest zero such that σ changes sign at T * , say T * = 0 q (the existence of T * follows also from the analyticity of σ and Proposition 7.1). It is clear then the eigenspace V 1 (defined in Proposition 4.2) belongs to the kernel of H T * . As σ j (T ) = σ(T /j) we obtain that σ j is analytic on T and the set of the zeros of σ j is {j 0 1 , j 0 2 , ..., j 0 p }. It is clear that if j is big enough then T * / ∈ {j 0 1 , j 0 2 , ..., j 0 p }, and this means that V j does not belong to the kernel of H T * for almost all j. This implies that the kernel of H T * is of the form

V j 1 ⊕ • • • ⊕ V j l with 1 = j 1 < • • • < j l . Moreover if V j i ⊂ Ker(H T *
) and j i = 1 then the function σ j i (T ) does not change sign at T * by the definition of T * .

We summarize such facts in the following proposition, where we use also the ellipticity of the linearized operator H T given by Proposition 4.2. Proposition 8.1. There exists a positive real number T * such that the kernel of H T * is given by V

j 1 ⊕ • • • ⊕ V j l , with 1 = j 1 < • • • < j l .
Moreover the eigenvalue associated to the eigenspace V 1 , considered as a function on T , changes sign at T * , and the eigenvalues associated to the other eigenspaces V j 2 , ..., V j l , always considered as functions on T , do not change sign at T * . There exists a constant c > 0 such that

w C 2,α even,0 (R/2πZ) ≤ c H T * (w) C 1,α even,0 (R/2πZ) , provided w is L 2 (R/2πZ)-orthogonal to V 0 ⊕V j 1 ⊕• • •⊕V j l ,
where V 0 is the space of constant functions.

Such proposition says us that the operator H T * has finite-dimensional kernel, and that it is an isomorphism from the orthogonal to its kernel over its image (see also Proposition 4.2 and its proof). We are going to use now these two properties.

Consider the space C 2,α even,0 (R/2πZ) × (0, +∞). Clearly the curve Ξ = {(v, T ) : v ≡ 0} in C 2,α even,0 (R/2πZ) × (0, +∞) belongs to the zero level set of the operator F , i.e. its points solve the equation F (v, T ) = 0. In this section we prove that (0, T * ) is a bifurcation point of Ξ for the zero level set of the operator F . Proposition 8.1 ensures that the kernel of the operator H T * is finite-dimensional and it equals V j 1 ⊕ • • • ⊕ V j l . Let Q be the projection operator onto the image of H T * and Q • F the composition of operators F and Q. We write a function v ∈ C 2,α even,0 (R/2πZ) as v = v + v ⊥ with v ∈ KerH T * and v ⊥ ∈ (KerH T * ) ⊥ . The next result (that represent the classical Lyapunov-Schmidt reduction for our problem) follows from the implicit function Theorem: Proposition 8.2. For all v ∈ KerH T * whose norm is small enough and for all T sufficiently close to T * there exists a unique function v

⊥ = v ⊥ (v , T ) such that Q • F v + v ⊥ , T = 0.
Proof. Define the operator J as follows: where I is the identity operator and v ⊥ (v , T ) is the function given by Proposition 8.1.

J(v , v ⊥ , T ) = Q • F v + v ⊥ , T from 
G is a finite-dimensional operator from KerH T * × (0, +∞) into the space orthogonal to the image of H T * . We remark that our main theorem 1.1 will be proved if we show that (0, T * ) is a bifurcation point for the zero level set of G. In fact, it is easy to prove that the curve Γ = {(v , T ) ∈ KerH T * × (0, +∞) : v = 0} is a solution of G(v , T ) = 0 with v ⊥ (0, T ) = 0. Then, the fact that (0, T * ) is a bifurcation point of Γ for the zero level set of G means that in every neighborhood of (0, T * ) in KerH T * × (0, +∞) contains solutions of the equation G(v , T ) = 0 which are not in Γ, i.e. there exists a sequence (v i , T i ) ∈ KerH T * × (0, +∞) with v i = 0 such that G(v i , T i ) = 0. Hence Q • F v i + v ⊥ (v i , T i ), T i = 0 and (I -Q) • F v i + v ⊥ (v i , T i ), T i = 0 that imply

F v i + v ⊥ (v i , T i ), T i = 0 and v i := v i + v ⊥ (v i , T i ) = 0.
Let us prove that (0, T * ) is a bifurcation point of Γ for the zero level set of G. We start by recalling a useful result about bifurcation (see [START_REF] Kielhofer | Bifurcation Theory, An Introduction with Applications to PDEs[END_REF] and [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften[END_REF] for details). Let L be an operator on B 1 × Λ into B 2 , where B 1 and B 2 are Banach spaces (or subspaces) and Λ is an interval of R. Thus suppose that Γ = (x(s), s) is a curve of solutions of the equation L(x, s) = 0. Let (x 0 , s 0 ) = (x(s 0 ), s 0 ) be an interior point on this curve with the property that every neighborhood of (x 0 , s 0 ) in B 1 ×Λ contains solutions of the equation L(x, s) = 0 which are not in Γ, i.e. it is a bifurcation point of Γ for the zero level set of L. In our case B 1 = C 2,α even,0 (R/2πZ), Λ = (0, +∞), B 2 = C 1,α even,0 (R/2πZ) and x(s) = 0 for all s. A necessary condition for bifurcation at (0, s 0 ) is that 0 is an isolated eigenvalue of finite algebraic multiplicity, say l, of the operator obtained by linearizing L with respect to x at (0, s 0 ), which can be denoted by D x L(0, s 0 ). It is crucial to know how the eigenvalue 0 of D x L(0, s 0 ) changes when s varies in a neighborhood of s 0 . It is possible to show (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]) that the generalized eigenspace E s 0 of the eigenvalue 0 of D x L(0, s 0 ) having dimension l is perturbed to an invariant space E s of D x L(0, s) of dimension l too, and all perturbed eigenvalues near 0 (the so-called 0-group) are eigenvalues of the finite-dimensional operator D x L(0, s) restricted to the l-dimensional invariant space E s . Moreover the eigenvalues in that 0-group depend continuously on s. Let us give the definition of odd crossing number: Definition 8.3. We set Θ(s) to be equal to 1 if there are no negative real eigenvalues in the 0-group of D x L(0, s). Otherwise Θ(s) = (-1) l 1 +•••+l h if µ 1 , . . . , µ h are all the negative real eigenvalues of the 0-group having algebraic multiplicity l 1 , . . . , l h , respectively. If D x L(0, s) is regular in a neighborhood of s 0 (naturally except in the point s 0 ) and Θ(s) changes the sign at s 0 then D x L(0, s) is said to have an odd crossing number at s 0 .

In presence of an odd crossing number, a standard result known as the Krasnosel'skii Bifurcation Theorem (see [START_REF] Kielhofer | Bifurcation Theory, An Introduction with Applications to PDEs[END_REF] for the proof) applies: Theorem 8.4. If D x L(0, s) has an odd crossing number at s 0 , then (0, s 0 ) is a bifurcation point for L(x, s) = 0 with respect to the curve {(0, s) | s in a neighborhood of s 0 }.

The fact that (0, T * ) is a bifurcation point for the operator G follows then from the Krasnosel'skii Bifurcation Theorem and the following: 

D v G(0, T ) = H T | V j 1 ⊕•••⊕V j l .
Then the 0-group of eigenvalues is given by σ j 1 (T ), . . . , σ j l (T ), where σ j 1 (T ) = σ(T ). For T = T * they are all equal to 0. Moreover, by the proposition 8.1 only σ j 1 (T ) changes sign at T * , and the corresponding eigenspace has dimension 1. This means that D v G(0, T ) has a crossing number at T * and completes the proof of the proposition. 2

  KerH T * ×(KerH T * ) ⊥ ×(0, +∞) into the image of H T * . By Proposition 8.1 the implicit function theorem applies to get the existence of a unique function v ⊥ (v , T ) ∈ (KerH T * ) ⊥smoothly depending on v and T in a neighborhood of (0, T * ) such thatJ(v , v ⊥ (v , T ), T ) = 0.This completes the proof of the proposition.2Now we can define the operatorG(v , T ) = (I -Q) • F v + v ⊥ (v , T ), T = 0.

Proposition 8 . 5 .

 85 D v G(0, T ) has an odd crossing number at T * .Proof. We observe that we can writev = l i=1 a k i cos(k i t) where 1 = k 1 < • • • < k l .It is clear, from the definition of G, that D v G(0, T ) preserves the eigenspaces, and

+iτ (C k (r)). If τ ∈ R + , then r 0 is a decreasing function of τ.(2) Let r 0 ∈ (0, π) be the n-th zero of the associated Ferrers function P µ

+iτ (C k (r)). If τ ∈ R + , then r 0 is a decreasing function of τ.

Moreover only two of them are linearly independent, as one can see by the two following connection formulas: [START_REF] Traizet | Classification of the solutions to an overdetermined elliptic problem in the plane[END_REF] 2 sin(µπ)

.

The functions P ±µ ν (z) are called associated Legendre functions of first kind. The functions Q ±µ ν (z) are called associated Legendre functions of second kind 1 . Such functions exist for all values of ν, µ, z, except possibly the singular points z = ±1 and ∞. They are multivalued functions of z with branch points at z = ±1 and ∞. The principal branches of both solutions are obtained by introducing a cut along the real axis from z = -∞ to z = +1, and assigning the principal value to each function. 5.2. Ferrers functions. Suppose that P -µ ν (z) and Q µ ν (z) are real valued on the real interval [1, +∞) (it is the case when ν, µ ∈ R). On the cut from -∞ to 1 there are two possible values for each function, depending whether the cut is approached from the upper or lower side. Replacing z by x, these values are denoted by

it is possible to define four real valued functions if ν and µ are real. They are known as associated Ferrers functions. Two of such functions are defined as follows under the assumption -(ν + µ) / ∈ N * (here N * = {1, 2, 3, ...}):

(33) P µ ν (x) = e iµπ/2 P µ ν (x + i0) = e -iµπ/2 P µ ν (x -i0)

) . The two other associated Ferrers functions are P -µ ν (x) and Q -µ ν (x). It is possible to show that

Such a formula allows to extend the definition of P µ ν (x) to complex values of ν, µ and x : cuts are introduced along the real intervals (-∞, -1] and [1, +∞). The expression for other Ferrers functions can be derived using the connection formulas:

(34)

1 For more clarity the associated Legendre functions of first kind are denoted by P ±µ ν (x). We do not adopt the standard notation P ±µ ν (x) which is very similar to P ±µ ν (x), that denotes the associated Ferrers function of first kind.

In particular the formula we get for Q µ ν is used to extend Q µ ν (x) to complex values of ν, µ and x in the same way as for P µ ν (x). 5.3. Asymptotics. We recall now some asymptotics about Legendre and Ferrers functions that we will need through the paper.

Lemma 5.1. (see [START_REF]Digital Library of Mathematical Functions[END_REF], Section 14.8, or [START_REF] Olver | Asymptotics and special functions[END_REF] p. 186 and [START_REF] Erdély | Higher Transcendental Functions[END_REF] p. 163) The associated Legendre functions P µ ν (x), Q µ ν (x) defined on (1, +∞) have the following asymptotic behaviour for x → 1 + :

where γ is the Euler-Mascheroni constant and ψ(x) = Γ (x)/Γ(x). Associated Ferrers functions P µ ν (x), Q µ ν (x) have the following asymptotic behaviour for x → 1 -:

, ...

Proof. We follow the proof of Theorem 7.6.4 in [START_REF] Olver | Asymptotics and special functions[END_REF]. Suppose that z 0 = cosh(r 0 ) and ν = -1/2 + iτ. If we differentiate P µ -1/2+iτ (z 0 ) = 0, we get

The differential equation satisfied by the function

We multiply it by P µ η , with η = ν, and we subtract from the expression we get this way, the differential equation satisfied by P µ η multiplied by P µ ν . We get:

In conclusion, if ρ = τ,

If we let ρ tend to τ, then using the l'Hôpital rule, we get:

If we set the integration bounds equal to 1 and z 0 then (50)

In other terms:

which replaced in (49) gives:

The proof of the monotonicity for the zeros of P µ ν is essentially the same. Suppose that z 0 = cos(r 0 ). As z 0 ∈ (-1, 1), we set the bounds of integration equal to -1 and z 0 . In this In conclusion, if k > 0 and µ is integer, then σ(T ) = c (1) + φ (1) equals

For T big enough ν * is a real valued increasing function of T. If T → +∞, then ν * → ν (which is a real number in this case). If P µ ν (C k (r)) > 0 for r ∈ [0, 1), (that is s > 0) then, from Proposition 6.1, we get lim

In other terms the sign of such a limit is the same as s. When T → +∞, the numerator of c (1) tends to

Consequently, as k > 0,