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EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE IN A
GENERAL COMPACT RIEMANNIAN MANIFOLD

ERWANN DELAY AND PIERALBERTO SICBALDI

Abstract. We prove the existence of extremal domains with small prescribed volume for
the first eigenvalue of the Laplace-Beltrami operator in any compact Riemannian manifold.
This result generalizes a results of F. Pacard and the second author where the existence
of a nondegenerate critical point of the scalar curvature of the Riemannian manifold was
required.
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1. Introduction and statement of the result

Let (M, g) be an n-dimensional Riemannian manifold, Ω a connected and open domain
in M with smooth boundary, and λΩ > 0 the first eigenvalue of the Laplace-Beltrami
operator −∆g in Ω with zero Dirichlet boundary condition. The domain Ω is said to
be extremal (for the first eigenvalue of the Laplace-Beltrami operator with zero Dirichlet
boundary condition) if it is a critical point for the functional Ω 7−→ λΩ in the class of
domains with the same volume.

An extremal domain is characterized by the fact that the first eigenfunction of the
Laplace-Beltrami operator with zero Dirichlet boundary condition has constant Neumann
data at the boundary. This result has been proved in the Euclidean space by P.R. Garabe-
dian and M. Schiffer in 1953 [4], and in a general Riemannian manifold by A. El Soufi and
S. Ilias in 2007 [2]. Extremal domains are then domains where the elliptic overdetermined
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2 E. DELAY AND P. SICBALDI

problem

(1)


∆gu+ λu = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

g(∇u, ν) = constant on ∂Ω

can be solved for some positive constant λ, where ν denotes the outward unit normal vector
about ∂Ω for the metric g.

In Rn the only extremal domains are balls. This is a consequence of a very well known
result by J. Serrin: if there exists a solution u to the overdetermined elliptic problem

(2)


∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

〈∇u, ν〉 = constant on ∂Ω ,

for a given bounded domain Ω ⊂ Rn and a given Lipschitz function f , where ν denotes
the outward unit normal vector about ∂Ω and 〈·, ·〉 the scalar product in Rn, then Ω
must be a ball, [19]. In the Euclidean space, round balls are in fact not only extremal
domains, but also minimizers for the first eigenvalue of the Laplacian with 0 Dirichlet
boundary condition in the class of domains with the same volume. This follows from the
Faber–Krähn inequality,

(3) λΩ ≥ λBn(Ω)

where Bn(Ω) is a ball of Rn with the same volume as Ω, because equality holds in (3) if
and only if Ω = Bn(Ω), see [3] and [9].

Nevertheless, very few results are known about extremal domains in a Riemannian man-
ifold. The result of J. Serrin, based on the moving plane argument introduced by A. D.
Alexandrov in [1], uses strongly the symmetry of the Euclidean space, and naturally it
fails in other geometries. The classification of extremal domains is then achieved in the
Euclidean space, but it is completely open in a general Riemannian manifold.

For small volumes, a method to build new examples of extremal domains in some Rie-
mannian manifolds has been developed in [12] by F. Pacard and P. Sicbaldi. They proved
that when the Riemannian manifold has a nondegenerate critical point of the scalar cur-
vature, then it is possible to build extremal domains of any given small enough volume,
and such domains are close to geodesic balls centered at the nondegenerate critical point
of the scalar curvature. The method fails if the Riemannian method does not have a
nondegenerate critical point of the scalar curvature.

In this paper we improve the result of F. Pacard and P. Sicbaldi by eliminating the
hypothesis of the existence of a nondegenerate critical point for the scalar curvature. In
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particular, we are able to build extremal domains of small volume in every compact Rie-
mannian manifold.

For ε > 0, we denote by Bg
ε (p) ⊂M the geodesic ball of center p ∈M and radius ε. We

denote by Bε ⊂ Rn the Euclidean ball of radius ε centered at the origin. The main result
of the paper is the following:

Theorem 1.1. Let M be a compact Riemannian manifold of dimension n ≥ 2. There
exist ε0 > 0 and a smooth function

Φ : M × (0, ε0) −→ R
such that:

(1) For all ε ∈ (0, ε0), if p is a critical point of the function Φ(·, ε) then there exists
an extremal domain Ωε ⊂M , containing p, whose volume is equal to the Euclidean
volume of Bε. Moreover, there exists c > 0 and, for all ε ∈ (0, ε0), the boundary of
Ωε is a normal graph over ∂Bg

ε (p) for some function v(p, ε) with

‖v(p, ε)‖C2,α(∂Bgε (p)) ≤ c ε3 .

(2) There exists a function r defined on M that can be written as

r = K1 ‖Riem‖2 +K2 ‖Ric‖2 +K3R
2 +K4 ∆gR

where Riem, Ric, R denote respectively the Riemann curvature tensor, the Ricci
curvature tensor and the scalar curvature of (M, g), and K1, K2, K3 and K4 are
constants depending only on n, such that for all k ≥ 0

‖Φ(p, ε)−Rp − ε2 rp‖Ck(M) ≤ ck ε
3

for some constant ck > 0 which does not depend on ε ∈ (0, ε0) (the subscript p
means that we evaluate the function at p).

(3) The following expansion holds:

λΩε = λ1 ε
−2 − n(n+ 2) + 2λ1

6n(n+ 2)
Φ(p, ε)

= λ1 ε
−2 − n(n+ 2) + 2λ1

6n(n+ 2)

(
Rp + ε2 rp

)
+O(ε3)

where λ1 is the first Dirichlet eigenvalue of the unit Euclidean ball.

The explicit computation of the constants Ki is given in section 7 (formulas (30)). We
remark that if M is compact, then there exists always a critical point of Φ(·, ε), and then
we have small extremal domains obtained as perturbation of small geodesic balls in every
compact Riemannian manifold without boundary.

If M is not compact, the result holds on any relatively compact open set U for some
ε0 = ε0(U) and the function Φ is well defined on⋃

U⊂M

(
U × (0, ε0(U))

)
.
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Let us explain briefly the construction of the function Φ(p, ε). Firstly, we will show
that for all point p ∈ M , and all ε small enough, there exists a function v(p, ε) defined
on ∂Bg

ε (p) such that the domain Ωp,ε bounded by the normal graph of v(p, ε) over ∂Bg
ε (p)

has the same volume of the Euclidean ball Bε and the property that the Neuman data
of the first eigenfunction of the Laplace-Beltrami operator over Ωp,ε, seen up to a natural
diffeomorphism as a function on the unit sphere, is the restriction of a linear function.
Such domain Ωp,ε is then in some sense “close” to be extremal. Secondly, we will prove
that Ωp,ε is extremal if and only if p is a critical point of the function p 7→ λ1(Ωp,ε). The
function Φ(., ε) is given, up to a constant, exactly by the function p 7→ λ1(Ωp,ε).

It is clear that Theorem 1.1 generalizes the result in [12] because the construction of
extremal domains does not require the existence of a nondegenerate critical point of the
scalar curvature. In fact, if the scalar curvature function R has a nondegenerate critical
point p0, then for all ε small enough there exists a critical point p = p(ε) of Φ(·, ε) such
that

dist(p, p0) ≤ c ε2.

and then the geodesic ball Bg
ε (p) can be perturbed in order to obtain an extremal domain.

We recover in this case the result in [12], but with a better estimation of the distance of p
to p0 (in [12] the distance between p and p0 is bounded by c ε). In particular, we have the
p-independent expansion

λΩε = λ1 ε
−2 − n(n+ 2) + 2λ1

6n(n+ 2)
Rp0 +O(ε2)

The result in [12] can not be applied to some natural metrics as an Einstein metric, i.e
when Ric = k g for some constant k, or simply a constant scalar curvature one. In the
case where R is a constant function, one gets the existence of extremal domains close to
any nondegenerate critical point of the function r. In the particular case where the metric
g is Einstein we obtain extremal domains close to any nondegenerate critical point of the
function (we will see that K1 6= 0)

p→ ‖Riemp‖2 .

In order to put the result in perspective let us digress slightly. The solutions of the
isoperimetric problem

Iκ := min
Ω⊂M : Volg Ω=κ

Volgin
∂Ω

are (where they are smooth enough) constant mean curvature hypersurfaces (here gin de-
notes the induced metric on the boundary of Ω). In fact, constant mean curvature are the
critical points of the area functional

Ω→ Volgin
∂Ω

under a volume constraint Volg Ω = κ. Now, it is well known (see [3], [9] and [10]) that
the determination of the isoperimetric profile Iκ is related to the Faber-Krähn profile,
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where one looks for the least value of the first eigenvalue of the Laplace-Beltrami operator
amongst domains with prescribed volume

FKκ := min
Ω⊂M : Volg Ω=κ

λΩ

A smooth solution to this minimizing problem is an extremal domain, and in fact extremal
domains are the critical points of the functional

Ω→ λΩ

under a volume constraint Volg Ω = κ.

The result by F. Pacard and P. Sicbaldi [12] had been inspired by some parallel results
on the existence of constant mean curvature hypersurfaces in a Riemannian manifold M .
In fact, R. Ye built in [22] constant mean curvature topological spheres which are close
to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar
curvature, and the result of F. Pacard and P. Sicbaldi can be considered the parallel
of the result of R. Ye in the context of extremal domains. The method used in [12] is
based on the study of the operator that to a domain associates the Neumann value of its
first eigenfunction, which is a nonlocal first order elliptic operator. This represents a big
difference with respect to the result of R. Ye, where the operator to study was a local
second order elliptic operator.

In a recent paper, [13], F. Pacard and X. Xu generalise the result of R. Ye by eliminating
the hypothesis of the existence of a nondegenerate critical point of the scalar curvature
function. For every ε small enough, they are able to build a small topological sphere of
constant mean curvature equal to n−1

ε
by perturbing a small geodesic ball centered at

a critical point of a certain function defined on M which is close to the scalar curvature
function. For this, they use the variational characterization of constant H0 mean curvature
hypersurfaces as critical points of the functional

S → Volgin
(S)−H0 Volg(DS)

in the class of topological sphere, where DS is the domain enclosed by S, see [13].

Our construction is based on some ideas of [13]. For this, we use the variational char-
acterization of extremal domains. The main difference and difficulties with respect to the
result of F. Pacard and X. Xu lie in the fact that there does not exist an explicit formula-
tion to compute the first eigenvalue of a domain while there exists an explicit formulation
to compute the volume of a surface.

Our result shows once more the similarity between constant mean curvature hypersur-
faces and extremal domains. The deep link between such two objects has been underlined
also in [16] and [17].

It is important to remark that P. Sicbaldi was able to build extremal domains of big
volume in some compact Riemannian manifold without boundary by perturbing the com-
plement of a small geodesic ball centered at a nondegenerate critical point of the scalar
curvature function, see [20]. As in the case of small volume domains, the existence of a
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nondegenerate critical point of the scalar curvature function is required (and such result
requires also that the dimension of the manifold is at least 4). It would be interesting to
adapt our result in order to build extremal domains of big volume in any compact Rie-
mannian manifold without boundary by perturbing the complement of small geodesic balls
of radius ε centered at a critical point of the function Φ(·, ε) or some other similar func-
tion. This result would allow for example to obtain extremal domains Ωε that are given
by the complement of a small topological ball in a flat 2-dimensional torus, and by the
characterization of extremal domains this would lead to a nontrivial solution of (2), with
f(t) = λ t, in the universal covering Ω̃ε of Ωε, which is a nontrivial unbounded domain of
R2. Up to our knowledge the existence of this unbounded domain is not known. Remark
that Ω̃ε is a double periodic domain, made by the complement of a infinitely countable
union of topological balls. The existence of Ω̃ε would establish once more the strong link
between extremal domains and constant mean curvature surfaces, via the double periodic
constant mean curvature surfaces (see [6], [15] and [14]).

Acknowledgement. Both authors are grateful to Philippe Delanoë for his pleasant
“Séminaire commun d’analyse géométrique” that took place at CIRM (Marseille) in sep-
tember 2012, where they met and started the collaboration. This work was done from
september 2012 to january 2013, when the first author was member of the Laboratoire
d’Analyse Topologie et Probabilité of the Aix-Marseille University as “chercheur CNRS en
délégation”, and he his grateful to the member of such research laboratory for their warm
hospitality. The first author is partially supported by the ANR-10-BLAN 0105 ACG and
the ANR SIMI-1-003-01.

2. Notations and preliminaries

Let Ω0 be a smooth bounded domain in M . We say that {Ωt}t∈(−t0,t0) is a deformation of
Ω0 if there exists a vector field Ξ such that Ωt = ξ(t,Ω0) where ξ(t, ·) is the flow associated
to Ξ, namely

dξ

dt
(t, p) = Ξ(ξ(t, p)) and ξ(0, p) = p .

In this case we say that Ξ is the vector field that generates the deformation. The de-
formation is said to be volume preserving if the volume of Ωt does not depend on t. If
{Ωt}t∈(−t0,t0) is a deformation of Ω0, and λΩt and ut are respectively the first eigenvalue and
the first eigenfunction (normalized to be positive and have L2(Ωt) norm equal to 1) of −∆g

on Ωt with zero Dirichlet boundary condition, both applications t 7−→ λΩt and t 7−→ ut
inherit the regularity of the deformation of Ω0. These facts are standard and follow at once
from the implicit function theorem together with the fact that the least eigenvalue of the
Laplace-Beltrami operator with 0 Dirichlet boundary condition is simple.

A domain Ω0 is an extremal domain (for the first eigenvalue of −∆g with 0 Dirichlet
boundary condition) if for any volume preserving deformation {Ωt}t∈(−t0,t0) of Ω0, we have

dλΩt

dt

∣∣∣∣
t=0

= 0 .
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Assume that {Ωt}t is a perturbation of a domain Ω0 generated by the vector field Ξ.
The outward unit normal vector field to ∂Ωt is denoted by νt. We have the following result,
whose proof can be found in [2] or in [12]:

Proposition 2.1. (Garabedian – Schiffer, El Soufi – Ilias). The derivative of the first
eigenvalue with respect to the deformation of the domain is given by

dλΩt

dt

∣∣∣∣
t=0

= −
∫
∂Ω0

(g(∇u0, ν0))2 g(Ξ, ν0) dvolgin

This result allows to characterize extremal domains as the domains where there exists a
positive solution to the overdetermined elliptic problem

(4)


∆gu+ λu = 0 in Ω

u = 0 on ∂Ω

g(∇u, ν) = constant on ∂Ω

for a positive constant λ, where ν is the outward unit normal vector about ∂Ω. The proof
of this fact follows directly from Proposition 2.1, but can be found also in [12].

Given a point p ∈M we denote by E1, . . . , En an orthonormal basis of the tangent plane
TpM . Geodesic normal coordinates x := (x1, . . . , xn) ∈ Rn at p are defined by

X(x) := Expgp

(
n∑
j=1

xj Ej

)
∈M

where Expgp is the exponential map at p for the metric g.

It will be convenient to identify Rn with TpM and Sn−1 with the unit sphere in TpM . If
x := (x1, . . . , xn) ∈ Rn, we set

(5) Θ(x) :=
n∑
i=1

xiEi ∈ TpM .

It corresponds to the vector of TpM whose coordinates in the basis (E1, ..., En) are x. Given
a continuous function f : Sn−1 7−→ (0,+∞) whose L∞-norm is sufficiently small we can
define

Bg
f (p) :=

{
Expgp(Θ(x)) : x ∈ Rn 0 < |x| < f

(
x

|x|

)}
∪ {p} .

For notational convenience, given a continuous function f : Sn−1 → (0,∞), we set

Bf := {x ∈ Rn : 0 < |x| < f(x/|x|)} ∪ {0} .
When we do not indicate the metric as a superscript, we understand that we are using
the Euclidean one. Similarly, we denote by Volg the volume in the metric g, by dvolg the
volume element in the metric g to integrate over a domain, by dvolgin

the volume element
in the induced metric gin to integrate over the boundary of a domain. When we do not
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indicate anything we understand that we are considering the Euclidean volume, or the
Euclidean measure, or the measure induced by the Euclidean one on boundaries.

Our aim is to show that, for all ε > 0 small enough, we can find a point p ∈ M and a
function v : Sn−1 −→ R such that

Volg B
g
ε(1+v)(p) = VolBε = εn VolB1 = εn

ωn
n

(where ωn is the Euclidean volume of the unit sphere Sn−1) and the overdetermined problem

(6)


∆g φ+ λφ = 0 in Bg

ε(1+v)(p)

φ = 0 on ∂Bg
ε(1+v)(p)

g(∇φ, ν) = constant on ∂Bg
ε(1+v)(p)

has a non trivial positive solution for some positive constant λ, where ν is the unit normal
vector field about ∂Bg

ε(1+v)(p).

Clearly, this problem does not make sense when ε = 0. In order to bypass this problem,
we observe that, considering the dilated metric ḡ := ε−2 g, the above problem is equivalent
to finding a point p ∈M and a function v : Sn−1 −→ R such that

Volḡ B
ḡ
1+v(p) = VolB1

and for which the overdetermined problem

(7)


∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ

1+v(p)

φ̄ = 0 on ∂B ḡ
1+v(p)

ḡ(∇ḡφ̄, ν̄) = constant on ∂B ḡ
1+v(p)

has a non trivial positive solution for some positive constant λ̄, where ν̄ is the unit normal
vector field about ∂B ḡ

1+v(p). Taking in account that the functions φ and φ̄ have L2-norm
equal to 1, we have that the relation between the solutions of the two problems is simply
given by

φ = ε−n/2 φ̄

and
λ = ε−2 λ̄ .

3. Some expansions in normal geodesic coordinates

We specify that through this paper we consider the following definition of the Riemann
curvature tensor:

Riem(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

where ∇ denotes the Levi-Civita connection on the manifold M .
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Geodesic normal coordinates are very useful because there exists a well known formula
for the expansion of the coefficients of a metric near the center of such coordinates, see
[21], [11] or [18]. At the point of coordinate x, the following expansion holds1:

(8)

gij = δij −
1

3
Rikj` x

k x` − 1

6
Rikjl,m x

k x` xm

− 1

20
Rikjl,mσ x

k x` xm xσ +
2

45
Rikj`Rimjσ x

k x` xm xσ +O(|x|5)

where

Rikj` = g
(
Riemp(Ek, Ei)Ej, E`

)
Rikj`,m = g

(
(∇EmRiem)p(Ek, Ei)Ej, E`

)
Rikj`,mσ = g

(
(∇Eσ∇EmRiem)p(Ek, Ei)Ej, E`

)
,

and the subscript p means that we evaluate the quantity at p. In (8) the Einstein notation
is used (i.e., we do a summation on every index appearing up and down). Such notation
will be always used through this paper.

This expansion allows to obtain other expansions, as those of the volume of a geodesic
ball, or the first eigenvalue and the first eigenfunction on a geodesic ball. In order to recall
such expansions, let us introduce some notations. Let us denote by λ1 the first eigenvalue
of the Laplacian in the unit ball B1 with zero Dirichlet boundary condition. We denote by
φ1 the associated eigenfunction

(9)

 ∆φ1 + λ1 φ1 = 0 in B1

φ1 = 0 on ∂B1

normalized to be positive and have L2(B1) norm equal to 1. It is clear that φ1 is a radial
function φ1(x) = φ1(|x|). We denote r = |x|.

We recall now some expansions we will need later, whose proofs can be deduced from
(8). We refer to [13] and [8] for the proofs. For the volume of a geodesic ball of radius ε
we have:

(10) ε−n Volg B
g
ε (p) =

ωn
n

+W0 ε
2 +W ε4 +O(ε5),

where

(11)

W0 = − ωn
6n (n+ 2)

Rp

W =
ωn

360n (n+ 2) (n+ 4)

(
−3 ‖Riemp‖2 + 8 ‖Ricp‖2 + 5R2

p − 18 (∆gR)p
)

1We choose the convention of [21], some sign in the development are different from those in [13] or [12]
because of a different choice of the definition of Rijkl
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For the first eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condi-
tion on a geodesic ball of radius ε we have:

(12) ε2 λBgε (p) = λ1 + Λ0 ε
2 + Λ ε4 +O(ε5)

where

(13)

Λ0 = −Rp

6

Λ = − c2

n(n+ 2)

(
3 ‖Riemp‖2 +

35

18
‖Ricp‖2 +

5n− 3

18n
R2
p +

1

5
(∆gR)p

)
and the constant c2 is given by

c2 = −
∫ 1

0

φ1 ∂rφ1 r
n+2 dr =

n+ 2

2

∫ 1

0

φ2
1 r

n+1 dr

For the associate eigenfunction φ in the geodesic ball Bg
ε (p) normalized to be positive

and with L2-norm equal to 1, we have

(14) εn/2 φ(q) = φ1(y) +

[(
Rij y

i yj − R

n
|y|2
)
φ1

12
+R G2(|y|)

]
ε2 +O(ε3)

where q is the point of M whose geodesic coordinates are ε y for y ∈ B1, and G2 is defined
implicitly as a solution of an ODE in [8]. Although we do not need its expression, for
completeness we recall it: if we solve such ODE we found

(15) G2(r) =
1

12n
r2 φ1(r)− c2 ωn

6n (n+ 2)
φ1(r) .

4. Known results

Our aim is to perturbe the boundary of a small ball Bḡ
1(p) with a function v in order to

obtained an extremal domain Bḡ
1+v(p). The natural space for the function v is C2,α(Sn−1)

but not all functions in this space are admissible because v must satisfy also the condition

Volḡ B
ḡ
1+v(p) = VolB1

In order to have a space of admissible functions not depending on the point p, we use a
result proved in [12], that allows to use as space of admissible function the space

C2,α
m (Sn−1) =

{
v̄ ∈ C2,α(Sn−1) :

∫
Sn−1

v̄ = 0

}
The result is the following:

Proposition 4.1. (Pacard – Sicbaldi [12]) Let p ∈ M . For all ε small enough and all
function v̄ ∈ C2,α

m (Sn−1) whose C2,α-norm is small enough there exist a unique positive
function φ̄ = φ̄(p, ε, v̄) ∈ C2,α(Bḡ

1+v(p)), a constant λ̄ = λ̄(p, ε, v̄) ∈ R and a constant
v0 = v0(p, ε, v̄) ∈ R such that

Volḡ B
ḡ
1+v(p) = VolB1
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where v := v0 + v̄ and φ̄ is a solution to the problem

(16)

 ∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ
1+v(p)

φ̄ = 0 on ∂B ḡ
1+v(p)

normalized by ∫
Bḡ1+v(p)

φ̄2 dvolḡ = 1.

In addition φ̄, λ̄ and v0 depend smoothly on the function v̄ and the parameter ε and φ̄ = φ1,
λ̄ = λ1 and v0 = 0 when ε = 0 and v̄ ≡ 0. Moreover v0(p, ε, 0) = O(ε2).

Instead of working on a domain depending on the function v = v0 + v̄, it will be more
convenient to work on a fixed domain B1 endowed with a metric depending on both ε and
the function v. This can be achieved by considering the parametrization of Bḡ

1+v(p) given
by

Y (y) := Expḡp

((
1 + v0 + χ(y) v̄

(
y

|y|

)) ∑
i

yiEi

)
where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to
1 when |y| ≥ 3/4. Hence the coordinates we consider from now on are y ∈ B1 with the
metric ĝ := Y ∗ḡ.

Up to some multiplicative constant, the problem we want to solve can now be rewritten
in the form

(17)

 ∆ĝ φ̂+ λ̂ φ̂ = 0 in B1

φ̂ = 0 on ∂B1

with

(18)

∫
B1

φ̂2 dvolĝ = 1

and

(19) Volĝ(B1) = VolB1

When ε = 0 and v̄ ≡ 0, a solution of (17) is given by φ̂ = φ1, λ̂ = λ1 and v0 = 0. In the

general case, the relation between the function φ̄ and the function φ̂ is simply given by

Y ∗φ̄ = φ̂ and λ̄ = λ̂ .

We define the operator

F (p, ε, v̄) = ĝ(∇̂φ̂, ν̂)
∣∣∣
∂B1

− 1

ωn

∫
∂B1

ĝ(∇̂φ̂, ν̂)

where ν̂ is the the unit normal vector field to ∂B1 using the metric ĝ and (φ̄, v0) is the
solution of (16) provided by the Proposition 4.1. Recall that v = v0 + v̄. Schauder’s
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estimates imply that F is well defined from a neighbourhood of M × {0} × {0} in M ×
[0,∞)×C2,α

m (Sn−1) into C1,α
m (Sn−1) (the space C1,α

m (Sn−1) is naturally the space of functions
in C1,α(Sn−1) whose mean is 0). Our aim is to find (p, ε, v̄) such that F (p, ε, v̄) = 0. Observe
that, with this condition, φ̄ will be the solution to problem (7).

We also have the alternative expression for F , after canonical identification of ∂B ḡ
1+v(p)

with Sn−1,

F (p, ε, v̄) = ḡ(∇̄φ̄, ν̄) |∂Bḡ1+v
− 1

ωn

∫
∂Bḡ1+v

ḡ(∇̄φ̄, ν̄)

where this time ν̄ denotes the unit normal vector field to ∂B ḡ
1+v.

For all v̄ ∈ C2,α
m (Sn−1) let ψ be the (unique) solution of

(20)

 ∆ψ + λ1 ψ = 0 in B1

ψ = −c1 v̄ on ∂B1

which is L2(B1)-orthogonal to φ1, where c1 := ∂rφ1|r=1. Define

(21) H(v̄) := (∂rψ + c2 v̄) |∂B1

where c2 = ∂2
rφ1|r=1. We recall that the eigenvalues of the operator −∆Sn−1 are given by

µj = j (n− 2 + j) for j ∈ N, and we denote by Vj the eigenspace associated to µj.

The following result shows that H is the linearization of F with respect to v̄ at ε = 0
and v̄ = 0:

Proposition 4.2. (Pacard – Sicbaldi, [12]) The operator obtained by linearizing F with
respect to v̄ at ε = 0 and v̄ = 0 is

H : C2,α
m (Sn−1) −→ C1,α

m (Sn−1)

It is a self adjoint, first order elliptic operator. The kernel of H is given by V1. Moreover
there exists c > 0 such that

‖w‖C2,α(Sn−1) ≤ c ‖H(w)‖C1,α(Sn−1) ,

provided w is L2(Sn−1)-orthogonal to V0 ⊕ V1.

Using the previous proposition and the fact that V1 is the restriction on the sphere of
affine functions, the implicit function theorem gives directly the following:

Proposition 4.3. (Pacard – Sicbaldi, [12]) There exists ε0 > 0 such that, for all ε ∈ [0, ε0]
and for all p ∈ M , there exists a unique function v̄ = v̄(p, ε) ∈ C2,α

m (Sn−1), orthogonal to
V0 ⊕ V1, and a vector a = a(p, ε) ∈ Rn such that

(22) F (p, ε, v̄) + 〈a, ·〉 = 0

The function v̄ and the vector a depend smoothly on p and ε and we have

|a|+ ‖v̄‖C2,α(Sn−1) ≤ c ε2
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In other word, for every point p ∈ M it is possible to perturbe the small ball Bḡ
1(p)

in a domain Bḡ
1+v(p), whose volume did not change, but with the (strong) property that

F (p, ε, v̄) (i.e. the Neumann data of its first eigenfunction minus its mean) is the restriction
of a linear function 〈a, ·〉 on Sn−1. It is important to underline that this result does not
depend on the geometry of the manifold, because it is true for every point p.

Now, we have to find the good point p for which such linear function 〈a, ·〉 is the 0
function. And in this research we will see the geometry of the manifold.

5. Construction of small extremal domains

For p ∈M , let us define the function

Ψε(p) := λ̂ = λ̂(p, ε, v̄(p, ε))

where λ̂ is given by (17) taking v̄ = v̄(p, ε) given by Proposition 4.3.

Proposition 5.1. For ε small enough, the domain Bḡ
1+v(p,ε)(p) is extremal if and only if p

is a critical point of Ψε, where v(p, ε) = v0(p, ε, v̄(p, ε)) + v̄(p, ε).

Proof. Recall that by definition

F (p, ε, v̄(p, ε)) = ĝ(ν̂, ∇̂φ̂)− b

where

b = b(p, ε) :=
1

Volĝin
(∂B1)

∫
∂B1

ĝ(ν̂, ∇̂φ̂) dvolĝin

and ∫
∂B1

F dvolĝin
= 0 .

Moreover we know that

F (p, ε, v̄(p, ε)) + 〈a(p, ε), ·〉 = 0.

In particular the domain Bḡ
1+v(p,ε)(p) is extremal if and only if a(p, ε) = 0.

Let us now compute the differential of Ψε. Let Ξ ∈ TpM and

q := Expp(tΞ).

For t small enough, the boundary of Bḡ
1+v(q,ε)(q) can be written as a normal graph over the

boundary of Bḡ
1+v(p,ε)(p) for some function f , depending on p, ε, t and Ξ, and smooth on t.

This defines a vector field on ∂B ḡ
1+v(p,ε)(p) by

Z :=
∂f

∂t

∣∣∣∣
t=0

ν̄

where ν̄ is the normal of ∂B ḡ
1+v(p,ε)(p). Let X be the vector field obtained by parallel

transport of Ξ from geodesic issued from p. As the metric ḡ is close to the Euclidean
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one for ε small, there exists a constant c such that for all ε small enough and any Ξ the
estimation

‖Z −X‖ḡ ≤ c‖Ξ‖ḡ.
holds. The variation of the first eigenvalue, see Proposition 2.1, gives

DpΨε(Ξ) =
d

dt

∣∣∣∣
t=0

Ψε(q) = −
∫
∂B1

[ĝ(∇̂φ̂, ν̂)]2 ĝ(Ẑ, ν̂) dvolĝin
.

We thus obtain

(23) DpΨε(Ξ) = −
∫
∂B1

[−〈a(p, ε), ·〉+ b]2 ĝ(Ẑ, ν̂) dvolĝin

Recall that the variation we made is volume preserving, i.e.∫
∂B1

ĝ(Ẑ, ν̂) dvolĝin
= 0 .

Then it is easy to see that if a = 0 then DpΨε = 0. This proves one implication.

For the reverse implication, assume now that DpΨε = 0. From (23) we have

(24) 2b

∫
∂B1

〈a(p, ε), ·〉 ĝ(Ẑ, ν̂) dvolĝin
=

∫
∂B1

〈a(p, ε), ·〉2 ĝ(Ẑ, ν̂) dvolĝin

for all Ξ. It is easy to see that for all ε small enough there exists a constant c such that

|ĝ(Ẑ, ν̂)− 〈Ξ, ·〉| ≤ c ε ‖Ξ‖g
(in fact the left hand side vanishes when ε = 0, the metric ĝ and the Euclidean one differ
by terms of order ε2 and the normal vectors differ by terms of order ε). Now we choose
Ξ = b a = b(p, ε) a(p, ε) and we get

ĝ(Ẑ, ν̂) = b 〈a, ·〉+ εA

where |A| ≤ c ‖ba‖g. Using this equality in equation (24), we deduce that for all ε small
enought there exists a constant C independent on ε and a such that

2b2

∫
∂B1

〈a, ·〉2 dvolĝin
≤ C |b| (ε ‖a‖3 + ‖a‖3 + ε‖a‖2) .

Now the left hand side is bounded by below by b2 ‖a‖2, so finally we obtain

b2 ‖a‖2 ≤ C |b| (ε ‖a‖+ ‖a‖+ ε) ‖a‖2 .

Observe that |b| is bounded away from zero by a uniform constant because when ε = 0,
b 6= 0. As ‖a‖ = O(ε2), then for ε small (recall b 6= 0) we obtain that a = 0 and this
concludes the proof of the proposition. �

We now define

Φ(p, ε) = − 6n (n+ 2)

n (n+ 2) + 2λ1

Ψε(p)− λ1

ε2
,

where λ1 is the first eigenvalue of the euclidean unit ball. Propositions 4.3 and 5.1 completes
the proof of the first part of Theorem 1.1. In the following sections, we will prove the second
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and the third parts of Theorem 1.1, and for this we have to find an expansion in power of
ε for Ψε(p). Such expansion will involve the geometry of the manifold.

6. Expansion of the first eigenvalue on perturbations of small geodesic
balls

In this section we want to find an expansion of the first eigenvalue λ̂ = λ̂(p, ε, v̄) in power
of ε and v̄, where p is fixed in M . In a second time, we will use the function v̄ = v̄(p, ε) given

by Proposition 4.3 in order to find an expansion of λ̂(p, ε, v̄(p, ε)) in power of ε. Keeping
in mind that we will have v̄ = O(ε2) we write formally

λ̂(p, ε, v̄) = λ̂(p, 0, 0) + ∂ελ̂(p, 0, 0) ε

+∂v̄λ̂(p, 0, 0) v̄ +
1

2
∂2
ε λ̂(p, 0, 0) ε2

+∂ε∂v̄λ̂(p, 0, 0) ε v̄ +
1

6
∂3
ε λ̂(p, 0, 0) ε3

+
1

2
∂2
v̄ λ̂(p, 0, 0) v̄2 +

1

2
∂2
ε ∂v̄λ̂(p, 0, 0) ε2 v̄ +

1

24
∂4
ε λ̂(p, 0, 0) ε4

+O(ε5)

We thus study all of theses terms.

Lemma 6.1. We have

∂ελ̂(p, 0, 0) = 0

1

2
∂2
ε λ̂(p, 0, 0) = −Rp

6

(
1 + 2

λ1

n (n+ 2)

)
=: Λ̂0

∂3
ε λ̂(p, 0, 0) = 0

1

24
∂4
ε λ̂(p, 0, 0) = Λ + λ1

(
2W

ωn
−

R2
p

36n2 (n+ 2)

)
=: Λ̂

where the constants Λ and W are given in (11) and (13).

Proof. It suffices to find the expansion of λ̂(p, ε, 0) in power of ε. First we have to expand
v0(p, ε, 0) and this can be done by using expansion (10), keeping in mind the definition of
the metric ĝ and the fact that when v̄ = 0 the constant v0 is given by the relation

Volĝ B1 = Volḡ B
ḡ
1+v0

= ε−nVolg Bε(1+v0) = VolB1 =
ωn
n

Using expansion (10) with ε replaced by ε(1 + v0), we find

v0 = A0 ε
2 + Aε4 +O(ε5)
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where

A0 = −W0

ωn

A = − 1

ωn

(
(n+ 2)A0W0 +

n− 1

2
A2

0 ωn +W

)
Now we use expansion (12) replacing ε by ε(1 + v0). We obtain

λ̂ = λ1 + Λ̂0 ε
2 + Λ̂ ε4 +O(ε5)

where

Λ̂0 = Λ0 − 2λ1A0 = −Rp

6

(
1 + 2

λ1

n (n+ 2)

)
Λ̂ = Λ− λ1 (2A− 3A2

0) = Λ + λ1

(
2W

ωn
−

R2
p

36n2 (n+ 2)

)
This concludes the proof of the result. �

Lemma 6.2. We have

∂v̄λ̂(p, 0, 0) = 0

∂2
v̄ λ̂(p, 0, 0)(v̄, v̄) = −2 c1

∫
Sn−1

v̄ H(v̄)

where H is the operator of Proposition 4.2, whose expression is given by (21), and c1 :=
∂rφ1|r=1 is the constant defined in (20).

Proof. Let Ω0 = B1 be the unit ball of Rn, and let Ωt = B(1+v0+tv̄), where we recall that∫
Sn−1 v̄ = 0 and v0 = v0(t) is chosen so that Vol Ωt = Vol Ω0 = ωn

n
. We have

∂v̄λ̂(p, 0, 0)(v̄) =
d

dt

∣∣∣∣
t=0

λΩt

and

∂2
v̄ λ̂(p, 0, 0)(v̄, v̄) =

d2

dt2

∣∣∣∣
t=0

λΩt

where λΩt is the first Dirichlet eigenvalue of Ωt. The expansion of Vol Ωt directly proves
that v0 = O(t2). In fact, in polar coordinates, we have

Vol Ωt =

∫
Sn−1

∫ 1+v0(t)+t v̄

0

rn−1 dr dθ

=
1

n

∫
Sn−1

(1 + v0(t) + t v̄)n dθ

=
1

n

∫
Sn−1

[
(1 + v0(t))n + n (1 + v0)n−1 t v̄ +O(t2)

]
dθ

=
ωn (1 + v0(t))n

n
+O(t2)
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Differentiating this expression with respect to t, and keeping in mind that v0(0) = 0, we
obtain that v0(t) = O(t2). For y ∈ Ω0 and t small, let

h(t, y) =

(
1 + v0 + t χ(y) v̄

(
y

|y|

))
y

where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to
1 when |y| ≥ 3/4, so that h(t,Ω0) = Ωt. We will denote the t-derivative with a dot. Let

V (t, h(t, y)) = ḣ(t, y) be the first variation of the domain Ωt. Let ν be the unit normal to
∂Ωt and let σ = 〈V, ν〉 the normal variation about ∂Ωt. Let λ be the first eigenvalue and
φ the first eigenfunction of the Dirichlet Laplacian over Ωt normalized in order to have L2

norm equal to 1. From Proposition 2.1 we have

λ̇ = −
∫
∂Ωt

(∂νφ)2 σ

where ∂νφ = 〈∇φ, ν〉. At t = 0 and on the boundary, we have φ = φ1, ∂νφ = ∂rφ1 = c1,

σ = v̄. Then λ̇(0) = 0. This proves the first part of the Lemma.

We can use now equality (34) of Proposition 10.1 of the Appendix (with f = (∂νφ)2 σ)
in order to derivate this formula with respect to t. We obtain

λ̈ = −
∫
∂Ωt

[
(∂νφ)2 (σ̇ + σ ∂νσ + H̃ σ2) + 2σ (∂νφ ∂νφ̇+ σ ∂νφ ∂

2
νφ)
]

where H̃ is the mean curvature of ∂Ωt. Now the second variation of the volume of Ωt is

V̈ol Ωt =

∫
∂Ωt

(σ̇ + σ ∂νσ + H̃σ2) = 0.

Such equation can be obtained differentiating equality (33) of Proposition 10.1 with f = 1,
using equality (34) of Proposition 10.1 with f = σ. On the other hand, at t = 0 and on
the boundary, we have φ = φ1, ∂νφ = ∂rφ1 = c1, ∂2

νφ = ∂2
rφ1 = c2 = −(n − 1)c1, σ = v̄.

We claim that at t = 0 we have also φ̇ = ψ, where ψ solve (20) and is L2(B1)-orthogonal
to φ1. This last claim can be easily proved by writing

φ = φ(t) = φ1 + t ψ +O(t2) .

Since λΩt = λ1 +O(t2), differentiation of ∆φ(t) + λΩt φ(t) = 0 in Ωt

φ(t) = 0 on ∂Ωt

with respect to t at t = 0 gives exactly (20). Moreover differentiation of∫
Ωt

φ(t)2 = 1
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with respect to t at t = 0 implies that ψ is L2(B1)-orthogonal to φ1. Our claim is then
proved, and in conclusion we obtain

λ̈(0) = −2 c1

∫
Sn−1

v̄ (∂rψ + c2v̄) = −2 c1

∫
Sn−1

v̄ H(v̄).

The proof of the Lemma follows at once. �

Lemma 6.3. We have

∂ε∂v̄λ̂(p, 0, 0) = 0

∂2
ε ∂v̄λ̂(p, 0, 0) v̄ = −c

2
1

3

∫
Sn−1

R̊icp(Θ,Θ) v̄

where Θ has been defined in (5), c1 := ∂rφ1|r=1 is the constant defined in (20), and

R̊ic = Ric− R

n
g

is the traceless Ricci curvature.

In order to prove this lemma, we start with a preliminary result. The formulas for the
geometric quantities we will consider are potentially complicated, and to keep notations
short, we agree on the following: any expression of the form Lp(v) denotes a linear combi-
nation of the function v together with its derivatives up to order 1, whose coefficients can
depend on ε and there exists a positive constant c independent on ε ∈ (0, 1) and on p such
that

‖Lp(v)‖C1,α(Sn−1) ≤ c ‖v‖C2,α(Sn−1) ;

similarly, given a ∈ N, any expression of the form Q
(a)
p (v) denotes a nonlinear operator in

the function v together with its derivatives up to order 1, whose coefficients can depend
on ε and there exists a positive constant c independent on ε ∈ (0, 1) and on p such that

‖Q(a)
p (v1)−Q(a)

p (v2)‖C1,α(Sn−1) ≤ c
(
‖v1‖C2,α(Sn−1) + ‖v2‖C2,α(Sn−1)

)a−1 ‖v2 − v1‖C2,α(Sn−1)

provided ‖vi‖C2,α(Sn−1) ≤ 1, for i = 1, 2.

Lemma 6.4. We have

∂v̄v0(p, ε, 0)(v̄) =
ε2

6ωn

∫
Sn−1

R̊ic(Θ,Θ) v̄ +

∫
Sn−1

[O(ε5) + ε3 Lp(v̄)]

where Θ has been defined in (5).

Proof. The expansion in ε and v for the volume of the perturbed geodesic ball Bg
ε(1+v)(p)

is given in the Appendix of [13] (the corresponding notations with respect to [13] are
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Bg
ε (1+v)(p) = Bp,ε(−v) and n = m+ 1). We have:

(25)

ε−n Vol(Bg
ε(1+v)(p)) =

ωn
n

+W0 ε
2 +W ε4

−
∫
Sn−1

v +
n− 1

2

∫
Sn−1

v2 − 1

6
ε2
∫
Sn−1

Ricp(Θ,Θ) v

+

∫
Sn−1

(
O(ε5) + ε3 Lp(v) + ε2Q(2)

p (v) +Q(3)
p (v)

)
where Θ has been defined in (5), and W0, W are given by (11). Putting v = v0 + v̄ in
expansion (25), where

∫
Sn−1 v̄ = 0 and v0 is chosen in order that the volume of Bg

ε (1+v)(p)

is equal to the volume of Bε, we obtain

ε−n Vol(Bg
ε(1+v)(p)) =

ωn
n

+W0 ε
2 +W ε4

+v0

[
ωn

(
1 +

n− 1

2
v0

)
− 1

6
ε2
∫
Sn−1

Ricp(Θ,Θ)

]
+
n− 1

2

∫
Sn−1

v̄2 − 1

6
ε2
∫
Sn−1

R̊icp(Θ,Θ) v̄

+

∫
Sn−1

(
O(ε5) + ε3 Lp(v) + ε2Q(2)

p (v) +Q(3)
p (v)

)
.

In order to compute the expansion of

v̇0 := ∂v̄v0(p, ε, 0)(v̄) =
d

ds

∣∣∣∣
s=0

v0(p, ε, sv̄).

we derivate with respect to s, at s = 0, equality

Volg B
g
ε(1+v0(p,ε,sv̄)+sv̄)(p) = VolBε

using the expansion above. Recall that we know v0(p, ε, 0) = O(ε2). We find

(1 +O(ε2))ωn v̇0 =
1

6
ε2
∫
Sn−1

R̊icp(Θ,Θ) v̄ +

∫
Sn−1

(
O(ε5) + ε3 Lp(v̄)

)
Finally

v̇0 =
1

6ωn
ε2
∫
Sn−1

R̊icp(Θ,Θ) v̄ +

∫
Sn−1

(
O(ε5) + ε3 Lp(v̄)

)
This completes the proof of the Lemma. �

We are now able to prove Lemma 6.3.

Proof. (Lemma 6.3). We make a development up to power 2 in ε, of the function

d

ds

∣∣∣∣
s=0

λ̂(p, ε, sv̄) .
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From Proposition 2.1, we have

d

ds

∣∣∣∣
s=0

λ̂(p, ε, sv̄) = −
∫
∂B1

ĝ(V, ν̂)(ĝ(∇̂φ̂, ν̂))2dvolĝin

where the deformation in a neighborhood of ∂B1 is given by

h(s, y) = (1 + v0(ε, s v̄) + s v̄) y

and

V (y) =
∂h

∂s

∣∣∣∣
s=0

=

[
∂v̄v0(p, ε, 0)(v̄) + v̄

(
y

|y|

)]
y.

In that formula, the term ĝ(∇̂φ̂, ν̂) is computed with s = 0 or equivalently v̄ = 0. From
the definition of ĝ and the expansion of the metric g, when v̄ = 0 we have

ĝij = (1 + v0(ε, 0))2

(
δij −

1

3
ε2Rikjl y

k yl +O(ε3)

)
ν̂ = (1 + v0(ε, 0))−1 ∂r = (1 + v0(ε, 0))−1 y

|y|

The expansion of φ̂(p, ε, 0) is almost known: it suffices to replace ε by ε(1 + v0) in formula
(14). We have

φ̂ = φ1 + ε2f2 +O(ε3)

where

f2(y) =

[
Rij y

i yj − Rp

n
|y|2
]
φ1

12
+Rp G2(|y|).

Using the notation Rj
k
m
l = gjagmbRakbl we thus have on ∂B1

ĝ(∇̂φ̂, ν̂) = (1 + v0(ε, 0))−1

(
δij −

1

3
ε2Rikjl y

k yl
)
·

· yi
(
δjp +

1

3
ε2Rj

k
m
l y

k yl
)(

∂

∂ym
φ1 + ε2

∂

∂ym
f2

)
+O(ε3)

= (1− v0(ε, 0))−1 c1 + ε2 ∂rf2 +O(ε3)

where on the boundary

∂rf2(y) =
c1

12

[
Rij y

i yj − Rp

n

]
+RpG

′
2(1) .

Now we have to expand the measure on the boundary. This is classical and can be done
directly from expansion (8). We have

dvolĝin
|∂B1

= (1 + v0)n
[
1− 1

6
Ricp(Θ,Θ) ε2 +O(ε2)

]
dvol|Sn−1
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where Θ has been defined in (5) and dvol|Sn−1 is the Euclidean volume element induced on
Sn−1. For the term ∂v̄v0(p, ε, 0)(v̄) appearing in V we use Lemma 6.4. We have

∂v̄v0(p, ε, 0)(v̄) =
ε2

6ωn

∫
Sn−1

R̊icp(Θ,Θ) v̄ +

∫
Sn−1

[O(ε5) + ε3 Lp(v̄)]

We finally obtain

d

ds

∣∣∣∣
s=0

λ̂(p, ε, sv̄) = C ε2
∫
Sn−1

R̊icp(Θ,Θ) v̄ +

∫
Sn−1

[O(ε5) + ε3 Lp(v̄)]

where

C = −c
2
1

6
− 2 c2

1

12
+
c2

1

6
= −c

2
1

6
.

The proof of the Lemma follows at once. �

Summarizing the results of Lemmas 6.1, 6.2 and 6.3 we obtain the following:

Proposition 6.5. Let p ∈M , let ε and v̄ be small enough. Then:

λ̂(p, ε, v̄) = λ1 + Λ̂0 ε
2 + Λ̂ ε4

−c1

∫
Sn−1

v̄ H(v̄) − c2
1

6
ε2
∫
Sn−1

R̊icp(Θ,Θ) v̄

+

∫
Sn−1

[
O(ε5) + ε3 Lp(v̄) + ε2Q(2)

p (v̄) +Q(3)
p (v̄)

]
where Θ has been defined in (5), and we agree with the convention about Lp(v), Q

(2)
p (v)

and Q
(3)
p (v) we gave before.

Proof. It suffices to put together the results of Lemmas 6.1, 6.2 and 6.3. �

7. Localisation of the obtained extremal domains

Now we want to find the expansion of the function Ψε(p) in power of ε. Recall that

Ψε(p) = λ̂(p, ε, v̄(p, ε))

In order to find such expansion we will relate the first term in the expansion of v̄(p, ε) to
the curvature of the manifold at p.

The first term of the expansion of v̄(p, ε) is related to the traceless Ricci curvature at p,
as stated by the following:

Proposition 7.1. We have

v̄(p, ε) = − c1

12α2

R̊icp(Θ,Θ) ε2 +O(ε3) =
n

12 (λ1 − n)
R̊icp(Θ,Θ) ε2 +O(ε3)

where Θ has been defined in (5), and α2 is the eigenvalue of the operator H defined in
Proposition 4.2 associated to the eigenspace V2.
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Proof. Let us recall that

F (p, ε, v̄(p, ε)) + 〈a(p, ε), ·〉 = 0.

where

‖v̄(p, ε)‖C2,α(Sn−1) + ‖a(p, ε)‖ ≤ c ε2

Now, because F (p, ε, 0) = O(ε2) and because v̄(p, ε) = O(ε2), we can write

F (p, ε, v̄) = F (p, 0, 0) + ∂εF (p, 0, 0) ε

+∂v̄F (p, 0, 0) v̄ +
1

2
∂2
εF (p, 0, 0) ε2 +O(ε3)

= H(v̄) +
1

2
∂2
εF (p, 0, 0) ε2 +O(ε3)

In the computation of the mixed derivatives of λ̂ in the proof of Lemma 6.3 we have already
computed the expansion of ĝ(∇φ̂, ν̂) for v̄ = 0, so we directly deduce

F (p, ε, 0) = ε2
c1

12

[
Rij(p) y

i yj − Rp

n

]
+O(ε3)

= ε2
c1

12
R̊icp(Θ,Θ) +O(ε3).

Then we have

∂2
εF (p, 0, 0) =

c1

6
R̊icp(Θ,Θ)

Writing

a = ap ε
2 +O(ε3)

and

v̄ = v̄p ε
2 +O(ε3)

and considering the expansion of F , from equation (22) we obtain

(26) H(v̄p) +
c1

12
R̊icp(Θ,Θ) = −〈ap, ·〉

We know that v̄, and hence v̄p, is L2-orthogonal to V0⊕V1 (see Propositions 4.3). Observe
that Ric(Θ,Θ) is L2(Sn−1)-orthogonal to V1 since the function Θ→ Ric(Θ,Θ) is invariant
when Θ is changed into −Θ and hence its L2-projection over elements of the form g(Ξ,Θ)

is 0 for every Ξ. Then R̊ic(Θ,Θ) is L2(Sn−1)-orthogonal to V0 ⊕ V1. In fact R̊ic(Θ,Θ) is
the restriction on Sn−1 of a homogeneous polynomial of degree 2 which has mean 0, and
then it is an eigenfunction for −∆Sn−1 with eigenvalue 2n. As H preserves the eigenspaces
of −∆Sn−1 and his kernel is given by V1 (see Proposition 4.2), we have that there exists a
constant α2 6= 0 such that

H
(
R̊ic(Θ,Θ)

)
= α2 R̊ic(Θ,Θ)
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From (26) we obtain

−〈ap, ·〉 = H

(
v̄p +

c1

12α2

R̊ic(Θ,Θ)

)
i.e. 〈ap, ·〉 is in the image of H. But it belongs also to the kernel of H, and then ap = 0
and

(27) H

(
vp +

c1

12α2

R̊ic(Θ,Θ)

)
= 0

Now we remark that

(
vp +

c1

12α2

R̊ic(Θ,Θ)

)
is orthogonal to V0 ⊕ V1, and then

(28) vp = − c1

12α2

R̊ic(Θ,Θ)

In order to complete the proof of the proposition we use equation (32) and Lemma 8.1
of the Appendix. �

Now we are able to give an expansion for the function Ψε(p) in power of ε.

Proposition 7.2. We have:

(29) Ψε(p) = λ1 +
Λ̂0

Rp

ε2
(
Rp + rp ε

2
)

+O(ε5)

where Λ̂0 is defined in Lemma 6.1 (note that Λ̂0

Rp
is well defined also when Rp = 0), and the

function r can be written as

r = K1 ‖Riem‖2 +K2 ‖Ric‖2 +K3R
2 +K4 ∆gR

for some constants Ki only depending on n.

Proof. Replacing v̄ with its expansion given by Proposition 7.1 in the expansion of λ̂ given
by Proposition 6.5, we obtain

Ψε(p) = λ1 + Λ̂0 ε
2 + Λ̂ ε4 − c1

∫
Sn−1

v̄
(
H(v̄) +

c1

6
ε2 R̊icp(Θ,Θ)

)
+O(ε5)

= λ1 + Λ̂0 ε
2 + Λ̂ ε4 − c1

∫
Sn−1

v̄
(
α2 v̄ +

c1

6
ε2 R̊icp(Θ,Θ)

)
+O(ε5)

= λ1 + Λ̂0 ε
2 + Λ̂ ε4 +

c3
1

144α2

ε4
∫
Sn−1

(R̊icp(Θ,Θ))2 +O(ε5)

= λ1 + Λ̂0 ε
2 + Λ̂ ε4 +

c3
1 ωn

72α2 n(n+ 2)
ε4
(
‖Ricp‖2 − 1

n
R2
p

)
+O(ε5)

= λ1 + Λ̂0 ε
2 + Λ̂ ε4 +

λ1

36(n+ 2)(n− λ1)
ε4
(
‖Ricp‖2 − 1

n
R2
p

)
+O(ε5)
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where we used (28) from the second to the third line, the following two geometric formulas∫
Sn−1

Ric(Θ,Θ) =
ωn
n
Rp∫

Sn−1

(Ric(Θ,Θ))2 =
ωn

n(n+ 2)
(2‖Ricp‖2 +R2

p) ,

whose proofs can be found in [13], from the third to the fourth line, and the computation
of α2 given in (32) and Lemma 8.1 to deduce the last line. Define

rp = Rp Λ̂−1
0

[
Λ̂ +

λ1

36(n+ 2)(n− λ1)

(
‖Ricp‖2 − 1

n
R2
p

)]
= Rp Λ̂−1

0

[
Λ + λ1

(
2W

ωn
−

R2
p

36n2 (n+ 2)

)
+

λ1

36(n+ 2)(n− λ1)

(
‖Ricp‖2 − 1

n
R2
p

)]
Recalling the definition of W and Λ given in (11) and (13), we obtain that

rp = K1 ‖Riemp‖2 +K2 ‖Ricp‖2 +K3R
2
p +K4 (∆gR)p

where

(30)

K1 =
1

n (n+ 2) + 2λ1

(
18 c2 +

λ1

10(n+ 4)

)
K2 =

1

n (n+ 2) + 2λ1

(
35

3
c2 +

4λ1

15(n+ 4)
+

nλ1

6(λ1 − n)

)
K3 =

1

n (n+ 2) + 2λ1

(
5n− 3

3n
c2 − λ1

6(n+ 4)
+
λ1

6n
− λ1

6(λ1 − n)

)
K4 =

1

n (n+ 2) + 2λ1

(
6

5
c2 +

3λ1

5(n+ 4)

)
and formula (29) follows at once. The fact that the constants Ki depend only on n comes
immediately from the computation of c2 by Lemma 8.2 in the Appendix:

c2 =
(n+ 2) [2λ1 + n(n− 4)]

12λ1 ωn

This completes the proof of the proposition. �

Remark 1. We remark that K1 > 0 in order to justify our discussion about critical point
of ‖Riem‖ for Einstein metrics in the introduction.

Now recalling that

Φ(p, ε) = Rp Λ̂−1
0

Ψε(p)− λ1

ε2
= − 6n(n+ 2)

n(n+ 2) + 2λ1

Ψε(p)− λ1

ε2

the proof of the second and third part of Theorem 1.1 follows at once.
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8. Appendix I : On the first eigenfunction in the unit Euclidean ball

In this Appendix we state and prove some relations between the first eigenfunction and
the first eigenvalue of the Dirichlet Laplacian on the unit ball.

Lemma 8.1. Let
c1 = φ′1(1)

where x → φ1(|x|) is the first eigenfunction of the Dirichlet Laplacian on the unit ball,
normalized in order to have L2-norm equal to 1. Then

c1 = −
√

2λ1

ωn
where λ1 is the first eigenvalue of the Dirichlet Laplacian on the unit ball.

Proof. Recall that φ1 is the solution of

φ′′1 +
n− 1

r
φ′1 + λ1φ1 = 0

with normalization

(31) 1 =

∫
B1

φ2
1(|x|) dx = ωn

∫ 1

0

(φ1)2 rn−1 dr = −2ωn
n

∫ 1

0

φ1 φ
′
1 r

n dr

and

λ1 =

∫
B1

|∇φ1(|x|)|2 dx = ωn

∫ 1

0

(φ′1)2 rn−1 dr

Now let us compute

(rn(φ′1)2)′ = n rn−1 (φ′1)2 + 2rn φ′1 φ
′′
1

= n rn−1 (φ′1)2 − 2rn φ′1

(
n− 1

r
φ′1 + λ1 φ1

)
= (2− n) rn−1 (φ′1)2 − 2λ1 r

n φ′1 φ1

Integrating this relation between 0 and 1 we obtain

c2
1 =

2λ1

ωn
The proof of the Lemma follows at once, keeping in mind that c1 is negative. �

Lemma 8.2. Let

c2 =
n+ 2

2

∫ 1

0

φ2
1 r

n+1 dr

where x → φ1(|x|) is the first eigenfunction of the Dirichlet Laplacian on the unit ball,
normalized in order to have L2-norm equal to 1. Then

c2 =
(n+ 2) [2λ1 + n(n− 4)]

12λ1 ωn
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where λ1 is the first eigenvalue of the Dirichelt Laplacian on the unit ball.

Proof. We have

n+ 2

2

∫ 1

0

φ2
1 r

n+1 dr = −
∫ 1

0

φ1 φ
′
1 r

n+2 dr

Recall also that

φ′′1 +
n− 1

r
φ′1 + λ1φ1 = 0

with φ1(1) = 0, and φ1 is normalized by (31). We first compute

(rn+2(φ′1)2)′ = (n+ 2) rn+1 (φ′1)2 + 2rn+2 φ′1 φ
′′
1

= (n+ 2) rn+1 (φ′1)2 − 2rn+2 φ′1

(
n− 1

r
φ′1 + λ1 φ1

)
= (4− n) rn+1 (φ′1)2 − 2λ1 r

n+2 φ′1 φ1

Integrating this relation between 0 and 1 we find

c2
1 = (4− n)

∫ 1

0

rn+1 (φ′1)2 + 2λ1c
2

where c1 = φ′1(1). We now compute

(rn+1 φ1 φ
′
1)′ = (n+ 1) rn φ1 φ

′
1 + rn+1 (φ′1)2 + rn+1 φ1 φ

′′
1

= (n+ 1) rn φ1 φ
′
1 + rn+1 (φ′1)2 − rn+1 φ1

(
n− 1

r
φ′1 + λ1 φ1

)
= 2rn φ1 φ

′
1 + rn+1 (φ′1)2 − λ1 r

n+1 φ2
1

= (rn φ2
1)′ − n rn−1 φ2

1 + rn+1 (φ′1)2 − λ1 r
n+1 φ2

1

Integrating this relation between 0 and 1 we find

0 = −n (ωn)−1 +

∫ 1

0

rn+1 (φ′1)2 − λ1
2

n+ 2
c2 .

Thus we have at the end

c2 =
n+ 2

12λ1

[
c2

1 +
n(n− 4)

ωn

]
.

The proof of the Lemma follows at once from Lemma 8.1. �
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9. Appendix II: The second eigenvalue of the operator H

Here we compute the eigenvalue α2 of the operator H associated to the eigenspace V2.
When w is an homogeneous polynomial harmonic of degree 2 (abusively identified with its
restriction to the unit sphere) we have ∆Sn−1w = −µ2w = −2nw and H(w) = α2w. We
recall that

H(w) = (∂rψ)|∂B1
+ c2w = (∂rψ)|∂B1

− (n− 1) c1w

where ψ is the solution of ∆ψ + λ1 ψ = 0 in B1

ψ = −c1w on ∂B1

which is L2(B1)-orthogonal to φ1. Decomposing ψ in spherical harmonics, we see that
ψ(r, θ) = b2(r)w(θ) where b2 is the solution defined at 0 of r2 b′′ + (n− 1) r b′ + (r2 λ1 − 2n) b = 0 in (0, 1)

b(1) = −c1 = −φ′1(1)

From the definition of H, we see that

α2 = b′2(1) + φ′′1(1) = b′2(1) + c2 = b′2(1)− (n− 1) c1

so we have to compute b′2(1). Let us verify that

b2(r) = −
(
λ1

n
φ1 +

1

r
φ′1

)
is the desired solution. Recall that

φ′′1 +
n− 1

r
φ′1 + λ1φ1 = 0,

thus

(φ′1)′′ +
n− 1

r
(φ′1)′ + λ1φ

′
1 =

n− 1

r2
φ′1

Now

b′2 = −
(
λ1

n
φ′1 +

1

r
φ′′1

)
+

1

r2
φ′1

and

b′′2 = −
(
λ1

n
φ′′1 +

1

r
φ′′′1

)
+

2

r2
φ′′1 −

2

r3
φ′1
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so

b′′2 +
n− 1

r
b′2 + λ1 b2 = −1

r

n− 1

r2
φ′1 +

n− 1

r

1

r2
φ′1 + 2

1

r2
φ′′1 − 2

1

r3
φ′1

= −2
1

r2

(
n− 1

r
φ′1 + λ1 φ1

)
− 2

1

r3
φ′1

= −2n

r2

(
λ1

n
φ1 +

1

r
φ′1

)
=

2n

r2
b2

And of course b2(1) = −c1, so this is the desired solution. Finally we have

b′2(1) =
n2 − λ1

n
c1

and

(32) α2 =
n− λ1

n
c1 =

λ1 − n
n

√
2λ1

ωn
> 0.

10. Appendix III : Differentiating with respect to the domain

In this Appendix we recall a useful result that allows to derivate the integral of a function
with respect to a parameter t that appears in the function and also in the domain of
integration. The proof of such result can be found in [7], page 14.

Proposition 10.1. Let Ω a smooth bounded domain of Rn and

h : (−r, r)× Ω→ Rn

a smooth function, where r is a positive constant, such that h(0, p) = p for all p ∈ Ω. Let

f : R× Rn → R

a smooth function. Let Ωt = h(t,Ω0), V (t, h(t, p)) = ∂h
∂t

(t, p) and N(t, q) the unit outward
normal at q ∈ ∂Ωt. Then

(33)
∂

∂t

∫
Ωt

f =

∫
Ωt

∂f

∂t
dx+

∫
∂Ωt

f 〈V,N〉 ds

and

(34)
∂

∂t

∫
∂Ωt

f ds =

∫
∂Ωt

(
∂f

∂t
+ 〈V,N〉 〈∇xf,N〉+H 〈V,N〉 f

)
ds

where 〈·, ·〉 denote the scalar product in Rn, s denote the area element of ∂Ωt and H is the
mean curvature of ∂Ωt.

Remark 2. Although we do not need it here, we mention that this proposition can easily
be proven also for domains in a Riemannian manifold.
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