C Duval 
  
A recollection of Souriau's derivation of the Weyl equation via geometric quantization

These notes merely intend to memorialize Souriau's overlooked achievements regarding geometric quantization of Poincaré-elementary symplectic systems. Restricting attention to his model of massless, spin-1 2 , particles, we faithfully rephrase and expound here Sections (18.82)-(18.96) & (19.122)-(19.134) of his book [10] edited in 1969.

The classical model 1.Minkowski spinors: a quick review

We start with some prerequisite. Denote by W 10 = SL(2, C) ⋉ R 3,1 the universal covering of the restricted Poincaré group, i.e., the neutral component of the group, E(3, 1), of isometries of Minkowski spacetime, R 3,1 = (R 4 , g), where g = -|dr| 2 + dt 2 (we put c = 1).

Let us recall how the well-known spin group, Spin(3, 1) ∼ = SL(2, C), of R 3,1 arises. To that end, we choose the following representation of the Dirac matrices acting on the Minkowskian spinor space, C2,2 , namely

γ j = 0 σ j -σ j 0 , γ 4 = 0 1 1 0 , γ 5 = -i 0 0 i (1.1)
where the σ j , with j = 1, 2, 3, denote the Pauli matrices.

All matrix representations use a tacitly chosen spinor frame with Gram matrix

G = 1 2 0 1 1 0 .
The Hermitian conjugate of ζ ∈ C 2,2 reads therefore ζ = C(ζ) T G where C : z → z stands for complex conjugation, and T for transposition. The Dirac matrices are traceless and Hermitian-symmetric, i.e., γ µ = γ µ for all µ = 1, . . . , 4, with respect to G. [START_REF] Duval | On the prequantum description of spinning particles in an external gauge field[END_REF] They furthermore satisfy the Clifford relations γ µ γ ν + γ ν γ µ = 2g µν for all µ, ν = 1, . . . 4; also γ 5 = γ 1 γ 2 γ 3 γ 4 is the chirality operator which anticommutes with all γ µ .

• The spin group in 3 + 1 spacetime-dimension may be introduced as the group of quaternionic G-unitary matrices commuting with the chirality. Thus A ∈ Spin(3, 1) iff A ∈ U(2, 2) and SH = HS where the quaternionic structure of C 4 is defined by

H = 0 JC JC 0
as well as by Aγ 5 = γ 5 A; here J = -iσ 2 denotes the standard complex structure of R 2 ∼ = C. As a consequence, we have Aγ(δR)

A -1 = γ(̺(A)δR) where ̺(A) ∈ O(3, 1) 0 . 2 The homomorphism ̺ : Spin(3, 1) → O(3, 1) 0 has kernel Z 2 .
In the above representation (1.1), the spin group is therefore generated by the matrices [10]

A = a 0 0 a -1 ∈ Spin(3, 1) where a ∈ SL(2, C).
where the bar denotes now Hermitian conjugation of 2 × 2 complex matrices.

Introducing the two supplementary projectors

Π = 1 + iγ 5 2 & Π = 1 -iγ 5 2
we may alternatively view the spin group as the group of those matrices

A = (A 1 A 2 A 3 A 4 ) ∈ Spin(3, 1) with column vectors [1] A 1 = Πζ, A 2 = ΠHζ, A 3 = Πζ, A 4 = ΠHζ
where the ζ ∈ C 2,2 satisfy the fundamental relations [10] 

ζζ = 1 & ζγ 5 ζ = 0. (1.2)
Clearly, Spin(3, 1) is parametrized by the above-mentioned spinors ζ; it is thus diffeomorphic to the manifold

Σ 6 ∼ = S 3 × R 3 of those ζ ∈ C 2,2 satisfying (1.2). 3 If we write ζ = ζ ′ ζ ′′ ∈ Σ 6 (1.3) with ζ ′ , ζ ′′ ∈ C 2 \ {0} as half-spinors, then (1.
2) translates as ζ ′ ζ ′′ = 1 (ordinary Hermitian scalar product of C 2 ).

• The universal covering of the neutral Poincaré group is thus diffeomorphic to W 10 = Σ 6 × E4 described by the pairs (ζ, R) with ζ as in (1.2), and R ∈ E 4 = R3,1 , a spacetime event.

• With this preparation, we verify that the Minkowski vector P defined for all δR ∈ R 3,1 by the scalar product

P • δR = ζγ(δR)Πζ √ 2 (1.4)
is null and future-pointing. [START_REF] Duval | Chiral fermions as classical massless spinning particles[END_REF] Indeed, easy computation shows that P •δR = ζ ′ (-σ(δr)+δt)ζ ′ / √ 2, with the help of (1.1). We then get P • δR = E(-u • δr + δt) where u ∈ S 2 ⊂ R 3 , and

E = ζ ′ 2 / √ 2 with
• the Hermitian norm of C 2 . Thus, the vector P = E(u, 1) is clearly as announced.

Likewise, the vector Q defined by

Q • δR = -ζγ(δR)Πζ √ 2 is null and verifies P • Q = -1.
We have a projection π W V : W 10 → V 9 defined by π W V (ζ, R) = (P, Q, R). The manifold V 9 has already been interpreted as the evolution space of the model [10, 4], and P as the momentum of our particle with positive energy. We note, in view of the previous definitions of P and

Q that V 9 = W 10 /U(1)
where the action of U( 1) is given by e iθ (ζ, R) = (e iθ ζ, R).

Classical motions of chiral particles

Having in mind to describe spinning particles of half-integral spin, we find it convenient to use the spinor representation of the Poincaré group to start with, even at the classical level. To describe the classical dynamics of relativistic massless particles with spin s = 1 2 χ (where χ = ±1 is the helicity), we will hence introduce a certain 1-form ̟ of the Lie group W 10 designed to give rise to the space of (free) motions of such particles -as well as its prequantization (see Section 2.1).

• We recall that, given a Lie group G with Lie algebra g, the canonical symplectic structure of the coadjoint orbit, X = G/G µ 0 , passing through µ 0 ∈ g * is constructed as follows [2]. [START_REF] Duval | Wigner-Souriau translations and Lorentz symmetry of chiral fermions[END_REF] If θ is the left-invariant Maurer-Cartan 1-form of G, the exterior derivative, σ = d̟, of the 1-form

̟ = µ 0 , θ (1.5) 
descends as the canonical symplectic 2-form, ω, of X, namely

σ = π * GX ω.
• Here, the group G = W 10 is, as above-mentioned, the direct product of Σ [START_REF] Horváthy | Classical action, the Wu-Yang phase factor and prequantization[END_REF] and spacetime E 4 . The leaves of the characteristic distribution of σ constitute the space of motions of the particle, namely X = W 10 / ker σ. As to the spacetime projections of these leaves via π W E : W 10 → E 4 , they are interpreted as the world-sheets of the particle.

M 0 = χ γ 1 γ 2 & γ(P 0 ) = γ 3 + γ 4 .
Tedious calculation yields the 1-form (1.5), namely6 

̟ = -P • dR + χ ζdζ i (1.6)
where P is as in (1.4).

We then find that ker σ is 4-dimensional, that is

δ(ζ, R) ∈ ker σ ⇐⇒    δζ = iχ γ(δR)Πζ + iλζ δR ∈ P ⊥ (1.7)
with λ ∈ R. This implies, via (1.4), that δP = 0, and shows that the motions take place on null affine hyperplanes P ⊥ in R 3,1 ; the particle having a constant momentum, P , it is strikingly delocalized on the world-sheets P ⊥ [10, 4, 5]. [START_REF] Horváthy | Prequantization From Path Integral Viewpoint[END_REF] • It hence turns out that the space of motions, X, is 6-dimensional, viz.,

X 6 ∼ = T * C + (1.8)
where C + ∼ = R 3 \ {0} is the punctured future light-cone described by the momentum P . What about the explicit form of symplectic 2-form, ω, of X 6 ? Its expression is computed in a Lorentz frame where P = (p, |p|) = 0, and R = (r, t). The would-be 3-position (spanning the fibres of X 6 → C + ) is then x = g/|p| where g is the boost-momentum [4]. The sought expression is [10] 

ω = dp ∧ dx -s surf & s = 1 2 χ (1.9)
where surf is the surface 2-form of S 2 described by the direction u = p/|p|.8 

The projection π W X : W10 → X 6 is given by π W X (ζ, R) = (p, x) where

p = 1 √ 2 ζ ′ σζ ′ & x = r (t = 0). (1.10)
We see that the energy E = |p| is now given by

|p| = 1 √ 2 ζ ′ 2 (1.11)
in spinorial terms.

Geometric quantization of the model

We propose now to quantize, following [10], the above classical model using the technique of geometric quantization.

Prequantization

Let us recall that a prequantum manifold above a symplectic manifold (X, ω) is a principal circle-bundle π Y X : Y → X with connection α/ whose curvature descends to X as ω/ , i.e., such that dα = π * Y X ω [10]. [START_REF] Simms | Lectures on Geometric Quantization[END_REF] See also [8, 9, 11] for an equivalent definition in terms of line-bundles. [START_REF] Souriau | Structure of Dynamical Systems. A Symplectic View of Physics[END_REF] • This (not so well-known) intermediate geometric structure, (Y, α), inbetween the Poincaré group, (W 10 , ̟), and the space of classical motions, (X 6 , ω), will actually prove crucial in the derivation of the massless Dirac equations describing the quantum chiral particles in Minkowski spacetime. This remark applies, of course, to other prequantizable homogeneous symplectic manifold physically relevant to describe elementary particles.

• Let us rewrite, for convenience, the 1-form (1.6) of W 10 in the new guise

̟ = R • dP + χ ZdZ i where Z = e -i P •R ζ. (2.1)
We now claim that Y 7 = W 10 /(ker ̟ ∩ ker d̟) is the sought prequantum bundle over (X 6 , ω), endowed with the prequantum 1-form α such that ̟ = π * W Y α. [START_REF] Woodhouse | Geometric quantization[END_REF] As in [10], the prequantum bundle, Y 7 , is readily identified with the section of W 10 described by the pairs (Z ′ , x) where

Z ′′ = Z ′ Z ′ 2 & x = r (t = 0) (2.2)
with Z ′ ∈ C 2 \ {0}, and r ∈ R 3 . In view of (2.1) and (2.2), this immediately yields

α = -x • dp -χ d|p| 2i|p| + χ Z ′′ dZ ′ i (2.3)
where p ∈ R 3 \ {0} (see (1.10)) reads now

p = 1 √ 2 Z ′ σZ ′ . (2.4) 
The 1-form α/ is clearly a U(1)-connection form; indeed dα = π * Y X ω where ω is as in (1.9), and α(δ(Z ′ , x)) = where δ(Z ′ , x) = (iχZ ′ , 0) is the fundamental vector field of the U(1)-action on Y 7 . The projection π Y X :

C 2 \ {0} × R 3 → R 3 \ {0} × R 3 is therefore given by π Y X (Z ′ , x) = (p, x).
This is summarized by the following diagrams

W 10 π W Y ---→ Y 7 π W V     π Y X V 9 π V X ---→ X 6 π V E   E 4 (ζ, R) π W Y ---→ (Z ′ , x) π W V     π Y X (P, Q, R) π V X ---→ (p, x) π V E   R 11
Let us mention that the characteristic distribution ker ̟ ∩ ker d̟ of (W 10 , ̟) is given by (1.7) with λ = 0. It is therefore 3-dimensional; its foliation corresponds to Wigner-Souriau translations [4] along P ⊥ , so that Y 7 ∼ = W 10 /R 3 . By construction, the 1-form ̟ of W 10 descends to Y 7 as the 1-form α given by (2.3). N.B. It is easily verified that ζ ′ (as well as Z ′ !) is a first-integral of the characteristic distribution of ̟; it hence passes to Y 7 .

Geometric quantization and the Weyl equation

As every quantization procedure, geometric quantization needs the introduction of wave functions serving to provide on the one hand solutions of the sought wave equations, and, on the other hand, unitary irreducible representations of the classical symmetry group at hand, e.g., the Poincaré group.

• Geometric quantization primarily views wave functions as smooth U(1)-equivariant complex-valued functions, namely such that

Ψ : Y → C & z * Y Ψ = zΨ (2.5) 
for all z ∈ U(1); see Footnote 9.12 

• The next fundamental ingredient needed in geometric quantization is a polarization. 13 Here, we will merely consider a real polarization of a symplectic manifold (X 2n , ω), i.e., a (fiberwise) n-dimensional isotropic subbundle F ⊂ T X, i.e., verifying ω(F, F ) = 0.

This choice generalizes that of the "position" or "momentum" representation in quantum mechanics. The F -polarized wave functions of (Y, α) over (X, ω) are the F ♯ -constant wave function (2.5), viz.,

F ♯ Ψ = 0 (2.6)
where F ♯ is the horizontal lift of F to (Y, α); see also [8, 9, 11].

• Returning to our model (X 6 , ω), we choose the most natural polarization, i.e., the vertical polarization, F , whose leaves, p = const ., are the fibres of the bundle X 6 → C + ; see (1.8). 14 It turns out that F = ker φ, where

φ = dp 1 ∧ dp 2 ∧ dp 3 |p| (2.7)
is the polarizer [2, 3] defined by the (pull-back of the) canonical Poincaréinvariant 3-form of the punctured future light-cone

C + . Note that F is indeed a polarization iff ω ∧ φ = 0 & rank φ = 3.
An equivalent approach has been devised in [9, 11] to geometrically quantize, e.g., relativistic massless particle models.

• We are ready to express the F -polarized wave functions of the model using this formalism. It has been shown [3] in full generality that those are the solutions Ψ ∈ C ∞ (Y, C) of the differential equation

φ ∧ DΨ = 0 where DΨ = dΨ - i αΨ (2.8)
is the covariant derivative of the wave function, Ψ, of (Y, α). These wave functions, Ψ, are thus "covariantly constant" along the polarizer, φ.

• Let us first examine the case, χ -1, of negative helicity in the above model. We find, with the help of (2.3) and (2.7), that the solutions, Ψ, of Equation (2.8) must satisfy 15

dp 1 ∧ dp 2 ∧ dp 3 ∧ ∂Ψ ∂x dx + ∂Ψ ∂p dp + ∂Ψ ∂Z ′ dZ ′ + ∂Ψ ∂Z ′′ dZ ′′ + i x • dp - d|p| 2|p| -dZ ′′ Z ′ Ψ = 0
which gives ∂Ψ/∂x = 0, ∂Ψ/∂Z ′ = 0, and ∂Ψ/∂Z ′′ = Z ′ Ψ. This entails that Z ′′ ∂Ψ/∂Z ′′ = Z ′′ Z ′ Ψ = Ψ; hence Ψ is homogeneous of degree 1 in Z ′′ , viz., Ψ(Z ′ , x) = Z ′′ ψ ′ (P ) for some ψ ′ ∈ C ∞ (C + , C 2 ). It thus follows that Ψ(Z ′ , x) = Z ψ(P ) where ψ(P ) = 2Z ′ 0 Ψ(Z ′ , x).

(2.9)

Using (1.1), (1.11), and (2.4), one furthermore shows that 16

γ(P ) = 1 √ 2 0 Z ′ Z ′ Z ′ 2 -Z ′ Z ′ 0 .
We have just proven, if χ = -1, that the space of so-polarized wave functions (2.9) is isomorphic to the space of spinors ψ ∈ C ∞ (C + , C 2,2 ) satisfying γ(P )ψ(P ) = 0 & γ 5 ψ(P ) = iχψ(P ).

(2.10)

• The fundamental equations in (2.10) hold for χ = ±1 [10].

15 Easy calculation leads to ZdZ = -dZ ′′ Z ′ -d|p|/(2|p|).

16 Indeed, if ξ = Z ′ / Z ′ ∈ S 3 , one has σ(u) = 2ξξ -1.

• To finish, let us introduce the partial Fourier transform

ψ(R) = C + ψ(P ) e i P •R φ (2.11)
where ψ is now supposed to be compactly supported on the forward null light-cone, C + . Routine computation shows, with recourse to (2.10) and (2.11), that ψ ∈ C ∞ (E 4 , C 2,2 ) is indeed the general solution of the Weyl equation of helicity χ = ±1, namely

γ µ ∂ µ ψ = 0 & γ 5 ψ = iχ ψ. (2.
12)

The genesis of the Weyl equations by geometric quantization is originally due to Souriau [10]. It has later been revisited by Simms & Woodhouse [9, 11] using the spinorial/twistorial formalism of Penrose; see also [3]. • Let us express our Weyl system (2.12) in terms of 2-component spinors, ψ χ ∈ C ∞ (E 4 , C 2 ) corresponding to helicity χ = ±1. Using the representation (1.1) of the gamma matrices, those show up as follows

ψ = ψ - ψ + .
The Dirac operator, D = γ µ ∂ µ , then reads

D = 0 -σ j ∂ j + ∂ t σ j ∂ j + ∂ t 0 .
so that D ψ = 0 in (2.12) yields the equivalent form of the Weyl equation, namely σ j ∂ j ψ χ = χ ∂ t ψ χ (2.14) with ∂ j = ∂/∂r j for all j = 1, 2, 3, where r = (r 1 , r 2 , r 3 ) stand for the position coordinates, i.e., the bona fide spatial translation coordinates of the Poincaré group.

•

  The universal covering, G, of the Poincaré group consists of the matricesg = Ad(A) γ(C) 0 1 where A ∈ Spin(3, 1) & C ∈ R 3,1 .Since G ∼ = W 10 , its left-action reads g • (ζ, R) = (Aζ, ̺(A)R + C). The latter induces, via pull-back, a natural (right-)action on the wave function (2.9) so that g • ψ(P ) = A -1 ψ(̺(A)P ). Taking into account the Lorentz-invariance of the polarizer (2.7) in the integral(2.11), immediately leads to the following (anti-)representation of the universal covering of the Poincaré group on the solutions (2.11) of the Weyl equation (2.12), viz.,g • ψ(R) = A -1 ψ(̺(A)R + C) (2.13)for all g = (A, C) ∈ Spin(3, 1) ⋉ R 3,1 .

We have γ µ = G -1 C(γ µ ) T G.

We use the shorthand notations γ(δR) = γ µ δR µ for all δR ∈ R

[START_REF] Duval | Geometric Quantization and Localization of Relativistic Spin Systems[END_REF][START_REF] Duval | On the prequantum description of spinning particles in an external gauge field[END_REF] .

The diffeomorphism is thus Spin(3, 1) → Σ 6 : S → ζ = A 1 + A 3 .

Since P • δR = P µ δR µ with P µ = g µν P ν , Equation (1.4) may alternatively be read asP µ = ζγ µ [1 + iγ

] ζ/ √2, for all µ = 1, . . . , 4.

The local notation G should not be confused with that of the above spinorial metric!

One can write, equivalently, ̟ = -P µ dR µ -iχ ζ a dζ a where ζ a = G ab ζ b for all spinor indices a = 1, . . . , 4.

The projection to the evolution space V 9 of the leaves of ker σ are the Wigner-Souriau translations of Ref.[START_REF] Duval | Chiral fermions as classical massless spinning particles[END_REF]; see Footnote 11.

The coordinates x = (x 1 , x 2 , x 3 ) do not Poisson-commute; they are sometimes called the Pryce coordinates.

We will denote by z → z Y the U(1)-action on Y .

Alternatively, prequantization can be understood in terms of the inequivalent forms of the "Dirac-Feynman factor" exp(iS/ ), where S is the classical action[START_REF] Horváthy | Classical action, the Wu-Yang phase factor and prequantization[END_REF][START_REF] Horváthy | Prequantization From Path Integral Viewpoint[END_REF].

This definition legitimizes the overall phase factor affecting quantum wave functions as coming from the consideration of a circle bundle above the space of classical motions.

This is a geometrical object of symplectic geometry; no confusion with the optical notion of polarization of light!

In view of (1.9), we clearly have ω(F, F ) = 0.
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