
HAL Id: hal-01266462
https://hal.science/hal-01266462

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning the Structure of Deep Architectures Using L1
Regularization

Praveen Kulkarni, Joaquin Zepeda, Frédéric Jurie, Patrick Pérez, Louis
Chevallier

To cite this version:
Praveen Kulkarni, Joaquin Zepeda, Frédéric Jurie, Patrick Pérez, Louis Chevallier. Learning the
Structure of Deep Architectures Using L1 Regularization. British Machine Vision Conference, 2015,
Sep 2015, swansea, United Kingdom. �10.5244/C.29.23�. �hal-01266462�

https://hal.science/hal-01266462
https://hal.archives-ouvertes.fr

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 1

Learning the Structure of Deep
Architectures Using `1 Regularization

Praveen Kulkarni1

Praveen.Kulkarni@technicolor.com

Joaquin Zepeda1

Joaquin.Zepeda@technicolor.com

Frederic Jurie2

frederic.jurie@unicaen.fr

Patrick Pérez1

Patrick.Perez@technicolor.com

Louis Chevallier1

Louis.Chevallier@technicolor.com

1 975 avenue des Champs Blancs,
CS 17616, 35576 Cesson Sévigné,
France
http://www.technicolor.com

2 University of Caen Basse-Normandie,
CNRS UMR 6072, ENSICAEN, France
http://www.unicaen.fr

Abstract

We present a method that formulates the selection of the structure of a deep archi-
tecture as a penalized, discriminative learning problem. Up to now, the structure of deep
architectures has been fixed by hand, and only the weights are learned using discrimina-
tive learning. Our work is a first attempt towards a more formal method of deep structure
selection. We consider architectures consisting only of fully-connected layers, and our
approach relies on diagonal matrices inserted between subsequent layers. By including
an `1 norm of the diagonal entries of said matrices as a regularization penalty, we force
the diagonals to be sparse, accordingly selecting the effective number of rows (respec-
tively, columns) of the corresponding layer’s (next layer’s) weights matrix. We carry out
experiments on a standard dataset and show that our method succeeds in selecting the
structure of deep architectures of multiple layers. One variant of our architecture results
in a feature vector of size as little as 36, while retaining very high image classification
performance.

1 Introduction
Since Krizhevsky et al. [10] demonstrated the outstanding results that can be obtained in
image classification by using Deep Neural Networks (DNNs), the popularity of DNNs has
exploded. DNN methods have indeed resulted in very large increases in performance on a
wide range of image classification datasets, including large scale datasets such as ImageNet
[10], and, by means of transfer learning, smaller datasets such as PascalVOC 2007/2012
[15], SUN397 [7] and MIT Indoor datasets [3, 7].

DNNs consist of concatenations of standard layers. The first several layers are usually
convolutional layers consisting each of n j (with j the layer index) spatially-convolutional
kernels that operate on the n j−1 dimensional spatial signals output by the previous layer.

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms. Pages 23.1-23.11

DOI: https://dx.doi.org/10.5244/C.29.23

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

Citation
Citation
{Gong, Wang, Guo, and Lazebnik} 2014{}

Citation
Citation
{Cimpoi, Maji, and Vedaldi} 2014

Citation
Citation
{Gong, Wang, Guo, and Lazebnik} 2014{}

2 KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

Interspersed between these layers are normalization layers and spatial max-pooling layers
that can be seen as non-linear convolutional operators. The normalization layers process a
single spatial position and effectively balance kernel output energy across space. The max-
pooling layers reduce the spatial support of the signal by max-pooling signals in small spatial
neighborhoods. Given the convolutional nature of all these operators, they can process input
images of arbitrary dimensions.

The latter layers of DNN architectures are instead fully connected layers that require
inputs of fixed size. This constraint on input size propagates down the convolutional layers,
effectively fixing the DNN architecture’s expected input image size (sizes around 225×225
are common [9, 10]). In this respect, the convolutional layers of DNN architectures can be
seen as very large fully connected layers that have been constrained to have a weights matrix
that is structured and highly sparse, effectively regularizing the architecture.

One important consideration when designing DNN architectures is the choice of weights
matrix size across the various Fully Connected Layers (FCLs). Besides being another im-
portant means of regularization, the size of the FCL weight matrices has a strong impact on
system complexity. The first fully connected layer, in particular, can account for 90% of the
number of coefficients in the DNN [10]. When using pre-learned DNNs as generic image
feature extractors [2, 6, 17], rectangular weights matrices further have the potential advan-
tage of producing reduced-size feature vectors [2, 12]. But, up to now, the approach used to
select the dimensions of the rectangular matrices across the various layers has been empiri-
cal, and researchers have mostly focused on using constant sizes across all fully connected
layers.

The main contribution of the present work is hence to show that the sizes of the FCL
weight matrices can be selected as a part of the supervised DNN learning procedure. We
do this by inserting a diagonal matrix D j between layers (j, j+ 1), accordingly penalizing
the DNN learning objective with the sparsity inducing `1 norm on the diagonal coefficients
of each D j. Our method can be seen as formalizing the tradeoff between the generalization
power of the model and its storage/computation requirements, as represented by the FCL
weight matrix sizes. We then show experimentally that it is indeed possible to choose optimal
FCL weight matrix sizes and that these vary with the layer index. Our experiments further
show that the approach results not only in smaller feature vectors, but also in higher image
classification performance.

The remainder of this paper is organized as follows: in the next section, we present a
review of DNN methods that are related to our work. In Section 3, we present our proposed
method, subsequently evaluating it experimentally in Section 4. We then provide some con-
cluding remarks in Section 5.

2 Background
Given the large number of free parameters in DNN architectures, regularization is an im-
portant consideration when learning deep architectures, and various works have explicitly
addressed it. One very successful approach currently deployed in publicly available DNN
learning algorithms [9] is dropout [20]. Dropout aims to prevent neighboring units from
memorizing training samples. This is accomplished by randomly zeroing a subset of the ac-
tivation values at the output of each fully connected layer, choosing a different random subset
for each training example. The end result is that a different effective training set is used for
neighboring weights. A related approach, DropConnect, zeros the FCL weights instead of

Citation
Citation
{Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, and Darrell} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Gong, Wang, Guo, and Lazebnik} 2014{}

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Kulkarni, Zepeda, Jurie, Perez, and Chevallier} 2015{}

Citation
Citation
{Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, and Darrell} 2014

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 3

the activation coefficients [22]. Other regularization approaches instead consist of using un-
supervised learning either as an initializing stage before a second, strongly supervised stage,
or in a mixed supervised/unsupervised approach [5].

A related line of work consists of pre-learning an entire architecture on a large, generic
image dataset and then adapting the resulting architecture to a new target dataset. The ap-
proach of [2], for example, adapts the entire architecture by continuing the learning process
at a reduced learning rate using the samples from the new target dataset. In [15], the adapta-
tion is instead carried out by entirely re-learning the last two layers on the new target dataset.
A similar idea consists of using the activations of the penultimate layer of a pre-learned ar-
chitecture as an image feature. When used for image classification, SVM classifiers are then
learned on top of these features [17], and the collection of such linear classifiers can be seen
as a single fully connected adaptation layer. Linear classifiers have also been used in place
of the soft-max classifier when learning either the entire architecture [2], or along with one
other fully-connected adaptation layer [12].

Various authors have also considered DNN variants of classical approaches including the
ubiquitous spatial pyramid [13], the Fisher kernel [16] and bag-of-words [19]. The approach
of [11], for example, consists of treating the n j-dimensional spatial signals at the output
of the j-th layer as a densely extracted local descriptor, and then building an aggregated
representation such as a bag-of-words or a Fisher vector on top of these local descriptors.

The work of [8] uses a Spatial Pyramid Pooling (SPP) layer between the last convolu-
tional layer and the first fully-connected layer. This should make it possible to use input
images of arbitrary size, as the SPP layer maps the arbitrarily-sized output from the last con-
volutional layer to a vector of constant size compatible with the subsequent fully connected
layer. In practice, however, the approach is implemented using a max-pooling layer with
large stride.

The approach presented in [6] consists of using a DNN as a local feature extractor by
treating each patch from a dense sampling of image patches as an image. The activation
features resulting from each patch are then treated as local descriptors to build an aggregated,
global feature vector. A similar approach is presented in [4]: given a large number of region
proposals derived from the input image, the method extracts CNN activation features for
each region and classifies them into given set of classes using linear classifiers. Approaches
such as that of [4, 6] that use DNNs as local feature extractors suffer from a very large
computational complexity, and could hence benefit from complexity constrained DNNs such
as the ones presented herein.

3 Learning the structure of deep architectures

In this section we present our proposed approach, illustrated in Fig. 1. The architecture we
consider consists of a sequence of fully-connected layers, with a diagonal matrix between
them. We will constrain the diagonal matrix to have a sparse diagonal, and this will implicitly
define the size of the weights matrices of each layer. Rather than using the standard soft-max
classification layer as the last layer, we will use a bank of linear SVM classifiers similarly to
the approaches in [2, 12].

Citation
Citation
{Wan, Zeiler, Zhang, LeCun, and Fergus} 2013

Citation
Citation
{Goh, Thome, Cord, and Lim} 2013

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Kulkarni, Zepeda, Jurie, Perez, and Chevallier} 2015{}

Citation
Citation
{Lazebnik and Schmid} 2006

Citation
Citation
{Perronnin, Sánchez, and Mensink} 2010

Citation
Citation
{Sivic and Zisserman} 2003

Citation
Citation
{Kulkarni, Zepeda, Jurie, Perez, and Chevallier} 2015{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Gong, Wang, Guo, and Lazebnik} 2014{}

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Gong, Wang, Guo, and Lazebnik} 2014{}

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Kulkarni, Zepeda, Jurie, Perez, and Chevallier} 2015{}

4 KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

Figure 1: Proposed deep processing pipeline. Given an image representation, e.g., the
output of the convolutional part of a pre-trained state-of-art DNN, J fully connected layers,
each involving a diagonal matrix that controls its effective dimensions, are jointly learned
with final linear SVM classifiers. Here, [z]+ = [max(0,zi)]i is the commonly used Rectified
Linear Unit (ReLU) non-linearity.

3.1 Constraining layer complexity
Formally, we can express the architecture in Fig. 1 as a concatenation of units of the follow-
ing form:

f j(x) = D j [M jx+b j]
+
, (1)

where [z]+ = [max(0,zi)]i is the commonly used Rectified Linear Unit (ReLU) non-linearity,
here applied to a vector z= [zi]i. Input vector is n j−1-dimensional and output is n j-dimensional.
This layer is defined by n j-dim vector b j, n j-dim diagonal matrix D j and matrix M j of size
n j×n j−1. A deep architecture can be derived from (1) using the standard stacking approach.
Letting ◦ denote the composition operator such that f ◦g(x) = f (g(x)), this can be denoted
as

f J ◦ . . .◦ f 1(x), (2)

where, in this case, the vector x denotes the representation of the image at the input of the
architecture. The image representation can consist of a direct re-ordering of the RGB values
in the image [2, 10], or it can be a feature derived from the image [12, 15], which is the
approach we follow in the present work.

We are interested in the case when the diagonal entries of D j are sparse. When this is
the case, the corresponding rows of M j and b j can be removed, as well as the corresponding
columns of M j+1. To see this, let I denote the support (indices of non-zero positions) of the
diagonal entries of D j. Let AI,., A.,I and AI,I denote, respectively, the sub-matrices derived
from matrix A by retaining respectively the rows, the columns and both at positions indexed
by I. After being processed by the weights matrix M j+1 of the next layer, the expression in
(1) becomes

f j+1(x) =
[
M j+1

.,I D j
I,I

[
M j

I,.x+b j
I

]
+
+b j+1

I

]
+
. (3)

In this sense, the sparsity of the diagonal of D j encodes the computational complexity of the
system, as it selects the effective dimensions of the M j matrices and the b j vectors.

3.2 Problem formulation
The architecture in Fig. 1 consists of a large number of parameters. Besides the vari-
ables M j,D j,b j associates to each layer j = 1, . . . ,J in (1), one needs to learn the vectors

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Kulkarni, Zepeda, Jurie, Perez, and Chevallier} 2015{}

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 5

w1, . . . ,wK that define the SVM classifiers for the K classes. We will learn these variables
from an annotated training set comprised of N training images xi, i = 1, . . . ,N, each with K
labels yk

i ∈ {−1,1},k = 1, . . . ,K indicating whether image i belongs to class k or not. Given
such a training set, our approach consists of minimizing the following objective over all the
variables {(M j,b j,D j)}J

j=1 and all the classifiers {wk}K
k=1:

1
K

K

∑
k=1

(
‖wk‖2

2 +
C
N

N

∑
i=1

l
(

yk
i (fJ ◦ . . .◦ f1(xi))

>wk
))

+δ

J

∑
j=1
‖D j‖∗+µ

J

∑
j=1
‖M j‖2

F . (4)

In the above expression, we have used (i) l(x) to denote the hinge loss, given by max(0,1−
x); (ii) ‖D‖∗ to denote the trace norm, given by ∑i |Dii| for the case of diagonal D; and (iii)
‖M‖2

F to denote the squared Frobenius norm ∑i j M2
i j.

To illustrate the motivation behind this learning objective, we note first that the terms
inside the summation over k in (4) are recognizable as an SVM objective for class k, where
the scalar C is the SVM regularization parameter. The feature vectors used within this SVM
objective are given by fJ ◦ . . . ◦ f1(xi), which depends on {(M j,b j,D j)}J

j=1. Hence we are
learning the classifiers jointly with the feature extractor used to represent the input images.
A similar approach has been used in [21] in the context of Fisher vector encoders to learn
the encoder’s GMM parameters under a discriminative objective.

The two regularization terms comprised of summations over j in (4) serve multiple pur-
poses. One first purpose is to keep the SVM terms from decreasing indefinitely. Recall that
the aim of an SVM objective is to maximize the margin between positive and negative ex-
amples. If it were not because of the penalty terms ‖wk‖2

2, it would be possible to minimize
this indefinitely by multiplying the linear classifiers by a very large scalar. The penalty terms
on the D j and M j serve a similar purpose when learning the features jointly with classifiers.

A second important purpose is to automatically select the shapes of the weights matrices
M j and b j. When applied to diagonal matrices such as D j, the trace norm is equivalent to
an `1 norm computed from the diagonal vector of D j, and `1 norms are known to be well-
behaved (i.e., convex and differentiable almost everywhere) sparsity inducing norms. They
are hence excellent surrogates for the `0 pseudo-norm that counts the number of non-zero
entries of a vector. Since the matrices D j multiply corresponding M j and M j+1 matrices,
low-valued coefficients of D j can be compensated with increased norm of rows in M j and
columns in M j+1. The penalty terms on the norm of the M j’s hence address this ambiguity.

Approaches other than the one presented in (4) and Fig. 1 are indeed possible. For ex-
ample, it would be possible to dispense altogether of the matrices D j by using an alternative,
structure inducing penalization on the matrices M j. The `1,2 matrix norm is an appealing
alternative. Letting m′i denote the transposed i-th row of M, it is given by

‖M‖1,2 = ∑
i
‖m′i‖2, (5)

and this is in turn an `1 penalization of the vector [‖m′i‖2]i of `2 norms of the rows of M. As
such, it forces entire rows of M to be zero. Yet in the context of learning problems such as
ours, Stochastic Gradient Descent (SGD) optimization methods that process a single example
at a time are a must. An adaption of SGD is thus required that processes one example at a
time while retaining nonetheless the sparse structure. As we will see next, our approach (4)
using diagonal matrices can accomplish this with a simple adaptation of SGD-based solvers
for `1 penalized SVM problems [1].

Citation
Citation
{Sydorov, Sakurada, and Lampert} 2014

Citation
Citation
{Bottou} 2012

6 KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

3.3 Learning approach

In order to derive an algorithm to minimize (4), we will first re-write it in a more convenient
form using the following definitions:

rk,i = ‖wk‖2
2 +Cl

(
yk

i (fJ ◦ . . .◦ f1(x))>wk
)
, (6)

Ri =
1
K

K

∑
k=1

rk,i +δ

J

∑
j=1
‖D j‖∗+µ

J

∑
j=1
‖M j‖2

F , (7)

the resulting form of (4) is

1
N

N

∑
i=1

Ri. (8)

In order to minimize (8), we will employ a block-coordinate SGD approach wherein, for
each sample i, we process each block of coordinates M1,D1,b1, . . . ,MJ ,DJ ,bJ , w1, . . . ,wK

successively. Letting θ denote a generic block of coordinates, the update step for that block
at time instance t is as follows, where it is a sample index drawn randomly at time t, and the
coefficient γt is the learning rate chosen using cross-validation:

θt+1 = θt − γt
∂Rit
∂θ

∣∣∣∣
θt

. (9)

The required sub-gradient ∂Ri
∂θ

is given by

∂Ri

∂θ
=

1
K

K

∑
k=1

∂ rk,i

∂θ
+δ

J

∑
j=1

∂‖D j‖∗
∂θ

+µ

J

∑
j=1

∂‖M j‖2
F

∂θ
(10)

Expressions for ∂ rk,i

∂θ
when θ represents a classifier wk are readily available from the

literature on SGD-based SVM solvers [1, 18], and expressions for the case when θ represents
a weights matrix M j or offset vector b j are available from the literature on deep learning
[14]. The gradient of the squared Frobenius norm is just a rasterization of 2M j (whenever θ

represents the corresponding block of coordinates M j).
Concerning the gradient with respect to the matrices D j, it is possible to apply the update

rule specified in (10) directly, but this will produce matrices D j with diagonals that are only
approximately sparse. Instead, we will use a procedure adapted from `1 penalized SVM
solvers [1]. To this end, we represent each D j in terms of two non-negative vectors v j and
u j:

D j = diag(v j)−diag(u j), where v j,u j ≥ 0. (11)

In order to enforce the non-negativeness of the v j and u j, whenever we are optimizing over
one of these blocks, we will follow the SGD update step in (9) by a projection into the set of
non-negative vectors. The modified update step is given by

θt+1 =

[
θt − γt

∂Rit
∂θ

∣∣∣∣
θt

]
+

. (12)

Citation
Citation
{Bottou} 2012

Citation
Citation
{Shalev-Shwartz, Singer, and Srebro} 2007

Citation
Citation
{LeCun, Bottou, Orr, and Muller} 2002

Citation
Citation
{Bottou} 2012

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 7

Choice of learning rate. In order to make our algorithm converge at a fast rate, we will
use an adaptive learning rate that gets updated and kept fixed for each batch of B samples.
The learning rate is updated at the beginning of the batch using γt = γt−1 ·2−n, where succes-
sive values of n = 0,1,2, . . . are tested until further increasing n no longer reduces the cost
computed over a subset of the B samples from the batch. This approach has the advantage
that the subset used to choose n is small, and hence adaptation is fast.

Early-stopping and choice of regularization parameters. We used two different early-
stopping strategies that allowed us to select the number of iterations T (expressed as number
of epochs) to use, both based on cross-validation. In one case we used the iteration that
produced the highest mean Average Precision (mAP) over the validation set, while in the
second case we chose the iteration giving the lowest cost, again computed over the validation
set. We likewise use the validation set to choose the regularization parameters.

4 Results
In this section we evaluate our proposed learning algorithm and compare it against various
state-of-the-art algorithms. To this end, we use the Pascal VOC 2007 dataset, which consists
of 4192 test images and 5011 training images. We hold out 811 training images, choosing
them uniformly over all classes, and use them as a validation set. As an image representation,
we will use the VGG-M model of [2] which produces 128-dimensional features, accordingly
using weights matrices of size 128×128.

Choice of regularization values Our learning algorithm is governed by three different
regularization methods: the penalty weights µ and δ , and the number of training epochs T .
The number of training epochs is determined using the validation set by computing either
the (i) the validation mAP or (ii) the validation cost and choosing the number of training
epochs that gives the best value. We found that using the validation mAP to determine T
resulted in higher test mAP, but diagonal matrices D j that are not necessarily sparse. Using
the validation cost to determine T , on the other hand, resulted in slightly lower mAP values
but in much higher sparsities for the matrices D j.

In Fig. 2 we illustrate the cross-validation method we use to choose the penalty weights µ

and δ . The approach consists of keeping one penalty weight fixed while varying the second
one, and then choosing the penalty weight that results in the highest validation mAP (this
corresponded roughly to the value producing the highest test mAP).

Varying the number of layers J In Table 1, we evaluate the performance of our method as
a function of the number of layers J in the architecture. We choose the regularization values
following the procedure outlined above, using the validation cost to select the stopping point
T . Note that our method succeeds in choosing sparse matrices D j while retaining a high test
mAP. For J > 2, only the first layer results in a matrix D j with sparse diagonal. The reason
for this is that the cross-validation procedure used to select δ in (7) only takes the mAP into
account.

In Fig. 3, we hence plot both the sparsity for all layers and the corresponding test and
validation mAPs when varying the penalty weight δ . Note that increasing δ drastically
increases the number of zero diagonal entries in the architecture while only slightly affecting

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

8 KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

1 2 3 4

·10−3

70

72

74

76

δ

m
A

P

Test mAP

Valid. mAP

1 1.2 1.4 1.6 1.8 2

·10−5

74

75

76

µ

m
A

P

Test mAP

Valid. mAP

Figure 2: Effect of the penalty weights δ and µ for a single-layer architecture, using valida-
tion cost as a stopping criterion.

J Test mAP Number of zeros in diagonal of D j δ µ T

j = 1 2 3 4 5 6

1 76.38 93 - - - - - 8.0e-4 1.5e-5 120
2 76.20 105 105 - - - - 1.4e-3 3.5e-5 180
3 76.58 92 0 0 - - - 8.0e-4 1.0e-5 240
5 76.55 91 0 0 0 0 - 8.0e-4 2.5e-5 360
6 76.19 88 0 0 0 0 0 7.0e-4 1.4e-5 420

Table 1: Using validation cost to choose the number of training epochs T , and validation
mAP to choose the best δ first, and then the best µ .

0.5 1 1.5 2 2.5

·10−3

100

200

300

400

Penalty weight on D

Sp
ar

si
ty

j=1

j=2

j=3

j=4

0.5 1 1.5 2

·10−3

70

72

74

76

Penalty weight on D

m
A

P

Valid. mAP

Test mAP

Figure 3: Effect of the penalty weight δ on (left) the number of zero diagonal entries of
D j, j = 1, . . . ,4, and (right) on the classification performance as measured by mAP. The zero
diagonal entries are presented as stacked plots so that the vertical displacement of any shaded
regions corresponds to the number of zero diagonal entries of D j for the corresponding layer.

the classification performance. For example, for δ = 2.5e−3, close to 82% of the diagonal
entries in all D j are zero, while the test mAP has only dropped by 4.5%. For δ = 8e−4,
close to 40% of the diagonal entries are zero, while the system mAP is nearly unaffected.

For completeness, in Fig. 4 we present a plot of layer sparsity as a function of the training
epoch. Note that D1 becomes sparse initially, and this reduces the intrinsic dimensionality
of the signals at the input of the second layer, hence enabling D2 to become sparse.

Comparison against state-of-the-art In Table 2 we compare our proposed method against
various state-of-the-art algorithms derived from CNN methods. We include four reference

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 9

20 40 60
0

50

100

150

200

Num. of training epochs
Sp

ar
si

ty

Layer 1

Layer 2

Figure 4: Number of zero entries in diagonal of D j versus iteration number (expressed as
number of epochs) for an architecture of J = 2 layers.

Method Train time Dim # params. mAP

CNN S TUNE-RNK_aug[2] - 4K ∼100M 82.42
VGG-128_aug [2] ∼ 10s 128 2560 78.90

off-the-shelf_aug[17] - 4K 81K 77.2
PRE1000C [15] ∼ 1 day - ∼8.5M 77.73

VGG-128 [2] ∼ 10s 128 2560 76.34
off-the-shelf[17] - 4K 81K 73.9

Ours(J = 1) 210s 35 7040 76.38
Ours(J = 3) 630s 36 9760 76.58
Ours(J = 6) 1260s 128 100K 77.63

Table 2: Comparison of our proposed method with various existing CNN methods. The
training time indicated includes only the training time related to Pascal VOC, and not training
time incurred when learning on ImageNet. The top four methods rely on some form of data
augmentation and have training sets that effectively many times bigger than the PascalVOC
training set. The bottom five methods (including ours) only use the training images specified
in PascalVOC.

methods that rely on data augmentation (the first four), and two reference methods that do
not (the next two). The last three lines in the table correspond to three variants of our ar-
chitecture. The first two have depth J = 1,3 and are learnt with sparsity in mind by using
a stopping criterion T selected using validation cost. The last one is learned using valida-
tion mAP to select the stopping criterion T . Note that, for J = 1,3, our method produces
very small features of size 35 and 36, respectively, while at the same time outperforming
all the reference methods not-relying on augmentation, even when these use features many
times larger. Our architecture with J = 6 results in a mAP value that outperforms not only
the non-augmented references approaches, but also two of the four approaches relying on
augmentation.

5 Conclusion
We present a method that automatically selects the size of the weight matrices inside fully-
connected layers comprising a deep architecture. Our approach relies on a regularization

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

10 KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

penalty term consisting of the `1 norm of the diagonal entries of diagonal matrices inserted
between the fully-connected layers. Using such a penalty term forces the diagonal matrices
to be sparse, accordingly selecting the effective number of rows and columns in the weights
matrices of adjacent layers. We present a simple algorithm to solve the proposed formulation
and demonstrate it experimentally on a standard image classification benchmark.

References
[1] Leon Bottou. Stochastic gradient descent tricks. In Grégoire Montavon, Geneviève

Orr, and Klaus-Rober Müller, editors, Neural Networks: Tricks of the Trade, volume 1.
Springer, 2 edition, 2012. URL http://link.springer.com/chapter/10.
1007/978-3-642-35289-8_25.

[2] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of
the Devil in the Details: Delving Deep into Convolutional Nets. In British Machine
Vision Conference, 2014. URL http://arxiv.org/abs/1405.3531.

[3] Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep convolutional filter banks
for texture recognition and segmentation. arXiv preprint arXiv:1411.6836, 2014.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–587. IEEE, 2014.

[5] Hanlin Goh, Nicolas Thome, Matthieu Cord, and Joo-Hwee Lim. Top-Down Regular-
ization of Deep Belief Networks. In Neural Information Processing Systems, 2013.

[6] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale Order-
less Pooling of Deep Convolutional Activation Features. In European Conference on
Computer Vision, March 2014. URL http://arxiv.org/abs/1403.1840.

[7] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale orderless
pooling of deep convolutional activation features. arXiv preprint arXiv:1403.1840,
2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recognition. In Pattern Analysis and
Machine Intelligence, 2015.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe : Convolutional Architecture
for Fast Feature Embedding. In ACM Multimedia, 2014.

[10] Alex Krizhevsky, I. Sutskever, and Geoffrey Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Neural Information Processing Systems,
pages 1–9, 2012.

[11] Praveen Kulkarni, Joaquin Zepeda, Frederic Jurie, Patrick Perez, and Louis Cheval-
lier. Hybrid Multi-Layer Deep CNN / Aggregator Feature for Image Classification. In
International Conference on Acoustics, Speech and Signal Processing, 2015.

http://link.springer.com/chapter/10.1007/978-3-642-35289-8_25
http://link.springer.com/chapter/10.1007/978-3-642-35289-8_25
http://arxiv.org/abs/1405.3531
http://arxiv.org/abs/1403.1840

KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 11

[12] Praveen Kulkarni, Joaquin Zepeda, Frédéric Jurie, Patrick Perez, and Louis Chevallier.
Max-Margin, Single-Layer Adaptation of Transferred Image Features. In BigVision
Workshop, Computer Vision and Pattern Recognition, 2015.

[13] Svetlana Lazebnik and Cordelia Schmid. Beyond Bags of Features : Spatial Pyramid
Matching for Recognizing Natural Scene Categories. In Computer Vision and Pattern
Recognition, 2006.

[14] Yann LeCun, Leon Bottou, Genevieve Orr, and Klaus-Robert Muller. Efficient Back-
Prop. In Neural Networks: Tricks of the Trade, pages 9–50. 2002.

[15] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level
Image Representations using Convolutional Neural Networks. Computer Vision and
Pattern Recognition, 2014.

[16] Florent Perronnin, J Sánchez, and Thomas Mensink. Improving the fisher ker-
nel for large-scale image classification. European Conference on Computer
Vision, 2010. URL http://link.springer.com/chapter/10.1007/
978-3-642-15561-1_11.

[17] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
Features off-the-shelf : an Astounding Baseline for Recognition. In Computer Vision
and Pattern Recognition Workshops, 2014.

[18] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos : Primal Estimated
sub-GrAdient SOlver for SVM. In International Conference of Machine Learning,
2007.

[19] Josef Sivic and Andrew Zisserman. Video Google: A text retrieval approach to object
matching in videos. In International Conference on Computer Vision, pages 2–9, 2003.
ISBN 0769519504. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1238663.

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout : A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014. ISSN 15337928.

[21] Vladyslav Sydorov, Mayu Sakurada, and Christoph Lampert. Deep Fisher Kernels
- End to End Learning of the Fisher Kernel GMM Parameters. In Computer Vi-
sion and Pattern Recognition, 2014. URL http://ist.ac.at/~chl/papers/
sydorov-cvpr2014.pdf.

[22] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of
Neural Networks using DropConnect. In International Conference of Machine Learn-
ing, 2013.

http://link.springer.com/chapter/10.1007/978-3-642-15561-1_11
http://link.springer.com/chapter/10.1007/978-3-642-15561-1_11
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1238663
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1238663
http://ist.ac.at/~chl/papers/sydorov-cvpr2014.pdf
http://ist.ac.at/~chl/papers/sydorov-cvpr2014.pdf

