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Kinetic theory and quasilinear theories of jet dynamics

F. BOUCHET, C. NARDINI AND T. TANGARIFE

1.1 Introduction

Turbulence in planetary atmospheres leads very often to self

organisation of the largest scales of the flow and to jet for-

mation, as discussed in many chapters of this book. We con-

sider in this section a theory for the jet formation and main-

tenance in a regime where velocity fluctuations around the

base jet are very small compared to the zonal jet velocity

itself. Such situations are frequent in many natural jets, for

instance in the atmosphere of outer planets, the most promi-

nent example being probably Jupiter’s troposphere jets. As

discussed in chapters 2.3.8 and 2.3.9 of this book, fluctua-

tions close to Jupiter zonal jets are smaller than the zonal

jets themselves. Such jets are continuously dissipated and

forced by weak non-zonal turbulent motion driving energy,

either from the deep atmosphere or due to the differential

heating of the planet. A theory of those jet velocity fields

thus requires the understanding of the statistically station-

ary balance between forces and dissipation. This balance

is mediated by the non-zonal turbulent flow dominated by

the effect of the jet on the eddies. Eddy dynamics, strongly

affected by the jets, leads to momentum fluxes (Reynolds’

stress) that balance dissipation. This balance determines the

jet velocity profile. Moreover, for this regime the zonal jet

themselves are quasi-stationary: they evolve over time scales

much longer than the typical time scale of the non-zonal

structures, as exemplified for instance by comparison be-

tween Cassini and Voyager data for Jupiter’s zonal jets.

In such a regime, it is natural and often justified to treat

the non-zonal part of the dynamics with a quasi-linear

approximation: at leading order the dynamics of the non-

zonal flow is described by the equation linearized close to

the quasi-stationary zonal jets. Such linear or quasi-linear

approaches have been commonly studied for decades in

many theoretical discussions of geostrophic turbulence.

Specifically for the problem of jet formation, such a quasi-

linear approach is at the core of Stochastic Structural

Stability Theory (S3T) first proposed by Farrell, Ioannou

[1, 15, 16], for quasi-geostrophic turbulence, and discussed

in section 5.2.2 of this book. More recently, an interpre-

tation in terms of a second order closure (CE2) has also

been given [23, 24, 39, 40] (see section 5.1.2 of this book).

All these different forms of quasi-linear approximations

have thoroughly been studied numerically, sometimes with

stochastic forces and sometimes with deterministic ones

[13]. Very interesting empirical studies (based on numerical

simulations) have been performed recently in order to study

the validity of this type of approximation [23, 25, 30, 40],

for the barotropic equations or for more complex dynamics.

The S3T equations have also been used to study theoreti-

cally the transition from a turbulence without a coherent

structure to a turbulence with zonal jets [1, 32, 38] (see

section 5.2.4 of this book). A generalisation to the study of

the emergence of non-zonal structures is also discussed in

section 5.2.5 of this book. These results are probably very

close to approaches through Rapid Distortion Theory, or

WKB Rapid Distortion Theory [26, 27, 28]. We also note

that such a quasi-linear approach is a classical framework in

many other problems in theoretical physics, for instance it

is at the core of the kinetic theory of plasmas (please see for

example the derivation of the Landau or the Lenard-Balescu

equations [3, 4, 20, 29]).

The aim of this paper is to discuss the theoretical aspects

of such a quasilinear description of statistically stationary

jets. The basic questions are: when does such an approach

is expected to be valid, why, what are the limitations and

the expected errors done doing such approximations? Should

the deterministic S3T equations be corrected by stochastic

terms? Does such an approach describe only typical states

or can it describe also large deviations ?

In order to address these issues, we study the jet forma-

tion problem in the simplest possible theoretical framework:

the two-dimensional equations for a barotropic flow with

a beta effect. These equations, also called the barotropic

quasi-geostrophic equations, are the simple relevant ones

for the understanding of large scale planetary flows [33].

All the formal theoretical framework developed in this work

could be easily extended to the equivalent barotropic quasi-

geostrophic model (also called the Charney–Hasegawa–

Mima equation), to the multi-layer quasi-geostrophic mod-

els or to quasi-geostrophic models for continuously stratified

fluids [33], even if the dynamics in those model is obviously

of a different nature as no baroclinic effects are modelled in

the barotropic equations.

Any known relevant kinetic approach is associated with

an asymptotic expansion where a small parameter is clearly

identified. Our small parameter α [6, 7] is the ratio of an

inertial time scale divided by the forcing time scale or equiv-

alently the dissipation time scale (the spin-up or spin-down

time scale, needed to reach a statistically stationary energy

balance). This is discussed in section 1.2.
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In section 1.2, we present the barotropic model and discuss

the range of parameters that leads to the formation of zonal

jets. We also present the equation that describes the effective

dynamics of zonal jets. The theoretical derivation of this

equation is briefly presented in section 1.3. This technical

section can be entirely skipped at first reading. We then

present the inviscid damping mechanism of the non-zonal

eddies in section 1.4. It also allows to show that the effective

equation of zonal jets presented in section 1.2 is actually well

defined. In section 1.5, we discuss the physical interpretation

of the effective zonal jets dynamics.

1.2 The inertial limit and the long time

effective jet dynamics

1.2.1 Non-dimensional parameters and inertial

limit

We study the formation of coherent structures in the

barotropic equation upon a beta-plane, in a doubly periodic

domain D = [0, 2πLlx)× [0, 2πL),

∂tq + v · ∇q = −λω − νn,d (−∆)n ω +
√
ση, (1.1)

with the non-divergent velocity v = ez ×∇ψ, the vorticity

ω = ∆ψ and the potential vorticity q = ω+ βdy, where ψ is

the stream function. λ is the Ekman friction coefficient, νn,d
is a (hyper-)viscosity coefficient and βd is the mean gradient

of potential vorticity. η is a white in time gaussian random

noise, with spatial correlation

E [η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2)

that parametrizes the forces (for instance the effective ef-

fects of baroclinic instabilities or convection). The correla-

tion function C is assumed to be normalised such that σ rep-

resents the average energy injection rate, so that the average

energy injection rate per unit of mass is ǫ = σ/4π2L2lx.

For atmospheric flows, viscosity is often negligible in the

global energy balance and this is the regime that we will

study in the following. Then the main energy dissipation

mechanism in our model is linear friction. The evolution of

the average energy (averaged over the noise realisations) E

is thus given by

dE

dt
= −2λE + σ.

In a stationary state we have E = Estat = σ/2λ, express-

ing the balance between forces and dissipation. This ex-

pression gives the typical velocity of the coherent structure

U ∼
√
Estat/L ∼

√

ǫ/2λ. As will be clear in the following,

we expect the non-zonal velocity perturbation to follow an

inviscid relaxation, on a typical time scale proportional to

the inverse of the shear rate.

For small values of βd, it is expected that the structure is

a jet at the largest scale of the box, then a typical vorticity

or shear is s = U/L corresponding to a time τ = L/U . It

is then natural to define a non-dimensional parameter α as

the ratio of the shear time scale over the dissipative time

scale 1/λ,

α = λτ = L

√

2λ3

ǫ
.

When α will be small, there will be a time scale separation

between the relaxation time of the non-zonal perturbations

and the evolution of zonal jets. It is thus natural to derive

an effective theory of the slow evolution of zonal jets using

a small α expansion.

We write the non-dimensional barotropic equation using

the box size L as a length unit and the inverse of a typical

shear τ = L/U as a time unit. We thus obtain (with a slight

abuse of notation, we use the same symbols for the non-

dimensional fields):

∂tq + v · ∇q = −αω − νn (−∆)n ω +
√
2αη, (1.2)

where, in terms of the dimensional parameters, we have

νn = νn,dτ/L
2n, β = βdLτ . Observe that the above equa-

tion is defined on a domain D = [0, 2πlx) × [0, 2π) and the

average stationary energy for νn ≪ α is of order one. In the

following, we will consider the case of viscosity, n = 1, and

denote ν = ν1, but all the results can be generalized to any

type of hyper-viscosity.

We note that when the beta effect is large enough, several

jets develop. Many works in literature [41] suggest that the

largest relevant scale of the flow is then given by the Rhines

scale

LR = (U/βd)
1/2 =

(

ǫ/β2dλ
)1/4

.

Such an estimate would be relevant for LR ≤ L. In this

regime, if this Rhines scale would actually be the typical

meridional size of a jet, then a typical shear rate would be

s = U/LR corresponding to a time τR = LR/U . Then the

ratio of the shear and dissipation time scales would be

αR = λτR = LR

√

2λ3

ǫ
.

αR would then be the natural expansion parameter in or-

der to obtain an effective theory of the slow evolution of

zonal jets. We note that αR ∝
(

Rβd

)−5
where Rβd

=

β
1/10
d ǫ1/20λ−1/4 is the zonostrophy index. Moreover, it is

observed in numerical simulations [12, 17] that the perturba-

tions around zonal jets decrease when Rβd
increases, which

actually corresponds to the regime αR ≪ 1.

In the following, we consider only the non-dimensional

equation obtained using τ as the time unit. Developing the

theory for the non-dimensional equations obtained using τR
as time unit would however be very similar. Moreover we

note that αR ≤ α when LR ≤ L. Thus, the hypothesis α≪ 1

made in the following actually implies αR ≪ 1. At this point,

it is not clear whether α or αR is the most relevant small

parameter that controls the time-scale separation between

jets and eddies dynamics. This issue is discussed in section

1.5.2.
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1.2.2 Effective zonal jet dynamics

Our approach aims at a precise description of zonal jets ve-

locity profile resulting from the dynamics (1.2). As in many

physical situations eddies are weak with respect to the zonal

jet, our main goal is to describe the effective evolution of the

zonal degrees of freedom only, integrating out the effect of

the eddies. As explained in the previous section, and as will

be discussed more precisely in section 1.4, when α ≪ 1 the

eddies relax to a stationary distribution on a time scale much

shorter than the time for the evolution of the jet. For this

reason we investigate the range of parameters ν ≪ α ≪ 1,

called inertial limit. The mathematical approach is called

stochastic averaging, or adiabatic treatment [18]. The pre-

cise justification of such a time-scale separation and the hy-

pothesis under which it is valid is one of the main result of

our work.

To extract the jet degrees of freedom out of the velocity

field v, we introduce the zonal average

U(y) ≡
〈

v(x)(x, y)
〉

=
1

2πlx

∫

dx v(x)(x, y) ; (1.3)

the jet velocity profile that we want to describe is thus

(U(y), 0). The zonal part of the vorticity field will be de-

noted by qz = 〈q〉. The non-zonal part of the velocity will

be denoted by a subscript m:

√
αvm =

√
α
(

v
(x)
m , v

(y)
m

)

= v − (U, 0) , (1.4)

and analogous expressions for vorticity and stream-function

fields. We also define the zonal and non-zonal parts of the

noise as η = ηz + ηm, and ζz the effect of ηz on the zonal

jet U , such that ηz = −∂yζz. Observe the presence of
√
α

in the definition of the non-zonal fields, which express the

fact that non-zonal fluctuations are weak with respect to the

mean flow. This is equivalent to assume the presence of a

time-scale separation. The fact that this choice is actually a

consistent hypothesis is one of the main points of our work;

it will be discussed all through the chapter.

Our main result can be described as follows: in the limit

ν ≪ α≪ 1, the dynamics of the zonal jet velocity profile U

is described by the following kinetic equation

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

−U+
ν

α

∂2U

∂y2
+
√
2ζz+

√
αξ[U ] ,(1.5)

where ωm obeys to

∂tωm + L0
U [ωm] = −αωm + ν∆ωm +

√
2ηm . (1.6)

To give a precise meaning to equations (1.5) we have to

specify what are L0
U , EU and ξ[U ]: this is what we are going

to do now.

• L0
U is the advection operator linearised around U ; explic-

itly, we have

L0
U [ωm] = U(y)∂xωm + (∂yqz) ∂xψm . (1.7)

Observe that the fact that eddies evolves according to the

linearized advection operator is due to the fact that they

are weak with respect to the mean flow.

• EU [·] is the average of the quantity in brackets over the

stationary measure of the equation (1.6). Explicitly, we

have

EU [f [ωm]] = lim
t→∞

Em[f [ωm]] (1.8)

for any functional f , where Em is the average over real-

isations of the noise ηm. In particular, EU

[〈

v
(y)
m ωm

〉]

can be computed directly from the stationary two points

correlation function of Eq. (1.6).

Clearly, the presence of a long-time limit in the averaging

procedure of the above quantity is due to the fact that

a time scale separation is present in the system: eddies

evolves much faster (on a time scale of order one) with re-

spect to the zonal jet, which evolves only on a time scale

of order 1/α.
• ξ[U ] is a stochastic term, that depends on the velocity

profile U . Its correlation function is denoted

E[ξ[U ](y1, t1) ξ[U ](y2, t2)] = ΞNL[U ](y1, y2)δ(t1−t2) .(1.9)

We do not present here the precise expression of ΞNL

and address the interested reader to [9] for more details.

Now that all the terms in the kinetic equations are defined,

let us discuss the physical properties. First of all, no hidden

α nor ν dependences are present in the kinetic equation.

That means that in the considered regime ν ≪ α ≪ 1, the

stochastic term
√
αξ[U ] is negligible. At first order in our

perturbative expansion, the kinetic equation reduces to

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

− U +
√
2ζz . (1.10)

The deterministic evolution of the zonal jet is dictated by the

first two terms on the r.h.s. of eq. (1.10). The first one is the

momentum flux v
(y)
m ωm averaged both on the zonal direction

(the symbol 〈·〉) and according to the average EU described

above. The second one,−U , is just the direct effect of Ekman

friction on the jet profile. At this order, fluctuations of the

zonal jet profile are only given by ζz, expressing the direct

effect of the forcing on the zonal jet.

From eq. (1.10), it appears evident that the deterministic

evolution of zonal jet profile is very slow, on a time scale

of order 1/α. We should however observe that a subtlety

may arise and break this conclusion: it is not obvious that

EU

[〈

v
(y)
m ωm

〉]

is a finite quantity in the inertial limit. In-

deed, a large time limit enters in the definition of EU , see

eq. (1.8) and eddies evolve according to equation (1.6) where

no dissipation is present in the aforementioned limit.

It is actually true that the average momentum flux

EU

[〈

v
(y)
m ωm

〉]

can diverge if no hypothesis are done on the

base flow U . For example, this is the case if U has unstable

or neutral modes. A very important and delicate conclusion

of our work has been to show that the average momentum

flux is finite if U has no unstable nor neutral modes. This

very delicate and important point will be discussed in sec-

tion 1.4. Under such hypothesis that U has no unstable nor

neutral modes, the slow evolution of U on a time scale of

order 1/α is ensured and the effective equation for the evolu-
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tion of U is expected to predict exactly, in the inertial limit,

the relaxation of the zonal jet profile to its attractor.

It is also important to observe that the average momen-

tum flux is a functional of U . This means that, in general,

it may admit more than one attractor for fixed values of

the physical parameters. This will be of importance in the

following.

Eq. (1.10) is very similar to equations already introduced

in the literature on a phenomenological ground (S3T and

CE2, see [1, 38, 39] and the following chapters of this

book). Their precise relation is discussed in section 1.5.

The main differences arise in how the momentum flux is av-

eraged, and on the precise hypothesis made to obtain (1.10).

At next order in the kinetic equation (1.5) the stochastic

term ξ may have very interesting consequences, especially

in the physically relevant case of no forcing acting at large

scales: ζz = 0. Indeed, under such an assumption, the kinetic

equation at leading order (1.10) gives a deterministic evo-

lution. ξ will be thus responsible for the fluctuations of the

jet. This situation is of particular interest if the determin-

istic dynamics has more than one attractor: the statistical

properties of rare transitions between different attractors

may then be analysed from the properties of ξ and large

deviations techniques. This is one of the most interesting

perspective of our work, see section 1.5.

1.3 Stochastic averaging of the barotropic

equations

In this section we develop the perturbative technique that

permits to obtain, in the inertial limit ν ≪ α ≪ 1, the

effective equation (1.5) for the evolution of the zonal jet

velocity profile U . This section contains a classical [18] but

rather technical development and can be entirely skipped

at a first lecture. Moreover, not all the details will be given

here; we address the interested reader to [9].

1.3.1 Decomposition into zonal flow and eddies

Zonal jets are characterised by their velocity profile v(r, t) =

U(y, t)ex. From Eq. (1.2), it is natural to assume that the

turbulent fluctuations are of order
√
α. A major part of this

work, summarised in section 1.4, will consist in proving that

this assumption is self-consistent. Defining the zonal projec-

tion 〈.〉 of a generic function f as

〈f〉(y) = 1

2πlx

∫ 2πlx

0

dx f(r),

the zonal part of the potential velocity field will be denoted

by U ≡ 〈v · ex〉; the rescaled non-zonal part of the flow vm

is then defined through the decomposition

v(r) = U(y)ex +
√
αvm(r). (1.11)

Similarly, the potential vorticity will be denoted q = qz +√
αωm.

We now project the barotropic equation (1.2) into zonal

∂tqz = −α∂y
〈

v
(y)
m ωm

〉

− αωz + ν∂2yωz +
√
2αηz (1.12)

and non-zonal part

∂tωm + LU [ωm] +
√
αNL[ωm] =

√
2ηm, (1.13)

with the linear operator

LU [ωm] = U(y)∂xωm + q′z(y)∂xψm + αωm − ν∆ωm (1.14)

and the non-linear operator

NL[ωm] = vm · ∇ωm − 〈vm · ∇ωm〉 .
In the above equations, ηz = 〈η〉 (resp. ηm = η − 〈η〉) is a

white in time Gaussian noises with spatial correlation func-

tion Cz = 〈C〉 (resp. Cm = C−〈C〉). Observe that the cross

correlation between ηz and ηm is exactly zero, due to the

translational invariance of C.

In the decomposed equations (1.12), (1.13) it is clear that

the natural time-scale of evolution of qz is of order 1/α while

the natural time-scale of evolution of ωm is of order 1. This

is a direct consequence of our working ansatz that turbulent

fluctuations are weak (1.11).

To formally develop the kinetic theory, it is useful to work

not at the level of the stochastic equations presented above

but at the level of the associated functional Fokker-Planck

equation. Thanks to the general theory of stochastic differ-

ential equations [18], (1.12) and (1.13) are equivalent to the

Fokker-Planck equation

∂tP = L0P +
√
αLnP + αLzP, (1.15)

for the probability distribution function (PDF) P [qz , ωm].

The distribution P [qz , ωm] is a functional of the two fields

qz and ωm and is a formal generalisation of the probabil-

ity distribution function for variables in finite dimensional

spaces.

For easiness in the notations, we have divided the Fokker-

Planck operator in three parts. The first one

L0P ≡
∫

dr1
δ

δωm(r1)

[

LU [ωm] (r1)P (1.16)

+
∫

dr2 Cm(r1 − r2)
δP

δωm(r2)

]

(1.17)

is the Fokker-Planck operator that corresponds to the lin-

earized dynamics (1.14) close to the zonal flow U , forced by

a Gaussian noise, white in time and with spatial correlations

Cm. This Fokker-Planck operator acts on the non-zonal vari-

ables only and depends parametrically on U .

At order
√
α, the term

LnP ≡
∫

dr1
δ

δωm(r1)
[NL[ωm](r1)P ]

contains the non-linear interactions between non-zonal de-

grees of freedom.

At order α, the term

LzP ≡
∫

dy1
δ

δqz(y1)

[

(

α∂y

〈

v
(y)
m ωm

〉

+ αωz − ν∂2yωz

)

P

+
∫

dy2 Cz(y1 − y2)
δP

δqz(y2)

]

(1.18)
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contains the terms that describe the coupling between the

zonal and non-zonal flow, the dynamics due to friction acting

on zonal scales and the zonal part of the stochastic forces.

Our goal now is to obtain a reduced Fokker-Planck equa-

tion that describes only the slow evolution of the zonal jet

U , using a perturbative expansion in the small parameter

α≪ 1.

1.3.2 The quasilinear eddy distribution

As previously stressed, in the limit α ≪ 1, there is a time

scale separation between the evolution of ωm and the evo-

lution of qz . It is thus simple to guess that, to develop the

kinetic theory, we have first to determine the stationary dis-

tribution of ωm, with U held fixed.

Such stationary distribution is obtained by imposing L0P =

0 where U is considered as fixed. This stationary Fokker-

Planck equation describes the statistically stationary state

of the stochastic equation

∂tωm + LU [ωm] =
√
2ηm, (1.19)

with the linear operator LU given by (1.14). Equation (1.19)

is a linear process (Ornstein-Uhlenbeck process), as a conse-

quence its stationary distribution is a Gaussian distribution

whatever the initial state. Moreover, as Em[ωm] = 0, the

stationary distribution is completely characterised by the

stationary two-points correlation function g∞[qz ](r1, r2) =

limt→∞ Em [ωm(r1, t)ωm(r2, t)], where Em denotes the av-

erage over the realisations of the noise ηm, for fixed U .

The two-points correlation function g∞ is the stationary so-

lution of the so-called Lyapunov equation, obtained from the

Itō formula applied to (1.19),

∂tg + L
(1)
U g + L

(2)
U g = 2Cm, (1.20)

where L
(i)
U is the linearized operator LU defined in (1.14)

acting on the variable ri. From (1.20), it is clear that g∞

depends on the base flow U (or equivalently on qz). As a

consequence, all the quantities averaged with the stationary

distribution of (1.19), also depend parametrically on qz .

We denote by

G[qz , ωm] =
1

Z
e
−

1

2

∫

dr1dr2 ωm(r1)(g
∞[qz ])

−1(r1,r2)ωm(r2)(1.21)

the Gaussian stationary distribution of (1.19) and by

EU [A] =

∫

D[ωm]G[qz , ωm]A[ωm]

the average of an observable A[ωm] over the distribution

G[qz , ωm].

The convergence of g towards g∞ in the limit t→ ∞ im-

plies the existence of the stationary distribution G[qz , ωm].

It is thus a crucial point of this theory and is related to the

self-consistency of the assumed scaling for the fluctuations

(1.11). This fundamental issue is discussed in section 1.4.

1.3.3 Derivation of the slow dynamics of zonal jet

To formalise the perturbative expansion of the Fokker-

Planck (1.15), we introduce the decomposition P = Ps+Pf

through the projection operator P :

Ps ≡ PP ≡ G[qz , ωm]

∫

D[ωm]P [qz, ωm],

and Pf ≡ (1− P)P . The two PDF P and Ps differ because

in the latter the turbulent fluctuations are relaxed to their

stationary distribution G[qz , ωm]. We also denote by

R[qz ] =

∫

D[ωm]P [qz , ωm]

the marginal distribution of the zonal jet, with the turbu-

lence averaged out.

The goal of the pertubative expansion (also called stochas-

tic averaging) is to get a closed equation for the evolution of

R from the complete Fokker-Planck equation (1.15). It fol-

lows classical methods [18], and the explicit computations

in this particular case are reported in [9]. The first step is

to apply the projections P and 1−P on the Fokker-Planck

equation (1.15):

∂tPs = αPLz

(

Ps + Pf

)

,

∂tPf = L0Pf +
(√

αLn + α(1−P)Lz

)

(Ps + Pf ). (1.22)

In the above equations we have used PL0 = L0P = 0, which

is clear from the definition of P , and PLn = 0, due to the

fact that Ln acts only on the non-zonal degrees of freedom.

As it has been anticipated by the notation, we clearly see in

(1.22) the time-scale separation between the slow evolution

of Ps and the fast evolution of Pf .

The equation on Pf can be formally solved using Laplace

transform, and is then injected into the equation on Ps.

This equation is then expanded in powers of α to the order

α2. Performing the inverse Laplace transform, we observe

that the evolution equation for Ps contains memory terms.

However, in the limit α ≪ 1, Ps evolves very slowly and a

Markovianization procedure can be employed.

At order α2, we obtain

∂Ps

∂t
=

{

αPLz + α3/2PLz

∫∞

0
dt′ et

′
L0Ln + (1.23)

α2PLz

∫∞

0
dt′ et

′
L0

[

(1− P)Lz + (1.24)

∫∞

0
dt′′ Lne

t′′L0Ln

]}

Ps(t) +O
(

α5/2
)

. (1.25)

The different terms above can then be computed explicitly

[9], we discuss here the main aspects of this computation.

The first term in the right hand side of (1.25) gives the

momentum flux averaged over the stationary distribution

G[qz , ωm]. The next term vanishes exactly, because the non-

linear interaction term NL[ωm] in Ln leads to the computa-

tion of odd moments of the Gaussian distribution G[qz , ωm].

At order α2, the first term produces a diffusion term, which

corresponds to a white in time gaussian stochastic noise, and

the last term represents a correction to the drift term due

to the non-linear interactions.
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We do not enter in further details here; the interested

reader can consult [9], in which the above computation is

detailed. The result of this procedure is a Fokker-Planck

equation for the slow evolution of the zonal jet PDF R

1

α

∂R

∂t
=

∫

dy1
δ

δqz(y1)

{[

∂F1

∂y1
+ ωz(y1)− ν

α
∂2ωz

∂y2

1

]

R[qz ]+

∫

dy2
δ

δqz(y2)
(CR(y1, y2)R [qz ])

}

. (1.26)

This Fokker-Planck equation can be recast in an equiva-

lent stochastic differential equation for the potential vortic-

ity profile qz(y, t)

1

α

∂qz
∂t

= −∂F1

∂y1
− ωz(y1) +

ν

α

∂2ωz

∂y21
+ η[U ], (1.27)

where η[U ] is a white in time gaussian noise with spatial

correlation CR. In the above equations (1.26,1.27), the drift

term is

F1 = F [U ] + αM[U ],

with

F [U ] = EU

[〈

v
(y)
m ωm

〉]

and the explicit form of M can be found in [9]. The diffusion

coefficient is

CR(y1, y2) = Cz(y1 − y2) + α
∂2

∂y1∂y2
ΞNL(y1, y2) [U ] ,

where we recall that Cz is the zonal average of the cor-

relation function C of the original noise appearing in the

barotropic equations (1.2); the correlation function of the

non linear part of the noise is given by

ΞNL(y1, y2) [U ] = (1.28)
∫∞

0
dt′ EU

[[〈

v
(y)
m ωm

〉

(y1, t
′)
〈

v
(y)
m ωm

〉

(y2, 0)
]]

,

where EU [[A(t)B(0)]] is the covariance of the observables

A[ωm] and B[ωm], with respect to the gaussian distribution

(1.21).

Equation (1.27) can be integrated to get the evolution

equation of the jet velocity profile U(y, t)

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

+αM[U ]−U+
ν

α

∂2U

∂y21
+
√
2ζz+

√
αξ,(1.29)

where ξ is a white in time gaussian noise with spatial corre-

lation

CU (y1, y2) = ΞNL(y1, y2) [U ] (1.30)

with ΞNL given in (1.28).

At second order in the kinetic equation (1.29), there are

two terms: a deterministic one, M, and a stochastic one, ξ:

both of them are functionals of U . We expect the effect of

αM to be only a small correction to the jet relaxation when

α is small. We can thus neglect M, and we obtain (1.5).

1.4 Inviscid damping and expansion

consistency

The kinetic equation (1.5) that describes the effective dy-

namics of zonal jets involves stationary averages over EU of

various quantities: this is true also at order α2 for which the

precise expressions of the terms have not been given here.

It is not obvious that the average EU , or equivalently the

large time limit given by eq. (1.8) gives a finite value for each

term in the kinetic equation. Indeed, the dynamics of the ed-

dies is forced but not dissipated in the limit ν ≪ α ≪ 1.

Thus, in order to have finite large time limits, we have to

rely on an inviscid damping mechanism. In the case of the

linearized Euler equation such a mechanism is known as the

Orr mechanism [31].

In this section we first recall classical results on the Orr

mechanism for the two-dimensional Euler equation (β = 0)

[31]. We also discuss their generalisation to any jet profile [5],

holding when the base flow has no modes neither unstable

nor neutral. Based on the Orr mechanism, we show that the

average momentum flux EU

[〈

v
(y)
m ωm

〉]

is a finite quantity.

Thus our kinetic equation is well defined at order α and

the hypothesis of time-scale separation holds. Finally, we

consider the generalisation of these results to β 6= 0 and to

the case when the base flow has neutral modes.

1.4.1 A finite dimensional example

To give a very simple example, we consider the one-

dimensional linear stochastic equation (Ornstein-Uhlenbeck

process)

dq

dt
= −αq +

√
ση(t) , (1.31)

where η is a white in time gaussian noise, α, σ > 0, and with

initial condition q(0) = 0. We investigate the large-time limit

of the variance of q. Integrating equation (1.31)

q(t) =
√
σ

∫ t

0

e−α(t−u)η(u)du , (1.32)

we get

E
[

q(t)2
]

= σ

∫ t

0

[

e−αu]2 du , (1.33)

where E denotes the average with respect to realisation of

the noise η.

From this simple analysis, we can conclude that the con-

vergence of the variance when t→ ∞ depends on the value

of the friction coefficient α. Indeed, if α > 0, the auto-

correlation function converges to the finite value σ/2α, while

for α = 0, the variance function diverges as σt.

Observe that in equation (1.33), the variance is expressed

from the solution q̃(u) = e−αu of the deterministic equation

∂tq̃ = −αq̃ with initial condition q̃(0) = 1. We thus con-

clude that the convergence of the variance depends on the

large-time behaviour of the associated deterministic linear

evolution, and particularly on the damping mechanisms

that occur in this deterministic dynamics.
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st = 0 st = 10

st = 20 st = 30

Figure 1.1 Evolution of the perturbation vorticity, advected by
the constant shear base flow U(y) = sy.

This discussion is very general, and an expression simi-

lar to (1.33) can be obtained for any Ornstein-Uhlenbeck

process [18]. The computation of auto-correlation functions

can be discussed similarly to the computation of the vari-

ance. We thus understand that in the problem we are in-

terested in, the convergence of the average momentum flux

EU [〈v(y)m ωm〉] will depend on the large-time behaviour of the

deterministic linear equation

∂tω̃m + L0
U [ω̃m] = −αω̃m + ν∆ω̃m . (1.34)

For finite values of α and ν, and for a stable linear operator

L0
U , the linear friction and viscosity are the main damping

mechanisms. Then, the vorticity auto-correlation function,

and the average momentum flux will converge to finite val-

ues. However, we are interested in the particular limit where

ν ≪ α ≪ 1 and, for the self-consistency of the expansion

we need a convergence independent of the values of ν and

α. Then we need to rely on another damping mechanism,

through the linear operator L0
U . For the linearized Euler

equation, such inviscid damping mechanisms are known as

the Orr mechanism and the depletion of vorticity at the sta-

tionary streamlines. These mechanisms are summarised in

the following section.

Moreover, we can see directly from (1.33) that if the lin-

ear operator is unstable, the deterministic evolution diverges

exponentially, so the auto-correlation function also diverges.

The same way, we see that if the linear operator has neutral

modes, the auto-correlation function will diverge linearly in

time. It is thus essential for the self-consistency of the expan-

sion to assume that the base flow U has no normal modes

at all. This is possible for a non-normal linear operator act-

ing in an infinite-dimensional space, such as L0
U . Actually

in most of relevant jets situations, the dynamics actually

expels neutral modes from the spectrum [19]. We discuss

further this hypothesis in the following paragraphs.

1.4.2 Orr mechanism and depletion of vorticity at

the stationary streamlines

We consider here the linear deterministic equation (1.34)

with β = 0, and with no viscosity or linear friction, α = ν =

0. The phenomenology is the following: while the vorticity

shows filaments at finer and finer scales when time increases,

non-local averages of the vorticity (such as the one leading

to the computation of the stream-function or the velocity)

converge to zero in the long-time limit. As an example, the

filamentation can be seen in figure 1.1, for the vorticity field

advected by a constant shear flow U(y) = sy. This fila-

mentation and the related relaxation mechanism with no

dissipation for the velocity and stream function is very gen-

eral for advection equations and it has an analog in plasma

physics in the context of the Vlasov equation, where it is

called Landau damping [29].

In order to be more precise, we consider the deterministic

linear dynamics ∂tω̃m + L0
U [ω̃m] = 0 with initial condition

eikxf(y). As explained at the end of the previous paragraph,

it is natural to assume that the linear operator L0
U has no

normal modes. With this hypothesis, it can be shown [5]

that the solution is of the form ω̃m(x, y, t) = eikxω̃k(y, t)

with, for t going to infinity,

ω̃k(y, t) ∼ ω̃∞

k (y)e−ikU(y)t . (1.35)

We thus see that the vorticity oscillates on a finer and finer

scale as time goes on. By contrast to the behaviour of the

vorticity, any spatial integral of the vorticity decays to zero.

For instance, the results for the x and y components of the

velocity and for the stream function are:

ṽ
(x)
k (y, t) ∼ ω̃∞

k (y)

ikU ′(y)

e−ikU(y)t

t
, (1.36)

ṽ
(y)
k (y, t) ∼ ω̃∞

k (y)

ik(U ′(y))2
e−ikU(y)t

t2
, (1.37)

and

ψ̃k(y, t) ∼
ω̃∞

k (y)

(ikU ′(y))2
e−ikU(y)t

t2
. (1.38)

In all the above formulas, higher order corrections are

present and decay with higher powers in 1/t. From these

expressions, it is clear that the local shear U ′(y) acts as

an effective damping mechanism. This is the so-called Orr

mechanism.

At this stage, a natural question is: what happens when

the local shear vanishes? Indeed, a jet profile necessarily

presents extrema of the velocity, at points y0 such that

U ′(y0) = 0. Such points are called stationary points of

the zonal jet profile. It can be shown that at the station-

ary points, the perturbation vorticity also decays for large

times: ω̃∞

k (y0) = 0. This phenomenon has been called

vorticity depletion at the stationary streamlines [5]. It has

been observed numerically that the extend of the area for

which ω̃∞

k (y0) ≃ 0 can be very large, up to half of the

total domain, meaning that in a large part of the domain,

the shear is not the explanation for the asymptotic decay.

The formula for the vorticity (1.35) is valid for any y. The

formulas for the velocity and stream functions are valid for

any y 6= y0. Exactly at the specific point y = y0, the damp-

ing is still algebraic with preliminary explanation given in

[5], but a complete theoretical prediction is not yet available.

We have thus seen that, under the hypothesis that β = 0

and that the linear operator L0
U has no normal mode, the

deterministic dynamics of the eddies leads to an inviscid
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Figure 1.2 The stationary momentum flux EU

[〈

v
(y)
m ωm

〉]

in

the case of a linear base profile U(y) = y in a channel geometry,
with ν = 0 and with different values of the friction coefficient α.
We check the convergence of this quantity to a smooth function
in the inertial limit α → 0. The details about the numerical
computation of this quantity can be found in [9].

damping of the velocity and of the stream function. As ex-

plained in the finite dimensional example, this is the key

ingredient that can ensure the convergence of the average

momentum flux EU [〈v(y)m ωm〉]. We investigate this point in

the following paragraph.

1.4.3 Convergence of the average momentum flux

A direct generalisation of equation (1.33) for the average

momentum flux gives

EU

[〈

v
(y)
m ωm

〉

(y)
]

=
∑

k>0,l

cklFkl(y),

with

Fkl(y) = lim
t→∞

∫ t

0

ω̃k(y, u) ṽ
(y)∗
k (y, u) du+ C.C., (1.39)

where ω̃ke
ikx and ṽ

(y)
k eikx are the deterministic solutions to

the linearized equation ∂tω̃+L
0
U ω̃ = 0 with initial condition

eikx+ily , C.C. denotes the complex conjugate and ckl are

the Fourier components of the forcing correlation function

Cm.

Using the asymptotic expressions of the deterministic

fields (1.35,1.37), we readily see that the integral in equation

(1.39) converges. We have thus proved that, under the hy-

pothesis that β = 0 and that the base flow U has no normal

modes, the average momentum flux EU [〈v(y)m ωm〉] converges
to a finite quantity when α→ 0. This is illustrated in figure

1.2.

This property has several consequences. At a theoretical

level, it means that the perturbative expansion performed

in section 1.3 is self-consistent at order α. In particular, this

is the precise justification of the assumption (1.4) and of the

time-scale separation. At a practical level, it implies that all

the terms appearing at first order in the effective equation

for the slow evolution of zonal jets (1.5) are well defined.

We can then claim that this equation is the relevant one

to describe the slow evolution of jets, in the inertial limit

α→ 0.

1.4.4 Generalisation

The results presented in the previous paragraphs about

the finiteness of the average momentum flux apply to

the linearized Euler equation, i.e. to the case β = 0. For

geophysical applications, it would be very interesting to

understand if these results also apply to the linearized

beta-plane equation. So far, the asymptotic behavior of

the linearized barotropic equation has been mostly studied

in the particular case of a parabolic jet profile, such that

the gradient of potential vorticity U ′′(y)− β either exactly

vanishes [11], or is small [10]. In the first case, the determin-

istic linear dynamics can be solved explicitly, and it can be

shown that an inviscid damping mechanism exits, leading

to an algebraic decay of the stream function as ψ̃k ∼ t−1/2.

This decay is not fast enough to insure the convergence of

the average momentum flux (1.39). In this very particular

case, the present theory in not self-consistent. However, this

case might be a very singular one, indeed the case of a small

but strictly negative potential vorticity gradient [10] leads

to a decay of the stream function as ψ̃k ∼ t−3/2. Then the

average momentum flux (1.39) converges, and the theory is

self-consistent.

The other hypothesis made to obtain the previous results

in that the linear operator L0
U has no normal modes, neither

unstable nor neutral. While the assumption that there is no

unstable mode is very natural, it can seem at first restrictive

to assume that no neutral mode exist. However, this is the

generic case for the 2D Euler equation. It is indeed a classical

result that shear flows without inflection points, or vortices

with strictly decreasing vorticity profile are stable and have

no neutral mode [14]. The only examples of stable flows for

the 2D Euler dynamics with neutral modes we are aware of

are cases with localized vorticity profile [35].

When it comes to the linear barotropic equation, this

assumption might be more restrictive. Indeed, the Rossby

waves are very common neutral modes of the linearized

barotropic dynamics, and are expected to exist in geophys-

ical situations [33]. However, we note that a mechanism of

expulsion of normal modes in the presence of a background

zonal jet has been revealed, and seems to hold in the atmo-

sphere [19]. In the case where the linear dynamics would still

have neutral modes, the typical time scale of propagation of

the wave would be an intermediate time scale between the

evolution of the jet and the evolution of the eddies. This con-

tribution should thus be extracted from the eddies dynam-

ics, and the effective equation of the jets dynamics would be

modified accordingly. This point is currently under investi-

gation.
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1.5 Comparison of theoretical predictions and

numerical experiments and perspectives

In section 1.5.1, we discuss the relation of the kinetic equa-

tion described in this chapter (eq. 1.10) with related ap-

proaches (the S3T-CE2-quasi-linear equations) discussed in

chapters []. In section 1.5.2 we discuss numerical experiments

that confirm that the small α limit is actually the relevant

one for the validity of the kinetic approach, and provide a

strong support to the kinetic theory. Finally, in section 1.5.3

we discuss the effect of the stochastic terms appearing at

higher order in our equation and explain their importance

in order to determine both Gaussian and large fluctuations

of the jet profile.

1.5.1 Deterministic slow evolution of the zonal jets

and quasi-linear approaches

As explained in section 1.2.2, the average momentum flux

appearing in the equation for the slow evolution of the

zonal jet (1.10) is computed from the statistically stationary

statistics of the linearized dynamics (1.6) for U held fixed.

Equivalently, it can be computed as a linear transform of

the stationary solution of the Lyapunov equation (1.20).

The quasi-linear system for the barotropic equation, stud-

ied for example in [1, 38, 39], is obtained by setting to zero

the non-linear eddy-eddy interaction terms in the equation

on ωm. Contrarily to the kinetic equation, in this system

the jet and the eddies evolve simultaneously, according to

stochastic non-linear equations.

The S3T-CE2 system [1, 38, 39] is obtained from the

quasi-linear approximation of the dynamics by taking an

average of the momentum flux in the equation for U . More-

over, it is assumed that the statistical average (over the

realisations of noise) coincides with a spatial average over

the zonal direction x. The resulting equations are thus very

similar to the kinetic equation (1.10). The main difference is

that, as in the quasi-linear equations, the jet and the corre-

lation function of the fluctuations evolve simultaneously. In

a statistically stationary state, neither the jet profile U(y)

nor the correlation of the fluctuations g evolve. As a con-

sequence, we can assess that our kinetic equation and the

S3T-CE2 system have the same attractors. The kinetic ap-

proach is a perturbative expansion when the parameter α is

very small. In this limit, because of the time scale separation,

the results of S3T-CE2 coincide with the kinetic theory. We

will see in next section that the direct numerical simulations

of the barotropic equations are in good agreement with the

S3T-CE2 equations, and thus with the kinetic theory, in this

regime α≪ 1.

A very interesting and important practical advantage of

the S3T-CE2 equation is that it gives an autonomous equa-

tion that can be integrated forward in time, independently

of any hypothesis. It is thus a very interesting tool in order

to study the dynamics, both numerically and theoretically,

even when the hypothesis for the validity of the kinetic the-

ory are not satisfied. As an example, the case of a homoge-

neous flow, U = 0, that does not enter into the class of flow

with no-modes considered in the kinetic approach, has been

extensively studied in the S3T-CE2 framework [1, 38]. One

reason is that it is explicitly solvable. Those works also give

a very interesting qualitative understanding of the mecha-

nisms leading to the formation of coherent zonal flows.

However, we stress that there is no clear reason to expect

the S3T-CE2 approach to give quantitatively correct results

when the basic hypothesis of the kinetic theory are not veri-

fied. We recall those hypothesis: there should be a time scale

separation between the evolution of the non-zonal perturba-

tions and the slow jet dynamics (this is the case for instance

if α ≪ 1), and the linear operator LU associated to the jet

profile U should have no normal modes.

1.5.2 Comparison of theoretical results and

numerical simulations

We now investigate the parameters used in numerical simu-

lations of the S3T-CE2-quasi-linear equations. For simplicity

we focus on the work by Tobias and Marston [40], but the

conclusions are the same for the other works [1, 38].

In this paper, it is argued that the strength of the jets are

related to the value of the zonostrophy index

Rβ =
U1/2β1/10

21/2ǫ1/5
, (1.40)

which has also been introduced in [12, 17]. Rβ is obtained

as the ratio of the Rhines scale and of another length scale

built by comparison of the intensity of the forcing and of

the mean gradient of potential vorticity β. It is observed

that a large value of Rβ leads to a flow made of robust

jets, while a small value leads to the formation of weak,

meandering jets. Moreover, the comparison between CE2

calculations and direct non-linear simulations shows a very

good agreement for large values of Rβ , and a poor agreement

for smaller values of this index.

We now compare these results with the scaling arguments

and the theory presented before. First, we can note that we

have the relation

αR =
1

27/2R5
β

, (1.41)

so that the regime Rβ ≫ 1, in which robust jets and good

accuracy of S3T-CE2-quasi-linear approximation are found,

coincides with the regime αR ≪ 1. Let’s now look more

precisely at the different parameters considered in [40].

Three simulations are presented in this paper, correspond-

ing to figures 2(a), 2(b) and 2(c), or 4(a), 4(b) and 4(c) for

the comparison with the CE2 simulation. We find the fol-

lowing results:
• With the parameters of the case (a), we have α = 0.068

and αR = 0.0021, which are both very small. This is in

accordance with the fact that robust jets are found, and

that the quasi-linear approximation is accurate.
• With the parameters of the case (b), we find the values

α = 0.068 and αR = 0.0029, which are still very small.

Again, this is in accordance with the fact that strong jets

are found, and that the quasi-linear approximation is ac-

curate.
• With the parameters of the case (c), we have α = 1.45 > 1

and αR = 0.030, which is still quite small. The case (c)
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corresponds to weak and meandering jets, and to a very

poor agreement between CE2 and non-linear simulation.

To conclude this discussion, we find that small values of

αR and α lead to the formation of strong jets, and to a

very good accuracy of the kinetic equation (S3T-CE2-quasi-

linear equations). This observation can also be made from

the numerical simulations presented in other papers [1, 38].

However, the last case (c) suggests that α might be more

relevant than αR in order to characterise the robustness of

jets and the validity of the quasi-linear approximation. This

can also be seen in figure 6 of [38], where the ratio of energy

contained in the jets is plotted as a function of an adimen-

sionalized friction µ∗ and of an adimensionalized gradient

of potential vorticity β∗. We find that strong jets, together

with a good accuracy of the quasi-linear approximation, is

obtained for small values of µ∗, almost independently of the

value of β∗. Then, it seems that the value of β does not

control the robustness of jets and the validity of the quasi-

linear approximation, suggesting again that α – and not αR

that depends on β – is the relevant small parameter for the

kinetic theory of zonal jets.

1.5.3 Fluctuation of momentum fluxes and

bistability

Taking into account the terms of order α2 allows to go be-

yond in the understanding of jets dynamics. Indeed, the first

order (1.10) only describes the relaxation of a jet profile U

towards its attractor and the fluctuations due to the di-

rect effect of the original forcing η acting on zonal degrees

of freedom. However, in most physically relevant situations,

ηz = 〈η〉 = 0; this is the case we will consider from here on.

At second order in α, a new term appears: a noise with

spatial correlation function αΞNL[U ]. This noise term de-

scribes both Gaussian fluctuations of the jet profile due to

momentum fluxes fluctuations, and large non-Gaussian fluc-

tuations of a jet around its attractors. For instance when

the relaxation dynamics (1.10) has two attractors U1 and U2

(bistability), then the fluctuations of the momentum flux are

essential in order to describe the relative probability of each

attractor and the probability of the transitions between U1

and U2. We expect that these quantities can be computed

using large deviation theory and the instanton framework

[8].

Such situations of bistability are very common in geo-

physical, two-dimensional and three-dimensional turbulent

flows (for instance, paths of the Kuroshio current [36], at-

mospheric flows [42], Earth’s magnetic field reversal and

MHD experiments [2], two–dimensional turbulence simula-

tions and experiments [37, 6, 22, 21], and three–dimensional

flows [34] show this kind of behaviour). Figure 1.3 shows ran-

dom transitions in numerical simulations of the 2D Navier-

Stokes equations [6].

Cases of multiple attractors are also known in zonal jet dy-

namics; for example, in chapter [], two attractors with a

different number of jets emerge using the same physical pa-

rameters and different initial conditions. As multiple attrac-

tors are found, it is natural to guess that a single very long

Figure 1.3 Figure taken from [6] showing rare transitions
(illustrated by the Fourier component of the largest y mode)
between two large scale attractors of the periodic 2D
Navier-Stokes equations. The system spends the majority of its
time close to the vortex dipole and zonal flow configurations.

run will put in evidence a bistable behaviour similar to the

one presented in Figure 1.3.

Those questions are currently under investigation and will

be discussed in forthcoming works [8].

1.6 Conclusion

In this chapter we have discussed a theory of zonal jets

velocity profiles, in a inertial limit, when there is a clear

separation of time scale between the rapid evolution of the

turbulent non zonal part of the velocity field and the slow

evolution of zonal jets. Under this hypothesis, and further

assuming that the linearised equation close to the zonal jets

has no neutral eigenmodes, the theory predicts the jet ve-

locity profile and the turbulence statistics. This systematic

expansion makes more precise previous approaches based on

quasi-linear approximations or cumulant expansions.

We foresee many further theoretical developments of this

theory. For instance prediction of phase transitions, bista-

bility, and of large deviations will be studied in the future.

A more complete theoretical study of the conditions for this

theory to be valid in more complex models, including lay-

ered and three dimensional quasi geostrophic models and

the primitive equations should also be considered.

The applications of this theory is further discussed in the

chapters 5.2.2 to 5.2.5 of this book.
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