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ABSTRACT. In Lagrangian gauge systems, the vector space of globatigt
ity parameters forms a module under the Lie algebra of symesedf the ac-
tion. Since the classification of global reducibility parters is generically eas-
ier than the classification of symmetries of the action, tac can be used to
constrain the latter when knowing the former. We apply thiategy and its
generalization for the non-Lagrangian setting to the pobdf conformal sym-
metry of various free higher spin gauge fields. This schehogvalone to show
that, in terms of potentials, massless higher spin gaugksfielMinkowski space
and partially-massless fields in (A)dS space are not cordbfan spin strictly
greater than one, while in terms of curvatures, maximatidpartially-massless
fields in four dimensions are also not conformal, unlike tlosely related, but
less constrained, maximal-depth Fradkin—Tseytlin fields.
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1 Generalities

1.1 Plan of the paper

In the first section, we briefly review relevant aspects of matries in the context of
gauge systems: variational versus equations of motion tnmes, field-theoretic for-
mulation of conformal symmetry, curvature versus potéfianulations, the BRST-BV
implementation, and the relation to the unfolded approastke. demonstrate that for a
gauge system invariant under a global symmetry algebrasphee of global reducibil-
ity parameters, and more generally, certain BRST cohonyajogups, are necessarily a
module thereof. This gives a powerful criterion to analyZesther a given gauge system
admits a given global symmetry algebra.

In sectiori2 we apply this criterion to generic gauge fields in Minkowgkase. More
precisely, we address the question which general mixedystny bosonic gauge fields
on Minkowski space admit an extension from Poincaré to@onél symmetry. We also
illustrate the difference between variational and equmstiof motion symmetries using
the simplest example of a massless scalar.

Section3 is devoted to identifying those gauge fields on anti-de S{#elS) space
whose AdS symmetry extends to conformal symmetry. We paticpdar attention to
the special case of maximal-depth partially-massless ({#\t)s in AdS, because these
fields have attracted some attention in the literature andeaaily be confused with their
conformal cousins belonging to the family of (generalizeéddkin—Tseytlin fields, which
we also discuss. We show that these fields are never conféomal> 1 neither as gauge
fields nor at the level of gauge invariant curvatures. Aslastilation the case of= 2 is
considered in detail.

1.2 Classification of symmetries

Algebraic approaches to classifying symmetries of systefhmrtial differential equa-
tions in the context of jet-bundles and the variational biptex are by now very well-
developed, see e.q./[1-4] and alsol[5-10] for reviews. Itiqadar for Lagrangian sys-
tems, symmetries of the action, also called variationalragtnies, are a subalgebra of
the symmetries of the equations of motion. In applicatiensihdamental systems, they
are privileged since Noether’s theorem provides one witleargrocedure on how to
implement them in the quantum theory.

The case of Lagrangian gauge systems and of degeneratd giigrential equations
is less studied in the mathematical literature, mainly beeagauge invariance violates
technical assumptions needed to apply some of the systeteatiniques (see however
[11] and references therein).
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For example, for massless higher-spin fields in four-dirnera flat spacetime, sym-
metries and conservation laws of the equations of motions haen classified in terms of
curvatures([12, 13] (see also [14] for considerations ihbigdimensions), generalizing
the result for a massless scalar field/[15]. With quantizeitiomind (see e.g. [16] for an
early discussion), suitable potentials and auxiliary 8edde introduced in order to make
the system Lagrangian, at the expense of introducing gaggenstries in the massless
case([17, 18]. A classification of variational symmetriesd #hus also of conservation
laws, in such formulations, would be very useful. In parftcuone needs to consider
suitable equivalence classes of symmetries modulo gaugge on

1.3 Conformal symmetry

Short of a complete classification of symmetries, a standaestion is whether a given
system admits certain subalgebras of symmetries. Typjcalthe situation that we con-
sider below, the relevant systems are by constructionigwannder a certain subalgebra
of symmetries and one would like to know whether they admiéxension to a bigger
algebra of symmetries containing the starting point algelsra subalgebra. For a variety
of field-theoretical realizations of the Poincaré or thetiude Sitter algebra for instance,
the role of the bigger algebra is played by the conformallaige

This question has been thoroughly studied in two relatedt+bgeneral not entirely
equivalent — approaches. The first one is purely represenititeoretical and studies
which (A)dS or Poincaré irreps (usually unitary ones) carlitbed to irreps of the con-
formal group [19=23]. By construction, these consideraiooncern the gauge invariant
spectrum of the theory. The second one is based on equafiomstion symmetries, i.e.
on (quasi-)invariant differential operators [24/25, ], 2n particular, a technique to clas-
sify linear partial differential equations for which Poaré lifts to conformal symmetry
was developed in [27].

Our considerations in this context will be restricted toefidassical (gauge) fields,
i.e., to linear PDEs. So we will not address any of the issaised by the contemporary
debate on scale versus conformal invariance for intergairantum field theories, see
e.g. [28 29] and references therein.

1.4 Curvatures versus potentials

Strictly speaking, the symmetry analysis described abppées to PDEs without gauge
symmetries. This is often sufficient because the equatibnwtion of any linear gauge
system admit a “curvature” formulation. A standard exangaesists of Fronsdal fields
in (A)dS or Minkowski spacetime which can be reformulateteirms of gauge-invariant
curvatures([30]. In the case of spin 1, this is simply the falation where the Faraday
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tensorF),, is the fundamental field. For spinh(and higher), this is the formulation in
terms of the (generalized) Weyl tensor.

It is important to note that the formulation in terms of pdials with gauge sym-
metries and the associated curvature formulation are navaent when insisting on
locality. In particular, they may have different symmedridor instance, at the level of
equations of motions, Fronsdal fieldsdrn= 4 with s > 2 are conformal in terms of cur-
vatures but not in terms of potentials. This is known to etgbut we are not aware
of a detailed discussion in the literature. In our approdais, is included by using the
field-theoretic Batalin—Vilkoviski (BV) formalism, respevely the first quantized BRST
approach as described in the next sections, which allows psowide a simple proof in
Sectiori2.4 below.

1.5 Batalin-Vilkovisky formalism

A better technical control on the degeneracies in Lagrangeuge systems has been
achieved with the work of Batalin and Vilkovisky [31-34] é&e.qg. [35, 36] for reviews
and [37+39] for discussions in the context of jet-bundles).

Let us denote by’ the fields of the theory, by* the spacetime coordinates and by
L, the Lagrangian. Under standard regularity conditions nibigon of a generating set
of gauge generator®’, is crucial. Associated to a choice of such a generating lsetet
is an extended st} = {¢¢, C?, - -} of fieldsy?, ghostsC?, ghosts for ghosts, ... and
their antifieldsp?,, graded in terms of a ghost number and equipped with an ackbt

n 6R' 6L' *
0= [~ @0 6 -

Furthermore, one can systematically construct a propetrinmai, ghost-numbeb solu-
tion

S = /d"x (Eo + QIR (C*) + ... ), 1.2)
to the Batalin-Vilkoviski master equation
5(5.5) =0, (1.3)

1.6 Local BRST cohomology

Once the theory is reformulated within the BV formalism, tunal question is the compu-
tation of local BRST cohomology, i.e., the classificatiorited cohomology of the BRST
differential s = (-, S) in the space of local functionals. These groups do not depand
the specific formulation of the theory, in the sense that ttegybe shown to be invariant
under the introduction/elimination of (generalised) &axy fields [40]. In particular:
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Equivalence classes of variational symmetries, up to @ilstanishing variational
symmetries and non trivial gauge symmetries with field dé@eingauge parameters, are
isomorphic to local BRST cohomology in ghost numbgér

Whereas the computation &éf~!(s) is in general rather involved, the computation in
lower ghost numbers is much easier. For instance, in iribtRuigauge systems for which
the generating set of gauge symmetries does not admit legainetracies, one can show
that there is no cohomology in ghost numbers belefy while cohomology in ghost
number—2 is given by equivalence classes of global reducibility pseters, i.e., by sets
of local functionsf® such that

R.(f*) =0, (1.4)

wherea means an equality on the surface defined by the equationhamdléerivatives,
with two sets of local functions considered equivalent étlagree on this surface.

1.7 Constraints for variational symmetries
The antibracket induces a well-defined bracket in local BR&8Tomology,
(-, )ar : H(s) x H9(s) s HIT9271(5), (1.5)

Wheng, = —1 = gy, it follows that H ~1(s) is a (graded) Lie algebra with respect to the
above antibracket which is isomorphic, up to a change ofiggado the Lie algebra of
equivalence classes of variational symmetries. Cohonyatofixed ghost numbef 9(s)

is a module thereof. In turn, this imposes constraints oiatranal symmetries which we
will use in our analysis below. More precisely:

Proposition 1. In the Lagrangian case, local BRST cohomology in the ghasthaug,
HY(s), is necessarily a module of any subalgebrdff! (s), and thus of any subalgebra
of the algebra of equivalence classes of variational symiaset

Such a property can of course also be established withaug tis¢ BV formalism. For
instance, that global reducibility parameters form a medurder variational symmetries
has been shown directly in section 3.9 bofl/[41]. The reasowosmgbe summarized as
follows. In proper Lagrangian gauge systems, gauge synesdtirm an ideal in the
set of all variational symmetries. This implies that, orl§lthe commutator of a gauge
symmetry with a global symmetwy can be written in terms of the generating set,

OxRL(f*) = Orin X'~ RL(XG(f7) + 0x %), (1.6)

for some total differential operatorss. Whenf< are reducibility parameters, both terms
in the commutator on the left hand side vanish on-shell.llibfes thatX 5 +dx f are also
reducibility parameters. One then proceeds to show thaaltriariational symmetries or
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trivial reducibility parameters are mapped to trivial rethility parameters. This implies
that the module action is given by

(X7 1F1) = [X5(F7) + ox f7]. (1.7)

In linear theories the generating set of gauge transfoonsaittan usually be chosen to
be field independent. If the same goes for the reducibilitppeters, like in the concrete
example of Fronsdal higher-spin fields in dimensions grehta 3 considered below, the
equation that determines the module action simplifies to

— dp(n X' = RL(X5(f7)). (1.8)

In the case where the linear gauge theory is the result ofilearization of an in-
teracting gauge theory around a solutirthe linear part of gauge transformations with
gauge parameters replaced by reducibility parameférs= Rl(f¢), form a subalge-
bra of variational symmetries. The module action is thertidiesd by a derived bracket
determined through the terms of the BRST extended cubiexe@itthe full interacting
theory that contains the information on the gauge alge@gaﬁg,y[q_ﬁ](c*ﬁ, C7). Thisis
discussed in detail in sections 4 and 7.4/0f [41]. More gdlyetae derived bracket in
the BV formalism has been originally proposediin![42—44].

1.8 Linear Lagrangian theories

When the BRST differential is linear in the fieldsb® = (¢4, %) of the BV formalism,

it is determined by a real “first quantized BRST operat@r{see [45] and also [46] for
conventions). Introducing an auxiliary superspace of wlawvetions¢“(z) and basis
elementse, of opposite ghost number and identical paritydé, and the string field
U = ¢,V the BRST operator is defined as

S(0) = @, T, Qead® = esQ (¢, 5-)0% (), (1.9)

whered,, = a% + Wi aga + ... denotes the total derivative. More generally, any linear

differential operator of the formi§ (z, a%) acting from the left determines a unique linear
evolutionary vector field acting from the right and such that

Va(U®) = Af(z,0)0”. (1.10)

This map is one to one and moreover is a homomorphism{W.e.Vz| = Via, 5.

In the variational case the space of fields is equipped witbrstant nondegenerate
odd Poisson bivectar®. Its inversew,,,w? = §° satisfiesv,; = (—1)*1l8lyg, and
determines an anti-symplectic form

w(¢, Y) Z/ddwam“(z)xﬁ(x), w(p, x) = —(—)"Mw(x, ¢). (1.11)
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An operatorA is called symplectic if
w(Ad,x) + (=)"Pw(p, Ax) =0, (1.12)

where it is assumed that total derivatives do not contrilbgteause wave functions are
assumed to vanish at infinity.

Symplectic operators are one to one with quadratic funatgn

1

Fy 5

‘/}ﬂxlﬂabﬁAEWV. (1.13)
The linear vector field’, associated to a symplectic operatbis HamiltonianV, (¥*) =
(U*, F), and satisfies

(Fa, Fp) = Fla,p) - (1.14)

In particular, for linear theories$) is symplectic and the master action can be written as

S = Fq, s=(-9). (1.15)

Linear variational symmetries are determined by ghost rermld quadratic func-
tionalsC such that(S, ) = 0. They are trivial if C = (.S, 7)) with 7 a quadratic ghost
number—2 functional. According to the above discussidnjs determined by an even
ghost numbef symplectic operato¥s’, while 7 is odd ghost number1 symplectic
operatorl’, and

Q,K]=0, K~K+[Q,T]. (1.16)

The problem of determining linear variational symmetrias khus been rephrased as a
problem of BRST operator cohomology. Furthermore, sinedlik algebra structure of
equivalence classes of linear variational symmetriesés@ed in the antibracket induced
in local BRST cohomology quadratic ghost numbdrfunctionals, it is also represented
by the commutator bracket induced in BRST operator cohogyoli follows that:

For linear proper gauge systems, there is thus an isomorphistween the Lie alge-
bras of equivalence classes of linear variational symmestand the commutator bracket
of BRST operator cohomology in the space of symplectic glumsber) operators.

As a consequence, we have:

Proposition 2. BRST operator cohomology in the space of ghost numtsmmplectic
operatorsHY,,. ([, -]), is necessarily a module of any subalgebraHf,, (|2, -]), and

thus of any subalgebra of the Lie algebra of equivalenceseaf linear variational
symmetries.

Suppose that one can prove that in a given ghost numberepresentatives for local
BRST cohomoloy can be chosen to be linear functionals in éh@<fi This is for instance
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the case in ghost numberl for the Fronsdal fields discussed below. Without loss of
generality, they can always be chosen of the form

Ly = / A%z Uwap0° (). (1.17)
It then follows from [1.14) that
s(Ly) = (Lg, S) = ()L, = Qp=yx. (1.18)

In particular, linear local BRST cohomology in ghost numderl is isomorphic to BRST
state cohomology in ghost numbgrd9(Q2), with vectors of the formp = ¢%e,.

Independently of this correspondence, we have:

Proposition 3. BRST state cohnomology in ghost numbek?(2), is necessarily a mod-
ule of any sub-algebra of BRST cohomology for symplectmsigihumber zero operators,
HY,..(12,]), and thus of any subalgebra of the Lie algebra of equivaleriasses of

linear variational symmetries.

Before making contact with a genuine first-quantized dpsion, note that in this
work, the wave function®® and the associated fields* are taken real from the out-
set. By using the parity automorphist = (—1)‘0“'65, the antisymplectic structute, s
determines an odd symmetric inner product,

(6, x) = / d'z(—1) w0 (@)X (2), (X)) = (=1)I(y,¢).  (1.19)

It turns out that Grassmann odd symplectic operators aradity self-adjoint with re-
spect to[(1.19) while Grassmann even symplectic operaterargi-self-adjoint. In par-
ticular, 2 is self-adjoint while representatives of global symmetaee anti-self-adjoint.
In concrete application it is often useful to work in term bétsymmetric inner prod-
uct (1.19) in which case the master action takes the form

S =2(U, — IQU). (1.20)

N | =

Note that—I9Q is also symplectic and self-adjoint. It is equivalent{2oby a change
of basis. When working with_1.19, we implicitly replace in athfollows —7Q2 with

Q and similarly for the representatives of global symmetrsesthat the expression for
the master action simply becomeé¥, Q). This does not lead to confusions since
H(Q) =2 H(-IQ).

In a full quantum mechanical setting, one deals with a cormpligbert space and
uses a complex structure such that becomes the imaginary part of the hermitean inner
product. This type of construction has been originally useithe context of string field
theory, [47+50] (see alsb [61] for an analysis from the pofntiew of gauge systems).
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1.9 Constraints on equations of motion symmetries

In the non-Lagrangian case, following [45] 46, 52], we asstinat the gauge system is
described by a nilpotent, ghost numldeBRST differentials represented by an evolu-
tionary vector field on a bigraded jet-space of fields, whichtains, besides the ghost
number, an antifield numb@raccording to which the BRST differential decomposes as
s =0+7v+ s ..., with §,~,sq1,... of antifield number—1, 0, 1, ..., such that the
cohomologyé provides a homological resolution of the local function$irted on the
surface determined by the original equations of motion. differential y encodes the
gauge symmetries of the equations of motion, which are reduo close only on-shell,
see e.g/[53, 35] for more details.

When equipped with the commutator bracket, evolutionacyardields form a graded
Lie algebra, the bracket carrying degfeelncluding the BRST differential yields a dif-
ferential graded Lie algebra, with the bracket descendiraphomology,

[l s HO ([s,]) x H2([s, ) — HO (s, ]). (1.21)

In this context:

Equivalence classes of equations of motion symmetries Imaaushell vanishing
ones and non trivial gauge symmetries are described by tj@racohomology of in
the space of evolutionary vector fields of degre&®([s, -]).

Even though less restrictive than in the Lagrangian casat wh will use to constrain
equivalence classes of equations of motion symmetries is:

Proposition 4. The adjoint BRST cohomolody?(]s, ]) is necessarily a module of any
subalgebra offf°([s, -]), and thus of any subalgebra of the space of equivalenceedass
of equations of motion symmetries.

Note that, in addition to equations of motion and Lagranggstems, one can con-
sider a class of theories interpolating between these twheisense that the equations of
motion are supplemented with a Lagrange structure [54-56].

1.10 Linear equations of motion

In the non-Lagrangian case, linear gauge systems are beddry a BRST operatd?
that is no longer required to be symplectic. The adjoint coblogy of s in the space of
evolutionary vector fields that are linear in the fields anel @rghost numbey is iso-
morphic toH9([2, -]), the adjoint BRST operator cohomology in the space of opesat

LIn fact the antifield number is determined by the ghost nurabedrhence is not an independent ingre-
dient of the definition.
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of ghost number. Hence, equivalence classes of linear equations of mosgmsne-
tries are described by adjoint BRST operator cohomologyegree0. The analogs of
Proposition® and3 are then:

Proposition 5. The adjoint BRST operator cohomology in ghost nunghéf?([<2, -]), is
necessarily a module of any subalgebraiff([(, -]), and thus of any subalgebra of the
space of equivalence classes of linear equations of moyiometries.

Proposition 6. The BRST state cohomology in ghost numpeHl (), is necessarily
a module of any subalgebra éf°([,-]), and thus of any subalgebra of the space of
equivalence classes of linear equations of motion symesetri

Note that, compared to the general case, inequivalent synesef linear systems
possess a richer structure. Namely, they form an assceialgebra with the product
induced by the operator product of cohnomology represemtsti

1.11 Relation to the unfolded formalism

Suitable modules under a spacetime symmetry algebrajgl@dated to BRST state co-
homologyH?(2), play a crucial role in the unfolded formulation of gaugedidynamics
developed in the context of higher-spin theories [57—-6gpidally, the module7 —1(Q),

or H~?(Q2) with maximalp in general, is an initial ingredient in terms of 1-form fields
The next step consists in finding moduledbrm fields related to gauge invariant cur-
vatures such that the system of 1 and 0 forms is consistergaungk invariant.

The precise relation to the BRST first quantized formulattan be understood by
using the parent approach developed in([45,63,46, 64, 8&itisy from a free gauge sys-
tem described by a nilpotent BRST operdibas described in Sectiods8 and1.1Q the
system is extended by allowing the wave functions to deperektra variableg”, which
are coordinates on the fibers of the tangent bundle over spegeand Grassmann odd
ghost variableg”, gh(6*) = 1, to be identified withiz* and associated to the constraints
(2. — -2.)® = 0. The parent BRST operator taking into account these newticonts

oxh OyH
along with the original ones accounted(ns

O =0 (o — 5 ) +Q, Q=10 5 5 . (122

oz y+
Y G T gk

Note that[(1.2R) is a minimal version. In general, one canaugeneric parametrization
of the tangent space and/or incorporate a suitable (narlirflat connection to account
for specific symmetries and/or spacetime geometries. Audit details can be found
in [63,/66,14]. Note in particular that the associated fiélelories are related through
elimination of generalized auxiliary fields, provided th@¢tional space foy* is taken to
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be formal power series. This is not the only interesting chdiut the one that guarantees
equivalence in the sense of local field theories.

Consider the cohomology grougs, = H7({|,) of the second term if2” in the
space of states at a given spacetime poinlt is isomorphic toH ~?(Q2) in the space of
formal power series at“. In applications, this space is often isomorphic for allcgiame
pointsz, as happens for instance if the system has a symmetry dgroaipd is defined
on a homogeneous space @f If in addition Q can be made-independent by &:-
transformation, i.egQg~' does not depend on this transformation makes the first term
in (1.22) into ag-covariant derivative in a specific representation (se€g@314, 68] for
explicit examples and details).

If H, is z-independent, by eliminating generalized auxiliary fieldse system can
be reduced to an equivalent system whose states take val#gsanly. More precisely,
dynamical fields (in contrast to ghost, antifields, etc.) jaferms ¢, with values in#,,.
The equations of motion and gauge symmetries for the redsgstg@m then have the
following structure

(d+01)po=0, (d+01)p1+0200=0, (d+01)p2+ 0201 +0300=0,
dopo=0, dop1=(d+o1)x1, Opa=(d+01)x2+02X1, --- (1.23)

whered = 0 - 8% and o, are algebraic (i.e.,%-independent) operators of orderin
0, andy, are gauge parameters which d@re- 1-forms with values inH,. Note that
d + o1 + 09 + ... is the homological differential induced &y’ in the cohomology of
Q. This is the minimal unfolded form of the equations and theSBRstate cohomology
groupsH ~?(Q2) with a suitable choice of the functional space are precidedyspaces of
p-forms in this formulation.

The cohomologyH°(Q) is known in the unfolded approach as the Weyl module.
It consists of the gauge invariant (generalized) Weyl tetnsgether with all of its on-
shell inequivalent derivatives. This space coincides withspace of gauge-inequivalent
solutions to the equations of motions in the space of forroalgy series.

Let us finally note that/ —7(Q|,.) may in general differ in distinct regions of spacetime
and then it is not clear what the minimal unfolded formulatis. Typical examples
are gauge fields defined on the ambient st in the context of theddS,,/C FT}
correspondence. For instance, in this cB$¢Q,) for 2 on the lightconeX? = 0 and on
the hyperboloidX? = ¢ may well be different. It is this fact that underlies the aertti
space approach [69,/70] to boundary valuesl@f gauge fields.

1.12 Explicit construction of curvature formulations

Covariant curvature formulations can often be construdiesttly from group-theoretical
arguments. For instance, such formulations are well-knfowd-dimensional Fronsdal
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fields [71]72] and Fradkin-Tseytlin fields [73]. For mixeghanetry massless fields in
Minkowski spacetime, they can also be constructed in a thvag [74--76].

In principle, a systematic way to obtain a curvature formatafor a given gauge sys-
tem uses either the unfolded or the first-quantized BRSTagupr. Indeed, fromi (1.11),
it follows that ¢ is gauge invariant and that the equation #grdoes not involve other
fields. This means that putting to zero ajlwith [ > 0 gives a consistent unfolded sys-
tem. This is the unfolded form of the formulation in terms afvatures as fundamental
fields. The simplest example is Maxwell’s equations for thealay tensor.

This unfolded formulation of the curvature system is somes difficult to construct.
In all cases, a simple version of a curvature formulationlmawbtained from the parent
system [(1.22) by putting to zero all fields which are forms ohrero degree. More
precisely, the equations of motion and gauge symmetriesttie the form

0 0 ~ A
(55 — 3—yu)‘bo($,y) =0, Q®(z,y)=0, 0y Po = L2, (1.24)

OoxH

wheregh(®y) = 0, gh(y) = —1 and both®, and x aref*-independent. This system is
equivalent to the above unfolded formulation if one exgliyoeliminates the pure gauge
degrees of freedom related to the algebraic gauge symmatrigd.24). It can thus be
regarded as a Stuieckelberg description of the curvatgtersy

Hence, for general mixed-symmetry (partially)-massleddgiin (A)dS or Minkowski
space, covariant curvature formulations are implicitipteaned in the unfolded or parent
formulations constructed in [59,[717-80], respectively, & 81].

2 Gauge fields in Minkowski spacetime

2.1 BRST formulation of Fronsdal fields

The BRST formulation of higher-spin gauge fields|[82—85] barsummarized as follows.
Take ad-dimensional Minkowski spacetime with> 3 in order to guarantee regularity
assumptions needed below and with mefyic = diag—1,1...,1). The space of states
is the Fock space of polynomials in bosonic oscillat@tgusually denoted byL), and
fermionic ghost$, ¢ with gh(c) = 1, gh(b) = —1, tensored with the space of functions in
2" and the mass-shell ghast, gh(co) = 1. The inner product i, -) = [ d%xdco (-, ")
where(-, -} » is the standard inner product in the Fock space for whjck: 52, cf = 2

dak? = o
f—_0 w _adioi jled_t — __8_ ot _ 90
andb' = — 5. The operators”, ¢, are self-adjoint while; ;" = — 52 and 57-" = — 5~

The self-adjoint BRST operator is

0 o 0

_ T T

Q=cO+eS+S5 +eg— =0
) 0.0 )

=% o T8 & 2

(2.1)
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The ghost number operator is

o 0 0 0 P4
Other operators that will be relevant are the BRST invamaiensions of the tracg and
the levellVy,

0 0 o0 0
T =52 "2 a

(2.3)
o 0 0 0 t
Ns—a-%+c&+b%—s, NO—N(].
The algebra satisfied by these operators is
QaNs = Q> = aNs = ¥ :07
Q.N] = [2.7]=[6.N] = [6.7] 04

[N, T] = —2T, G,Q] = Q.
The string field is chosen as
U= |®(zt, a") 4+ cob B(z",a") + cbD(z",a") + bC(a", o)+
—co@* (2", a") + ¢ B*(2*, a") + ¢o c C*(aH, a*) + co cb D*(z#,a*) [ |0), (2.5)

where the coefficients are expanded as power series in thiatwss o*. The signs in the
expansion have been choosen so that the antibracket betwiesdth and its antifield ig.
The total ghost number of the string fieldliend its parity is even. This means that the
ghost number and parities of the field coefficients are oppdosithose of the states.

We then have
QU = 0P 4+ ¢SP + ccobSB — o STB + ¢ B + cocb0D — ¢ STD+
+cobOC + b SC + STC — ccog SP* + cocOB* + coc STD*|]0). (2.6)

The classical action for a spi> 0 field is

7q1_L,or T
S[\IIO,S] ) <\I]O,s7 Q\IIO,5>7 (27)
TG, =0, NI, =0, G, =0,
while the Batalin-Vilkovisky master action is
1
ST = (vl Qul
[ S] 2( S S>7 (28)

TVl =0, NUT =0.

For d = 4, action [2.¥) coincides, up to auxiliary fields, with the gauheory for free
massless fields of helicitys introduced by Fronsdal [17].

Explicitly, by doing the ghost inner product,
S[et) - & /ddx (®,00); — (D,0D)p — 2(B,S®) 5 +2(B,S' Dy — (B, B)
— 2(®*, STC)p — 2(D*,8C)p — 2(B*,0C)p]. (2.9)
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Removing the levelV, constraint gives the sum of the free (master) actions for all
integer massless spins, while removing the trace constraiat fixed spins gives a
model that contains, faf = 4, massless fields with helicitiess, —s + 2,...,s — 2, s
(see e.qg.[86] for a proof in the current context).

Finally, in order to explicitly deal with the trace constrafor Fronsdal fields, we
need:

Proposition 7. The Lie algebra of (anti-self-adjoint) operators definedlsr 7 can be
described by operatord such that

TA=BT, A~A+CT, (2.10)
whereB andC' are some operators (such thdtandC'T are anti-self-adjoint).

The statement is equivalent to the regularity of the equdfie = 0 or, more pre-
cisely, that any operata@r such thatC¢ = 0 for all ¢ € Ker 7 can be written aé’ = BT
for some operatoB3. To see this, note that the Lie algebra spanned by, Nl_% is
isomorphic tos[(2,R), which is clear from the identificatioR’, := 71, B_ := —3T
andH = N1__g . Therefore any element in the representation space hagasutdécom-
position® = ¢ + T + (TT)%py + ... whereT ¢, = 0. Moreover, the projectdr to
the subspacKer 7 of elements satisfying y = 0 can be written a§l = 1 — 777 for
someO(H,T,T"). Note thatker 7 is orthogonal tdm 7' andII is self-adjoint. Reg-
ularity then follows from the structure of the projeciar Indeed,C'¢p = 0 V¢ € Ker T
implies CTI = 0 which in turn givesC = CTTOT.

The space of operators &fer 7 can be identified with the quotient space of operators
preservingKer 7, i.e., TA¢ = 0V¢ € Ker 7T, modulo operators that act trivially, i.e.,
A¢p = 0V¢ € Ker T. Thanks to the regularity of, this space can be written as (2.10)
with B = TATTO. If one is interested in anti-self-adjoint operators, ieisough to
require bothA andC'T to be anti-self-adjoint. This completes the proof.

Note that[(2.1D0) is the usual definition of the space of inegjent linear symmetries
of the equationif ¢ = 0. The above proof applies equally well to the Klein—-Gordon
equatiorily = 0 becausé&] enters ani(2, R)-algebra together with operator, - a% +
g so that[(2.10) with/ replaced by coincides with the definition of linear symmetries
for the Klein—Gordon equation [15], discussed here in 8a@i2 Propositiorid, with 7
or [, is the first-quantized version of the acyclicity of the asated Koszul differential
in the field-theoretical picture.

For our purpose below, it is convenient to characterizeatpes onKer 7 differently.
Any operatorA on the entire representation space determines an opé&rdidion Ker 7.
Conversely, an operator dfer 7 can be lifted to the entire space. Using the expression
for the projector, one finds that trivial operatorsi®er 7, i.e., those satisfyingl AIl = 0
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are of the formA = T'a+ 3T for some operators, 3. It follows that operators oRKer 7
can be described as the quotient space of all operators mtbahse of the forny fa+37.
In particular, anti-self-adjoint operators are describgdhe following quotient

A~ ATy —AiT, (2.11)

for some operatofy. It is important to note that this quotient is only compatilith
the commutator, i.e., operatos$ = 7y — 47T equivalent to zero form an ideal in the
Lie algebra of anti-self-adjoint operators if one resfigheselves in addition to operators
that preservé&er 7, i.e. TA' = §T for somed. Indeed, 7 A’ = §T impliesT Ty =

(6 — TN T. Applying 77O to both sides and using7 ' = 0 one finds7 Ty = TTO(5 —
T~N)T, so thatA’ = BT for someB. So if we restrict to operators preservibgr 7
then those of the forrfT '~ — ~77 form an ideal identical to the one in the propositién

2.2 Classification of variational symmetries of a masslessalar

Let us now concentrate on a massless scalar, for whieh0 in the above description,
and use the existing classification of symmetries of the wopusof motion [15] to infer
the classification of variational symmetries.

In this case, the BRST operator reduces to
Q = o4, (2.12)

while the general expression for a ghost nuniber —1 operators is
0 0 g, 0

0
The condition thatA represents an element 8°([, -]),
Q, Al=0 s A~A + Q) D
| | 2, D] (2.14)

~— [0,A-BO=0, A~A+DO, B~ B+|[0 D],
coincides with the definition of linear symmetries used i5][1

The linear spacé/®([Q, -]) of inequivalent linear symmetries of the equations of mo-
tion (EOM) is an associative algebraalso known as higher-spin algebra [87]. For a
given symmetnyA let As(z, p), Bs(z, p) determine its principal symbols, e.d is the
highest derivative term im wherea% is replaced with the commuting variabe. It
was shown in[[15] that(2.14) implies that

0

i.e., thatAg is a conformal Killing tensor and also that inequivalenein EOM symme-
tries are uniquely determined by their principal symbdiollows that as a linear space,
A is isomorphic to the space of conformal Killing tensors.
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Let us now turn to the space of linear, inequivalent, vasial symmetries. According
to the general considerations above, they are describ&f 4, -]) in the space of (anti)-
self-adjoint operators. Explicitly,

A+AT=0 = A+ A" +B=0. (2.16)

It is instructive to check thaf (2.114) and (2.16) imply that = A¢ is indeed a linear
variational symmetry associated to

S=3 /ddx ey (2.17)

The elements froni°([(, -]) satisfyingA = —AT form a Lie, but not an associa-
tive, subalgebra ofd. In this case,[(2.16) implies thats(z, —p) = —Ags(x,p) and
Bg(z, —p) = Bg(z,p). In other words:

For a massless real scalaf,, ([, -]), the space of inequivalent linear variational

symmetries, is isomorphic to the space of conformal Kiltergsors of odd rank.
2.3 Poincak and dilatation symmetries of Fronsdal fields

Consider a real spacetime vector fi€ld:) and the anti-self-adjoint, even, ghost number
0 generator

Z= (604 %S’“’EW n aCfA n 8“(25d- 5)%“)7
quv %(8”5” — "), S = a”a;Zu _ au%» (2.18)
A= 3~ 1—1—2008%0 —i—c% —b%, Ky = 4co (%bjLaH%),
satisfying
[T,2] =0 = [N,,=). (2.19)
By direct computation, one finds
Q,5] = w((ca% tar o )Ny_a —cayT — T -5 %) (2.20)

if £ describes infinitesimal conformal transformations,

2
0 + 0,€, = Emlﬁ £ = = ay Fwpr’ oy, + 22,80 — ez, (2.21)

with constant parameters,, wy,.,), a, 53,.

So, the form of the operat@ in (2.18) has been fixed by the following requirements:
(i) It starts with—£0 implementing the spacetime transformations, (ii) it iStarmitian
and (iii) its commutator with the BRST operator producesaitzero or, at worst, a
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term which does not depend on the spacetime operator;%. By themselves, these
requirements have lead to conformal vector fields. The comdbtransformations and
algebra are thus recovered from this construction.

In the current framework, this confirms that infinitesimalii®aré and dilatation
transformations, for whicl¥, = 0, are variational symmetries of Fronsdal’s higher-spin
gauge theory in all dimensions> 3. Furthermore, for the Klein-Gordon action, for
which s = 0, the same holds for infinitesimal special conformal trarmsfations, since
(U0, 2, E]¥ ) = 0. The explicit form of the generato#d,, M,,,, —D, K, are obtained
by differentiating= with respect to the parameters.

The last two terms in(2.20) do not contribute for a spifield because its master
action isS = (U7, QUT) with 7U? = 0 andN,¥! = 0. Definingk = (1, 1=0T)
we thus get,

(S,K) = %(@ST, Q,Z) ey = g (s —3+ g) (vl (C% + aA%)\IJSTy (2.22)

It follows that:

For spin0, there is conformal invariance at the level of the action nyaimension.
For spins = 1, this is the case fod = 4.

In the next section, we will first use the strategy outline&eattiorillto quickly show
that:

For d > 3, Fronsdal fields withs > 2 are invariant under Poinca transformations
and dilatations, but not conformally invariant, neitherthe level of the action, not at the
level of the equations of motion

We will then provide a direct proof tha cannot be modified so as to include special
conformal transformations among the variational symrastii.e., among the generators
commuting withQ.

2.4 Obstructions to special conformal symmetries for Frondal fields
2.4.1 Obstructions at the level of the action

Local BRST cohomology in ghost numbeg, H~2(s), corresponds in the current con-
ventions to BRST state cohomology in ghost numbeér H~1(Q), and has been worked
out in [88/45]. This space manifestly enters the unfoldedhfdation of Fronsdal fields
as the module of 1-form fields and has originally appearedisidontext in[[58]. For a
given spins gauge field, it is represented by the vector spaad elements of the form

bA(x,a) =ba" ...a"} Ap s T (2.23)

m=0



CONFORMAL INVARIANCE OF FREE HIGHER SPIN GAUGE FIELDS 19

whereA(z, a) satisfies

) o 0 o 0 o 0
(05) 4= (5 ) A= m) A= (5 o) a=0. @29
and describes rank— 1 traceless Killing tensor fields on Minkowski spacetime. the

efficientsA \n..v, are totally traceless and have the symmetries of two-rowngou
tableaux.

M1 s —

According to PropositioB, the vector spack¥ is a module for Poincaré and dilatation
transformationsZV C V whenj, = 0 and we will work out the constraints coming
from the condition that” be a module under special conformal transformations as well

by using standard representation-theoretic arguments.
)
oxv

ba" ... a"A, ., (2.25)

The subspacg, C V' annihilated by the translation generatéts= — is

with symmetric traceless constant tensdrs . ,. The subspacg is an irreducible
o(d —1,1) (i.e. Lorentz) module.

Let us first assume that the action'grof the Poincaré algebra extended by dilatations
lifts to o(d, 2) by including the special conformal generatdfs. Using the explicit form
of the dilatation generator givesv = (- 2 + 4 — 2)v forv € V. It follows from (2.23)
that the spectrum of the dilatation generator is givefby 2,4 —1,...,4 — 3+ s. At
the same timeD can be taken as a generator ofd(2) subalgebra in(d, 2), formed
by D, P, K; say. It follows that, in any finite-dimensional module, ifsestrum must
be symmetric with respect t@ This shows that, for >4 ands > 0, the only option
isd = 4,s = 1, which is indeed conformal. Formally, in lower dimensiohsre are
extra possibilitiesd = 2,s = 3 andd = 3,s = 2. The former does not work because
dim(V') = 2 and there is no 2-dimensiondl2) irreducible representation with weights
—1,0,+1. The latter is ruled out as all weights ofd, 2) must be simultaneously either
integer or half-integer butis an integer while the eigenvaluesbfare+1/2.

2.4.2 Obstructions at the level of equations of motion

If we are only interested in equations of motion symmettiesyalue of the lowest weight
Aj, of the dilatation operator is not known a priori and an extnalgsis is needed. In-
deed, in the analysis above, this weight was fixed from theireaent that the symmetry
generator needed to be anti-self-adjoint.

Let us restrict ourselves > 3. Any o(d, 2)-module having/;, as a Lorentz sub-
module annihilated by all translation generat8rsand hence lowest-weight with respect
to dilatations, can be induced froly in a standard way: first pick\;, which must
be constant oV, becausé/, is Lorentz irreducible and dilatation generators commute
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with the Lorentz subalgebra, and then consider the (gemedVerma module generated
from V4, i.e., consider all formal combinatiods,, ... K, v wherev € ;. Any o(d, 2)-
module containing/, as a Lorentz submodule and such that the translation gengrat
P, annihilateV} is by construction a quotient of this Verma module, as a cpusece
of the universality property of Verma modules. Moreou&y, must take special values
in order for the quotient to be finite-dimensional. More psety, —A; has to be integer
and such that-A; > s — 1. In other words the highest-weigft-A,,s — 1) must be
integral dominant. The corresponding finite-dimensiaridl 2)-module is described by
a two-row Young tableau (YT) with first row of lengthA; and second row of length
s — 1, which will be written(—Ap,s — 1). Already for—A; = s — 1, the spectrum of
the dilatation generator contains all integers from s to s — 1 and hence at leag8t — 1
irreducible Lorentz components. However, the vector spagpanned by elements of
the form [2.28) instead containsrreducible Lorentz components. Fer\; > s —1, the
finite-dimensionab(d, 2)-modules with highest-weight-A,, s — 1) contain even more
than2s — 1 irreducible Lorentz components. Therefore, the only gmktsi is the trivial
representations — 1 = Ay = 0.

Another way to see that these modules cannot coincide isgereb that the(d, 2)-
module associated with the YF—1, s—1) is the one of conformal Killing tensor fields of
ranks — 1 in d dimensions. The latter cannot coincide with the Poincasdute of usual
Killing tensor fields unless it is trivial, i.e., unless= 1. In this way, we conclude that
Fronsdal fields do not admit special conformal transforometias equations of motion
symmetries unless= 0, 1.

To see that fox = 1, conformal symmetry is present fdr= 4 only, the argument
based ont/ ~1(Q) is not enough and’®(Q2) needs to be analyzed. It is well-known that
the space of inequivalent solutions to Maxwell equatiomisconformal unlesg = 4@
This implies that Fronsdal fields in terms of potentials dbadmit conformal symmetry
at the level of equations of motion, unless- 0 ors = 1,d = 4.

To conclude the discussion of Fronsdal fieldslia= 4, note that, as a linear space,
H~(Q) can be made into an(4, 2)-module. This does not, however, correspond to an
extension of the Poincaré symmetries in the realisatidbutifsectioi?.3 and, moreover,
it works only for the complexified module because an (anfrideality condition should
be imposed. The idea is to start with the contragredient hecstuucture on the same
linear spacé’ defined in[(2.24). For instance, introducing the standamériproduct on
polynomials, i.e., the one determined by 1) = 1, zf, = 52, (a,)" = 32 so that for
instance(z*, ) = 7", and defining new Poincaré generators throfjh= —PJ and

M, = —Mjw, one finds that the subspace annihilatedijyis precisely the Lorentz-

2See for instancel, [27] where conformal equations wereitilegdy listing all suitable conformal mod-
ules. In the present language, the cohomol&gy <) is evaluated in the space of formal power series in
x* in terms of generalized Verma modules.
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module associated to the Y(B — 1,s — 1). Taking—A; = s — 1 one finds that, as a
complex modulef/ ~1(Q) lifts to ano(4, 2)-module described by the Y5 —1,s—1,s—
1). Details of non-branching for this module can be found int®ed.3

2.4.3 Direct obstructions to special conformal generators

Let us now complete the analysis started in Se@@and show directly that one cannot
modify = in (2.18) so as to include special conformal transformatiamong the varia-
tional symmetries whed > 3 ands > 2.

Comparing to equation (11.10) of [89], all the spacetime elggence of the special
conformal transformations is correctly reproducedsbyt then follows from the analysis
in this reference that the only freedom left is to add a spaeeindependent operator
linear in 3\, or more precisely, to change to s, = r,, + /, by the addition of a*
independent operatar, such that

) 8_1‘

(A, K] = K (B, KA = Muaks, — Muak,, [, 6] + [K,, k] + [k, /] = 0. (2.26)

w v

We thus want to show that no such modification allows one tookenthe obstruction
proportional to3* on the right hand side of (2.22).

Using Propositioff, formulated as in[(2.11), a symmetry generdtoneeds to satisfy
TK = BT and[Q, K] = T'y—~!T . Combining the ansatz’ = Z+3*+/, with equation
(2.20), the no-go result is proven if one can show that theesdhot exist an operatef,
independent of, 2 satisfying [2.26) such that

y 0

Q17 = —2(c —at )N g — ARNT 4 TT AN (2.27)

for some operatord*.

First, using a decomposition according to the degree of lymmeity inxz*, one can
take without loss of generality in (Z27) th@treduces ta:% -2 and thatA* is ,
independent.

Second, decomposing operatets= > | A, according to the level associated/t,
one gets in degre@

[cg%,m/é] = 2(ci v 2

S 5 Na_a — ADT + TTAY,. (2.28)

Only this equation is relevant since at level different frpano, the first term on the right

hand side does not contribute and one can choose the tiliglan s/} = 0 = A} , =

Al
Third, using the Lorentz transformation properties, omeassume thai’é = f1%+

a*g_,, wheref, g depend only on Lorentz invariant combinationsng%, or, by suitably
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completing these invariants, that= f1(T", N, T, co, 5=, ¢, £, b, &) and similarly for
g_1. Sincec%%O commutes withV,, one can restrict to the zero eigenspacé&/gfwhich
means in particular that one considers a theory at fixed spWWriting all operators in
normal-ordered form with respect 6, 77, i.e. in the formB = =, (T )y, (7)™ for
someT, 7 '-independenty;,, and usindc -2, T] = [c4; 5, T'] = 0 the lowest order
equation gives

o Kol = —2(s =3+ J)(cg— +a' o). (2.29)

Fourth, decomposing, = f? + ¢ f{, wheref does not depend af, and similarly
for g_1, the equation implies
) ) d., o )
A —2s =3+ 3)(eg.- +at ). (2.30)
Finally, equating-independent terms it follows that- 3+ g has to vanish, which is only
possible fors = 1 andd = 4, and fors = 2, d = 2 which is excluded from the discussion.

2.5 Generic massless bosonic fields in Minkowski spacetime

Mixed-symmetry massless fields were originally describef0,91] while further de-
velopments relevant in the present context can be found2jB8% 77], and also in [67]
which we follow below. These systems are variational andidrbagrangian formula-
tion based on a BRST operat@rgeneralizing the first quantized description of Fronsdal
fields reviewed in Sectidh.10

In d-dimensional Minkowski spacetime, generic mixed-symgeatassless bosonic
field of spinsy, ..., s,, the weights of the respective little group representaton where
the number of rows satisfigs< [452], [a] denotes the integer part of € R, can be
described by the equations

a 0 a 0 o 0
b 02 =0 g wm®=0 5 &®=0 (2.31)
0 . . 0
ala—a]q)zo 7,>j7 (CLZ"B—%—SG)(I)—O, (232)
where we use, as usual, variabté'swith n = 0,...,d — 1 andi = 1,...,p to contract

indices and work in terms of a generating functibn

In terms of the generating functicihthe gauge transformations read as

0 0
0=, Q= (a5 ) g (2.33)

wherey® = bixgl)(x,a). For convenience, we introduced here Grassmann-odd ghost
variables)’. The same operat@p determines gauge for gauge symmettigs) = Qy?
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etc. Gauge (for gauge) parameters satisfy the analdg_df)(2/&d the following gauge
parameter version of (2.82),

0 0

SN I N RN RN
(G +bigp )XY = 510X (i27), a; - 5-x® =0, (2.34)

2.5.1 Obstructions at the level of the action

The BRST state cohomologi/?(Q2) for these systems has been computed in [67] and
shown to be isomorphic t&?(() through the elimination of contractible pairs. It follows
that H9(Q) is a module of the global symmetry algebra. It is particyl@adnvenient to
considerd ~?(Q2). Recall thap is the number of nonvanishing spin labelsand hence is
the maximal homogeneity degreetifni.e., the number of rows in the YT describing the
field. Indeed, as there are no nonzero elements in degreg, the coboundary condition
is trivial and H () is given byx® = b, ...b, &(x, p) where satisfies

0 0

ai-aTLj =055 (si —1) & (127]), @i~ 5 =0. (2.35)

along with [2.31).

H~?(Q) is a Poincaré-module composed of irreducible Lorentzunexlassociated
with YT (s1—1,...,s,—1,k) where0 <k <s,—lands; > ... > s, [67]. These modules
can also be inferred from the unfolded formulation|[77]. Bubspacd, C H ?(Q)
annihilated by Poincaré translations is an irreduciblelai@with weightss; — 1, .. ., s, —
1.

Repeating the arguments based on the generalized Vermaerinduced from this
o(d — 1,1)-module one finds that A; >s; — 1 and the decomposition of the corre-
sponding finite-dimensional d, 2)-module—Aj, s; — 1, ..., s, — 1 necessarily contains
modules not present in the starting point Poincaré-moextept ifs; = ... = s, = 1
andA, = 0. The gauge field with suchd7(Q2) is a totally-antisymmetric field of rank
D

Again, this information infered just from¥ ~?(2) is not enough to conclude for which
p a totally antisymmetric field is conformal iftdimensional Minkowski spacetime. Sim-
ilar to the case of totally symmetric fields, if the system &gtangian, the Lagrangian
is of second order in derivatives, so that one g&t3 — 1 as the weight for the gauge
field itself. FurthermoreH ?(Q2) corresponds te-th level reducibility identities with
each level involving first order operators, which gives = g — 1 — p for the conformal
weight of ;. Together withA; = 0 obtained above, this shows that the only remaining
candidates are antisymmetric fields of rank g — 1 in (even) dimensiom, which are
indeed known to be conformal.
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2.5.2 Obstructions at the level of equations of motion

If one is only interested in EOM symmetries of gauge fieldstlreorder to see that only
rank ¢ — 1 totally antisymmetric gauge fields are conformal, one néedsnsider/°(Q)
as well, i.e., the space of gauge-inequivalent solutiortked=OM. For such fields, this
space is a conformal module fpr= g — 1 [21,23[27].

As we discussed the analysis of7°(Q) is equivalent to an analysis in terms of
curvatures becausé®(Q) is the same for the gauge field and its formulation in terms of
curvatures. Let us then briefly review the known results eomag fields in Minkowski
spacetime that are conformal in terms of curvatures or, mogeisely, which Poincaré
irreducible non-gauge fields in Minkowski spacetime arefaonal.

It turns out that in odd/ only a massless scalar and spinor field are conformal, while
in evend there are in addition “spinning” singletons. The latter feéds described by
irreducible Lorentz tensors associated to rectangular f¥emht ¢, which are in partic-
ular, traceless and (anti)-selfdual. In fact, they coroespto the massless gauge fields
with p = <2 ands; = ... = s, = s, when formulated in terms of curvatures. More
precisely, the above irreducible tensors are the gaugetanvt generalized Weyl tensors
of these gauge fields. Their conformal invariance was oaityrshown by identifying
those Poincaré irreps that lift to conformal ones [21, 28]terms of EOM symmetries
this follows from the results of [27], while a manifestly Eland conformal formulation
of these bosonic spinning singletons in terms of curvatwasconstructed in [1.4].

This completes our discussion of possible conformal imvare of bosonic gauge
fields on Minkowski spacetime. The extension to fermionitdfas straightforward us-
ing e.g. [93,94]. Note that we have not explicitly discussebsive nor continuous spin
representations as they cannot be conformal. This foll@ssmially from the fact that
both of them involve a dimensionful parameter.

3 Gauge fields in anti-de Sitter spacetime

3.1 Maximal-depth partially-massless fields in 4d

We begin the analysis of possible conformal invarianced@d gauge fields with the
relatively simple, but not so well-known example of totalymmetric partially massless
(PM) fields [95+-99] of maximal depth = s. In this case the gauge parameter is a
scalar. In terms of the + 1-dimensional ambient space with coordinaf€§, (B =
0,1,---,d—1,d) and flat metricj 45 = diag—, +, - - - , +, —), anti-de Sitter spacetime
AdS, is the hyperboloidX - X + 1 = 0. In these terms, the gauge field is encoded in the
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generating functiom(X, A) subject to[[65, 81,100, 70]

(X'aix+1)q):0’ X-(%(I):O, (A-(%—s)(l)zo,

R IO T U T B G-4)
09X 90X~ 98X 0A T 0A 9A T
and the gauge transformations
0 \s 9 _ 9 .0 _
6X<I>:(A-ﬁ)x, (X-ﬁ—s%—l)x—o, ox ax X =0 (3.2)

The variablesd?, B = 0, ..., d are introduced to contract tensor indices. Note thit
A-independent.

Just like in the case of Minkowski spacetime fields considlat®ove, it is convenient
to introduce a ghost variabteand consider the space of states of the fdr(X, A) +
b x(X, A) with BRST operator) = (A - %)SX% implementing the above gauge equiva-
lence. Although the space of gauge parameters is subjettdcedtial constraints, such
a formulation is equivalent to a formulation based on a blet8RST operatof? with
free gauge parametefs [68]. In particulHr2) = H(Q).

The global reducibility parametefg—1(Q2) are determined byA - a%)on = 0. This
condition requires to be polynomial inX. The first condition in[(312) fixes the homo-
geneity of the polynomial to be—1. Finally, the second condition allows one to conclude
that () is the space of totally traceless rank 1 tensors ind + 1 dimensions. This
is an irreducible module of th&dS, isometry algebra(d — 1, 2). Note that irreducibility
implies that there can be no gauge symmetries for the gaugenpters in this system.

Following the same idea as before, let us try to check if #kis— 1, 2)-module can
also be am(d, 2)-module. Leaving the rigorous and general proof for the segtion, let
us present a simple heuristic proof. Observe that all fiditeensionab(d, 2)-modules
described by 1-row Young tableaux are simply exhausted tayiydraceless fixed rank
totally symmetric tensors id + 2 dimensions, rather than ih+ 1 dimensions as above.
One then concludes that the two spaces do not coincide untess. In particular this
implies that depthh = s PM fields in4d are not conformal as gauge systems, i.e. in terms
of potentials, unless = 1, in which case it is the usual Maxwell field.

Although maximal-depth PM fields in 4 dimensions are not oam@l in general,
there exist very similar maximal-depth conformal gaugelfielFors = 1 they coincide
with the Maxwell field, fors = 2 they were originally found in [96], and for generic
s in [101]. They can be seen as higher-depth generalizatiarsoél conformal gauge
fields [73], and hence, we call them maximal-depth FT fieldeveeThey belong to the
class of conformal gauge fields considered in [62]. Recethiy were identified with
boundary values of thddS; maximal-depth PM fields [70]. 1d = 4 these fields have
second order equations of motion and gauge transformatiorder s in the derivatives.
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More precisely, the flat spacetime Lagrangian for traceless,,. (z) reads as [101]

2s
s+1

L=0"p" " 0,0u. e — au‘PVm”'MSaA@Auz---us (3.3)

and is invariant undefy,, ., = d,, ...0,,x — traces. Thanks to conformal invariance,
they can be seen as fields on any conformally flat space andyriicydar, onAdS,. A
natural question is then what their relationship to the maidepth PM fields on the
same spacetime precisely is.

To answer this question, let us consider again global rédlitigs. Using the ambient
formulation of [70], the space of reducibilities can be dised in terms of polynomials
in d + 2-variablesX satisfying

0 , 0 0

This subspace is determined by the same equatiofsa4?) above but in/ + 2 dimen-
sions. Unless = 1 these spaces do not coincide. In Secliohwe explicitly compare
these two fields in the first nontrivial case o 2.

As far as totally symmetric PM fields of maximal depth are @ned, one can won-
der if, similarly to Fronsdal fields in 4 dimensions, the etipras of motion are conformal
in terms of curvatures. To answer this question we use timeuiation in terms of curva-
tures proposed in [102] (see e.g. S8l for the simplest non trivial example of= 2).

If these systems were conformal, one could equally well itewlhem in flat Minkowski
spacetime using a Weyl transformation. As the flat limit toegde AdS systems is regu-
lar, its Weyl transformation to flat space should coincidénits naive flat limit obtained
by putting the cosmological constant to zero. More pregjdel the flat limit of a PM
maximal-depth field, the fundamental field is an irreduclbdeentz tenso#,, ..., i.e.,

it is symmetric over all; indices and such that the complete symmetrization over all
lower indices gives zero. It then follows from the classtiica results of [[27] that, for
such a Lorentz tensor field labelled by a “hook” Yd; 1), there are only two conformal
equations which are first-order in derivatives and a rahkrentz tensor: one is a totally
symmetric ranks Lorentz tensor with conformal weigBtwhile the other one is labelled
by a hook YT(s—1, 1) and has conformal weight-3. The former equation corresponds
to the curvature formulation of a maximal-depth conformaalge field which differs from
the corresponding PM field unless= 1. This difference is explicitly illustrated on the
example ofs = 2 in Sec.3.4 below. The latter equation also differs from the corre-
sponding PM field since in particular, the curvature has feint conformal weight. In
conclusion

3At first glance, this conclusion differs frorn [103] but thiager is based on different assumptions and
makes use of a different definition of symmetries. In patéicuheo(4,2) symmetry discussed in [103]
does not seem to correspond to standard conformal spadetingformations.



CONFORMAL INVARIANCE OF FREE HIGHER SPIN GAUGE FIELDS 27

Maximal-depth PM field witls > 1 are not conformal, neither in terms of potentials,
nor in terms of curvatures.

3.2 Generic partially-massless gauge fields in AdS

A partially massless bosonic gauge fieldAdsS; is determined by a finite-dimensional
module ofo(d — 1) with weights (spinsk,...,s,. Herer = [%1] is the rank of a
rotation subalgebra(d—1), whiles; > ... > s,, pandt are integer parameters< p <r
and1l <t<s, — s,+1 . This corresponds to a (partially)-massless field of spin. ., s,
with depth# gauge transformation associated to gkl row. More details can be found
in [104/59, 78,68, 81].

The BRST first-quantized description for a generic bosoniegg field on AdS has
been constructed in [68,81] (see alsol[63]59, 78,[105, t@ddier related work). The
nontrivial H~*(Q2) are in degre® andp. For an irreducible (partially)-massless field, the
spaceH ~?(Q2) is a finite-dimensional irreduciblgd — 1, 2)-module with highest weight
s1—1,...,81—1,8,— 1,5, —t, 8,41, .., S, I.€. the module described by the Young
diagram with the lengths of rows given lgy:

s1—1>2 ... 25, 0—12s,—12s,—t=>s5,01> ... 25, . (3.5)

Note the row of lengtls, — 1 in the middle of the diagram and a subsequent row of length
s, —t. Forinstance, fod = 4 and¢ = 1, one gets the familiar 2-row rectangular tableaux
of lengths; — 1. Note that- = 1 in this case.

According to theo(d + 2) | o(d + 1) branching rules summarized in the next sub-
section, if module[(3I5) is nontrivial, it can be lifted tdd, 2) iff d is even and this
Young tableau is rectangular of heiggﬂ This condition resricts; in such a way that
s1—1=s—-1...=s5,—1=s,;1 = ... = s, S0 that according to [22] the field
belongs to the class of unitary mixed-symmetry fields. Inipalar,t = 1 so that mixed
symmetry PM fields cannot be conformal in general.

To obtain further restrictions one has to consid&Q) as well. According to the
analysis of([22] unitary AdS fields may admit conformal syntiyenly fors; = ... = s,
(in particularp = r) andd even. If we restrict ourselves to the case- r, H ?(Q) is
associated to a spinning singleton [[20~22]. Asoéh 2) module, H?(Q) is a finite-
dimensional module described by a rectangular tableauighhé + 1 and lengths —

1. The module is realized by (anti)-selfdual tensors of tlyssetry type ind + 2-
dimensions. In dimensionsdifferent than2 mod 4 however, modules of this sort are
necessarily complex as the (anti-) selfduality conditia@@glnot have real solutions in

4t is this module where a-form field takes values in the unfolded description [59, @8MdS gauge
fields.
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such dimensioﬁs In particular, this implies that iddS,; with d = 4,8, . . . real fields can
be conformal in terms of potentials only fer = ... = s, = 1, i.e., when the module
is trivial. These are totally antisymmetric fields of maximank which are known to be
conformal for even.

An interesting question is whether spinning singletonsAihS,; with d>6, d =
2 mod 4 ands > 1 can be conformal in terms of potentials. Note that those with 1
are conformal in terms of potentials, while they all are kndwrbe conformal in terms of
curvatures. The necessary condition advocated here doegainde this possibility and
resolving the issue requires further study.

3.3 Branching rules for modules of the orthogonal algebras

The branching rules of a Lie algebgadescribe the decomposition of its irreps restricted
to a subalgebrg. We will be interested in the very exceptional case whengtiveep
remains irreducible under the restrictign b, i.e., when the decomposition contains only
a singlep-irrep with multiplicity one. The trivial representatioa an obvious example
of such an irrep. The branching rules of classical algebrasaell-known for finite
dimensional irreps while the problem is obviously more ixred for infinite-dimensional
ones.

The importance of branching rules for our purpose is theWalg fact: An h-irrep
can be lifted to ag-irrep if and only if thish-irrep is the only irrep appearing in the
restrictiong | b of theg-irrep. In other words, there is a one-to-one correspondence
between thé-irreps that can be lifted tg-irreps and theg-irreps that remains irreducible
under the restrictiog | b.

To see which finite-dimensionald — 1, 2)-modules can be lifted to(d, 2), we recall
the basic facts on(d) | o(d — 1) branching rules. The finite-dimensional irreducible
o(d)-module characterized by the dominant integial)-weights = (sq, ..., s,) will be
denoted byD, 4 (5). Herer denotes the rank af(d), i.e., the integer part of/2. The
“spin” labels of the weight-vectors are either all integers or all half-integers, and they
satisfy

s, =20 for d=2r+1,
Sp_1 = |s| for d=2r. (3.6)

S1

VoV
VoWV

V)

1

Whend = 2r, the last labe#, can be positive or negative. The integer part of the (absolut
values) of the components idefine a Young diagram where each spin label gives the
length of the corresponding row.

5This is in agreement witH [106] where the conformal invacamf doubled (complexified) sets of
totally-symmetric fields imdd S, was put forward.



CONFORMAL INVARIANCE OF FREE HIGHER SPIN GAUGE FIELDS 29

The classical branching rules for the restrictigd) | o(d — 1) of finite-dimensional
irreducible modules can be expressed as follows:

3) L B Do) (D), (3.7)
7
where the direct sum is over al{d — 1)-weightst such that
31>t1> >5r1>tr1>3r>|tr| for d:2r+17 (38)
31>t1> 257" 1>tr 12 87‘| for d:27’, (39)

with entries ins'andt which are simultaneously all integers or all half-integers

Lemma 8. A nontrivial irreducibleo(d)-moduleD,q4)(5) remains irreducible after its
restriction too(d — 1) if and only ifd = 2r ands; = ... = s,_1 = |s,/, i.e., ifitis
described by a rectangular Young diagram of heigfit .

Proof. The branching rules$ (3.8) arld (B.9) imply the following chaf inequalitiess; >
t1, > ... > 8.1 =t > |s.] which are valid in anyl. One can see that a necessary
condition in order to have a single allowed set of components.., t,_; is thats; =

.. = 5,1 = |s,|. Ford = 2r, this fixes uniquely to be the { — 1)-vector (since»(d — 1)
has rankr — 1) such that; = ... = t,_; = |s,|. Ford = 2r + 1, inspecting the last
inequalitys,. > |¢,| in the branching ruld_(318), one can see thanust vanish in order to
have a single allowed component This implies that the trivial irreducible(d)-module
D,(4)(0) is the only one that remains irreducible after restriction(i — 1) for d odd.

An obvious corollary is that, if one performs two such brangs, the only irreducible
o(d)-module which remains irreducible after its restrictiom{d—2) is the trivial module.
3.4 Explicit spin 2 examples

To illustrate the difference between= ¢t = 2 PM field and FT field in 4d, let us work in
terms of tangent tensors.

3.4.1 Maximal-depth partially-massless spin-2 field in 4d

s =t =2PMfield in d = 4 in terms of potentials: Following [95/96], the equations
of motion for as =t = 2 PM field in 4d are

(Vz + 4N2)‘Puv - (vuvaOpV + VVVPSOW) + VHVVQO/—
— g (V24 12)¢ = VPV7,,) =0, (3.10)
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wherey' = ¢g"¢,,. Herey = L~' the inverse AdS radius so that e.g?,,,, =
—112(9up9vo — 9up9us)- The equations are invariant under the following gauge sgtmm

Sepur = (VuVo = 12guw)€ (3.11)
with unconstrained scalar paramegér).
Equations[(3.10) have differential consequences of fidef97]. ApplyingV* to
both sides ofl(3.10) one finds
Vi =V =0, ¢ =g"pu. (3.12)

Let us also present the partially gauge fixed version of thssesn. Namely, let us
consider the gauge conditigrt = 0. Its variation under a gauge transformation is given
by

8¢ = (V* — 4p”)g, (3.13)
so that the gauge is reachable. Indeed, in the context apgtes, any element is in the
image ofV2. The gauge fixed system reads

(V244" ) o =0, V%, =0, g™, =0,
580;11/ = (vuvu - Mzg;u/)g? (VQ - 4#2)5 =0.
This formulation can be rewritten in ambient terms by idigitig ¢, with the pullback

of ambienty 4 satisfyingX4pap = 0, (X - 2% + 1)pap = 0, and similarly for the
gauge parameter.

(3.14)

The space of global reducibilities is determinedd®y,, = 0. The consequence
"¢, = 0 reads explicitly
(V2 —4p4*)€E=0. (3.15)
Let us identify¢ as the pullback oE(X) defined on ambient spa@ 2 and satisfying
(X - 2% —1DE =0, 5% - %= = 0. In terms ofZ, the gauge transformation i 0=
and henc& must be polynomial. One concludes tiat= £,X4, so that reducibilities
are parametrized by + 1 dimensional ambient vectors.

s =t =2PMfieldin d = 4 in terms of curvatures: Following [102], the curvature is
given by
Fivip = Vupup — Viou, - (3.16)
In terms ofF,,|,, equations of motiori(3.10) take the form
Vpr(u‘,,) - gwjvafi + V(MF;) =0, (3.17)

where F, = F,,,¢" and X(,Y;) = 1(X.Y, + XuY,). In this form, the equations of
motion follow from the Lagrangian [102]:

LM = F,,,F"" + F'""F! . (3.18)
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If one treatsF),,|, as the fundamental field, one also needs to add algebraidico sd
and Bianchi identities so that the complete set of equati@esmes

Fulp = —Fopp Fluvip) =0, walpgyp =0, (3.19)
Ve, =0, VieF ) =0. (3.20)

Note that if ', |, is (anti)-selfdual the last two equations are equivalent.

3.4.2 Maximal-depth Fradkin-Tseytlin spin-2 field in 4d

s =t =2FTfieldin d = 4 in terms of potentials: Another related system in 4d was
also proposed in [95, 96] (see also references therein)edhations of motion have the
form

2 1
(VZ + 4/~L2>90,uz/ - g(vuvp¢pu + szvp@pu) + gguuvpvg¢po =0 (321)
andg"’y,,, = 0. The gauge law is
1
5590;11/ = (VMVV - Zg;wvz)g (322)

with £ unconstrained. This system is conformal and can be ideshjif{&] with the bound-
ary value of the = s = 2 PM field on Ad.S5 .

In contrast to thes = ¢ = 2 PM field considered above, the gaugéy,, = 0 is
not reachable in general. On the contrary,= V*¢,,, satisfy Maxwell's equations and
transform agV,, = 3V, (V2 — 4p2)¢.

To see what this system describes, let us decompgsén a nonlocal way) intcngu
satisfyingvf‘ap?w = 0 andV, describing the rest. The equations {ayreduce tol(3.14),
so that a FT field withs = t = 2 decomposes into a PM field® with s = ¢t = 2 and a
Maxwell field V with s =t = 1.

The space of global reducibilities is given by solutiong¥g,V, — igﬂyvz)g = 0.

Let us consider first the consequenceés (¢,.,) = 0, or explicitly,
V(o) = |

The general solution to this equation has the f@grm o + & wherea is constant and
& is a general solution t6V?2 — 44?)&, = 0. In turn, just like in the case of a PM field,
it is convenient to represegitas the pullback to the hyperboloid &f, defined onR3+2
and satisfyingx - %50 = 0, (X - ;% — 1) = 0. In terms of the ambient space,
conditionsde, ., = 0 take the formd,dz=, = 0 where(V? — 4,2)&, = 0 has been
taken into account. So the solution is again giver|Egy= ¢,X4. Putting everything
together, the general solution foiis ¢ = a + £, X“(x) and the space of reducibilities is
6-dimensional, confirming the conclusion of the manifestipformal considerations of
Sectioni3.1 Let us stress that in contrast to Sectd, we now have not assumed that

conformal symmetry is realized on gauge parameters.

Vo, (V= 4p*)E=0. (3.23)
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s =t =2FTfield in d = 4 in terms of curvatures: The traceless component of the
curvature is

1 @ 1 o
F;u/\p = v,ugpup - Vu%%p - gg,upv Pav + ggupv Pap - (324)

In terms ofF, the equation of motion take the form
VA Fup = 0. (3.25)
They follow from the Lagrangian

LI = 2 Fy B (3.26)

If one treats,, |, as the fundamental fields, the complete set of equations is

Fuip=—=Foup, Fluwip =0, Fuipg” =0, (3.27)
VEFuwlp =0, VieFujp = oo A » (3.28)

whereA,,, is an antisymmetric tensor. The last equations can be wa’ﬂ@(v[ofuynp) =
0, whereP denotes the projector to the totally traceless componeoite Mat if 7, is
(anti)-selfdual, the last two equations are equivalent.

By comparing[(3.27),[(3.28) t¢ (3.1.9], (3]20), one obsethes thes = t = 2 FT
eqguations of motion are a subset of the:- ¢ = 2 PM equations. Therefore, the space of
solutions of thes = ¢t = 2 PM equations is a subspace of the- ¢t = 2 FT one. Indeed,
the former is am(d — 1, 2)-submodule of the latter. The crucial point is that, nevelghs,
the former isnotano(d, 2)-submodule of the latter because the extra equations afthe
t = 2 PM field arenot conformally invariant for the conformal weight of the=t = 2
FT field. The same remains true for- 2.

4 Conclusion

In this work we have studied structural properties of glayahmetries in gauge systems.
In particular, in the context of the BV-BRST approach, weéhakiown that BRST coho-
mology in the space of local functionals,”~!(s), as well as BRST-state cohomology
H~?(Q) in the case of linear systems, are necessarily modules nyesubalgebra of the
algebra of global symmetries.

Of special importance are “global reducibility parameterkich correspond to these
cohomology groups fop > 1. In contrast to BRST cohomology groups in other ghost
numbers, global reducibilities are typically finite-dinsgznal. This makes them espe-
cially useful in order to constrain global symmetries sitteanalysis then only requires
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standard tools from representation theory. Surprisinglihe particular examples where
we study which (A)dS or Poincaré gauge fields admit confbsymmetry, this analysis

is powerful enough to rule out most of the candidates, witlamalyzing the space of
solutions.

Our approach is closely related to the unfolded formalisramhdly, in the unfolded
approach, the construction of gauge field begins with theécehaf a finite-dimensional
module and with differential forms taking values in this matel The detailed relationship
can be established using a parent approach which allowsomyestematically construct
an unfolded formulation starting from the BV-BRST formutet, respectively its BRST
first quantized formulation for linear theories: the spadeeke thep-form fields take
values in the minimal unfolded formulation can then be shtawpincide withH —7(Q2),
and hence with order global reducibility parameters.
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