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ABSTRACT. In Lagrangian gauge systems, the vector space of global reducibil-
ity parameters forms a module under the Lie algebra of symmetries of the ac-
tion. Since the classification of global reducibility parameters is generically eas-

ier than the classification of symmetries of the action, thisfact can be used to
constrain the latter when knowing the former. We apply this strategy and its

generalization for the non-Lagrangian setting to the problem of conformal sym-
metry of various free higher spin gauge fields. This scheme allows one to show

that, in terms of potentials, massless higher spin gauge fields in Minkowski space
and partially-massless fields in (A)dS space are not conformal for spin strictly
greater than one, while in terms of curvatures, maximal-depth partially-massless

fields in four dimensions are also not conformal, unlike the closely related, but
less constrained, maximal-depth Fradkin–Tseytlin fields.
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1 Generalities

1.1 Plan of the paper

In the first section, we briefly review relevant aspects of symmetries in the context of
gauge systems: variational versus equations of motion symmetries, field-theoretic for-

mulation of conformal symmetry, curvature versus potential formulations, the BRST-BV
implementation, and the relation to the unfolded approach.We demonstrate that for a

gauge system invariant under a global symmetry algebra, thespace of global reducibil-
ity parameters, and more generally, certain BRST cohomology groups, are necessarily a

module thereof. This gives a powerful criterion to analyze whether a given gauge system
admits a given global symmetry algebra.

In section2 we apply this criterion to generic gauge fields in Minkowski space. More
precisely, we address the question which general mixed-symmetry bosonic gauge fields
on Minkowski space admit an extension from Poincaré to conformal symmetry. We also

illustrate the difference between variational and equations of motion symmetries using
the simplest example of a massless scalar.

Section3 is devoted to identifying those gauge fields on anti-de Sitter (AdS) space
whose AdS symmetry extends to conformal symmetry. We pay particular attention to

the special case of maximal-depth partially-massless (PM)fields inAdS4 because these
fields have attracted some attention in the literature and can easily be confused with their

conformal cousins belonging to the family of (generalized)Fradkin–Tseytlin fields, which
we also discuss. We show that these fields are never conformalfor s > 1 neither as gauge

fields nor at the level of gauge invariant curvatures. As an illustration the case ofs = 2 is
considered in detail.

1.2 Classification of symmetries

Algebraic approaches to classifying symmetries of systemsof partial differential equa-
tions in the context of jet-bundles and the variational bicomplex are by now very well-

developed, see e.g. [1–4] and also [5–10] for reviews. In particular for Lagrangian sys-
tems, symmetries of the action, also called variational symmetries, are a subalgebra of
the symmetries of the equations of motion. In applications to fundamental systems, they

are privileged since Noether’s theorem provides one with a clear procedure on how to
implement them in the quantum theory.

The case of Lagrangian gauge systems and of degenerate partial differential equations
is less studied in the mathematical literature, mainly because gauge invariance violates

technical assumptions needed to apply some of the systematic techniques (see however
[11] and references therein).
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For example, for massless higher-spin fields in four-dimensional flat spacetime, sym-
metries and conservation laws of the equations of motions have been classified in terms of

curvatures [12, 13] (see also [14] for considerations in higher dimensions), generalizing
the result for a massless scalar field [15]. With quantization in mind (see e.g. [16] for an

early discussion), suitable potentials and auxiliary fields are introduced in order to make
the system Lagrangian, at the expense of introducing gauge symmetries in the massless
case [17, 18]. A classification of variational symmetries, and thus also of conservation

laws, in such formulations, would be very useful. In particular, one needs to consider
suitable equivalence classes of symmetries modulo gauge ones.

1.3 Conformal symmetry

Short of a complete classification of symmetries, a standardquestion is whether a given
system admits certain subalgebras of symmetries. Typically, in the situation that we con-

sider below, the relevant systems are by construction invariant under a certain subalgebra
of symmetries and one would like to know whether they admit anextension to a bigger

algebra of symmetries containing the starting point algebra as a subalgebra. For a variety
of field-theoretical realizations of the Poincaré or the (anti-) de Sitter algebra for instance,

the role of the bigger algebra is played by the conformal algebra.

This question has been thoroughly studied in two related – but in general not entirely

equivalent – approaches. The first one is purely representation-theoretical and studies
which (A)dS or Poincaré irreps (usually unitary ones) can be lifted to irreps of the con-

formal group [19–23]. By construction, these considerations concern the gauge invariant
spectrum of the theory. The second one is based on equations of motion symmetries, i.e.
on (quasi-)invariant differential operators [24,25,15,26]. In particular, a technique to clas-

sify linear partial differential equations for which Poincaré lifts to conformal symmetry
was developed in [27].

Our considerations in this context will be restricted to free classical (gauge) fields,
i.e., to linear PDEs. So we will not address any of the issues raised by the contemporary

debate on scale versus conformal invariance for interacting quantum field theories, see
e.g. [28,29] and references therein.

1.4 Curvatures versus potentials

Strictly speaking, the symmetry analysis described above applies to PDEs without gauge
symmetries. This is often sufficient because the equations of motion of any linear gauge

system admit a “curvature” formulation. A standard exampleconsists of Fronsdal fields
in (A)dS or Minkowski spacetime which can be reformulated interms of gauge-invariant

curvatures [30]. In the case of spin 1, this is simply the formulation where the Faraday
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tensorFµν is the fundamental field. For spin2 (and higher), this is the formulation in
terms of the (generalized) Weyl tensor.

It is important to note that the formulation in terms of potentials with gauge sym-
metries and the associated curvature formulation are not equivalent when insisting on

locality. In particular, they may have different symmetries: for instance, at the level of
equations of motions, Fronsdal fields ind = 4 with s> 2 are conformal in terms of cur-

vatures but not in terms of potentials. This is known to experts but we are not aware
of a detailed discussion in the literature. In our approach,this is included by using the

field-theoretic Batalin–Vilkoviski (BV) formalism, respectively the first quantized BRST
approach as described in the next sections, which allows us to provide a simple proof in
Section2.4below.

1.5 Batalin-Vilkovisky formalism

A better technical control on the degeneracies in Lagrangian gauge systems has been

achieved with the work of Batalin and Vilkovisky [31–34] (see e.g. [35, 36] for reviews
and [37–39] for discussions in the context of jet-bundles).

Let us denote byϕi the fields of the theory, byxµ the spacetime coordinates and by
L0 the Lagrangian. Under standard regularity conditions, thenotion of a generating set
of gauge generatorsRi

α is crucial. Associated to a choice of such a generating set, there

is an extended set{φA} = {ϕi, Cα, · · · } of fieldsϕi, ghostsCα, ghosts for ghosts, ... and
their antifieldsφ∗

A, graded in terms of a ghost number and equipped with an antibracket

(·, ·) =

∫
dnx

δR·

δφA(x)

δL·

δφ∗

A(x)
− (φ ↔ φ∗). (1.1)

Furthermore, one can systematically construct a proper, minimal, ghost-number0 solu-
tion

S =

∫
dnx

(
L0 + ϕ∗

iR
i
α(C

α) + . . .
)
, (1.2)

to the Batalin-Vilkoviski master equation

1

2
(S, S) = 0. (1.3)

1.6 Local BRST cohomology

Once the theory is reformulated within the BV formalism, a natural question is the compu-

tation of local BRST cohomology, i.e., the classification ofthe cohomology of the BRST
differentials = (·, S) in the space of local functionals. These groups do not dependon

the specific formulation of the theory, in the sense that theycan be shown to be invariant
under the introduction/elimination of (generalised) auxiliary fields [40]. In particular:
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Equivalence classes of variational symmetries, up to on-shell vanishing variational

symmetries and non trivial gauge symmetries with field dependent gauge parameters, are

isomorphic to local BRST cohomology in ghost number−1.

Whereas the computation ofH−1(s) is in general rather involved, the computation in

lower ghost numbers is much easier. For instance, in irreducible gauge systems for which
the generating set of gauge symmetries does not admit local degeneracies, one can show

that there is no cohomology in ghost numbers below−2, while cohomology in ghost
number−2 is given by equivalence classes of global reducibility parameters, i.e., by sets

of local functionsf̄α such that
Ri

α(f̄
α) ≈ 0, (1.4)

where≈ means an equality on the surface defined by the equations and their derivatives,
with two sets of local functions considered equivalent if they agree on this surface.

1.7 Constraints for variational symmetries

The antibracket induces a well-defined bracket in local BRSTcohomology,

(·, ·)M : Hg1(s)×Hg2(s) 7→ Hg1+g2+1(s). (1.5)

Wheng1 = −1 = g2, it follows thatH−1(s) is a (graded) Lie algebra with respect to the

above antibracket which is isomorphic, up to a change of grading, to the Lie algebra of
equivalence classes of variational symmetries. Cohomology in fixed ghost numberHg(s)

is a module thereof. In turn, this imposes constraints on variational symmetries which we
will use in our analysis below. More precisely:

Proposition 1. In the Lagrangian case, local BRST cohomology in the ghost numberg,

Hg(s), is necessarily a module of any subalgebra ofH−1(s), and thus of any subalgebra

of the algebra of equivalence classes of variational symmetries.

Such a property can of course also be established without using the BV formalism. For

instance, that global reducibility parameters form a module under variational symmetries
has been shown directly in section 3.9 of [41]. The reasoningcan be summarized as
follows. In proper Lagrangian gauge systems, gauge symmetries form an ideal in the

set of all variational symmetries. This implies that, on-shell, the commutator of a gauge
symmetry with a global symmetryδX can be written in terms of the generating set,

δXR
i
α(f

α)− δR(f)X
i ≈ Ri

α(X
α
β (f

β) + δXf
α), (1.6)

for some total differential operatorsXα
β . Whenfα are reducibility parameters, both terms

in the commutator on the left hand side vanish on-shell. It follows thatXα
β +δXf

α are also
reducibility parameters. One then proceeds to show that trivial variational symmetries or
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trivial reducibility parameters are mapped to trivial reducibility parameters. This implies
that the module action is given by

(
[X i], [f̄ ]

)
7→ [Xα

β (f̄
β) + δX f̄

α]. (1.7)

In linear theories the generating set of gauge transformations can usually be chosen to
be field independent. If the same goes for the reducibility parameters, like in the concrete

example of Fronsdal higher-spin fields in dimensions greater than 3 considered below, the
equation that determines the module action simplifies to

− δR(f)X
i ≈ Ri

α(X
α
β (f

β)). (1.8)

In the case where the linear gauge theory is the result of the linearization of an in-

teracting gauge theory around a solutionφ̄, the linear part of gauge transformations with
gauge parameters replaced by reducibility parameters,X i = Ri1

α (f̄
α), form a subalge-

bra of variational symmetries. The module action is then described by a derived bracket
determined through the terms of the BRST extended cubic vertex of the full interacting

theory that contains the information on the gauge algebra,C∗
αC

α
βγ[φ̄](C

β, Cγ). This is
discussed in detail in sections 4 and 7.4 of [41]. More generally, the derived bracket in

the BV formalism has been originally proposed in [42–44].

1.8 Linear Lagrangian theories

When the BRST differentials is linear in the fieldsΨα = (φA, φ∗
A) of the BV formalism,

it is determined by a real “first quantized BRST operator”Ω (see [45] and also [46] for

conventions). Introducing an auxiliary superspace of wavefunctionsφα(x) and basis
elementseα of opposite ghost number and identical parity toΨα, and the string field

Ψ = eαΨ
α, the BRST operator is defined as

s(Ψ) = Ω(x, ∂)Ψ, Ωeαφ
α = eβΩ

β
α(x,

∂

∂x
)φα(x), (1.9)

where∂µ = ∂
∂xµ + Ψα

µ
∂

∂Ψα + . . . denotes the total derivative. More generally, any linear

differential operator of the formAα
β(x,

∂
∂x
) acting from the left determines a unique linear

evolutionary vector field acting from the right and such that

VA(Ψ
α) = Aα

β(x, ∂)Ψ
β . (1.10)

This map is one to one and moreover is a homomorphism, i.e.,[VA, VB] = V[A,B].

In the variational case the space of fields is equipped with a constant nondegenerate
odd Poisson bivectorωαβ. Its inverseωαγω

γβ = δβα satisfiesωαβ = (−1)1+|α||β|ωβα and

determines an anti-symplectic form

ω(φ, χ) =

∫
ddxωαβφ

α(x)χβ(x) , ω(φ, χ) = −(−)|φ||χ|ω(χ, φ). (1.11)
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An operatorA is called symplectic if

ω(Aφ, χ) + (−)|A||φ|ω(φ,Aχ) = 0 , (1.12)

where it is assumed that total derivatives do not contributebecause wave functions are
assumed to vanish at infinity.

Symplectic operators are one to one with quadratic functionals,

FA =
1

2

∫
ddxΨαωαβA

β
γΨ

γ. (1.13)

The linear vector fieldVA associated to a symplectic operatorA is Hamiltonian,VA(Ψ
α) =(

Ψα, FA

)
, and satisfies (

FA, FB

)
= F[A,B] . (1.14)

In particular, for linear theories,Ω is symplectic and the master action can be written as

S = FΩ , s =
(
·, S

)
. (1.15)

Linear variational symmetries are determined by ghost number −1 quadratic func-

tionalsK such that(S,K) = 0. They are trivial ifK = (S, T ) with T a quadratic ghost
number−2 functional. According to the above discussion,K is determined by an even

ghost number0 symplectic operatorK, while T is odd ghost number−1 symplectic
operatorT , and

[Ω, K] = 0, K ∼ K + [Ω, T ]. (1.16)

The problem of determining linear variational symmetries has thus been rephrased as a
problem of BRST operator cohomology. Furthermore, since the Lie algebra structure of

equivalence classes of linear variational symmetries is encoded in the antibracket induced
in local BRST cohomology quadratic ghost number−1 functionals, it is also represented

by the commutator bracket induced in BRST operator cohomology. It follows that:

For linear proper gauge systems, there is thus an isomorphism between the Lie alge-

bras of equivalence classes of linear variational symmetries and the commutator bracket

of BRST operator cohomology in the space of symplectic ghostnumber0 operators.

As a consequence, we have:

Proposition 2. BRST operator cohomology in the space of ghost numberg symplectic

operatorsHg
sym([Ω, ·]), is necessarily a module of any subalgebra ofH0

sym([Ω, ·]), and

thus of any subalgebra of the Lie algebra of equivalence classes of linear variational

symmetries.

Suppose that one can prove that in a given ghost number−g, representatives for local

BRST cohomoloy can be chosen to be linear functionals in the fields. This is for instance
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the case in ghost number−1 for the Fronsdal fields discussed below. Without loss of
generality, they can always be chosen of the form

Lφ =

∫
ddxΨαωαβφ

β(x). (1.17)

It then follows from (1.14) that

s(Lφ) ≡
(
Lφ, S

)
= (−)1+|φ|Lχ ⇐⇒ Ωφ = χ . (1.18)

In particular, linear local BRST cohomology in ghost numberg−1 is isomorphic to BRST

state cohomology in ghost numberg, Hg(Ω), with vectors of the formφ = φαeα.

Independently of this correspondence, we have:

Proposition 3. BRST state cohomology in ghost numberg, Hg(Ω), is necessarily a mod-

ule of any sub-algebra of BRST cohomology for symplectic, ghost number zero operators,

H0
sym([Ω, ·]), and thus of any subalgebra of the Lie algebra of equivalenceclasses of

linear variational symmetries.

Before making contact with a genuine first-quantized description, note that in this

work, the wave functionsφα and the associated fieldsΨα are taken real from the out-
set. By using the parity automorphismIαβ = (−1)|α|δαβ , the antisymplectic structureωαβ

determines an odd symmetric inner product,

〈φ, χ〉 =

∫
ddx(−1)|α|ωαβφ

α(x)χβ(x) , 〈φ, χ〉 = (−1)|φ||χ|〈χ, φ〉 . (1.19)

It turns out that Grassmann odd symplectic operators are formally self-adjoint with re-

spect to (1.19) while Grassmann even symplectic operators are anti-self-adjoint. In par-
ticular,Ω is self-adjoint while representatives of global symmetries are anti-self-adjoint.

In concrete application it is often useful to work in term of the symmetric inner prod-
uct (1.19) in which case the master action takes the form

S =
1

2
〈Ψ, − IΩΨ〉 . (1.20)

Note that−IΩ is also symplectic and self-adjoint. It is equivalent toΩ by a change

of basis. When working with 1.19, we implicitly replace in what follows −IΩ with
Ω and similarly for the representatives of global symmetries, so that the expression for

the master action simply becomes1
2
〈Ψ,ΩΨ〉. This does not lead to confusions since

H ·(Ω) ∼= H ·(−IΩ).

In a full quantum mechanical setting, one deals with a complex Hilbert space and
uses a complex structure such thatωαβ becomes the imaginary part of the hermitean inner

product. This type of construction has been originally usedin the context of string field
theory, [47–50] (see also [51] for an analysis from the pointof view of gauge systems).
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1.9 Constraints on equations of motion symmetries

In the non-Lagrangian case, following [45, 46, 52], we assume that the gauge system is
described by a nilpotent, ghost number1 BRST differentials represented by an evolu-

tionary vector field on a bigraded jet-space of fields, which contains, besides the ghost
number, an antifield number1 according to which the BRST differential decomposes as
s = δ + γ + s1 . . . , with δ, γ, s1, . . . of antifield number−1, 0, 1, . . . , such that the

cohomologyδ provides a homological resolution of the local functions defined on the
surface determined by the original equations of motion. Thedifferentialγ encodes the

gauge symmetries of the equations of motion, which are required to close only on-shell,
see e.g. [53,35] for more details.

When equipped with the commutator bracket, evolutionary vector fields form a graded
Lie algebra, the bracket carrying degree0. Including the BRST differential yields a dif-

ferential graded Lie algebra, with the bracket descending to cohomology,

[·, ·]M : Hg1([s, ·])×Hg2([s, ·]) −→ Hg1+g2([s, ·]). (1.21)

In this context:

Equivalence classes of equations of motion symmetries modulo on-shell vanishing

ones and non trivial gauge symmetries are described by the adjoint cohomology ofs in

the space of evolutionary vector fields of degree0, H0([s, ·]).

Even though less restrictive than in the Lagrangian case, what we will use to constrain

equivalence classes of equations of motion symmetries is:

Proposition 4. The adjoint BRST cohomologyHg([s, ·]) is necessarily a module of any

subalgebra ofH0([s, ·]), and thus of any subalgebra of the space of equivalence classes

of equations of motion symmetries.

Note that, in addition to equations of motion and Lagrangiansystems, one can con-
sider a class of theories interpolating between these two inthe sense that the equations of

motion are supplemented with a Lagrange structure [54–56].

1.10 Linear equations of motion

In the non-Lagrangian case, linear gauge systems are described by a BRST operatorΩ

that is no longer required to be symplectic. The adjoint cohomology ofs in the space of
evolutionary vector fields that are linear in the fields and are of ghost numberg is iso-

morphic toHg([Ω, ·]), the adjoint BRST operator cohomology in the space of operators

1In fact the antifield number is determined by the ghost numberand hence is not an independent ingre-
dient of the definition.
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of ghost numberg. Hence, equivalence classes of linear equations of motionssymme-
tries are described by adjoint BRST operator cohomology in degree0. The analogs of

Propositions2 and3 are then:

Proposition 5. The adjoint BRST operator cohomology in ghost numberg, Hg([Ω, ·]), is

necessarily a module of any subalgebra ofH0([Ω, ·]), and thus of any subalgebra of the

space of equivalence classes of linear equations of motion symmetries.

Proposition 6. The BRST state cohomology in ghost numberg, Hg(Ω), is necessarily

a module of any subalgebra ofH0([Ω, ·]), and thus of any subalgebra of the space of

equivalence classes of linear equations of motion symmetries.

Note that, compared to the general case, inequivalent symmetries of linear systems
possess a richer structure. Namely, they form an associative algebra with the product

induced by the operator product of cohomology representatives.

1.11 Relation to the unfolded formalism

Suitable modules under a spacetime symmetry algebra, closely related to BRST state co-
homologyHg(Ω), play a crucial role in the unfolded formulation of gauge field dynamics
developed in the context of higher-spin theories [57–62]. Typically, the moduleH−1(Ω),

or H−p(Ω) with maximalp in general, is an initial ingredient in terms of 1-form fields.
The next step consists in finding modules of0-form fields related to gauge invariant cur-

vatures such that the system of 1 and 0 forms is consistent andgauge invariant.

The precise relation to the BRST first quantized formulationcan be understood by

using the parent approach developed in [45,63,46,64,65]. Starting from a free gauge sys-
tem described by a nilpotent BRST operatorΩ as described in Sections1.8and1.10, the

system is extended by allowing the wave functions to depend on extra variablesyµ, which
are coordinates on the fibers of the tangent bundle over spacetime, and Grassmann odd

ghost variablesθµ, gh(θµ) = 1, to be identified withdxµ and associated to the constraints
( ∂
∂xµ − ∂

∂yµ
)Φ = 0. The parent BRST operator taking into account these new constraints

along with the original ones accounted inΩ is

Ω
P = θµ

(
∂

∂xµ
−

∂

∂yµ

)
+ Ω̄ , Ω̄ = Ω|

xµ→xµ+yµ,
∂

∂xµ
→

∂

∂yµ

. (1.22)

Note that (1.22) is a minimal version. In general, one can usea generic parametrization

of the tangent space and/or incorporate a suitable (nonlinear) flat connection to account
for specific symmetries and/or spacetime geometries. Additional details can be found

in [63, 66, 14]. Note in particular that the associated field theories are related through
elimination of generalized auxiliary fields, provided the functional space foryµ is taken to
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be formal power series. This is not the only interesting choice but the one that guarantees
equivalence in the sense of local field theories.

Consider the cohomology groupsHp = H−p(Ω̄|x) of the second term inΩP in the
space of states at a given spacetime pointx. It is isomorphic toH−p(Ω) in the space of

formal power series atxµ. In applications, this space is often isomorphic for all spacetime
pointsx, as happens for instance if the system has a symmetry groupG and is defined

on a homogeneous space ofG. If in addition Ω̄ can be madex-independent by aG-
transformation, i.e.,gΩ̄g−1 does not depend onx, this transformation makes the first term

in (1.22) into ag-covariant derivative in a specific representation (see [63, 67, 14, 68] for
explicit examples and details).

If Hp is x-independent, by eliminating generalized auxiliary fields, the system can
be reduced to an equivalent system whose states take values in Hp only. More precisely,

dynamical fields (in contrast to ghost, antifields, etc.) arep-formsφp with values inHp.
The equations of motion and gauge symmetries for the reducedsystem then have the
following structure

(d+ σ1)φ0 = 0 , (d+ σ1)φ1 + σ2φ0 = 0 , (d+ σ1)φ2 + σ2φ1 + σ3φ0 = 0 , . . .

δφ0 = 0 , δφ1 = (d+ σ1)χ1 , δφ2 = (d+ σ1)χ2 + σ2χ1 , . . . (1.23)

whered = θ · ∂
∂x

and σp are algebraic (i.e.,∂
∂x

-independent) operators of orderp in
θ, andχk are gauge parameters which arek − 1-forms with values inHk. Note that

d + σ1 + σ2 + . . . is the homological differential induced byΩT in the cohomology of
Ω̄. This is the minimal unfolded form of the equations and the BRST state cohomology

groupsH−p(Ω) with a suitable choice of the functional space are preciselythe spaces of
p-forms in this formulation.

The cohomologyH0(Ω̄) is known in the unfolded approach as the Weyl module.
It consists of the gauge invariant (generalized) Weyl tensor together with all of its on-

shell inequivalent derivatives. This space coincides withthe space of gauge-inequivalent
solutions to the equations of motions in the space of formal power series.

Let us finally note thatH−p(Ω̄|x) may in general differ in distinct regions of spacetime
and then it is not clear what the minimal unfolded formulation is. Typical examples

are gauge fields defined on the ambient spaceR
d+2 in the context of theAdSd+1/CFTd

correspondence. For instance, in this caseH0(Ω̄x) for x on the lightconeX2 = 0 and on
the hyperboloidX2 = ℓ2 may well be different. It is this fact that underlies the ambient

space approach [69,70] to boundary values ofAdS gauge fields.

1.12 Explicit construction of curvature formulations

Covariant curvature formulations can often be constructeddirectly from group-theoretical
arguments. For instance, such formulations are well-knownfor 4-dimensional Fronsdal
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fields [71, 72] and Fradkin-Tseytlin fields [73]. For mixed-symmetry massless fields in
Minkowski spacetime, they can also be constructed in a direct way [74–76].

In principle, a systematic way to obtain a curvature formulation for a given gauge sys-
tem uses either the unfolded or the first-quantized BRST approach. Indeed, from (1.11),

it follows thatφ0 is gauge invariant and that the equation forφ0 does not involve other
fields. This means that putting to zero allφl with l > 0 gives a consistent unfolded sys-

tem. This is the unfolded form of the formulation in terms of curvatures as fundamental
fields. The simplest example is Maxwell’s equations for the Faraday tensor.

This unfolded formulation of the curvature system is sometimes difficult to construct.
In all cases, a simple version of a curvature formulation canbe obtained from the parent

system (1.22) by putting to zero all fields which are forms of nonzero degree. More
precisely, the equations of motion and gauge symmetries then take the form

(
∂

∂xµ
−

∂

∂yµ
)Φ0(x, y) = 0 , Ω̄Φ0(x, y) = 0 , δχΦ0 = Ω̄χ , (1.24)

wheregh(Φ0) = 0, gh(χ) = −1 and bothΦ0 andχ areθµ-independent. This system is

equivalent to the above unfolded formulation if one explicitly eliminates the pure gauge
degrees of freedom related to the algebraic gauge symmetries in (1.24). It can thus be

regarded as a Stüeckelberg description of the curvature system.

Hence, for general mixed-symmetry (partially)-massless fields in (A)dS or Minkowski

space, covariant curvature formulations are implicitly contained in the unfolded or parent
formulations constructed in [59,77–80], respectively [67,68,81].

2 Gauge fields in Minkowski spacetime

2.1 BRST formulation of Fronsdal fields

The BRST formulation of higher-spin gauge fields [82–85] canbe summarized as follows.
Take ad-dimensional Minkowski spacetime withd> 3 in order to guarantee regularity

assumptions needed below and with metricηµν = diag(−1, 1 . . . , 1). The space of states
is the Fock space of polynomials in bosonic oscillatorsaµ (usually denoted bya†µ), and

fermionic ghostsb, c with gh(c) = 1, gh(b) = −1, tensored with the space of functions in
xµ and the mass-shell ghostc0, gh(c0) = 1. The inner product is〈·, ·〉 =

∫
ddx dc0 〈·, ·〉F

where〈·, ·〉F is the standard inner product in the Fock space for whicha†µ = ∂
∂aµ

, c† = ∂
∂b

andb† = − ∂
∂c

. The operatorsxµ, c0 are self-adjoint while ∂
∂xµ

† = − ∂
∂xµ and ∂

∂c0

† = − ∂
∂c0

.

The self-adjoint BRST operator is

Ω = c0�+ cS + S† ∂

∂b
+ c

∂

∂b

∂

∂c0
, Ω

† = Ω,

� =
∂

∂x
·
∂

∂x
, S =

∂

∂a
·

∂

∂x
, S† = −a ·

∂

∂x
.

(2.1)
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The ghost number operator is

G = c0
∂

∂c0
+ c

∂

∂c
− b

∂

∂b
, G† = 1− G. (2.2)

Other operators that will be relevant are the BRST invariantextensions of the traceT and

the levelNs,

T =
∂

∂a
·
∂

∂a
+ 2

∂

∂b

∂

∂c

Ns = a ·
∂

∂a
+ c

∂

∂c
+ b

∂

∂b
− s, N †

0 = N0.
(2.3)

The algebra satisfied by these operators is

[Ω, Ns] = [Ω, T ] = [G, Ns] = [G, T ] = 0,

[Ns, T ] = −2T , [G,Ω] = Ω.
(2.4)

The string field is chosen as

Ψ =
[
Φ(xµ, aµ) + c0 bB(xµ, aµ) + c bD(xµ, aµ) + bC(xµ, aµ)+

− c0Φ
∗(xµ, aµ) + cB∗(xµ, aµ) + c0 c C

∗(xµ, aµ) + c0 c bD
∗(xµ, aµ)

]
|0〉, (2.5)

where the coefficients are expanded as power series in the oscillatorsaµ. The signs in the
expansion have been choosen so that the antibracket betweena field and its antifield is1.
The total ghost number of the string field is0 and its parity is even. This means that the

ghost number and parities of the field coefficients are opposite to those of the states.

We then have

ΩΨ =
[
c0�Φ + cSΦ + cc0bSB − c0 S

†B + cB + c0cb�D − cS†D+

+ c0b�C + cbSC + S†C − cc0 SΦ
∗ + c0c�B∗ + c0cS

†D∗
]
|0〉. (2.6)

The classical action for a spins> 0 field is

S[ΨT
0,s] =

1

2
〈ΨT

0,s,ΩΨ
T
0,s〉,

T ΨT
0,s = 0, NsΨ

T
0,s = 0, GΨT

0,s = 0,
(2.7)

while the Batalin-Vilkovisky master action is

S[ΨT
s ] =

1

2
〈ΨT

s ,ΩΨ
T
s 〉,

T ΨT
s = 0, NsΨ

T
s = 0.

(2.8)

For d = 4, action (2.7) coincides, up to auxiliary fields, with the gauge theory for free
massless fields of helicity±s introduced by Fronsdal [17].

Explicitly, by doing the ghost inner product,

S[ΨT
s ] =

1

2

∫
ddx

[
〈Φ,�Φ〉F − 〈D,�D〉F − 2〈B,SΦ〉F + 2〈B,S†D〉F − 〈B,B〉F

− 2〈Φ∗,S+C〉F − 2〈D∗,SC〉F − 2〈B∗,�C〉F
]
. (2.9)
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Removing the levelNs constraint gives the sum of the free (master) actions for all
integer massless spins, while removing the trace constraint T at fixed spins gives a

model that contains, ford = 4, massless fields with helicities−s,−s + 2, . . . , s − 2, s

(see e.g. [86] for a proof in the current context).

Finally, in order to explicitly deal with the trace constraint for Fronsdal fields, we
need:

Proposition 7. The Lie algebra of (anti-self-adjoint) operators defined onKer T can be

described by operatorsA such that

T A = BT , A ∼ A+ CT , (2.10)

whereB andC are some operators (such thatA andCT are anti-self-adjoint).

The statement is equivalent to the regularity of the equation T φ = 0 or, more pre-
cisely, that any operatorC such thatCφ = 0 for all φ ∈ Ker T can be written asC = BT

for some operatorB. To see this, note that the Lie algebra spanned byT , T †, N1− d
2

is
isomorphic tosl(2,R), which is clear from the identificationE+ := 1

2
T †, E− := − 1

2
T

andH := N1− d
2

. Therefore any element in the representation space has a unique decom-
positionΦ = φ0 + T †φ1 + (T †)2φ2 + . . . whereT φl = 0. Moreover, the projectorΠ to

the subspaceKer T of elements satisfyingT χ = 0 can be written asΠ = 1− T †ΘT for
someΘ(H, T , T †). Note thatKer T is orthogonal toIm T † andΠ is self-adjoint. Reg-
ularity then follows from the structure of the projectorΠ. Indeed,Cφ = 0 ∀φ ∈ Ker T

impliesCΠ = 0 which in turn givesC = CT †ΘT .

The space of operators onKer T can be identified with the quotient space of operators
preservingKer T , i.e., T Aφ = 0 ∀φ ∈ KerT , modulo operators that act trivially, i.e.,
Aφ = 0 ∀φ ∈ Ker T . Thanks to the regularity ofT , this space can be written as (2.10)

with B = T AT †Θ. If one is interested in anti-self-adjoint operators, it isenough to
require bothA andCT to be anti-self-adjoint. This completes the proof.

Note that (2.10) is the usual definition of the space of inequivalent linear symmetries
of the equationT φ = 0. The above proof applies equally well to the Klein–Gordon

equation�ϕ = 0 because� enters ansl(2,R)-algebra together with operatorsx2, x· ∂
∂x
+

d
2

so that (2.10) withT replaced by� coincides with the definition of linear symmetries

for the Klein–Gordon equation [15], discussed here in Section2.2. Proposition7, with T

or �, is the first-quantized version of the acyclicity of the associated Koszul differential

in the field-theoretical picture.

For our purpose below, it is convenient to characterize operators onKerT differently.

Any operatorA on the entire representation space determines an operatorΠAΠ onKer T .
Conversely, an operator onKer T can be lifted to the entire space. Using the expression

for the projector, one finds that trivial operators onKer T , i.e., those satisfyingΠAΠ = 0
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are of the formA = T †α+βT for some operatorsα, β. It follows that operators onKer T

can be described as the quotient space of all operators modulo those of the formT †α+βT .

In particular, anti-self-adjoint operators are describedby the following quotient

A ∼ A + T †γ − γ†T , (2.11)

for some operatorγ. It is important to note that this quotient is only compatible with
the commutator, i.e., operatorsA′ = T †γ − γ†T equivalent to zero form an ideal in the

Lie algebra of anti-self-adjoint operators if one restricts oneselves in addition to operators
that preserveKer T , i.e. T A′ = δT for someδ. Indeed,T A′ = δT impliesT T †γ =

(δ−T γ†)T . ApplyingT †Θ to both sides and usingΠT † = 0 one findsT †γ = T †Θ(δ−

T γ†)T , so thatA′ = BT for someB. So if we restrict to operators preservingKer T

then those of the formT †γ − γ†T form an ideal identical to the one in the proposition7.

2.2 Classification of variational symmetries of a massless scalar

Let us now concentrate on a massless scalar, for whichs = 0 in the above description,
and use the existing classification of symmetries of the equations of motion [15] to infer

the classification of variational symmetries.

In this case, the BRST operator reduces to

Ω = c0� , (2.12)

while the general expression for a ghost number0 or−1 operators is

A = A(x,
∂

∂x
) +B(x,

∂

∂x
)c0

∂

∂c0
, D = D(x,

∂

∂x
)

∂

∂c0
. (2.13)

The condition thatA represents an element ofH0([Ω, ·]),

[Ω,A] = 0 , A ∼ A+ [Ω,D]

⇐⇒ [�, A]− B� = 0 , A ∼ A+D�, B ∼ B + [�, D],
(2.14)

coincides with the definition of linear symmetries used in [15].

The linear spaceH0([Ω, ·]) of inequivalent linear symmetries of the equations of mo-
tion (EOM) is an associative algebraA also known as higher-spin algebra [87]. For a

given symmetryA let AS(x, p), BS(x, p) determine its principal symbols, e.g.AS is the
highest derivative term inA where ∂

∂xµ is replaced with the commuting variablepµ. It
was shown in [15] that (2.14) implies that

p ·
∂

∂x
AS(x, p) = p2BS(x, p) (2.15)

i.e., thatAS is a conformal Killing tensor and also that inequivalent linear EOM symme-

tries are uniquely determined by their principal symbols. It follows that as a linear space,
A is isomorphic to the space of conformal Killing tensors.
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Let us now turn to the space of linear, inequivalent, variational symmetries. According
to the general considerations above, they are described byH0([Ω, ·]) in the space of (anti)-

self-adjoint operators. Explicitly,

A+A
† = 0 ⇐⇒ A + A† +B = 0 . (2.16)

It is instructive to check that (2.14) and (2.16) imply thatδφ = Aφ is indeed a linear

variational symmetry associated to

S =
1

2

∫
ddxφ�φ . (2.17)

The elements fromH0([Ω, ·]) satisfyingA = −A
† form a Lie, but not an associa-

tive, subalgebra ofA. In this case, (2.16) implies thatAS(x,−p) = −AS(x, p) and

BS(x,−p) = BS(x, p). In other words:

For a massless real scalar,H0
sym([Ω, ·]), the space of inequivalent linear variational

symmetries, is isomorphic to the space of conformal Killingtensors of odd rank.

2.3 Poincaŕe and dilatation symmetries of Fronsdal fields

Consider a real spacetime vector fieldξ(x) and the anti-self-adjoint, even, ghost number

0 generator

Ξ = −
(
ξ · ∂ +

1

2
SµνΣµν +

∂ · ξ

d
∆+

∂µ(∂ · ξ)

2d
κµ

)
,

Sµν =
1

2
(∂νξµ − ∂µξν), Σµν = aν

∂

∂aµ
− aµ

∂

∂aν
,

∆ =
d

2
− 1 + 2c0

∂

∂c0
+ c

∂

∂c
− b

∂

∂b
, κµ = 4c0

(
∂

∂aµ
b+ aµ

∂

∂c

)
,

(2.18)

satisfying
[T ,Ξ] = 0 = [Ns,Ξ]. (2.19)

By direct computation, one finds

[Ω,Ξ] = 2βλ
(
(c

∂

∂aλ
+ aλ

∂

∂b
)N3− d

2

− caλT − T † ∂

∂aλ
∂

∂b

)
. (2.20)

if ξ describes infinitesimal conformal transformations,

∂µξν + ∂νξµ =
2

d
ηµν∂ · ξ ⇐⇒ ξµ = aµ + ω[µν]x

ν + αxµ + 2xµβ · x− βµx · x, (2.21)

with constant parametersaµ, ω[µν], α, βµ.

So, the form of the operatorΞ in (2.18) has been fixed by the following requirements:

(i) It starts with−ξ∂ implementing the spacetime transformations, (ii) it is antihermitian
and (iii) its commutator with the BRST operator produces either zero or, at worst, a
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term which does not depend on the spacetime operatorsxµ, ∂
∂xµ . By themselves, these

requirements have lead to conformal vector fields. The conformal transformations and

algebra are thus recovered from this construction.

In the current framework, this confirms that infinitesimal Poincaré and dilatation

transformations, for whichβµ = 0, are variational symmetries of Fronsdal’s higher-spin
gauge theory in all dimensionsd> 3. Furthermore, for the Klein-Gordon action, for

which s = 0, the same holds for infinitesimal special conformal transformations, since
〈ΨT

0,0, [Ω,Ξ]Ψ
T
0,0〉 = 0. The explicit form of the generatorsPµ,Mµν ,−D,Kµ are obtained

by differentiatingΞ with respect to the parameters.

The last two terms in (2.20) do not contribute for a spins field because its master

action isS = 1
2
〈ΨT

s ,ΩΨ
T
s 〉 with T ΨT

s = 0 andNsΨ
T
s = 0. DefiningK = 1

2
〈ΨT

s , IΞΨ
T
s 〉

we thus get,

(S,K) =
1

2
〈ΨT

s , [Ω,Ξ]Ψ
T
s 〉 = βλ

(
s− 3 +

d

2

)
〈ΨT

s , (c
∂

∂aλ
+ aλ

∂

∂b
)ΨT

s 〉. (2.22)

It follows that:

For spin0, there is conformal invariance at the level of the action in any dimension.

For spins = 1, this is the case ford = 4.

In the next section, we will first use the strategy outlined inSection1 to quickly show
that:

For d> 3, Fronsdal fields withs> 2 are invariant under Poincaŕe transformations

and dilatations, but not conformally invariant, neither atthe level of the action, not at the

level of the equations of motion.

We will then provide a direct proof thatΞ cannot be modified so as to include special
conformal transformations among the variational symmetries, i.e., among the generators
commuting withΩ.

2.4 Obstructions to special conformal symmetries for Fronsdal fields

2.4.1 Obstructions at the level of the action

Local BRST cohomology in ghost number−2, H−2(s), corresponds in the current con-

ventions to BRST state cohomology in ghost number−1, H−1(Ω), and has been worked
out in [88, 45]. This space manifestly enters the unfolded formulation of Fronsdal fields

as the module of 1-form fields and has originally appeared in this context in [58]. For a
given spins gauge field, it is represented by the vector spaceV of elements of the form

bA(x, a) = b aµ1 . . . aµs−1

s−1∑

m=0

Aµ1...µs−1|ν1...νmx
ν1 . . . xνm , (2.23)
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whereA(x, a) satisfies

(
a ·

∂

∂x

)
A =

(
∂

∂a
·

∂

∂x

)
A =

(
∂

∂a
·
∂

∂a

)
A =

(
∂

∂x
·

∂

∂x

)
A = 0 , (2.24)

and describes ranks− 1 traceless Killing tensor fields on Minkowski spacetime. Theco-
efficientsAµ1...µs−1|ν1...νm are totally traceless and have the symmetries of two-row Young

tableaux.

According to Proposition3, the vector spaceV is a module for Poincaré and dilatation

transformations,ΞV ⊂ V whenβµ = 0 and we will work out the constraints coming
from the condition thatV be a module under special conformal transformations as well

by using standard representation-theoretic arguments.

The subspaceV0 ⊂ V annihilated by the translation generatorsPν = −
∂

∂xν
is

b aµ1 . . . aµs−1Aµ1...µs−1
, (2.25)

with symmetric traceless constant tensorsAµ1...µs−1
. The subspaceV0 is an irreducible

o(d− 1, 1) (i.e. Lorentz) module.

Let us first assume that the action onV of the Poincaré algebra extended by dilatations
lifts to o(d, 2) by including the special conformal generatorsKµ. Using the explicit form

of the dilatation generator givesDv = (x · ∂
∂x

+ d
2
− 2)v for v ∈ V . It follows from (2.23)

that the spectrum of the dilatation generator is given byd
2
− 2, d

2
− 1, . . . , d

2
− 3 + s. At

the same time,D can be taken as a generator of ansl(2) subalgebra ino(d, 2), formed
by D,P1, K1 say. It follows that, in any finite-dimensional module, its spectrum must
be symmetric with respect to0. This shows that, ford> 4 ands > 0, the only option

is d = 4, s = 1, which is indeed conformal. Formally, in lower dimensions there are
extra possibilities:d = 2, s = 3 andd = 3, s = 2. The former does not work because

dim(V ) = 2 and there is no 2-dimensionalsl(2) irreducible representation with weights
−1, 0,+1. The latter is ruled out as all weights ofo(d, 2) must be simultaneously either

integer or half-integer buts is an integer while the eigenvalues ofD are±1/2.

2.4.2 Obstructions at the level of equations of motion

If we are only interested in equations of motion symmetries,the value of the lowest weight
∆L of the dilatation operator is not known a priori and an extra analysis is needed. In-

deed, in the analysis above, this weight was fixed from the requirement that the symmetry
generator needed to be anti-self-adjoint.

Let us restrict ourselves tod> 3. Any o(d, 2)-module havingV0 as a Lorentz sub-
module annihilated by all translation generatorsPν , and hence lowest-weight with respect

to dilatations, can be induced fromV0 in a standard way: first pick∆L, which must
be constant onV0 becauseV0 is Lorentz irreducible and dilatation generators commute



20 BARNICH, BEKAERT, GRIGORIEV

with the Lorentz subalgebra, and then consider the (generalized) Verma module generated
from V0, i.e., consider all formal combinationsKλ1

. . .Kλm
v wherev ∈ V0. Any o(d, 2)-

module containingV0 as a Lorentz submodule and such that the translation generators
Pν annihilateV0 is by construction a quotient of this Verma module, as a consequence

of the universality property of Verma modules. Moreover,∆L must take special values
in order for the quotient to be finite-dimensional. More precisely,−∆L has to be integer
and such that−∆L > s − 1. In other words the highest-weight(−∆L, s − 1) must be

integral dominant. The corresponding finite-dimensionalo(d, 2)-module is described by
a two-row Young tableau (YT) with first row of length−∆L and second row of length

s − 1, which will be written(−∆L, s − 1). Already for−∆L = s − 1, the spectrum of
the dilatation generator contains all integers from1− s to s− 1 and hence at least2s− 1

irreducible Lorentz components. However, the vector spaceV spanned by elements of
the form (2.23) instead containss irreducible Lorentz components. For−∆L > s−1, the

finite-dimensionalo(d, 2)-modules with highest-weight(−∆L, s− 1) contain even more
than2s− 1 irreducible Lorentz components. Therefore, the only possibility is the trivial
representation:s− 1 = ∆L = 0.

Another way to see that these modules cannot coincide is to observe that theo(d, 2)-
module associated with the YT(s−1, s−1) is the one of conformal Killing tensor fields of

ranks− 1 in d dimensions. The latter cannot coincide with the Poincaré module of usual
Killing tensor fields unless it is trivial, i.e., unlesss = 1. In this way, we conclude that

Fronsdal fields do not admit special conformal transformations as equations of motion
symmetries unlesss = 0, 1.

To see that fors = 1, conformal symmetry is present ford = 4 only, the argument
based onH−1(Ω) is not enough andH0(Ω) needs to be analyzed. It is well-known that

the space of inequivalent solutions to Maxwell equations isnot conformal unlessd = 42.
This implies that Fronsdal fields in terms of potentials do not admit conformal symmetry

at the level of equations of motion, unlesss = 0 or s = 1, d = 4.

To conclude the discussion of Fronsdal fields ind = 4, note that, as a linear space,

H−1(Ω) can be made into ano(4, 2)-module. This does not, however, correspond to an
extension of the Poincaré symmetries in the realisation ofSubsection2.3and, moreover,

it works only for the complexified module because an (anti)self-duality condition should
be imposed. The idea is to start with the contragredient module structure on the same
linear spaceV defined in (2.24). For instance, introducing the standard inner product on

polynomials, i.e., the one determined by〈1, 1〉 = 1, x†
µ = ∂

∂xµ , (aµ)
† = ∂

∂aµ
so that for

instance〈xµ, xν〉 = ηµν , and defining new Poincaré generators throughP ′
µ = −P †

µ and

M ′
µν = −M †

µν , one finds that the subspace annihilated byP ′
µ is precisely the Lorentz-

2See for instance, [27] where conformal equations were classified by listing all suitable conformal mod-
ules. In the present language, the cohomologyH0(Ω) is evaluated in the space of formal power series in
xµ in terms of generalized Verma modules.
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module associated to the YT(s − 1, s − 1). Taking−∆L = s − 1 one finds that, as a
complex module,H−1(Ω) lifts to ano(4, 2)-module described by the YT(s−1, s−1, s−

1). Details of non-branching for this module can be found in Section 3.3.

2.4.3 Direct obstructions to special conformal generators

Let us now complete the analysis started in Section2.3and show directly that one cannot
modify Ξ in (2.18) so as to include special conformal transformations among the varia-

tional symmetries whend> 3 ands> 2.

Comparing to equation (II.10) of [89], all the spacetime dependence of the special

conformal transformations is correctly reproduced byΞ. It then follows from the analysis
in this reference that the only freedom left is to add a spacetime independent operator

linear inβλ, or more precisely, to changeκµ to κ̃µ = κµ+κ′
µ by the addition of axµ, ∂

∂xµ -
independent operatorκ′

µ such that

[∆, κ′
µ] = κ′

µ, [Σµν , κ
′
λ] = ηµλκ

′
ν − ηνλκ

′
µ, [κµ, κ

′
ν ] + [κ′

µ, κν ] + [κ′
µ, κ

′
ν ] = 0. (2.26)

We thus want to show that no such modification allows one to remove the obstruction

proportional toβλ on the right hand side of (2.22).

Using Proposition7, formulated as in (2.11), a symmetry generatorK needs to satisfy

T K = BT and[Ω, K] = T †γ−γ†T . Combining the ansatzK = Ξ+βµκ′
µ with equation

(2.20), the no-go result is proven if one can show that there does not exist an operatorκ′
µ

independent ofx, ∂
∂x

satisfying (2.26) such that

[Ω, κ′λ] = −2(c
∂

∂aλ
+ aλ

∂

∂b
)N3− d

2

− A†λT + T †Aλ. (2.27)

for some operatorsAλ.

First, using a decomposition according to the degree of homogeneity inxµ, one can

take without loss of generality in (2.27) thatΩ reduces toc ∂
∂b

∂
∂c0

and thatAλ is x, ∂
∂x

independent.

Second, decomposing operatorsA =
∑

nAn according to the level associated toN0,
one gets in degree0,

[c
∂

∂b

∂

∂c0
, κ′λ

0 ] = −2(c
∂

∂aλ
+ aλ

∂

∂b
)N3− d

2

− A†λ
2 T + T †Aλ

−2 . (2.28)

Only this equation is relevant since at level different fromzero, the first term on the right
hand side does not contribute and one can choose the trivial solutionκ′λ

n = 0 = Aλ
n−2 =

A†λ
n+2.

Third, using the Lorentz transformation properties, one can assume thatκ′λ
0 = f1

∂
∂aλ

+

aλg−1, wheref, g depend only on Lorentz invariant combinations ofa, ∂
∂a

, or, by suitably
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completing these invariants, thatf1 = f1(T
†, Ns, T , c0,

∂
∂c0

, c, ∂
∂c
, b, ∂

∂b
) and similarly for

g−1. Sincec ∂
∂b

∂
∂c0

commutes withNs, one can restrict to the zero eigenspace ofNs, which

means in particular that one considers a theory at fixed spins. Writing all operators in
normal-ordered form with respect toT , T †, i.e. in the formB =

∑
l,m(T

†)lαlm(T )m for

someT , T †-independentαlm, and using[c ∂
∂b

∂
∂c0

, T ] = [c ∂
∂b

∂
∂c0

, T †] = 0 the lowest order
equation gives

[c
∂

∂b

∂

∂c0
, κ′λ

0 ] = −2(s− 3 +
d

2
)(c

∂

∂aλ
+ aλ

∂

∂b
). (2.29)

Fourth, decomposingf1 = f 0
1 + c0f

1
1 , wheref 0

1 does not depend onc0, and similarly

for g−1, the equation implies

c
∂

∂b
(f 1

1

∂

∂aλ
+ aλg1−1) = −2(s− 3 +

d

2
)(c

∂

∂aλ
+ aλ

∂

∂b
). (2.30)

Finally, equatingc-independent terms it follows thats−3+ d
2

has to vanish, which is only
possible fors = 1 andd = 4, and fors = 2, d = 2 which is excluded from the discussion.

2.5 Generic massless bosonic fields in Minkowski spacetime

Mixed-symmetry massless fields were originally described in [90, 91] while further de-
velopments relevant in the present context can be found in [92, 85, 77], and also in [67]

which we follow below. These systems are variational and admit a Lagrangian formula-
tion based on a BRST operatorΩ generalizing the first quantized description of Fronsdal

fields reviewed in Section1.10.

In d-dimensional Minkowski spacetime, generic mixed-symmetry massless bosonic

field of spins1, . . . , sp, the weights of the respective little group representation, and where
the number of rows satisfiesp6 [d−2

2
], [a] denotes the integer part ofa ∈ R, can be

described by the equations

∂

∂ai
·

∂

∂aj
Φ = 0 ,

∂

∂ai
·
∂

∂x
Φ = 0 ,

∂

∂x
·

∂

∂x
Φ = 0 , (2.31)

ai ·
∂

∂aj
Φ = 0 i > j , (ai ·

∂

∂ai
− sa)Φ = 0 , (2.32)

where we use, as usual, variablesaµi with µ = 0, . . . , d − 1 andi = 1, . . . , p to contract
indices and work in terms of a generating functionΦ.

In terms of the generating functionΦ the gauge transformations read as

δΦ = Qχ(1) , Q =
(
ai ·

∂

∂x

)
∂

∂bi
, (2.33)

whereχ(1) = biχ
(1)
i (x, a). For convenience, we introduced here Grassmann-odd ghost

variablesbi. The same operatorQ determines gauge for gauge symmetriesδχ(1) = Qχ(2)
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etc. Gauge (for gauge) parameters satisfy the analog of (2.31) and the following gauge
parameter version of (2.32),

(ai
∂

∂aj
+ bi

∂

∂bj
)χ(k) = si δij χ

(k) (i> j) , ai ·
∂

∂x
χ(k) = 0. (2.34)

2.5.1 Obstructions at the level of the action

The BRST state cohomologyHg(Ω) for these systems has been computed in [67] and
shown to be isomorphic toHg(Q) through the elimination of contractible pairs. It follows

thatHg(Q) is a module of the global symmetry algebra. It is particularly convenient to
considerH−p(Ω). Recall thatp is the number of nonvanishing spin labelssi, and hence is

the maximal homogeneity degree inbi, i.e., the number of rows in the YT describing the
field. Indeed, as there are no nonzero elements in degree< −p, the coboundary condition

is trivial andH−p(Ω) is given byχ(p) = b1 . . . bp ξ(x, p) whereξ satisfies

ai ·
∂

∂aj
ξ = δij (si − 1) ξ (i> j) , ai ·

∂

∂x
ξ = 0 . (2.35)

along with (2.31).

H−p(Ω) is a Poincaré-module composed of irreducible Lorentz-modules associated

with YT (s1−1, . . . , sp−1, k)where06 k6 sp−1 ands1> . . . > sp [67]. These modules
can also be inferred from the unfolded formulation [77]. ThesubspaceV0 ⊂ H−p(Ω)

annihilated by Poincaré translations is an irreducible module with weightss1−1, . . . , sp−

1.

Repeating the arguments based on the generalized Verma module induced from this
o(d − 1, 1)-module one finds that−∆L > s1 − 1 and the decomposition of the corre-

sponding finite-dimensionalo(d, 2)-module−∆L, s1−1, . . . , sp−1 necessarily contains
modules not present in the starting point Poincaré-moduleexcept ifs1 = . . . = sp = 1

and∆L = 0. The gauge field with such aH−p(Ω) is a totally-antisymmetric field of rank
p.

Again, this information infered just fromH−p(Ω) is not enough to conclude for which
p a totally antisymmetric field is conformal ind-dimensional Minkowski spacetime. Sim-

ilar to the case of totally symmetric fields, if the system is Lagrangian, the Lagrangian
is of second order in derivatives, so that one getsd/2 − 1 as the weight for the gauge
field itself. Furthermore,H−p(Ω) corresponds top-th level reducibility identities with

each level involving first order operators, which gives∆L = d
2
− 1− p for the conformal

weight ofV0. Together with∆L = 0 obtained above, this shows that the only remaining

candidates are antisymmetric fields of rankp = d
2
− 1 in (even) dimensiond, which are

indeed known to be conformal.
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2.5.2 Obstructions at the level of equations of motion

If one is only interested in EOM symmetries of gauge fields then, in order to see that only
rank d

2
−1 totally antisymmetric gauge fields are conformal, one needsto considerH0(Ω)

as well, i.e., the space of gauge-inequivalent solutions tothe EOM. For such fields, this
space is a conformal module forp = d

2
− 1 [21,23,27].

As we discussed in1.12, the analysis ofH0(Ω) is equivalent to an analysis in terms of
curvatures becauseH0(Ω) is the same for the gauge field and its formulation in terms of

curvatures. Let us then briefly review the known results concerning fields in Minkowski
spacetime that are conformal in terms of curvatures or, moreprecisely, which Poincaré
irreducible non-gauge fields in Minkowski spacetime are conformal.

It turns out that in oddd only a massless scalar and spinor field are conformal, while

in evend there are in addition “spinning” singletons. The latter arefields described by
irreducible Lorentz tensors associated to rectangular YT of height d

2
, which are in partic-

ular, traceless and (anti)-selfdual. In fact, they correspond to the massless gauge fields

with p = d−2
2

ands1 = . . . = sp = s, when formulated in terms of curvatures. More
precisely, the above irreducible tensors are the gauge-invariant generalized Weyl tensors

of these gauge fields. Their conformal invariance was originally shown by identifying
those Poincaré irreps that lift to conformal ones [21, 23].In terms of EOM symmetries

this follows from the results of [27], while a manifestly local and conformal formulation
of these bosonic spinning singletons in terms of curvatureswas constructed in [14].

This completes our discussion of possible conformal invariance of bosonic gauge
fields on Minkowski spacetime. The extension to fermionic fields is straightforward us-

ing e.g. [93, 94]. Note that we have not explicitly discussedmassive nor continuous spin
representations as they cannot be conformal. This follows essentially from the fact that
both of them involve a dimensionful parameter.

3 Gauge fields in anti-de Sitter spacetime

3.1 Maximal-depth partially-massless fields in 4d

We begin the analysis of possible conformal invariance ofAdS gauge fields with the
relatively simple, but not so well-known example of totallysymmetric partially massless

(PM) fields [95–99] of maximal deptht = s. In this case the gauge parameter is a
scalar. In terms of thed + 1-dimensional ambient space with coordinatesXB, (B =

0, 1, · · · , d− 1, d) and flat metricηAB = diag(−,+, · · · ,+,−), anti-de Sitter spacetime

AdSd is the hyperboloidX ·X + 1 = 0. In these terms, the gauge field is encoded in the
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generating functionφ(X,A) subject to [65,81,100,70]

(X ·
∂

∂X
+ 1)Φ = 0 , X ·

∂

∂A
Φ = 0 , (A ·

∂

∂A
− s)Φ = 0 ,

∂

∂X
·

∂

∂X
Φ =

∂

∂X
·

∂

∂A
Φ =

∂

∂A
·

∂

∂A
Φ = 0 ,

(3.1)

and the gauge transformations

δχΦ = (A ·
∂

∂X
)sχ , (X ·

∂

∂X
− s+ 1)χ = 0 ,

∂

∂X
·

∂

∂X
χ = 0 . (3.2)

The variablesAB, B = 0, . . . , d are introduced to contract tensor indices. Note thatχ is
A-independent.

Just like in the case of Minkowski spacetime fields considered above, it is convenient
to introduce a ghost variableb and consider the space of states of the formΦ(X,A) +

b χ(X,A) with BRST operatorQ = (A · ∂
∂X

)sχ ∂
∂b

implementing the above gauge equiva-
lence. Although the space of gauge parameters is subject to differential constraints, such

a formulation is equivalent to a formulation based on a suitable BRST operatorΩ with
free gauge parameters [68]. In particular,H(Ω) ∼= H(Q).

The global reducibility parametersH−1(Ω) are determined by(A · ∂
∂X

)sχ0 = 0. This
condition requiresχ to be polynomial inX. The first condition in (3.2) fixes the homo-

geneity of the polynomial to bes−1. Finally, the second condition allows one to conclude
thatH−1(Ω) is the space of totally traceless ranks− 1 tensors ind+ 1 dimensions. This
is an irreducible module of theAdSd isometry algebrao(d−1, 2). Note that irreducibility

implies that there can be no gauge symmetries for the gauge parameters in this system.

Following the same idea as before, let us try to check if thiso(d − 1, 2)-module can
also be ano(d, 2)-module. Leaving the rigorous and general proof for the nextsection, let
us present a simple heuristic proof. Observe that all finite-dimensionalo(d, 2)-modules

described by 1-row Young tableaux are simply exhausted by totally traceless fixed rank
totally symmetric tensors ind+ 2 dimensions, rather than ind+ 1 dimensions as above.

One then concludes that the two spaces do not coincide unlesss = 1. In particular this
implies that deptht = s PM fields in4d are not conformal as gauge systems, i.e. in terms

of potentials, unlesss = 1, in which case it is the usual Maxwell field.

Although maximal-depth PM fields in 4 dimensions are not conformal in general,

there exist very similar maximal-depth conformal gauge fields. Fors = 1 they coincide
with the Maxwell field, fors = 2 they were originally found in [96], and for generic

s in [101]. They can be seen as higher-depth generalization ofusual conformal gauge
fields [73], and hence, we call them maximal-depth FT fields below. They belong to the
class of conformal gauge fields considered in [62]. Recentlythey were identified with

boundary values of theAdS5 maximal-depth PM fields [70]. Ind = 4 these fields have
second order equations of motion and gauge transformation of orders in the derivatives.
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More precisely, the flat spacetime Lagrangian for tracelessϕµ1...µs
(x) reads as [101]

L = ∂νϕµ1...µs∂νϕµ1...µs
−

2s

s+ 1
∂νϕ

νµ2...µs∂λϕλµ2...µs
(3.3)

and is invariant underδϕµ1...µs
= ∂µ1

. . . ∂µs
χ − traces. Thanks to conformal invariance,

they can be seen as fields on any conformally flat space and, in particular, onAdS4. A
natural question is then what their relationship to the maximal-depth PM fields on the

same spacetime precisely is.

To answer this question, let us consider again global reducibilities. Using the ambient

formulation of [70], the space of reducibilities can be described in terms of polynomials
in d+ 2-variablesXM satisfying

XM ∂

∂XM
Φ = (s− 1)Φ , ηMN ∂

∂XM

∂

∂XN
Φ = 0 . (3.4)

This subspace is determined by the same equations asH−1(Ω) above but ind+2 dimen-
sions. Unlesss = 1 these spaces do not coincide. In Section3.4 we explicitly compare

these two fields in the first nontrivial case ofs = 2.

As far as totally symmetric PM fields of maximal depth are concerned, one can won-

der if, similarly to Fronsdal fields in 4 dimensions, the equations of motion are conformal
in terms of curvatures. To answer this question we use the formulation in terms of curva-
tures proposed in [102] (see e.g. Sec.3.4 for the simplest non trivial example ofs = 2).

If these systems were conformal, one could equally well rewrite them in flat Minkowski
spacetime using a Weyl transformation. As the flat limit for these AdS systems is regu-

lar, its Weyl transformation to flat space should coincide with its naive flat limit obtained
by putting the cosmological constant to zero. More precisely, for the flat limit of a PM

maximal-depth field, the fundamental field is an irreducibleLorentz tensorFµ1...µs|ν , i.e.,
it is symmetric over allµ indices and such that the complete symmetrization over all

lower indices gives zero. It then follows from the classification results of [27] that, for
such a Lorentz tensor field labelled by a “hook” YT(s, 1) , there are only two conformal
equations which are first-order in derivatives and a rank-s Lorentz tensor: one is a totally

symmetric rank-s Lorentz tensor with conformal weight2 while the other one is labelled
by a hook YT(s−1, 1) and has conformal weights+3. The former equation corresponds

to the curvature formulation of a maximal-depth conformal gauge field which differs from
the corresponding PM field unlesss = 1. This difference is explicitly illustrated on the

example ofs = 2 in Sec.3.4 below. The latter equation also differs from the corre-
sponding PM field since in particular, the curvature has a different conformal weight. In

conclusion:3

3At first glance, this conclusion differs from [103] but this paper is based on different assumptions and
makes use of a different definition of symmetries. In particular, theo(4, 2) symmetry discussed in [103]
does not seem to correspond to standard conformal spacetimetransformations.
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Maximal-depth PM field withs > 1 are not conformal, neither in terms of potentials,

nor in terms of curvatures.

3.2 Generic partially-massless gauge fields in AdS

A partially massless bosonic gauge field inAdSd is determined by a finite-dimensional
module ofo(d − 1) with weights (spins)s1, . . . , sr. Herer = [d−1

2
] is the rank of a

rotation subalgebrao(d−1), whiles1> . . . > sr, p andt are integer parameters,16 p6 r

and16 t6 sp − sp+1 . This corresponds to a (partially)-massless field of spins1, . . . , sr
with depth-t gauge transformation associated to thep-th row. More details can be found
in [104,59,78,68,81].

The BRST first-quantized description for a generic bosonic gauge field on AdS has
been constructed in [68, 81] (see also [63, 59, 78, 105, 79] for earlier related work). The

nontrivialH−i(Ω) are in degree0 andp. For an irreducible (partially)-massless field, the
spaceH−p(Ω) is a finite-dimensional irreducibleo(d− 1, 2)-module with highest weight

s1 − 1, . . . , sp−1 − 1, sp − 1, sp − t, sp+1, . . . , sr, i.e. the module described by the Young
diagram with the lengths of rows given by:4

s1 − 1> . . . > sp−1 − 1> sp − 1> sp − t> sp+1> . . . > sr . (3.5)

Note the row of lengthsp−1 in the middle of the diagram and a subsequent row of length

sp− t. For instance, ford = 4 andt = 1, one gets the familiar 2-row rectangular tableaux
of lengths1 − 1. Note thatr = 1 in this case.

According to theo(d + 2) ↓ o(d + 1) branching rules summarized in the next sub-
section, if module (3.5) is nontrivial, it can be lifted too(d, 2) iff d is even and this
Young tableau is rectangular of heightd

2
. This condition resrictssi in such a way that

s1 − 1 = s2 − 1 . . . = sp − 1 = sp+1 = . . . = sr so that according to [22] the field
belongs to the class of unitary mixed-symmetry fields. In particular, t = 1 so that mixed

symmetry PM fields cannot be conformal in general.

To obtain further restrictions one has to considerH0(Ω) as well. According to the

analysis of [22] unitary AdS fields may admit conformal symmetry only for s1 = . . . = sr
(in particularp = r) andd even. If we restrict ourselves to the casep = r, H−p(Ω) is

associated to a spinning singleton [20–22]. As ano(d, 2) module,H−p(Ω) is a finite-
dimensional module described by a rectangular tableau of height d

2
+ 1 and lengths −

1. The module is realized by (anti)-selfdual tensors of this symmetry type ind + 2-
dimensions. In dimensionsd different than2 mod 4 however, modules of this sort are

necessarily complex as the (anti-) selfduality condition does not have real solutions in

4It is this module where ap-form field takes values in the unfolded description [59, 78]of AdS gauge
fields.
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such dimensions5. In particular, this implies that inAdSd with d = 4, 8, . . . real fields can
be conformal in terms of potentials only fors1 = . . . = sr = 1, i.e., when the module

is trivial. These are totally antisymmetric fields of maximal rank which are known to be
conformal for evend.

An interesting question is whether spinning singletons inAdSd with d> 6, d =

2 mod 4 ands > 1 can be conformal in terms of potentials. Note that those withs = 1

are conformal in terms of potentials, while they all are known to be conformal in terms of
curvatures. The necessary condition advocated here does not exclude this possibility and

resolving the issue requires further study.

3.3 Branching rules for modules of the orthogonal algebras

The branching rules of a Lie algebrag describe the decomposition of its irreps restricted

to a subalgebrah. We will be interested in the very exceptional case when theg-irrep
remains irreducible under the restrictiong ↓ h, i.e., when the decomposition contains only

a singleh-irrep with multiplicity one. The trivial representation is an obvious example
of such an irrep. The branching rules of classical algebras are well-known for finite
dimensional irreps while the problem is obviously more involved for infinite-dimensional

ones.

The importance of branching rules for our purpose is the following fact: An h-irrep

can be lifted to ag-irrep if and only if thish-irrep is the only irrep appearing in the

restriction g ↓ h of theg-irrep. In other words, there is a one-to-one correspondence

between theh-irreps that can be lifted tog-irreps and theg-irreps that remains irreducible
under the restrictiong ↓ h.

To see which finite-dimensionalo(d−1, 2)-modules can be lifted too(d, 2), we recall
the basic facts ono(d) ↓ o(d − 1) branching rules. The finite-dimensional irreducible

o(d)-module characterized by the dominant integralo(d)-weight~s ≡ (s1, . . . , sr) will be
denoted byDo(d)(~s). Herer denotes the rank ofo(d), i.e., the integer part ofd/2. The

“spin” labels of the weightr-vector~s are either all integers or all half-integers, and they
satisfy

s1 > . . . > sr > 0 for d = 2r + 1 ,

s1 > . . . > sr−1 > |sr| for d = 2r . (3.6)

Whend = 2r, the last labelsr can be positive or negative. The integer part of the (absolute
values) of the components in~s define a Young diagram where each spin label gives the
length of the corresponding row.

5This is in agreement with [106] where the conformal invariance of doubled (complexified) sets of
totally-symmetric fields inAdS4 was put forward.
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The classical branching rules for the restrictiono(d) ↓ o(d− 1) of finite-dimensional
irreducible modules can be expressed as follows:

Do(d)(~s) ↓
⊕

~t

Do(d−1)(~t) , (3.7)

where the direct sum is over allo(d− 1)-weights~t such that

s1 > t1 > . . . > sr−1 > tr−1 > sr > |tr| for d = 2r + 1 , (3.8)

s1 > t1 > . . . > sr−1 > tr−1 > |sr| for d = 2r , (3.9)

with entries in~s and~t which are simultaneously all integers or all half-integers.

Lemma 8. A nontrivial irreducibleo(d)-moduleDo(d)(~s) remains irreducible after its

restriction too(d − 1) if and only if d = 2r and s1 = . . . = sr−1 = |sr|, i.e., if it is

described by a rectangular Young diagram of heightd/2 .

Proof. The branching rules (3.8) and (3.9) imply the following chain of inequalitiess1 >

t1 > . . . > sr−1 > tr−1 > |sr| which are valid in anyd. One can see that a necessary
condition in order to have a single allowed set of componentst1, ...., tr−1 is thats1 =

. . . = sr−1 = |sr|. Ford = 2r, this fixes uniquely~t to be the (r−1)-vector (sinceo(d−1)

has rankr − 1) such thatt1 = . . . = tr−1 = |sr|. For d = 2r + 1, inspecting the last
inequalitysr > |tr| in the branching rule (3.8), one can see thatsr must vanish in order to

have a single allowed componenttr. This implies that the trivial irreducibleo(d)-module
Do(d)(~0) is the only one that remains irreducible after restriction to o(d− 1) for d odd.

An obvious corollary is that, if one performs two such branchings, the only irreducible
o(d)-module which remains irreducible after its restriction too(d−2) is the trivial module.

3.4 Explicit spin 2 examples

To illustrate the difference betweens = t = 2 PM field and FT field in 4d, let us work in
terms of tangent tensors.

3.4.1 Maximal-depth partially-massless spin-2 field in 4d

s = t = 2 PM field in d = 4 in terms of potentials: Following [95, 96], the equations
of motion for as = t = 2 PM field in 4d are

(∇2 + 4µ2)ϕµν − (∇µ∇
ρϕρν +∇ν∇

ρϕρµ) +∇µ∇νϕ
′−

− gµν
(
(∇2 + µ2)ϕ′ −∇ρ∇σϕρσ

)
= 0 , (3.10)
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whereϕ′ ≡ gµνϕµν . Hereµ = L−1 the inverse AdS radius so that e.g.Rµνρσ =

−µ2(gµρgνσ − gνρgµσ). The equations are invariant under the following gauge symmetry

δξϕµν = (∇µ∇ν − µ2gµν)ξ (3.11)

with unconstrained scalar parameterξ(x).

Equations (3.10) have differential consequences of first order [97]. Applying∇µ to

both sides of (3.10) one finds

∇µϕµν −∇νϕ
′ = 0 , ϕ′ ≡ gµνϕµν . (3.12)

Let us also present the partially gauge fixed version of this system. Namely, let us
consider the gauge conditionϕ′ = 0. Its variation under a gauge transformation is given
by

δϕ′ = (∇2 − 4µ2)ξ , (3.13)

so that the gauge is reachable. Indeed, in the context of jet-spaces, any element is in the

image of∇2. The gauge fixed system reads

(∇2 + 4µ2)ϕµν = 0 , ∇µϕµν = 0 , gµνϕµν = 0 ,

δϕµν = (∇µ∇ν − µ2gµν)ξ , (∇2 − 4µ2)ξ = 0 .
(3.14)

This formulation can be rewritten in ambient terms by identifying ϕµν with the pullback

of ambientϕAB satisfyingXAϕAB = 0, (X · ∂
∂X

+ 1)ϕAB = 0, and similarly for the
gauge parameter.

The space of global reducibilities is determined byδξϕµν = 0. The consequence
gµνδξϕµν = 0 reads explicitly

(∇2 − 4µ2)ξ = 0 . (3.15)

Let us identifyξ as the pullback ofΞ(X) defined on ambient spaceR3+2 and satisfying
(X · ∂

∂X
− 1)Ξ = 0, ∂

∂X
· ∂
∂X

Ξ = 0. In terms ofΞ, the gauge transformation is∂A∂BΞ

and henceΞ must be polynomial. One concludes thatΞ = ξAX
A, so that reducibilities

are parametrized byd+ 1 dimensional ambient vectors.

s = t = 2 PM field in d = 4 in terms of curvatures: Following [102], the curvature is
given by

Fµν|ρ = ∇µϕνρ −∇νϕµρ . (3.16)

In terms ofFµν|ρ, equations of motion (3.10) take the form

∇ρFρ(µ|ν) − gµν∇
ρF ′

ρ +∇(µF
′
ν) = 0 , (3.17)

whereF ′
µ = Fµρ|νg

ρν andX(aYb) = 1
2
(XaYb + XbYa). In this form, the equations of

motion follow from the Lagrangian [102]:

LPM = Fµν|ρF
µν|ρ + F ′ νF ′

ν . (3.18)
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If one treatsFµν|ρ as the fundamental field, one also needs to add algebraic conditions
and Bianchi identities so that the complete set of equationsbecomes

Fµν|ρ = −Fνµ|ρ , F[µν|ρ] = 0 , Fµν|ρg
νρ = 0 , (3.19)

∇µFµν|ρ = 0 , ∇[σFµν]|ρ = 0 . (3.20)

Note that ifFνµ|ρ is (anti)-selfdual the last two equations are equivalent.

3.4.2 Maximal-depth Fradkin-Tseytlin spin-2 field in 4d

s = t = 2 FT field in d = 4 in terms of potentials: Another related system in 4d was

also proposed in [95, 96] (see also references therein). Theequations of motion have the
form

(∇2 + 4µ2)ϕµν −
2

3
(∇µ∇

ρϕρν +∇ν∇
ρϕρµ) +

1

3
gµν∇

ρ∇σϕρσ = 0 (3.21)

andgµνϕµν = 0. The gauge law is

δξϕµν = (∇µ∇ν −
1

4
gµν∇

2)ξ (3.22)

with ξ unconstrained. This system is conformal and can be identified [70] with the bound-

ary value of thet = s = 2 PM field onAdS5 .

In contrast to thes = t = 2 PM field considered above, the gauge∇µϕµν = 0 is

not reachable in general. On the contrary,Vµ := ∇µϕµν satisfy Maxwell’s equations and
transform asδVµ = 3

4
∇µ(∇

2 − 4µ2)ξ.

To see what this system describes, let us decomposeϕµν (in a nonlocal way) intoϕ0
µν

satisfying∇µϕ0
µν = 0 andVµ describing the rest. The equations forϕ0 reduce to (3.14),

so that a FT field withs = t = 2 decomposes into a PM fieldϕ0 with s = t = 2 and a
Maxwell fieldV with s = t = 1.

The space of global reducibilities is given by solutions to(∇µ∇ν −
1
4
gµν∇

2)ξ = 0.
Let us consider first the consequence∇µδξ(ϕµν) = 0, or explicitly,

∇µδξ(ϕµν) =
3

4
∇ν(∇

2 − 4µ2)ξ = 0 . (3.23)

The general solution to this equation has the formξ = a + ξ0 wherea is constant and

ξ0 is a general solution to(∇2 − 4µ2)ξ0 = 0. In turn, just like in the case of a PM field,
it is convenient to representξ as the pullback to the hyperboloid ofΞ0 defined onR3+2

and satisfying ∂
∂X

· ∂
∂X

Ξ0 = 0, (X · ∂
∂X

− 1)Ξ0 = 0. In terms of the ambient space,

conditionsδξ0ϕµν = 0 take the form∂A∂BΞ0 = 0 where(∇2 − 4µ2)ξ0 = 0 has been
taken into account. So the solution is again given byΞ0 = ξAX

A. Putting everything

together, the general solution forξ is ξ = a + ξAX
A(x) and the space of reducibilities is

6-dimensional, confirming the conclusion of the manifestlyconformal considerations of

Section3.1. Let us stress that in contrast to Section3.1, we now have not assumed that
conformal symmetry is realized on gauge parameters.
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s = t = 2 FT field in d = 4 in terms of curvatures: The traceless component of the
curvature is

F̃µν|ρ = ∇µϕνρ −∇νϕµρ −
1

3
gµρ∇

αϕαν +
1

3
gνρ∇

αϕαµ . (3.24)

In terms ofF̃ , the equation of motion take the form

∇µF̃µ(ν|ρ) = 0 . (3.25)

They follow from the Lagrangian

LFT =
1

2
F̃µν|ρF̃

µν|ρ . (3.26)

If one treatsF̃µν|ρ as the fundamental fields, the complete set of equations is

F̃µν|ρ = −F̃νµ|ρ , F̃[µν|ρ] = 0 , F̃µν|ρg
νρ = 0 , (3.27)

∇µF̃µ(ν|ρ) = 0 , ∇[σF̃µν]|ρ = gρ[σAµν] , (3.28)

whereAµν is an antisymmetric tensor. The last equations can be written asP(∇[σF̃µν]|ρ) =

0, whereP denotes the projector to the totally traceless component. Note that ifF̃νµ|ρ is
(anti)-selfdual, the last two equations are equivalent.

By comparing (3.27), (3.28) to (3.19), (3.20), one observesthat thes = t = 2 FT
equations of motion are a subset of thes = t = 2 PM equations. Therefore, the space of

solutions of thes = t = 2 PM equations is a subspace of thes = t = 2 FT one. Indeed,
the former is ano(d−1, 2)-submodule of the latter. The crucial point is that, nevertheless,

the former isnotano(d, 2)-submodule of the latter because the extra equations of thes =

t = 2 PM field arenot conformally invariant for the conformal weight of thes = t = 2

FT field. The same remains true fors > 2.

4 Conclusion

In this work we have studied structural properties of globalsymmetries in gauge systems.
In particular, in the context of the BV-BRST approach, we have shown that BRST coho-
mology in the space of local functionals,H−p−1(s), as well as BRST-state cohomology

H−p(Ω) in the case of linear systems, are necessarily modules over any subalgebra of the
algebra of global symmetries.

Of special importance are “global reducibility parameters” which correspond to these
cohomology groups forp> 1. In contrast to BRST cohomology groups in other ghost

numbers, global reducibilities are typically finite-dimensional. This makes them espe-
cially useful in order to constrain global symmetries sincethe analysis then only requires
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standard tools from representation theory. Surprisingly,in the particular examples where
we study which (A)dS or Poincaré gauge fields admit conformal symmetry, this analysis

is powerful enough to rule out most of the candidates, without analyzing the space of
solutions.

Our approach is closely related to the unfolded formalism. Namely, in the unfolded
approach, the construction of gauge field begins with the choice of a finite-dimensional

module and with differential forms taking values in this module. The detailed relationship
can be established using a parent approach which allows one to systematically construct

an unfolded formulation starting from the BV-BRST formulation, respectively its BRST
first quantized formulation for linear theories: the space where thep-form fields take
values in the minimal unfolded formulation can then be shownto coincide withH−p(Ω),

and hence with orderp global reducibility parameters.
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