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NEW EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE
LAPLACIAN IN FLAT TORI

PIERALBERTO SICBALDI

Abstract. We prove the existence of nontrivial compact extremal domains for the first eigen-
value of the Laplacian in manifolds Rn×R/T Z with flat metric, for some T > 0. These domains
are close to the cylinder-type domain B1 × R/T Z, where B1 is the unit ball in Rn, they are in-
variant by rotation with respect to the vertical axe, and are not invariant by vertical translations.
Such domains can be extended by periodicity to nontrivial and noncompact domains in Euclidean
spaces whose first eigenfunction of the Laplacian with 0 Dirichlet boundary condition has also
constant Neumann data at the boundary.

1. Statement of the result

An open problem is to find the domains Ω ⊆ Rn+1, n ≥ 2, for which the over-determined
problem

(1)


∆g̊u+ λu = 0 in Ω

u = 0 on ∂Ω

g̊(∇u, ν) = constant on ∂Ω ,

has a positive solution u ∈ C2,α(Ω). Naturally g̊ is the Euclidean metric, λ is a positive constant
(i.e. the first eigenvalue of the Laplacian), and ν is the normal unit outward vector about ∂Ω.
It is known (see [10]) that smooth bounded domains in Euclidean spaces for which the Laplace
equation with right hand side constant, Dirichlet boundary data and constant Neumann data,
are round balls. It is an open problem to study noncompact domains where this overdetermined
problem is solvable.

We denote the coordinates of Rn+1 as (x, t), x ∈ Rn and t ∈ R. We want to prove the following
result.

Theorem 1.1. There exist a real positive number T∗ <
2π√
n− 1

, a sequence of real positive

numbers Tj −→ T∗ and a sequence of nonzero and nonconstant functions vj ∈ C2,α(R) of period
Tj converging to 0 in C2,α(R) such that the domains

Ωj =
{
(x, t) ∈ Rn+1 , |x| < 1 + vj(t)

}
have a positive solution uj ∈ C2,α(Ωj) to the problem (1). Moreover

∫ Tj

0

vj dt = 0.

1
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We remark immediately that the domain Ωj can be constructed starting from the cylinder-type
domain

C1 = {(x, t) ∈ Rn+1 , |x| < 1}

(where it is also known that there exists a positive solution u ∈ C2,α(C1) to the problem (1)) and
modifying his boundary by a function only depending on the variable t, periodic and nonconstant
(this implies that Ωj is invariant by rotations with respect to the vertical axe and is not invariant
by vertical translations). Then, if Tj is the period of the function vj , such a domain arise to a
compact domain homeomorphe to B1×R/Tj Z in the manifold Rn×R/Tj Z with flat metric, where
the problem (1), adapted to this new manifold, has a solution (naturally B1 denotes the unit ball
centered at 0). From the proposition 2.1 of [9], also proved in [4] and in [3], it is clear that such a
domain Ωj is extremal with respect to the first eigenvalue of the Laplacian in Rn×R/Tj Z for the
fixed volume Tj vol(B1), in the sens that for any volume preserving deformation {Ωs}s∈(j−ε,j+ε)

of Ω0, we have
dλs

ds
|s=0 = 0 ,

where λs is the first eigenvalue of −∆g on Ωs, with 0 Dirichlet boundary condition. Naturally we
understood that {Ωs}s∈(j−ε,j+ε) is a deformation of Ω0, if there exists a vector field Ξ such that
Ωs = ξ(s,Ω0) where ξ(s, ·) is the flow associated to Ξ, and the deformation is said to be volume
preserving if the volume of Ωs does not depend on s.
On the other hand, given an extremal domain with respect to the first eigenvalue of the Laplacian
in the manifold Rn×R/TZ, obtained by deformation of the boundary of the cylinder-type domain

CT
1 = {(x, t) ∈ Rn × R/TZ , |x| < 1}

by a function v(t) ∈ C2,α(R/TZ) of mean 0, then such a domain arise to a noncompact domain
homeomorphe to B1 ×R defined by periodicity, where there exists a solution to the problem (1).

We can conclude that an alternative version of the theorem 1.1 is the following:

Theorem 1.2. There exists a real positive number T∗ <
2π√
n− 1

, a sequence of real positive

numbers Tj −→ T∗ and a sequence of nonzero functions vj ∈ C2,α(R/2πZ) of mean 0 converging
to 0 in C2,α(R/2πZ) such that the domain

Ωj =
{

(x, t) ∈ Rn × R/Tj Z , |x| < 1 + vj

(
2π
Tj

t

)}
is extremal with respect to the first eigenvalue of the Laplacian in the manifold Rn ×R/Tj Z with
flat metric.

This will be our main theorem, and we will prove it.

As a final remark, we observe that this result can give an answer, with a counterexample, to
the conjecture of Berestycki, Caffarelli and Nirenberg proposed in [1], p. 1110. According to this
conjecture, if Ω is a smooth domain such that Rn+1\Ω is connected and there exists a bounded
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positive solution of

(2)


∆g̊u+ f(u) = 0 in Ω

u = 0 on ∂Ω

g̊(∇u, ν) = constant on ∂Ω ,

for some Lipschitz function f , then Ω should be either a half-space, a ball, the complement of a
ball, or a circular-cylinder-type domain Rj ×B, with B a ball.

2. Rephrasing the problem

We want to show that for some T > 0 (we will see that we have to choose T close to a fixed real
positive number T∗) we can modify the boundary of CT

1 in order to find an extremal domain, of
volume T vol(B1), with respect to the first eigenvalue of the Laplacian in the manifold Rn×R/TZ
with flat metric. Given a continuous function f : Sn−1 × R/TZ 7−→ (0,∞) we define

CT
f := {(x, t) ∈ Rn × R/TZ : 0 ≤ |x| < f(x/|x|, t)} .

Our aim, following the caracterization of extremal domains given in [9], is to show that there
exists a T > 0 and a nonconstant function v : Sn−1 × R/TZ −→ R of mean 0 such that the
over-determined problem

(3)


∆g̊ φ+ λφ = 0 in CT

1+v

φ = 0 on ∂CT
1+v

g̊(∇φ, ν) = constant on ∂CT
1+v

has a nontrivial positive solution, where ν is the normal vector field about ∂CT
1+v, λ is a positive

constant and g̊ represent the flat metric on Rn × R/TZ.

By symmetry, it is clear that the function v does not depend on the variable x ∈ Sn−1. Then
v = v(t). Moreover we can also require the function v to be even.

Let us denote by λ1 the first eigenvalue of the euclidean Laplacian in the unit ball B1 of Rn

centered at the origin, with 0 Dirichlet boundary condition. We denote by φ̃1 the associated
eigenfunction

(4)

 ∆φ̃1 + λ1 φ̃1 = 0 in B1

φ̃1 = 0 on ∂B1

.

which is normalized to have L2(B1)-norm equal to 1/2π. Then φ1(x, t) = φ̃1(x) solve the problem

(5)

{
∆g̊φ1 + λ1 φ1 = 0 in CT

1

φ1 = 0 on ∂CT
1
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and

(6)
∫

C2π
1

φ2
1 dvol̊g = 1

Because φ1 do not depend on t, sometimes we will write simply φ1(x).

Let C2,α
even,0(R/2πZ) be the set of even functions on R/2πZ of mean 0. For all T > 0 and all

f ∈ C2,α
even,0(R/2πZ) we set

CT
f := {(x, t) ∈ Rn × R/TZ : 0 ≤ |x| < f(2πt/T )} .

For all function v ∈ C2,α
even,0(R/2πZ) whose norm is small enough, the domain CT

1+v is well defined
for all T > 0. Standard results on Dirichlet eigenvalue problem (see [5]) apply to give the
existence, for all T > 0, of a unique positive function

φ = φv,T ∈ C2,α
(
CT

1+v

)
and a constant λ = λv,T ∈ R such that φ is a solution to the problem

(7)

{
∆g̊ φ+ λφ = 0 in CT

1+v

φ = 0 on ∂CT
1+v

which is normalized by

(8)
∫

C2π
1+v

(
φ

(
x,

T

2π
t

))2

dvol̊g = 1

In addition φ and λ depend smoothly on the function v, and φ = φ1, λ = λ1 when v ≡ 0.

After canonical identification of ∂CT
1+v with Sn−1 × R/TZ, we define, the operator N :

N(v, T ) = g̊(∇φ, ν) |∂CT
1+v

− 1
Vol g̊(∂CT

1+v)

∫
∂CT

1+v

g̊(∇φ, ν) dvol̊g ,

where ν denotes the unit normal vector field to ∂CT
1+v and φ is the solution of (7). A priori

N(v, t) is a function defined over Sn−1 ×R/TZ, but it is easy to see that it depends only on the
variable t ∈ R/TZ because v has such a property. For the same reason it is an even function, and
moreover it is clear that its mean is 0. If now we operate a rescaling and we define

F (v, T ) (t) = N(v, T )
(
T

2π
t

)
Schauder’s estimates imply that F is well defined for v in a neighborhood of 0 in C2,α

even,0(R/2πZ)
and T ∈ R, and takes its values in C1,α

even,0(R/2πZ). Our aim is to find (v, T ) such that F (v, T ) = 0.
Observe that, with this condition, φ will be the solution to the problem (3).

Our next task will be to understand the structure of L0, the operator obtained by linearizing
F with respect to v at a general point (0, T ).
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3. The structure of the linearized operator

We already have recalled the existence of a unique positive function φ ∈ C2,α(CT
1+v) (close to

φ1) and a constant λ ∈ R (close to λ1), solutions to the problem (7) so we are going to construct
an expansion of φ and λ in powers of v and its derivatives. This will lead to the structure of the
linearized operator L0.

Recall that λ1 is the first eigenvalue of −∆g̊ in CT
1 with 0 Dirichlet boundary condition and

φ1 is the associated eigenfunction which is normalized as in (6). Observe that in principle φ1 is
only defined in the cylinder, however, this function being radial in the first n variables and not
depending on t, it is a solution of a second order ordinary differential equation and as such can
be extended at least in a neighborhood of ∂CT

1 .

Let v ∈ C2,α
even,0(R/2πZ). By Fourier expansion v can be written as

(9) v =
∑
k≥1

ak cos(kt)

We start with the easy :

Lemma 3.1. Assume that v ∈ C2,α
even,0(R/2πZ) and write v as in (9). For T > 0 we define

φ0(x, t) = ∂rφ1(x) v(2πt/T )

where r = |x|. Then

(10) ∆g̊φ0 + λ1 φ0 =
∑
k≥1

ak
1
r2
∂rφ1 cos

(
2πkt
T

) [
n− 1−

(
2πk
T

)2

r2

]

Proof : This is a straightforward exercise. Using the fact that

∆g̊ ∂rφ1 = −λ1 ∂rφ1 +
n− 1
r2

∂rφ1 ,

we find

∆g̊φ0 = v∆g̊∂rφ1 + ∂rφ1 ∆g̊v + 2∇v∇∂rφ1

= v

(
−λ1 ∂rφ1 +

n− 1
r2

∂rφ1

)
−
∑
k≥1

ak

(
2πk
T

)2

∂rφ1 cos
(

2πkt
T

)

= −λ1 φ0 +
∑
k≥1

ak
1
r2
∂rφ1 cos

(
2πkt
T

) [
n− 1−

(
2πk
T

)2

r2

]

This completes the proof of the result. �
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For all v ∈ C2,α
even,0(R/2πZ) and all T > 0 let ψ be the (unique) solution (periodic with respect

to the variable t) of

(11)

{
∆g̊ψ + λ1 ψ = 0 in CT

1

ψ = −∂rφ1 v(2πt/T ) on ∂CT
1

which is L2(CT
1 )-orthogonal to φ1. We define

(12) H̃T (v) :=
(
∂rψ + ∂2

rφ1 v(2πt/T )
)∣∣

∂CT
1

By symmetry it is clear that H̃T (v) is a function only depending on t, then changing the variable
we can define

(13) HT (v)(t) := H̃T (v)
(
T

2π
t

)
Let Vk be the space spanned by the function cos(kt). We will need the following result :

Proposition 3.2. The operator

HT : C2,α
even,0(R/2πZ) −→ C1,α

even,0(R/2πZ),

is a self adjoint, first order elliptic operator that preserves the eigenspaces Vk for all k and all

T > 0. There exists a positive real number T∗ <
2π√
n− 1

such that the kernel of HT∗ is given by

Vk1 ⊕· · ·⊕Vkl
, with 1 = k1 < k2 < · · · < kl. Moreover the eigenvalue associated to the eigenspace

V1, considered as a function on T , changes the sign at T∗, and the eigenvalues associated to the
other eigenspaces Vk2 , ..., Vkl

, always considered as functions on T , do not change the sign at T∗.
There exists a constant c > 0 such that

‖w‖C2,α(R/2πZ) ≤ c ‖HT∗(w)‖C1,α(R/2πZ) ,

provided w is L2(R/2πZ)-orthogonal to V0 ⊕ Vk1 ⊕ · · · ⊕ Vkl
, where V0 is the space of constant

functions.

Proof : The fact that HT is a first order elliptic operator is standard since it is the sum of
the Dirichlet-to-Neumann operator for ∆g̊ + λ1 and a constant times the identity. In particular,
elliptic estimates yield

‖HT (w)‖C1,α(R/2πZ) ≤ c ‖w‖C2,α(R/2πZ)

The fact that the operator HT is (formally) self-adjoint is easy. Let ψ1 (resp. ψ2) the solution of
(11) corresponding to the function w1 (resp. w2). Let ψ̃i(x, t) = ψi(x, T t/2π). We compute

∂rφ1(1)
∫ 2π

0

(HT (w1)w2 − w1HT (w2)) dt = ∂rφ1(1)
∫ 2π

0

(∂rψ̃1 w2 − ∂rψ̃2 w1) dt

=
∫ 2π

0

(ψ̃1 ∂rψ̃2 − ψ̃2 ∂rψ̃1) dt

=
1

Vol̊g(Sn−1)

∫
C2π

1

(ψ̃1 ∆g̊ψ̃2 − ψ̃2∆g̊ ψ̃1) dvol̊g

= 0
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To prove the other statements, we define for all v ∈ C2,α
even,0(R/2πZ) written as in (9), Ψ to be

the continuous solution of

(14)

 ∆g̊Ψ + λ1 Ψ =
∑
k≥1

ak
1
r2
∂rφ1 cos

(
2πkt
T

) [
n− 1−

(
2πk
T

)2

r2

]
in CT

1

Ψ = 0 on ∂CT
1 .

.

Observe that ∂rφ1 vanishes at first order at r = 0 and hence the right hand side is bounded by
a constant times r−1 near the origin. Standard elliptic estimates then imply that the solution
Ψ is at least continuous near the origin (the right side of (14) belongs to the space Lp(CT

1 ) for
each p < n, then the solution Ψ belongs to the Sobolev space W 2,p(CT

1 ) for each p < n, and
by the Sobolev embedding theorem for a compact domain Ω we have W 2,p(Ω) ⊆ C0,α(Ω) for
p ≥ n

2−α ). A straightforward computation using the result of Lemma 3.1 and writing Ψ(x, t) =
ψ(x, t) + ∂rφ1(x) v(2πt/T ), shows that

(15) H̃T (v) := ∂rΨ|∂CT
1

With this alternative definition, it should be clear that HT preserves the eigenspaces Vk and
in particular, HT maps into the space of functions whose mean is 0.

Then

(16) H̃T (v) =
∑
k≥1

σk(T ) ak cos
(

2πkt
T

)
where σk(T ) are the eigenvalues of HT with respect to the eigenfunctions cos(kt) and are given
by

(17) σk(T ) = ∂rbk(1)

where bk is the continuous solution on [0, 1] of

(18)
(
∂2

r +
n− 1
r

∂r + λ1

)
bk −

(
2πk
T

)2

bk =
1
r2

[
n− 1−

(
2πk
T

)2

r2

]
∂rφ1 ,

with bk(1) = 0. From (12), (16) and (11) we deduce that

ψ =
∑
k≥1

ck(r) ak cos
(

2πkt
T

)
where ck is the continuous solution on [0, 1] of

(19)
(
∂2

r +
n− 1
r

∂r + λ1

)
ck −

(
2πk
T

)2

ck = 0

with ck(1) = −∂rφ1(1). Then an alternative characterization of the eigenvalue σk(T ) is

(20) σk(T ) = ∂rck(1) + ∂2
rφ1(1)

We want to show that there exists T∗ > 0 such that the kernel of HT∗ is finite-dimensional and
contains V1, the space of functions of the form a1 cos(t). For this aim we have to find a T∗ > 0
such that σ1(T∗) = 0 and σk(T∗) 6= 0 for almost k > 1.
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To simplify the notation, we set σ1 = σ. We need the following Lemma :

Lemma 3.3. The function σ(T ) is analytic on (0,+∞) and has the following properties:

• lim
T→0+

σ(T ) = +∞

• σ(T ) < 0 for T ≥ 2π√
n− 1

In particular σ has at least a zero where it changes the sign, and the set of the zeros of σ is a
discrete finite set.

Proof : The fact that σ is analytic comes from the following remark : if F is an invertible
operator and I is the identity, then for T > 0 and any continuous function v the solution u of(

F − 1
T 2

ρ I

)
u = v

is analytic on T for each constant ρ; this comes from the equality

(I − sF )−1 =
∑
n≥0

sn Fn

for each s ∈ R. Then to prove that c1 is analytic on T it suffices to take

F =
(
∂2

r +
n− 1
r

∂r + λ1

)
v = 0 ρ = (2π)2

We conclude that ∂rc1(1) is analytic with respect to T , and from (20) follows the analyticity of
σ.

We study now the behaviour of σ when T → 0+. For T small enough, it is well defined the
quantity

ξ =

√
4π2

T 2
− λ1

Let c̃(s) = c1

(
s

ξ

)
for s ∈ [0, ξ]. We remark that

lim
T→0+

∂rc1(1) = lim
ξ→+∞

∂sc̃(ξ)

Then we are interested in the behaviour of ∂sc̃(ξ) at +∞. From (19) (considered for k = 1) we
obtain that c̃ is a continuous solution of the differential equation

(21)
(
∂2

s +
n− 1
s

∂s − 1
)
c̃ = 0

in the interval [0, ξ] with c̃(ξ) = −∂rφ1(1). The previuos equation can be transformed into a well
known Bessel’s differential equation by the substitution

(22) c̃ = s
2−n

2 ĉ
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It follows that ĉ satisfies

(23)

[
∂2

s +
1
s
∂s −

(
1 +

(
2−n

2

)2
s2

)]
c̃ = 0

that is the modified Bessel’s differential equation of order 2−n
2 (for an introduction to Bessel’s

equations see for example [2] or [6]), and its general solution is given by

(24) ĉ(s) = AI 2−n
2

(s) +BK 2−n
2

(s)

for some constants A,B ∈ R, where Im(s) and Km(s) (for m ∈ R) are the well known modified
Bessel functions given by

Im(s) =
∞∑

k=0

1
k! Γ(m+ k + 1)

(s
2

)m+2k

Km(s) = lim
p→m

π

2

[
I−p(s)− Ip(s)

sin(p s)

] ,

where Γ is the Gamma function

Γ(s) =
∫ ∞

0

e−t ts−1 dt.

Im and Km are independent solutions of the modified Bessel’s differential equation of order m

∂2
s f +

1
s
∂s f −

(
1 +

m2

s2

)
f = 0

It is well known that the behaviour of Im at ∞ is

(25) lim
s→+∞

Im(s)
1√
2πs

es
= 1 ,

while that of Km is

(26) lim
s→+∞

Km(s)√
π

2s
e−s

= 1.

From (22) and (24) we have that

c̃(s) = s
2−n

2

(
AI 2−n

2
(s) +BK 2−n

2
(s)
)

The behaviour of c̃ at ∞ can’t be that of the function s
2−n

2 K 2−n
2

(s) because of the continuity
of c̃ at 0. In fact, if it was like that then we could integrate over [0,+∞] the function c̃ with its
derivatives, and from (21), multiplying by c̃ sn−1 and integrating by parts, we would obtain∫ +∞

0

((∂s c̃)2 + c̃2) sn−1 ds = 0
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that would imply c̃ = 0. Hence, by (25) and (26), the behaviour of c̃ when s → +∞ is that of
the function s

2−n
2 I 2−n

2
(s), i.e. there exixts a constant Ã 6= 0 such that

lim
s→+∞

c̃(s)

Ã s
1−n

2 es
= 1.

It follows that ∂sc̃(ξ) → +∞ when ξ → +∞, and then, coming back to the definition of ξ, we
conclude that

lim
T→0+

σ(T ) = +∞.

Now we will show that for T big enough the function σ is negative. Let AT (r) be the solution
of the following differential equation

(27) ∂2
rAT +

n− 1
r

∂rAT +

[
λ1 −

(
2π
T

)2
]
AT =

1
r2
∂rφ1 ,

and BT (r) be the solution of this other differential equation

(28) ∂2
rBT +

n− 1
r

∂rBT +

[
λ1 −

(
2π
T

)2
]
BT = ∂rφ1 ,

with AT (1) = BT (1) = 0. It is easy to see that

b1 = (n− 1)AT −
(

2π
T

)2

BT

We have

σ(T ) = (n− 1) ∂rAT (1)−
(

2π
T

)2

∂rBT (1)

We claim that AT ≥ 0, BT ≥ 0 and AT − BT ≥ 0. Moreover ∂rAT (1) < 0, ∂rBT (1) < 0 and
∂rAT (1) < ∂rBT (1). This follows from the maximum principle.
Proof of the claim : By definition of λ1, the operator ∆g̊ + λ1 is non-positive, in the sense that

(29) −
∫

B1

u (∆g̊ + λ1)u dvol̊g =
∫

B1

(|∇u|2g̊ − λ1 u
2) dvol̊g ≥ 0 .

Specializing this inequality to functions u(x, t) = u(|x|), we get

(30)
∫ 1

0

(
(∂ru)2 − λ1 u

2
)
rn−1 dr ≥ 0

where r = |x|, provided u ∈ H1
0 (B1). Assume now that AT ≤ 0 in [r1, r2] with AT (ri) = 0, then

multiplying (27) by AT r
n−1 and integrating the result by parts between r1 and r2, we get∫ r2

r1

(
(∂rAT )2 − λ1A

2
T

)
rn−1 dr +

(
2π
T

)2 ∫ r2

r1

A2
T r

n−1 dr ≤ 0

because ∂rφ1 ≤ 0. Hence, by (30), necessarily AT ≡ 0 on [r1, r2]. This proves that AT ≥ 0 on
[r1, r2] and by the maximum priciple AT ≥ 0 on [0, 1]. It follows from this fact that ∂rAT (1) ≤ 0,
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because AT (1) = 0. If it was ∂rAT (1) = 0 then necessarily we would have ∂2
rAT (1) ≥ 0 but

evaluation of (27) at r = 1 implies that

0 = (n− 1) ∂rAT (1) = ∂rφ1(1)− ∂2
rAT (1) ≤ ∂rφ1(1) < 0

which immediately leads to a contradiction. Hence, ∂rAT (1) < 0. The same reasoning applies
starting from (28) to show that BT ≥ 0 and ∂rBT (1) < 0, and starting from the difference
between (27) and (28) to show that AT − BT ≥ 0 with ∂r(AT − BT ) < 0. This completes the
proof of the claim.

Let now

T ≥ 2π√
n− 1

From the previous claim we have

−
(

2π
T

)2

∂rBT ≤ −(n− 1)∂rBT < −(n− 1)∂rAT

that means
σ(T ) < 0

This completes the proof of the Lemma. �

Let {01, 02, ..., 0p} the finite set of the zeros of σ, and let T∗ the smallest zero such that σ
changes the sign at T∗, say that T∗ = 0q. It is clear then V1 is in the Kernel of HT∗ . To prove
that the kernel of HT∗ is finite-dimensional we have to show that if T = T∗ then ∂rbk(1) 6= 0 for
almost k > 1. For this we set

k

T
=

1
τ

for T > 0 and from (18) we obtain that

σk(T ) = σ(τ)

This implies that σk is analytic on T and the set of the zeros of σk is {k 01, k 02, ..., k 0p}. It is
clear that if k is big enough, say k > kl, then T∗ /∈ {k 01, k 02, ..., k 0p}, and this means that Vk is
not a kernel of HT∗ for k > kl. This implies that the kernel of HT∗ is of the form Vk1 ⊕ · · · ⊕ Vkl

with 1 = k1 < · · · < kl. Moreover if Vki ∈ Ker(HT∗) and ki 6= 1 then the function σki(T ) does
not change the sign at T∗ because σki(T∗) = σ(T∗/ki) and T∗/ki < T∗. This completes the proof
of the proposition 3.2. �

The main result of this section is the following :

Proposition 3.4. The operator L0 is equal to HT .

Proof : By definition, the operator L0 is the linear operator obtained by linearizing F with
respect to v at (0, T ). In other words, we have

L0(w) = lim
s→0

F (sw, T )− F (0, T )
s

.
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For y ∈ Rn and t ∈ R we consider the parameterization of CT
1+v given by

Y (y, t) :=
(

(1 + s χ(y)w) y ,
T t

2π

)
where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when
|y| ≥ 3/4. We set

ĝ := Y ∗g̊

so that φ̂ = Y ∗φ and λ̂ = λ are solutions (smoothly depending on the real parameter s) of ∆ĝ φ̂+ λ̂ φ̂ = 0 in C2π
1

φ̂ = 0 on ∂C2π
1

with ∫
C2π

1

φ̂2 dvolĝ = 1

We remark that φ̂1 := Y ∗φ1 is a solution of

∆ĝ φ̂1 + λ1 φ̂1 = 0

since ĝ = Y ∗g̊. Moreover

(31) φ̂1(y, t) = φ1

(
(1 + sw) y ,

T t

2π

)
,

on ∂C2π
1 . Writing φ̂ = φ̂1 + ψ̂ and λ̂ = λ1 + µ, we find that

(32)

 ∆ĝ ψ̂ + (λ1 + µ) ψ̂ + µ φ̂1 = 0 in C2π
1

ψ̂ = −φ̂1 on ∂C2π
1

with

(33)
∫

C2π
1

(2 φ̂1 ψ̂ + ψ̂2) dvolĝ =
∫

C2π
1

φ2
1 dvol̊g −

∫
C2π

1+sw

φ2
1 dvol̊g

Obviously ψ̂ and µ are smooth functions of s. When s = 0, we have φ = φ1 and λ = λ1.
Therefore, ψ̂ and µ vanish and φ̂1 = φ1, when s = 0. Moreover ĝ = g̊ when s = 0. We set

ψ̇ = ∂sψ̂|s=0, and µ̇ = ∂sµ|s=0,

Differentiating (32) with respect to s and evaluating the result at s = 0, we obtain

(34)

 ∆g̊ ψ̇ + λ1 ψ̇ + µ̇ φ1 = 0 in C2π
1

ψ̇ = −∂rφ1 w on ∂C2π
1

because from (31), differentiation with respect to s at s = 0 yields ∂sφ̂1|s=0 = ∂rφ1 w.
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Differentiating (33) with respect to s and evaluating the result at s = 0, we obtain

(35)
∫

C2π
1

φ1 ψ̇ dvol̊g = 0

Indeed, the derivative of the right hand side of (33) with respect to s vanishes when s = 0 since
φ1 vanishes identically on ∂C2π

1 .

If we multiply the first equation of (34) by φ1 and we integrate it over C2π
1 , using the boundary

condition and the fact that the average of w is 0 we conclude that µ̇ = 0. And hence ψ̇(2πt/T )
is precisely the solution of (11). To summarize, we have proven that

φ̂(x, t) = φ̂1(x, t) + sψ(x, T t/2π) +O(s2)

where ψ is the solution of (11). In particular, in C2π
1 \ C2π

3/4, we have

φ̂(y, t) = φ1 ((1 + sw) y , T t/2π) + sψ(y, T t/2π) +O(s2)

= φ1 (y, T t/2π) + s (w r ∂rφ1 + ψ(y, T t/2π)) +O(s2)

where we have set r := |y|.

To complete the proof of the result, it suffices to compute the normal derivative of the function
φ̂ when the normal is computed with respect to the metric ĝ. We use cylindrical coordinates
(y, t) = (r z, t) where r > 0 and z ∈ Sn−1. Then the metric ĝ can be expanded in C2π

1 \ C2π
3/4 as

ĝ = (1 + sw)2 dr2 + s r w′ (1 + sw) dr dt+
(
(T/2π)2 + s2 r2 (w′)2

)
dt2 + r2 (1 + sw)2 h̊

where h̊ is the metric on Sn−1 induced by the Euclidean metric. It follows from this expression
that the unit normal vector field to ∂C2π

1 for the metric ĝ is given by

ν̂ =
(
(1 + sw)−1 +O(s2)

)
∂r +O(s) ∂t

Using this, we conclude that

ĝ(∇φ̂1, ν̂) = ∂rφ1 + s
(
w ∂2

rφ1 + ∂rψ(y, T t/2π)
)

+O(s2)

on ∂C2π
1 . The result then follows at once from the fact that ∂rφ1 is constant while the term

w ∂2
rφ1 + ∂rψ(y, T t/2π) has mean 0 on the boundary ∂C2π

1 . This completes the proof of the
proposition. �

4. A Lyapunov-Schmidt argument

Our aim is to prove that for some T ∈ (0,+∞) there exists a nonzero (and obviously noncon-
stant) function v that solves the equation

F (v, T ) = 0.

Unfortunately we will not be able to solve this equation at once. Instead we can split the image
of the operator F into two spaces, one infinite-dimensional and one finite-dimensional, and solve
the equation over the infinite-dimensional space.
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It follows from the previous paragraph that the kernel of the operator HT∗ is finite-dimensional
and given by Vk1 ⊕· · ·⊕Vkl

. Based on this fact we will be interested in the method of Lyapunov-
Schmidt, that is a procedure to reduce the dimension of the space in which we try to solve our
equation F (v, T ) = 0 near a singular point from infinite to finite dimension. The idea is to split
the space into two subspaces and to project the equation into each one of them. One of the two
equations obtained can be solved by the implicit function theorem.

Let Q be the projection operator onto the image of HT∗ and Q◦F the composition of operators
F and Q. Let v = v‖ + v⊥ with v⊥ ∈ (KerHT∗)

⊥ for a generical function in C2,α
even,0(R/2πZ). The

next result follows from the implicit function theorem :

Proposition 4.1. For all v‖ ∈ (KerHT∗) which norm is small enough and all T sufficiently close
to T∗ there exists a unique function v⊥ = v⊥(v‖, T ) defined in a neighborhood of (0, T∗) such that

Q ◦ F
(
v‖ + v⊥, T

)
= 0.

Proof : We can define the operator

J(v‖, v⊥, T ) = Q ◦ F
(
v‖ + v⊥, T

)
The operator J maps from KerHT∗ × (KerHT∗)

⊥ × (0,+∞) into the image of HT∗ . By the
proposition 3.2 the implicit function theorem applies to get the existence of a unique function
v⊥(v‖, T ) ∈ (KerHT∗)

⊥ smoothly depending on v‖ and T in a neighborhood of (0, T∗) such that

J(v‖, v⊥(v‖, T ), T ) = 0.

�

5. A bifurcation argument

We are now able to prove our main theorem 1.2. We will use a bifurcation argument. For
the sake of completeness we recall the concept of bifurcation and bifurcation point (see [8] and
[11] for details). Let f be an operator on B1 × Λ into B2, where B1 and B2 are Banach spaces
(or subspaces) and Λ is an interval of R. Thus suppose that Γ = (x(s), s) is a curve of solutions
of the equation f(x, s) = 0. Let (x0, s0) = (x(s0), s0) be an interior point on this curve with
the property that every neighborhood of (x0, s0) in B1 × Λ contains solutions of the equation
f(x, s) = 0 which are not in Γ. Then (x0, s0) is called a bifurcation point with respect to Γ and
we say that in that point there is a bifurcation of the solution of f(x, s) = 0.

In relation to our problem we will show that (0, T∗) is a bifurcation point with respect
to the curve Γ = (0, T ) for the solution of the equation F (v, T ) = 0. Here Λ = (0,+∞),
B1 = C2,α

even,0(R/2πZ) and B2 = C1,α
even,0(R/2πZ). We remark that this is equivalent to the existence

of a sequence of real positive numbers Tj −→ T∗ and a sequence of functions vj ∈ C2,α
even,0(R/2πZ)

converging to 0 in C2,α(R/2πZ) such that the points (vj , Tj) are solutions of the equation
F (v, T ) = 0. And such a result is exactly our main theorem 1.2 (moreover the functions vj

are even).
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We have proven that for each (v‖, T ) in a neighborhood of (0, T∗) there exists a function
v⊥ ∈ Ker(HT∗)

⊥ smoothly depending on v‖ and T such that

Q ◦ F
(
v‖ + v⊥(v‖, T ), T

)
= 0.

Let I be the identity operator. We remark that if we find (v‖, T ) such that

(I −Q) ◦ F
(
v‖ + v⊥(v‖, T ), T

)
= 0.

then it will be verified the equation

F
(
v‖ + v⊥(v‖, T ), T

)
= 0.

Let us define
G(v‖, T ) = (I −Q) ◦ F

(
v‖ + v⊥(v‖, T ), T

)
We will prove that (0, T∗) is a bifurcation point with respect to the curve

{(0, T ) , T in a neighborhood of T∗}
for the finite dimensional operator G. It will follow the existence of a sequence of real positive
numbers Tj −→ T∗ and a sequence of functions v‖j converging to 0 such that the points (v‖j , Tj)
are solutions of the equation G(v‖, T ) = 0. Then the sequence (vj , Tj) with vj defined by

vj = v
‖
j + v⊥(v‖j , T )

will satisfy the statement of the main theorem 1.2.

We recall the concept of odd crossing number following the approach of [8]. Let we come back
to the operator f , with finite-dimensional Banach spaces B1 and B2. A necessary condition for
bifurcation is that 0 is an isolated eigenvalue of finite algebraic multiplicity, say l, of the operator
obtained by linearizing f with respect to x at (0, s0), which can be denoted by Dxf(0, s0). It is
crucial to know how the eigenvalue 0 perturbs for Dxf(0, s0) when s varies in a neighborhood
of s0. It is possible to show (see [7]) that the generalized eigenspace Es0 of the eigenvalue 0 of
Dxf(0, s0) having dimension l is perturbed to an invariant space Es of Dxf(0, s) of dimension
l too, and all perturbed eigenvalues near 0 (the so-called 0-group) are eigenvalues of the finite-
dimensional operator Dxf(0, s) restricted to the l-dimensional invariant space Es. Moreover the
eigenvalues in that 0-group depend continuously on s. Motivated on these facts we can give the
definition of odd crossing number.

Definition 5.1. Let Θ(s) = 1 if there are no negative real eigenvalues in the 0-group of DxG(0, s),
and

Θ(s) = (−1)l1+·+lh

if µ1, ..., µh are all the negative real eigenvalues of the 0-group having algebraic multiplicity
l1, ..., lh, respectively. If Dxf(0, s) is regular in a neighborhood of s0 (naturally except in the
point s0) and Θ(s) changes the sign at s0 then Dxf(0, s) has an odd crossing number at s0.

In presence of an odd crossing number there exists a standard result known as the Krasnosel’skii
Bifurcation Theorem (see [8] for the proof):
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Theorem 5.2. If Dxf(0, s) has an odd crossing number at s0, then (0, s0) is a bifurcation point
for f(x, s) = 0 with respect to the curve {(0, s) | s in a neighborhood of s0}.

Thank to this result, our main theorem 1.2 follows from the following proposition:

Proposition 5.3. Dv‖G(0, T ) has an odd crossing number at T∗.

Proof : We observe that we can write

v‖ =
l∑

i=1

aki
cos(ki t)

where 1 = k1 < · · · < kl. It is clear, from the definition of G, that Dv‖G(0, T ) preserves the
eigenspaces, and

Dv‖G(0, T ) = HT |Vk1⊕···⊕Vkl

Then the 0-group of eigenvalues is given by σk1(T ), ..., σkl
(T ), where σk1(T ) = σ(T ). For T = T∗

they are all equal to 0. Moreover, by the proposition 3.2 only σk1(T ) changes sign at T∗, and its
associated eigenspace has dimension 1. This means that Dv‖G(0, T ) has a crossing number at T∗
and completes the proof of the proposition. �
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