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EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE
LAPLACE-BELTRAMI OPERATOR

FRANK PACARD AND PIERALBERTO SICBALDI

Abstract. We prove the existence of extremal domains with small prescribed volume for the
first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are
close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar
curvature.

1. Statement of the result

Assume that we are given (M, g) an n-dimensional Riemannian manifold. If Ω is a domain
with smooth boundary in M , we denote by λΩ the first eigenvalue of −∆g, the Laplace-Beltrami
operator, in Ω with 0 Dirichlet boundary condition. A smooth domain Ω0 ⊂ M is said to be
extremal if Ω 7−→ λΩ is critical at Ω0 with respect to variations of the domain Ω0 which preserve
its volume. In order to make this definition precise, we first introduce the definition of deformation
of Ω0.

Definition 1.1. We say that {Ωt}t∈(−t0,t0) is a deformation of Ω0, if there exists a vector field
Ξ such that Ωt = ξ(t,Ω0) where ξ(t, ·) is the flow associated to Ξ, namely

dξ

dt
(t, p) = Ξ(ξ(t, p)) and ξ(0, p) = p .

The deformation is said to be volume preserving if the volume of Ωt does not depend on t.

If {Ωt}t∈(−t0,t0) is a domain deformation of Ω0, we denote by λt the first eigenvalue of −∆g

on Ωt, with 0 Dirichlet boundary conditions. Observe that both t 7−→ λt and the associated
eigenfunction t 7−→ ut (normalized to be positive and have L2(Ωt) norm equal to 1) inherits
the regularity of the deformation of Ω0. These facts are standard and follow at once from the
implicit function theorem together with the fact that the least eigenvalue of the Laplace-Beltrami
operator with Dirichlet boundary condition is simple.

We can now give the definition of an extremal domain for the first eigenvalue of −∆g under
Dirichlet boundary condition.

Definition 1.2. A domain Ω0 is an extremal domain for the first eigenvalue of −∆g if for any
volume preserving deformation {Ωt}t of Ω0, we have

dλt
dt
|t=0 = 0 ,

where λt is the first eigenvalue of −∆g on Ωt, with 0 Dirichlet boundary condition.
1
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For all ε > 0 small enough, we denote by Bε(p) ⊂ M the geodesic ball of center p ∈ M and
radius ε. We denote by B̊ε ⊂ Rn the Euclidean ball of radius ε centered at the origin.

Now we can state the main result of our paper :

Theorem 1.3. Assume that p0 is a nondegenerate critical point of Scal, the scalar curvature
function of (M, g). Then, for all ε > 0 small enough, say ε ∈ (0, ε0), there exists a smooth
domain Ωε ⊂M such that :

(i) The volume of Ωε is equal to the Euclidean volume of B̊ε.
(ii) The domain Ωε is extremal in the sense of definition 1.2.

Moreover, there exists c > 0 and, for all ε ∈ (0, ε0), there exists pε ∈ M such that the boundary
of Ωε is a normal graph over ∂Bε(pε) for some function wε with

‖wε‖C2,α∂Bε(pε) ≤ c ε3. and dist(pε, p0) ≤ c ε .

To put this result in perspective let us digress slightly and recall a few facts about the exis-
tence of constant mean curvature hypersurfaces in Riemannian manifolds. It is well known that
solutions of the isoperimetric problem

Iτ := min
Ω⊂M : Vol Ω=τ

Vol ∂Ω

are (where they are smooth enough) constant mean curvature hypersurfaces. O. Druet [1] has
proved that for small volumes (i.e. τ > 0 small), the solutions of the isoperimetric problem are
close (in a sense to be made precise) to geodesic spheres of small radius centered at a point where
the scalar curvature function on (M, g) is maximal. Independently, R. Ye [13] has constructed
constant mean curvature topological spheres which are close to geodesic spheres of small radius
centered at a nondegenerate critical point of the scalar curvature function on (M, g). Building on
these results and a result of F. Pacard and X. Xu [10], S. Narduli [9] has obtained an asymptotic
expansion of Iτ as τ tends to 0.

It is well known ([4], [6], [7]) that the determination of the isoperimetric profile Iτ is related
to the Faber-Krahn inequality where one looks for the least value of the first eigenvalue of the
Laplace-Beltrami operator amongst domains with prescribed volume

FKτ := min
Ω⊂M : Vol Ω=τ

λΩ

Observe that a solution to this minimizing problem (when it is smooth) is an extremal domain
in the sense of Definition 1.2. Therefore, Theorem 1.3 can be understood as a first step in
understanding the asymptotics of FKτ as τ is close to 0.

Given the crucial rôle played by the critical points of the scalar curvature in the isoperimetric
problem for small volumes, it is natural to expect that the critical points of the scalar curvature
function will also be at the center of the study of FKτ as τ is close to 0 and Theorem 1.3 is an
illustration of such a link.

As a final remark, formal computations show that the estimate on pε can be improved into

dist(pε, p0) ≤ c ε2 .



EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR 3

Since a rigorous proof of this estimate requires some extra technicalities which would have com-
plicated the proof, we have chosen not to provide a proof of this fact.

2. Preliminary results

The following well known result gives a formula for the first variation of the first eigenvalue
for the Dirichlet problem under variations of the domain. This formula has been obtained by P.
R. Garabedian and M. Schiffer in [3] when the underlying manifold is the euclidean space and
by A. El Soufi and S. Ilias [2] (see Corollary 2.1) when the underlying manifold is a Riemannian
manifold. For the sake of completeness we give here a proof based on arguments contained in a
paper by D. Z. Zanger in [14] where a corresponding formula is derived for the Neumann problem.

Let (M, g) be an n-dimensional Riemannian manifold. Assume that {Ωt}t is a perturbation
of a domain Ω0 using the vector field Ξ, as defined in Definition 1.2. The outward unit normal
vector field to ∂Ωt is denoted by νt. Let ut ∈ C2(Ωt), be the corresponding smooth one-parameter
family of Dirichlet first eigenfunctions of Laplace-Beltrami operator (normalized to be positive
have L2(Ωt) norm equal to 1) with 0 Dirichlet boundary condition. The associated eigenvalue is
denoted by λt.

We have the :

Proposition 2.1. [2] The derivative of t 7−→ λt at t = 0 is given by

dλt
dt
|t=0 = −

∫
∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg,

where dvolg is the volume element on ∂Ω0 for the metric induced by g and ν0 is the normal vector
field about ∂Ω0.

Proof : We denote by ξ the flow associated to Ξ. By definition, we have

(1) ut(ξ(t, p)) = 0

for all p ∈ ∂Ω0. Differentiating (1) with respect to t and evaluating the result at t = 0 we obtain

∂tu0 = −g(∇u0,Ξ) ,

on ∂Ω0. Now u0 ≡ 0 on ∂Ω0, and hence only the normal component of Ξ plays a rôle in this
formula. Therefore, we have

(2) ∂tu0 = − g(∇u0, ν0) g(Ξ, ν0) ,

on ∂Ω0.

We differentiate with respect to t the identity

(3) ∆g ut + λt ut = 0.

and again evaluate the result at t = 0. We obtain

(4) ∆g∂tu0 + λ0 ∂tu0 = −∂tλ0 u0 ,
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in Ω0. Now we multiply (4) by u0 and (3), evaluated the result at t = 0, by ∂tu0, subtract the
results and integrate it over Ω0 to get :

∂tλ0

∫
Ω0

u2
0 dvolg =

∫
Ω0

(∂tu0 ∆gu0 − u0 ∆g∂tu0) dvolg

=
∫
∂Ω0

(∂tu0 g(∇u0, ν0)− u0 g(∇∂tu0, ν0)) dvolg

= −
∫
∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg ,

where we have used (2) and the fact that u0 = 0 on ∂Ω0 to obtain the last equality. The result
follows at once from the fact that u0 is normalized to have L2(Ω0) norm equal to 1. �

This result allows us to state the problem of finding extremal domains into the solvability of
an over-determined elliptic problem.

Proposition 2.2. A smooth domain Ω0 is extremal if and only if there exists a positive function
u0 and a constant λ0 such that

(5)


∆gu0 + λ0 u0 = 0 in Ω0

u0 = 0 on ∂Ω0

g(∇u0, ν0) = constant on ∂Ω0 ,

where ν0 is the normal vector field about ∂Ω0.

Proof : Assume that u0 is a positive solution of (5). Observe that for a volume preserving
variation, we have ∫

∂Ω0

g(Ξ, ν0) dvolg = 0.

Now, if λ0 is a solution of (5), it is the first eigenvalue of −∆g on Ω0, under Dirichlet boundary
condition. Moreover, we have∫

∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg = 0,

and the previous Proposition shows that the domain Ω0 is extremal in the sense of Definition 1.2.

Conversely, assume that Ω0 is extremal. Then given any function w such that∫
∂Ω0

w dvolg = 0,

it is easy to check that there exists a vector field Ξ which generates a volume preserving defor-
mation of Ω0 and which satisfies

Ξ = w ν0
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on ∂Ω0. The result of the previous Proposition implies that∫
∂Ω0

(g(∇u0, ν0))
2
w dvolg = 0.

The function w being arbitrary, we conclude that g(∇u0, ν0) is a constant function and hence u0

is a solution of (5). This completes the proof of the result. �

Therefore, in order to find extremal domains, it is enough to find a domain Ω0 (regular enough)
for which the over-determined problem (5) has a nontrivial positive solution. We will not be able
to solve this problem in full generality but we will be able to find solutions whose volumes are
small.

3. Rephrasing the problem

To proceed, it will be useful to introduce the following notation. Given a point p ∈ M we
denote by E1, . . . , En an orthonormal basis of the tangent plane to M at p. Geodesic normal
coordinates x := (x1, . . . , xn) ∈ Rn at p are defined by

X(x) := Expgp

 n∑
j=1

xj Ej


We recall the Taylor expansion of the coefficients gij of the metric X∗g in these coordinates.

Proposition 3.1. At the point of coordinate x, the following expansion holds :

(6) gij = δij +
1
3

∑
k,`

Rikj` x
k x` +

1
6

∑
k,`,m

Rikjl,m x
k x` xm +O(|x|4),

Here R is the curvature tensor of g and

Rikj` = g
(
R(Ei, Ek)Ej , E`

)
Rikj`;m = g

(
∇Em

R(Ei, Ek)Ej , E`
)
,

are evaluated at the point p.

The proof of this proposition can be found in [12], [8] or also in [11].

It will be convenient to identify Rn with TpM and Sn−1 with the unit sphere in TpM . If
x := (x1, . . . , xn) ∈ Rn, we set

Θ(x) :=
n∑
i=1

xiEi ∈ TpM .

Given a continuous function f : Sn−1 7−→ (0,∞) whose L∞ norm is small (say less than the cut
locus of p) we define

Bgf (p) :=
{
Expp(Θ(x)) : x ∈ Rn 0 ≤ |x| < f(x/|x|)

}
.

The superscript g is meant to remind the reader that this definition depends on the metric.
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Our aim is to show that, for all ε > 0 small enough, we can find a point p ∈M and a function
v : Sn−1 −→ R such that

VolBgε(1+v)(p) = εn Vol B̊1

and the over-determined problem

(7)


∆g φ+ λφ = 0 in Bgε(1+v)(p)

φ = 0 on ∂Bgε(1+v)(p)

g(∇φ, ν) = constant on ∂Bgε(1+v)(p)

has a nontrivial positive solution, where ν is the normal vector field about ∂Bgε(1+v)(p).

Observe that, considering the dilated metric ḡ := ε−2 g, the above problem is equivalent to
finding a point p ∈M and a function v : Sn−1 −→ R such that

VolBḡ1+v(p) = Vol B̊1

and for which the over-determined problem

(8)


∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ1+v(p)

φ̄ = 0 on ∂Bḡ1+v(p)

ḡ(∇φ̄, ν̄) = constant on ∂Bḡ1+v(p)

has a nontrivial positive solution, where ν̄ is the normal vector field about ∂Bḡ1+v(p). The relation
between the solutions of the two problems is simply given by

φ = ε−n/2 φ̄

and
λ = ε−2 λ̄ .

Let us denote by g̊ the Euclidean metric in Rn and λ1 the first eigenvalue of −∆g̊ in the unit
ball B̊1 with 0 Dirichlet boundary condition. We denote by φ1 the associated eigenfunction

(9)

 ∆g̊φ1 + λ1 φ1 = 0 in B̊1

φ1 = 0 on ∂B̊1

.

which is normalized to be positive and have L2(B̊1) norm equal to 1.

For notational convenience, given a continuous function f : Sn−1 7−→ (0,∞), we set

B̊f := {x ∈ Rn : 0 ≤ |x| < f(x/|x|)} .

The following result follows from the implicit function theorem.
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Proposition 3.2. Given a point p ∈M , there exists ε0 > 0 and for all ε ∈ (0, ε0) and all function
v̄ ∈ C2,α(Sn−1) satisfying

‖v̄‖C2,α(Sn−1) ≤ ε0 ,

and ∫
Sn−1

v̄ dvol̊g = 0 ,

there exists a unique positive function φ̄ = φ̄(ε, p, v̄) ∈ C2,α(Bḡ1+v(p)), a constant λ̄ = λ̄(ε, p, v̄) ∈ R
and a constant v0 = v0(ε, p, v̄) ∈ R such that

Volḡ(B1+v) = Vol̊g(B̊1)

where v := v0 + v̄ and φ̄ is a solution to the problem

(10)

 ∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ1+v

φ̄ = 0 on ∂Bḡ1+v

which is normalized by

(11)
∫
Bḡ

1+v(p)

φ̄2 dvolḡ = 1.

In addition φ̄, λ̄ and v0 depend smoothly on the function v̄ and the parameter ε and φ̄ = φ1,
λ̄ = λ1 and v0 = 0 when ε = 0 and v̄ ≡ 0.

Proof : Instead of working on a domain depending on the function v = v0 + v̄, it will be more
convenient to work on a fixed domain

B̊1 := {y ∈ Rn : |y| < 1},
endowed with a metric depending on both ε and the function v. This can be achieved by consid-
ering the parameterization of Bḡ1+v(= Bgε(1+v)) given by

Y (y) := Expḡp

((
1 + v0 + χ(y) v̄

(
y

|y|

)) ∑
i

yiEi

)
where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when
|y| ≥ 3/4.

Hence the coordinates we consider from now on are y ∈ B̊1 and in these coordinates the metric
ĝ := Y ∗ḡ can be written as

ĝ = (1 + v0)2

g̊ +
∑
i,j

Cij dyi dyj

 ,

where the coefficients Cij ∈ C1,α(B̊1) are functions of y depending on ε, v = v0 + v̄ and the first
partial derivatives of v. Moreover, Cij ≡ 0 when ε = 0 and v̄ = 0.

Observe that
(ε, v0, v̄) 7−→ Cij(ε, v) ,
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are smooth maps.

Up to some multiplicative constant, the problem we want to solve can now be rewritten in the
form

(12)

 ∆ĝ φ̂+ λ̂ φ̂ = 0 in B̊1

φ̂ = 0 on ∂B̊1

with

(13)
∫
B̊1

φ̂2 dvolĝ = 1

and

(14) Volĝ(B̊1) = Vol̊g (B̊1)

When ε = 0 and v̄ ≡ 0, the metric ĝ = (1 + v0)2 g̊ is nothing but the Euclidean metric and a
solution of (9) is therefore given by φ̂ = φ1, λ̂ = λ1 and v0 = 0. In the general case, the relation
between the function φ̄ in the statement of the Proposition and the function φ̂ is simply given by

Y ∗φ̄ = φ̂ and λ̄ = λ̂

For all ψ ∈ C2,α(B̊1) such that ∫
B̊1

ψ φ1 dvol̊g = 0

we define

N(ε, v̄, ψ, v0) :=
(
∆g̊ψ + λ1 ψ + (∆ĝ −∆g̊ + µ) (φ1 + ψ) , Volĝ(B̊1)−Vol̊g (B̊1)

)
where µ is given by

µ = −
∫
B̊1

φ1 (∆ĝ −∆g̊) (φ1 + ψ) dvol̊g

so that the first entry of M is L2(B̊1)-orthogonal to φ1. Observe that N also depends on the
choice of the point p ∈M .

We have
N(0, 0, 0, 0) = (0, 0).

It should be clear that the mapping N is a smooth map from a neighborhood of (0, 0, 0, 0) in
[0,∞) × C2,α

m (Sn−1) × C2,α
⊥ , 0(B̊1) × R into a neighborhood of (0, 0) in C0,α

⊥ (B̊1) × R. Here the
subscript ⊥ indicates that the functions in the corresponding space are L2(B̊1)-orthogonal to φ1

(for the Euclidean metric) and the subscript 0 indicates that the functions vanish on the boundary
of B̊1. Finally, the subscript m indicates that the functions have mean 0 over the unit (Euclidean)
sphere.

We claim that the partial differential of N with respect to ψ, computed at (0, 0, 0, 0), is given
by

DψN(0, 0, 0, 0) = (∆g̊ + λ1 , 0)
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while the partial differential of N with respect to v0, computed at (0, 0, 0, 0), is given by

∂v0N(0, 0, 0, 0) =
(
0 , nVol̊g(B̊1)

)
There is no difficulty in getting the expression of the first partial differential since ĝ = g̊ when
ε = v0 = 0 and v̄ = 0 and hence

N(0, 0, ψ, 0) = (∆g̊ψ + λ1 ψ + µ (φ1 + ψ) , 0)

where µ = 0. The derivation of the partial differential with respect to v0 is not hard either but
requires some care. Indeed, this time we have ĝ = (1 + v0)2 g̊ since v̄ ≡ 0 and ε = 0 and hence

N(0, 0, 0, v0) =
((

((1 + v0)−2 − 1) ∆g̊ + µ
)
φ1 , ((1 + v0)n − 1)Vol̊g(B̊1)

)
=

((
µ− λ1 ((1 + v0)−2 − 1)

)
φ1 , ((1 + v0)n − 1) Vol̊g(B̊1)

)
where µ is given by

µ = −((1 + v0)−2 − 1)
∫
B̊1

φ1 ∆g̊ φ1 dvol̊g = λ1 ((1 + v0)−2 − 1).

So we get

∂v0N(0, 0, 0, 0) =
(
(∂v0µ|v0=0 + 2λ1)φ1 , nVol̊g(B̊1)

)
and

∂v0µ|v0=0 = −2λ1

The claim then follows at once.

Hence the partial differential of N with respect to both ψ and v0, computed at (0, 0, 0, 0)
is precisely invertible from C2,α

⊥,0(B̊1) × R into C0,α
⊥ (B̊1) × R and the implicit function theorem

ensures, for all (ε, v̄) in a neighborhood of (0, 0) in [0,∞)×C2,α
m (Sn−1), the existence of a (unique)

(ψ, v0) ∈ C2,α
⊥,0(B̊1)× R such that N(ε, v̄, ψ, v0) = 0. The function φ̂ := φ1 + ψ solves (12) and in

order to have (13) fulfilled, it is enough to divide it by its L2 norm. The fact that the solution
depends smoothly on the parameter ε, the function v̄ and the point p ∈ M is standard. This
completes the proof of the result. �

After canonical identification of ∂Bḡ1+v(p) with Sn−1, we define, the operator F :

F (p, ε, v̄) = ḡ(∇φ̄, ν̄) |∂Bḡ
1+v

− 1
Volḡ(∂B

ḡ
1+v)

∫
∂Bḡ

1+v

ḡ(∇φ̄, ν̄) dvolḡ ,

where ν̄ denotes the unit normal vector field to ∂Bḡ1+v and (φ̄, v0) is the solution of (10) provided
by the previous result. Recall that v = v0 + v̄. Schauder’s estimates imply that F is well defined
from a neighborhood of M × (0, 0) in M × [0,∞) × C2,α

m (Sn−1) into C1,α
m (Sn−1). The subscript

m is meant to point out that the functions have mean 0. Our aim is to find (p, ε, v̄) such that
F (p, ε, v̄) = 0. Observe that, with this condition, φ̄ will be the solution to the problem (8).
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Following the proof of the previous result, we have the alternative expression for F .

F (p, ε, v̄) = ĝ(∇φ̂, ν̂) |∂B̊1
− 1

Volĝ(∂B̊1)

∫
∂B̊1

ĝ(∇φ̂, ν̂) dvolĝ ,

where this time ν̂ is the the unit normal vector field to ∂B̊1 using the metric ĝ.

We end this section by the proof of the :

Lemma 3.3. There exists a constant c > 0 such that, for all p ∈M and all ε ≥ 0 small enough
we have

‖F (p, ε, 0)‖C1,α ≤ c ε2

For all a ∈ Rn, the following estimate holds∣∣∣∣∫
Sn−1

g̊(a, ·)F (p, ε, 0) dvol̊g − C ε3 g(∇Scal(p),Θ(a))
∣∣∣∣ ≤ c ε4 ‖a‖ ,

where

C :=
1

2n(n+ 2)
1

∂rφ1(1)

∫
B̊1

r2 |∂rφ1|2 dvol̊g

Proof : We keep the notations of the proof of the previous result with v̄ ≡ 0. In order to prove
these estimates, we follow the construction of F (p, ε, 0) step by step. First of all, since v̄ ≡ 0, we
have

N(ε, 0, 0, 0) =
(
(∆ĝ −∆g̊ + µ)φ1 , Volĝ(B̊1)−Vol̊g (B̊1)

)
,

and

µ = −
∫
B̊1

φ1 (∆ĝ −∆g̊)φ1 dvol̊g .

If in addition v0 = 0, we can estimate

ĝij = δij +O(ε2) ,

hence
N(ε, 0, 0, 0) = O(ε2) .

The implicit function theorem immediately implies that the solution of

N(ε, 0, ψ, v0) = 0

satisfies
‖ψ(ε, p, 0)‖C2,α + |v0(ε, p, 0)| ≤ c ε2

To complete the proof, observe that ν̂ = (1 + v0)−1 ∂r when v̄ ≡ 0. Therefore

ĝ(∇φ̂, ν̂) = ∂rφ1 +O(ε2)

(be careful that ĝ is defined with v0 = v0(ε, p, 0) and v̄ ≡ 0). Since ∂rφ1 is constant along ∂B̊1,
we conclude that

F (p, ε, 0) = O(ε2)
and this proves the first estimate.
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We now turn to the proof of the second estimate. Instead of going through the construction
of φ̂ step by step, we compute∫
Sn−1

g̊(∇φ1, a)
∂φ̂

∂r
dvol̊g =

∫
B̊1

g̊(∇φ1, a) (∆g̊ + λ1)φ̂dvol̊g −
∫
B̊1

φ̂ (∆g̊ + λ1)̊g(∇φ1, a) dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ + λ1) φ̂dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ) φ̂dvol̊g + (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a) φ̂dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ)φ1 dvol̊g + (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a)φ1 dvol̊g

+
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ) (φ̂− φ1) dvol̊g

+ (λ1 − λ̂)
∫
B̊1

(∇φ1 · a) (φ̂− φ1) dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ)φ1 dvol̊g

+
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ) (φ̂− φ1) dvol̊g

+ (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a) (φ̂− φ1) dvol̊g

The last two terms can be estimated easily since λ̂ − λ1 = O(ε2), φ̂ − φ1 = O(ε2) and the
coefficients of ∆g̊ −∆ĝ are bounded by a constant times ε2. Therefore, we conclude that there
exists a constant c such that∣∣∣∣∣

∫
Sn−1

g̊(∇φ1, a)
∂φ̂

∂r
dvol̊g −

∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ)φ1 dvol̊g

∣∣∣∣∣ ≤ c ε4 ‖a‖

To proceed, we use the result of Proposition 3.1 to show that the coefficients of the metric ĝ
can be expanded as

ĝij(y) = (1+v0)2

δij +
1
3

∑
k,`

Rikj`y
ky`(1 + v0)2ε2 +

1
6

∑
k,`,m

Rikjl,my
ky`ym(1 + v0)3ε3 +O(ε4)


Keeping in mind that v0 = O(ε2), this simplifies slightly into

ĝij(y) = (1 + v0)2

δij +
1
3

∑
k,`

Rikj`y
ky`ε2 +

1
6

∑
k,`,m

Rikjl,my
ky`ymε3 +O(ε4)
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This implies that

ĝij = (1 + v0)−2

(
δij −

1
3
Rikj` y

k y` ε2 − 1
6
Rikj`,m y

k y` ym ε3
)

+O(ε4)

log |ĝ| = 2n log(1 + v0) +
1
3
Rk` y

k y` ε2 +
1
6
Rk`,m y

k y` ym ε3 +O(ε4)

where

Rk` =
n∑
i=1

Riki` and Rk`,m =
n∑
i=1

Riki`,m

Recall that

∆ĝ :=
∑
i,j

ĝij ∂yi∂yj +
∑
i,j

∂yi ĝ
ij ∂yj +

1
2

∑
i,j

ĝij ∂yi log |ĝ| ∂yj

A straightforward calculation (still keeping in mind that v0 = O(ε2)) shows that(
∆g̊ −∆ĝ

)
φ1 = −λ1 (1− (1 + v0)−2)φ1

+
1
3
ε2
∑
i,j,k,`

Rikj`

(
yiyjyky`

r2
∂2
rφ1 +

yky`

r
δij ∂rφ1 −

yiyjyky`

r3
∂rφ1

)
− 2

3
ε2
∑
i,j

Rij
yi yj

r
∂rφ1 +

+
1
6
ε3

∑
i,j,k,`,m

Rikj`,m
yiyjyky`ym

r2

(
∂2
rφ1 −

∂rφ1

r

)
+

1
6
ε3
∑
k,j,`

R·kj`,·
yjyky`

r
∂rφ1 −

1
4
ε3
∑
i,`,m

Ri`,m
yiy`ym

r
∂rφ1 +O(ε4),

where r := |y| and

R·kj`,· :=
n∑
i=1

Rikj`,i

Observe that we have used the fact that R(X,X) ≡ 0 and the symmetries of the curvature tensor
for which if either i = k or j = ` then Rikj`,m = 0.

Observe that, in the expansion of (∆g̊ − ∆ĝ)φ1, terms which contain an even number of
coordinates, such as yiyjyky` or yiyj etc. do not contribute to the result since, once multiplied
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by g(∇φ1, a), their average over Sn−1 is 0. Therefore, we can write∫
B̊1

g̊(∇φ1 a)
(
∆g̊ −∆ĝ

)
φ1 dvol̊g = ε3

∫
B̊1

∂rφ1 aσ
yσ

r(
1
6

∑
i,j,k,`,m

Rikj`,m
ytykylyiyj

r2

(
∂2
rφ1 −

∂rφ1

r

)
+

1
2

∑
j,k,`

(
1
3
R·kj`,· −

1
2
Rkj,`)

yky`yj

r
∂rφ1

)
+ O(ε4),

We make use of the identities in the Appendix to conclude that
(15)∫
B̊1

g̊(∇φ1, a)
(
∆g̊ −∆ĝ

)
φ1 dvol̊g =

1
2n(n+ 2)

ε3 g
(
∇Scal(p),Θ(a)

) ∫
B̊1

r2 |∂rφ1|2 dvol̊g +O(ε4).

The second estimate follows at once from this computation together with the fact that, when
v̄ ≡ 0, ν̂ = (1 + v0) ∂r as already mentioned and

g̊(∇φ1, a) = ∂rφ1(1) g̊(a, ·) ,

on ∂B̊1 since this implies that∫
Sn−1

g̊(a, ·) ĝ(∇φ̂, ν̂)|∂B̊1
dvol̊g =

1 + v0
∂rφ1(1)

∫
Sn−1

g̊(∇φ1, a)
∂φ̂

∂r
dvol̊g

This completes the proof of the result. �

Our next task will be to understand the structure of L0, the operator obtained by linearizing
F with respect to v̄ at ε = 0 and v̄ = 0. We will see that this operator is a first order elliptic
operator which does not depend on the point p. Also, we will be interested in various properties
of the expansion of F (p, ε, 0) in powers of ε.

4. The structure of L0

We keep the notations of the previous section. We claim that, when ε = 0, ḡ = g̊. Indeed,
observe that, if we use coordinates

X̄(y) := Expgp

(
ε
∑
i

yiEi

)
to parameterize a neighborhood of p in M , the coefficients ḡij of the metric X̄∗ḡ = ε−2 X̄∗g can
be expanded as

(16) ḡij(y) = δij +
1
3

∑
k,`

Rikj` y
k y` ε2 +

1
6

∑
k,`,m

Rikjl,m y
k y` ym ε3 +O(ε4)



14 FRANK PACARD AND PIERALBERTO SICBALDI

and, when ε = 0, we conclude that X∗ḡ = g̊. Therefore, when ε = 0 we have ḡ = g̊ and (10)
becomes

(17)

 ∆g̊ φ̄+ λ̄ φ̄ = 0 in Bg̊1+v

φ̄ = 0 on ∂Bg̊1+v

with the normalization

(18)
∫
Bg̊

1+v

φ̄2 dvol̊g = 1

and the volume constraint
Vol̊g(B

g̊
1+v) = Vol̊g(B̊1)

Remember that we have set v := v0 + v̄.

We already have established the existence of a unique positive function φ̄ ∈ C2,α(Sn−1) (close
to φ1), a constant λ̄ ∈ R (close to λ1) and a constant v0 ∈ R (close to 0), solutions to the
above problem so we are going to construct an expansion of φ̄, λ̄ and v0 in powers of v̄ and its
derivatives. This will lead to the structure of the linearized operator L0.

Recall that λ1 is the first eigenvalue of −∆g̊ in the unit ball B̊1 with 0 Dirichlet boundary
condition and φ1 is the associated eigenfunction which is normalized to be positive and have
L2(B̊1) norm equal to 1. Observe that in principle φ1 is only defined in the unit ball, however,
this function being radial, it is a solution of a second order ordinary differential equation and as
such can be extended at least in a neighborhood of ∂B̊1.

We start with the easy :

Lemma 4.1. Assume that v̄ ∈ C2,α
m (Sn−1) is given. We define

φ0(x) = ∂rφ1(x) v̄ (x/|x|)

Then

(19) ∆g̊φ0 + λ1 φ0 =
1
r2
∂rφ1 (∆Sn−1 + n− 1) v̄.

Proof : This is a straightforward exercise. Using the fact that

∆g̊ ∂rφ1 = −λ1 ∂rφ1 +
n− 1
r2

∂rφ1 ,

we find

∆g̊φ0 = v∆g̊∂rφ1 + ∂rφ1 ∆g̊ v̄ + 2∇v̄∇∂rφ1

= −λ1 φ0 +
1
r2
∂rφ1 (∆Sn−1 + n− 1) v̄ ,

This completes the proof of the result. �
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For all v̄ ∈ C2,α
m (Sn−1) let ψ be the (unique) solution of

(20)

 ∆g̊ψ + λ1 ψ = 0 in B̊1

ψ = −∂rφ1 v̄ on ∂B̊1

which is L2(B̊1)-orthogonal to φ1. We define

(21) H(v̄) :=
(
∂rψ + ∂2

rφ1 v̄
)
|∂B̊1

Recall that the eigenvalues of the operator −∆Sn−1 are given by

µj = j (n− 2 + j)

for j ∈ N. The corresponding eigenspaces will be denoted by Vj .

We will need the following result :

Proposition 4.2. The operator

H : C2,α
m (Sn−1) −→ C1,α

m (Sn−1),

is a self adjoint, first order elliptic operator. (Recall that the subscript m is meant to point out
that functions have mean 0 on Sn−1). The kernel of H is given by V1, the eigenspace of −∆Sn−1

associated to the eigenvalue n− 1. Moreover there exists c > 0 such that

‖w‖C2,α(Sn−1) ≤ c ‖H(w)‖C1,α(Sn−1) ,

provided w is L2(Sn−1)-orthogonal to V0 ⊕ V1.

Proof : The fact that H is a first order elliptic operator is standard since it is the sum of
the Dirichlet-to-Neumann operator for ∆g̊ + λ1 and a constant times the identity. In particular,
elliptic estimates yield

‖H(w)‖C1,α(Sn−1) ≤ c ‖w‖C2,α(Sn−1)

The fact that the operator H is (formally) self-adjoint is easy. Let ψ1 (resp. ψ2) the solution
of (20) corresponding to the function w1 (resp. w2). We compute

∂rφ1(1)
∫
∂B̊1

(H(w1)w2 − w1H(w2)) dvol̊g = ∂rφ1(1)
∫
∂B̊1

(∂rψ1 w2 − ∂rψ2 w1) dvol̊g

=
∫
∂B̊1

(ψ1 ∂rψ2 − ψ2 ∂rψ1) dvol̊g

=
∫
B̊1

(ψ1 ∆g̊ψ2 − ψ2∆g̊ ψ1) dvol̊g

= 0

To prove the other statements, we define for all w ∈ C2,α
m (Sn−1), Ψ to be the continuous

solution of

(22)

 ∆g̊Ψ + λ1 Ψ =
1
r2
∂rφ1 (∆Sn−1 + n− 1) w in B̊1

Ψ = 0 on ∂B̊1 .

.
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Observe that ∂rφ1 vanishes at first order at r = 0 and hence the right hand side is bounded by a
constant times r−1 near the origin. Standard elliptic estimates then imply that the solution Ψ is
at least continuous near the origin. A straightforward computation using the result of Lemma 4.1
and writing Ψ = ψ + ∂rφ1 w, shows that

(23) H(w) := ∂rΨ|∂B̊1

With this alternative definition, it should be clear that H preserves the eigenspaces Vj and in
particular, H maps into the space of functions whose mean over Sn−1 is 0. Moreover, it is clear
that V1 is included in the kernel of H since (∆Sn−1 + n− 1) w = 0 for any w ∈ V1. We now prove
that V1 is the only kernel of this operator.

We consider
w =

∑
j≥1

wj

the eigenfunction decomposition of w. Namely wj ∈ Vj . Then

H(w) =
∑
j

αj wj

where the constants αj are given by
αj = ∂raj(1)

where aj is the continuous solution of

(24) a′′j +
n− 1
r

a′j + λ1 aj −
1
r2
µj aj =

1
r2

(n− 1− µj) ∂rφ1 ,

with aj(1) = 0.

Observe that α1 = 0 and, in order to prove that the kernel of H is given by V1, it is enough to
show that αj 6= 0 for all j ≥ 2.

We claim that
aj ≤ 0 ,

for all j ≥ 2. This follows at once from the maximum principle since n− 1− µj < 0 for all j ≥ 2
and ∂rφ1 ≤ 0.

Proof of the claim : By definition of λ1, the operator ∆g̊ +λ1 is non-positive, in the sense that

(25) −
∫
B̊1

u (∆g̊ + λ1)u dvol̊g =
∫
B̊1

(|∇u|2g̊ − λ1 u
2) dvol̊g ≥ 0 .

Specializing this inequality to radial functions, we get∫ 1

0

(
(∂ru)2 − λ1 u

2
)
rn−1 dr ≥ 0

provided u ∈ H1
0 (B̊1) is radial.



EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR 17

Now, assume that aj ≥ 0 in [r1, r2] with aj(ri) = 0, then multiplying (24) by aj r
n−1 and

integrating the result by parts between r1 and r2, we get∫ r2

r1

(
(∂raj)2 − λ1 a

2
j +

1
r2
µj a

2
j

)
rn−1 dr ≤ 0

and hence necessarily aj ≡ 0 on [r1, r2]. This completes the proof of the claim.

The claim being proven, we use the fact that aj(1) = 0 for all j ≥ 2 to conclude that

0 ≤ ∂raj(1).

If ∂raj(1) = 0 then necessarily ∂2
raj(1) ≤ 0 but evaluation of (24) at r = 1 implies that

0 = (n− 1) a′j(1) = (n− 1− µj) ∂rφ1(1)− a′′j (1)

≥ (n− 1− µj) ∂rφ1(1)

> 0 ,

which immediately leads to a contradiction. Hence, ∂raj(1) > 0 for all j ≥ 2 and this completes
the proof of the fact that the kernel of the operator H is equal to V1. �

The main result of this section is the following :

Proposition 4.3. The operator L0 is equal to H.

Proof : By definition, the operator L0 is the linear operator obtained by linearizing N with
respect to v̄ at ε = 0 and v̄ = 0. In other words, we have

L0(w̄) = lim
s→0

F (p, 0, s w̄)− F (p, 0, 0)
s

.

Since ε = 0, we have already seen that ḡ = g̊. Writing v̄ = s w̄, we argue as in the proof of
Proposition 3.2 and consider the parameterization of B̊1+v given by

Y (y) :=
(

1 + v0 + s χ(y) w̄
(
y

|y|

))
y

where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when
|y| ≥ 3/4. We set

ĝ := Y ∗g̊

so that φ̂ = Y ∗φ̄, λ̂ = λ̄ and v0 are solutions (smoothly depending on the real parameter s) of ∆ĝ φ̂+ λ̂ φ̂ = 0 in B̊1

φ̂ = 0 on ∂B̊1

with ∫
B̊1

φ̂2 dvolĝ = 1

and
Volĝ(B̊1) = Vol̊g (B̊1)



18 FRANK PACARD AND PIERALBERTO SICBALDI

We remark that φ̂1 := Y ∗φ1 is a solution of

∆ĝ φ̂1 + λ1 φ̂1 = 0

since ĝ = Y ∗g̊. Moreover
φ̂1(y) = φ1((1 + v0 + s w̄(y)) y) ,

on ∂B̊1. Writing φ̂ = φ̂1 + ψ̂ and λ̂ = λ1 + µ, we find that

(26)

 ∆ĝ ψ̂ + (λ1 + µ) ψ̂ + µ φ̂1 = 0 in B̊1

ψ̂ = −φ̂1 on ∂B̊1

with

(27)
∫
B̊1

(2 φ̂1 ψ̂ + ψ̂2) dvolĝ =
∫
B̊1

φ2
1 dvol̊g −

∫
B̊1+v0+sw̄

φ2
1 dvol̊g

and

(28) Volĝ(B̊1) = Vol̊g (B̊1)

Obviously ψ̂, µ and v0 are smooth functions of s. When s = 0, we have φ̄ = φ1, λ̄ = λ1 and
v0 = 0. Therefore, ψ̂, µ and v0 all vanish and φ̂1 = φ1, when s = 0. Moreover ĝ = g̊ when s = 0.
We set

ψ̇ = ∂sψ̂|s=0, µ̇ = ∂sµ|s=0, and v̇0 = ∂sv0|s=0,

Differentiating (26) with respect to s and evaluating the result at s = 0, we obtain

(29)

 ∆g̊ ψ̇ + λ1 ψ̇ + µ̇ φ1 = 0 in B̊1

ψ̇ = −∂rφ1 (v̇0 + w̄) on ∂B̊1

Observe that, as already mentioned, φ̂1(y) = φ1((1 + v0 + s w̄(y)) y) on ∂B̊1 and differentiation
with respect to s at s = 0 yields ∂sφ̂1|s=0 = ∂rφ1 (v̇0 + w̄).

Differentiating (27) with respect to s and evaluating the result at s = 0, we obtain

(30)
∫
B̊1

φ1 ψ̇ dvol̊g = 0

Indeed, the derivative of the right hand side of (27) with respect to s vanishes when s = 0 since
φ1 vanishes identically on ∂B̊1.

Finally, differentiating (28) with respect to s and evaluating the result at s = 0, we obtain

(31)
∫
Sn−1

(v̇0 + w̄) dvol̊g = 0

The last equality immediately implies (since, by definition, the average of w̄ is 0) that v̇0 = 0. If
we multiply the first equation of (29) by φ1 and we integrate it, using the boundary condition
and the fact that the average of w̄ is 0 together with the fact that v̇0 = 0, we conclude that µ̇ = 0.
And hence ψ̇ is precisely the solution of (20). To summarize, we have proven that

φ̂ = φ̂1 + sψ +O(s2)
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where ψ is the solution of (20) and we also know that

v0 = O(s2)

In particular, in B̊1 \ B̊3/4, we have

φ̂(y) = φ1

((
1 + s w̄(y/|y|)

)
y
)

+ sψ(y) +O(s2)

= φ1(y) + s
(
w̄(y/|y|) r ∂rφ1 + ψ

)
+O(s2)

where we have set r := |y|.
To complete the proof of the result, it suffices to compute the normal derivative of the function

φ̂ when the normal is computed with respect to the metric ĝ. We use polar coordinates y = r z
where r > 0 and z ∈ Sn−1. Then the metric ĝ can be expanded in B̊1 \ B̊3/4 as

ĝ = (1 + v0 + sw̄)2 dr2 + 2 s (1 + v0 + sw̄) r dw̄ dr + r2 (1 + v0 + sw̄)2 h̊+ s2 r2 dw̄2

where h̊ is the metric on Sn−1 induced by the Euclidean metric. It follows from this expression
together with the fact that v0 = O(s2) that the unit normal vector field to ∂B̊1 for the metric ĝ
is given by

ν̂ =
(
(1 + s w̄)−1 +O(s2)

)
∂r +O(s) ∂zj

where ∂zj are vector fields induced by a parameterization of Sn−1. Using this, we conclude that

ĝ(∇φ̂1, ν̂) = ∂rφ1 + s
(
w̄ ∂2

rφ1 + ∂rψ
)

+O(s2)

on ∂B̊1. The result then follows at once from the fact that ∂rφ1 is constant while the term
w̄ ∂2

rφ1 + ∂rψ has mean 0 on the boundary ∂B̊1. This completes the proof of the proposition. �

We denote by Lε the linearization of F with respect to v̄, computed at the point (p, ε, 0).
Following the proof of the previous Proposition, it is easy to check the :

Lemma 4.4. There exists a constant c > 0 such that, for all ε > 0 small enough we have the
estimate

‖(Lε − L0) v̄‖C1,α ≤ c ε2 ‖v̄‖C2,α

Proof : Clearly both Lε and L0 are first order differential operators. To prove the estimate,
we simply use the fact that, when ε 6= 0, the difference between the coefficients of ḡ = ε−2 g and g̊
can be estimated by a constant times ε2. This implies that the discrepancy between the linearized
operator when ε = 0 and when ε 6= 0 is a first order differential operator whose coefficients can
be estimated by a constant times ε2. �

The main result of this section is the fact that the linearized operator L0 is given by H.
Observe that the kernel of L0 is equal to V1 which is the vector space spanned by the restriction
of linear functions to the unit sphere. This is geometrically very natural since, when ε = 0, a
linear function v̄ := g̊(a, ·) ∈ V1 correspond to infinitesimal translation of the unit ball in the
direction a ∈ Rn. Therefore we have

Bg̊1+s v̄(p) ∼ B̊1(p+ s a),
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This implies that the solution of (8) is given by φ1 (modulo some O(s2) term) and hence its
normal data is constant (modulo some O(s2) term). Therefore F (p, 0, v̄) = O(s2) which shows
that L0v̄ = 0.

5. The proof of Theorem 1.3

We shall now prove that, for ε > 0 small enough, it is possible to solve the equation

F (p, ε, v̄) = 0

Unfortunately, we will not be able to solve this equation at once. Instead, we first prove the :

Proposition 5.1. There exists ε0 > 0 such that, for all ε ∈ [0, ε0] and for all p ∈M , there exists
a unique function v̄ = v̄(p, ε) and a vector a = a(p, ε) ∈ Rn such that

F (p, ε, v̄) + g̊(a, ·) = 0

The function v̄ and the vector a depend smoothly on p and ε and we have

|a|+ ‖v̄‖C2,α(Sn−1) ≤ c ε2

Proof : We fix p ∈M and define

F̄ (p, ε, v̄, a) := F (p, ε, v̄) + g̊(a, ·)
It is easy to check that F̄ is a smooth map from a neighborhood of (p, 0, 0, 0) in M × [0,∞) ×
C2,α
m (Sn−1)× Rn into a neighborhood of 0 in C1,α(Sn−1). Moreover,

F̄ (p, 0, 0, 0) = 0

and the differential of F̄ with respect to v̄, computed at (p, 0, 0, 0) is given by H. Finally the image
of the linear map a 7−→ g̊(a, ·) is just the vector space V1. Thanks to the result of Proposition 4.2,
the implicit function theorem applies to get the existence of v̄ and a, smoothly depending on p
and ε such that F (p, ε, v̄)+ g̊(a, ·) = 0. The estimate for v̄ and a follows at once from Lemma 3.3.
�

In view of the result of the previous Proposition, it is enough to show that, provided that ε
is small enough, it is possible to choose the point p ∈ M such that a(p, ε) = 0. We claim that,
there exists a constant C̃ > 0 (only depending on n) such that

Θ(a(p, ε)) = −ε3 C̃∇gScal(p) +O(ε4)

Indeed, for all b ∈ Rn we compute∫
Sn−1

g̊(a, ·) g̊(b, ·) dvol̊g = −
∫
Sn−1

F (p, ε, v̄) g̊(b, ·) dvol̊g

= −
∫
Sn−1

(F (p, ε, 0) + L0v̄) g̊(b, ·) dvol̊g

−
∫
Sn−1

(F (p, ε, v̄)− F (p, ε, 0)− Lεv̄) g̊(b, ·) dvol̊g

−
∫
Sn−1

(Lε − L0)v̄ g̊(b, ·) dvol̊g
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Now, we use the fact that v̄ is L2(Sn−1)-orthogonal to linear functions and hence so is L0 v̄.
Therefore, ∫

Sn−1
L0 v̄ g̊(b, ·) dvol̊g = 0

Using the fact that v̄ = O(ε2), we get

F (p, ε, v̄)− F (p, ε, 0)− Lεv̄ = O(ε4)

Similarly, it follows from the result of Lemma 4.4 that

(Lε − L0) v̄ = O(ε4)

The claim then follows from the second estimate in Lemma 3.3 and the fact that∫
Sn−1

g̊(a, ·) g̊(b, ·) dvol̊g = g
(
Θ(a),Θ(b)

) ∫
Sn−1

(x1)2 dvol̊g =
1
n

Vol̊g(Sn−1) g
(
Θ(a),Θ(b)

)
.

Now if we assume that p0 is a nondegenerate critical point of the scalar curvature function, we
can apply once more the implicit function theorem to solve the equation

G(ε, p) := ε−3 Θ(a(p, ε)) = 0.

It should be clear that G depends smoothly on ε ∈ [0, ε0) and p ∈M . Moreover, we have

G(0, p) = −C̃∇gScal(p)

and hence G(0, p0) = 0. By assumption the differential of G with respect to p, computed at p0 is
invertible. Therefore, for all ε small enough there exists pε close to p0 such that

Θ(a(pε, ε)) = 0

In addition we have
dist(p0, pε) ≤ c ε

This completes the proof the Theorem 1.3.

6. Appendix

Lemma 6.1. For all σ = 1, . . . , n, we have∑
i,j,k,`,m

∫
Sn−1

Rikj`,m x
i xj xk x` xm xσ dvol̊g = 0.

Proof : To see that we consider all terms of the above sum, obtained fixing the 6-tuple
(i, k, j, `,m, σ). We observe that if in such a 6-tuple there is an element that appears an odd

number of time then
∫
Sn−1

xi xj xk x` xm xσ dvol̊g = 0. Moreover, the symmetries of the curvature

tensor imply that, if either i = k or j = `, then Rikj`,m = 0. Therefore, we have to compute∑
i,k,σ

∫
Sn−1

R∗ (xi)2 (xk)2 (xσ)2 dvol̊g
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where

R∗ := Rikik,σ+Rikiσ,k+Rikki,σ+Rikσi,k+Rikkσ,i+Rikσk,i+Riσik,k+Rσkik,i+Riσki,k+Rσkki,i

Again, we apply the symmetries of Riemann curvature which imply that Rikik,σ + Rikki,σ = 0,
Rikiσ,k + Rikσi,k = 0, Rikkσ,i + Rikσk,i = 0, Rσkik,i + Rσkki,i = 0 and Riσik,k + Riσki,k = 0, and
we conclude that the sum is equal to 0. �

Lemma 6.2. For all σ = 1, . . . , n, we have∑
j,k,`

∫
Sn−1

R·kj`,· x
j xk x` xσ dvol̊g = 0.

Proof : Arguing as in the previous proof, we find that
∫
Sn−1

xj xk x` xσ dvol̊g = 0 unless the

indices j, k, `, σ are pairwise equal. Hence, we can write∑
j,k,`

∫
Sn−1

R·kj`,· x
j xk x` xσ dvol̊g =

∫
Sn−1

R·σσσ,· (xσ)4 dvol̊g

+
∑
j 6=σ

∫
Sn−1

(R·σjj,· +R·jσj,· +R·jjσ,·) (xσ)2 (xj)2 dvol̊g

Using the symmetries of the Riemann curvature tensor, we get R·σσσ,· = R·σjj,· = 0 and R·jσj,·+
R·jjσ,· = 0. This completes the proof of the result. �

Lemma 6.3. For all σ = 1, . . . , n, we have∑
i,`,m

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

2
n(n+ 2)

Vol̊g(Sn−1) Scal,σ

Proof : Again, we find that
∫
Sn−1

xi x` xm xσ dvol̊g = 0 unless the indices i, `,m, σ are

pairwise equal. Hence we can write∑
i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g = Rσσ,σ

∫
Sn−1

(xσ)4 dvol̊g

+
∑
j 6=σ

∫
Sn−1

(Rσj,j +Rjσ,j +Rjj,σ) (xσ)2 (xj)2 dvol̊g

= Rσσ,σ

∫
Sn−1

(x1)4 dvol̊g

+
∑
j 6=σ

(Rσj,j +Rjσ,j +Rjj,σ)
∫
Sn−1

(x1)2 (x2)2 dvol̊g

= Rσσ,σ

(∫
Sn−1

(x1)4 dvol̊g − 3
∫
Sn−1

(x1)2 (x2)2 dvol̊g

)
+
∑
j

(Rσj,j +Rjσ,j +Rjj,σ)
∫
Sn−1

(x1)2 (x2)2 dvol̊g
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Now we use the fact that∫
Sn−1

(x1)4 dvol̊g = 3
∫
Sn−1

(x1)2 (x2)2 dvol̊g =
3

n(n+ 2)
Vol̊g(Sn−1) ,

to conclude that∑
i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

1
n(n+ 2)

Vol̊g(Sn−1)
∑
j

(Rσj,j +Rjσ,j +Rjj,σ)

Finally, the second Bianchi identity yields∑
j

Rσj,j =
∑
j

Rjσ,j =
1
2

Scal,σ

and by definition
∑
j Rjj,σ = Scal,σ. Hence∑

i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

2
n(n+ 2)

Vol̊g(Sn−1) Scal,σ

This completes the proof of the result. �
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