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EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR

We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.

Statement of the result

Assume that we are given (M, g) an n-dimensional Riemannian manifold. If Ω is a domain with smooth boundary in M , we denote by λ Ω the first eigenvalue of -∆ g , the Laplace-Beltrami operator, in Ω with 0 Dirichlet boundary condition. A smooth domain Ω 0 ⊂ M is said to be extremal if Ω -→ λ Ω is critical at Ω 0 with respect to variations of the domain Ω 0 which preserve its volume. In order to make this definition precise, we first introduce the definition of deformation of Ω 0 . Definition 1.1. We say that {Ω t } t∈(-t0,t0) is a deformation of Ω 0 , if there exists a vector field Ξ such that Ω t = ξ(t, Ω 0 ) where ξ(t, •) is the flow associated to Ξ, namely dξ dt (t, p) = Ξ(ξ(t, p)) and ξ(0, p) = p .

The deformation is said to be volume preserving if the volume of Ω t does not depend on t.

If {Ω t } t∈(-t0,t0) is a domain deformation of Ω 0 , we denote by λ t the first eigenvalue of -∆ g on Ω t , with 0 Dirichlet boundary conditions. Observe that both t -→ λ t and the associated eigenfunction t -→ u t (normalized to be positive and have L 2 (Ω t ) norm equal to 1) inherits the regularity of the deformation of Ω 0 . These facts are standard and follow at once from the implicit function theorem together with the fact that the least eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary condition is simple.

We can now give the definition of an extremal domain for the first eigenvalue of -∆ g under Dirichlet boundary condition. Definition 1.2. A domain Ω 0 is an extremal domain for the first eigenvalue of -∆ g if for any volume preserving deformation {Ω t } t of Ω 0 , we have

dλ t dt | t=0 = 0 ,
where λ t is the first eigenvalue of -∆ g on Ω t , with 0 Dirichlet boundary condition.

For all > 0 small enough, we denote by B (p) ⊂ M the geodesic ball of center p ∈ M and radius . We denote by B ⊂ R n the Euclidean ball of radius centered at the origin. Now we can state the main result of our paper : Theorem 1.3. Assume that p 0 is a nondegenerate critical point of Scal, the scalar curvature function of (M, g). Then, for all > 0 small enough, say ∈ (0, 0 ), there exists a smooth domain Ω ⊂ M such that :

(i) The volume of Ω is equal to the Euclidean volume of B .

(ii) The domain Ω is extremal in the sense of definition 1.2. Moreover, there exists c > 0 and, for all ∈ (0, 0 ), there exists p ∈ M such that the boundary of Ω is a normal graph over ∂B (p ) for some function w with w C 2,α ∂B (p ) ≤ c 3 . and dist(p , p 0 ) ≤ c .

To put this result in perspective let us digress slightly and recall a few facts about the existence of constant mean curvature hypersurfaces in Riemannian manifolds. It is well known that solutions of the isoperimetric problem

I τ := min Ω⊂M : Vol Ω=τ
Vol ∂Ω are (where they are smooth enough) constant mean curvature hypersurfaces. O. Druet [START_REF] Druet | Sharp local isoperimetric inequalities involving the scalar curvature[END_REF] has proved that for small volumes (i.e. τ > 0 small), the solutions of the isoperimetric problem are close (in a sense to be made precise) to geodesic spheres of small radius centered at a point where the scalar curvature function on (M, g) is maximal. Independently, R. Ye [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] has constructed constant mean curvature topological spheres which are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature function on (M, g). Building on these results and a result of F. Pacard and X. Xu [START_REF] Pacard | Constant mean curvature sphere in riemannian manifolds[END_REF], S. Narduli [START_REF] Nardulli | Le profil isopérimétrique d'une variété riemannienne compacte pour les petits volumes[END_REF] has obtained an asymptotic expansion of I τ as τ tends to 0.

It is well known ([4], [START_REF] Krahn | Uber eine von Raleigh formulierte Minimaleigenschaft der Kreise[END_REF], [START_REF] Krahn | Uber Minimaleigenschaften der Kugel in drei und mehr dimensionen[END_REF]) that the determination of the isoperimetric profile I τ is related to the Faber-Krahn inequality where one looks for the least value of the first eigenvalue of the Laplace-Beltrami operator amongst domains with prescribed volume

F K τ := min Ω⊂M : Vol Ω=τ λ Ω
Observe that a solution to this minimizing problem (when it is smooth) is an extremal domain in the sense of Definition 1.2. Therefore, Theorem 1.3 can be understood as a first step in understanding the asymptotics of F K τ as τ is close to 0.

Given the crucial rôle played by the critical points of the scalar curvature in the isoperimetric problem for small volumes, it is natural to expect that the critical points of the scalar curvature function will also be at the center of the study of F K τ as τ is close to 0 and Theorem 1.3 is an illustration of such a link.

As a final remark, formal computations show that the estimate on p can be improved into

dist(p , p 0 ) ≤ c 2 .
Since a rigorous proof of this estimate requires some extra technicalities which would have complicated the proof, we have chosen not to provide a proof of this fact.

Preliminary results

The following well known result gives a formula for the first variation of the first eigenvalue for the Dirichlet problem under variations of the domain. This formula has been obtained by P. R. Garabedian and M. Schiffer in [START_REF] Garadedian | Variational problems in the theory of elliptic partial differetial equations[END_REF] when the underlying manifold is the euclidean space and by A. El Soufi and S. Ilias [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold[END_REF] (see Corollary 2.1) when the underlying manifold is a Riemannian manifold. For the sake of completeness we give here a proof based on arguments contained in a paper by D. Z. Zanger in [START_REF] Zanger | Eigenvalue variation for the Neumann problem[END_REF] where a corresponding formula is derived for the Neumann problem.

Let (M, g) be an n-dimensional Riemannian manifold. Assume that {Ω t } t is a perturbation of a domain Ω 0 using the vector field Ξ, as defined in Definition 1.2. The outward unit normal vector field to ∂Ω t is denoted by ν t . Let u t ∈ C 2 (Ω t ), be the corresponding smooth one-parameter family of Dirichlet first eigenfunctions of Laplace-Beltrami operator (normalized to be positive have L 2 (Ω t ) norm equal to 1) with 0 Dirichlet boundary condition. The associated eigenvalue is denoted by λ t .

We have the : Proposition 2.1. [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold[END_REF] The derivative of t -→ λ t at t = 0 is given by

dλ t dt | t=0 = - ∂Ω0 (g(∇u 0 , ν 0 )) 2 g(Ξ, ν 0 ) dvol g ,
where dvol g is the volume element on ∂Ω 0 for the metric induced by g and ν 0 is the normal vector field about ∂Ω 0 .

Proof : We denote by ξ the flow associated to Ξ. By definition, we have

(1) u t (ξ(t, p)) = 0 for all p ∈ ∂Ω 0 . Differentiating (1) with respect to t and evaluating the result at t = 0 we obtain

∂ t u 0 = -g(∇u 0 , Ξ) ,
on ∂Ω 0 . Now u 0 ≡ 0 on ∂Ω 0 , and hence only the normal component of Ξ plays a rôle in this formula. Therefore, we have

(2)

∂ t u 0 = -g(∇u 0 , ν 0 ) g(Ξ, ν 0 ) , on ∂Ω 0 .
We differentiate with respect to t the identity

(3) ∆ g u t + λ t u t = 0.
and again evaluate the result at t = 0. We obtain

(4) ∆ g ∂ t u 0 + λ 0 ∂ t u 0 = -∂ t λ 0 u 0 ,
in Ω 0 . Now we multiply (4) by u 0 and (3), evaluated the result at t = 0, by ∂ t u 0 , subtract the results and integrate it over Ω 0 to get :

∂ t λ 0 Ω0 u 2 0 dvol g = Ω0 (∂ t u 0 ∆ g u 0 -u 0 ∆ g ∂ t u 0 ) dvol g = ∂Ω0 (∂ t u 0 g(∇u 0 , ν 0 ) -u 0 g(∇∂ t u 0 , ν 0 )) dvol g = - ∂Ω0 (g(∇u 0 , ν 0 )) 2 g(Ξ, ν 0 ) dvol g ,
where we have used (2) and the fact that u 0 = 0 on ∂Ω 0 to obtain the last equality. The result follows at once from the fact that u 0 is normalized to have L 2 (Ω 0 ) norm equal to 1.

This result allows us to state the problem of finding extremal domains into the solvability of an over-determined elliptic problem. Proposition 2.2. A smooth domain Ω 0 is extremal if and only if there exists a positive function u 0 and a constant λ 0 such that

(5)          ∆ g u 0 + λ 0 u 0 = 0 in Ω 0 u 0 = 0 on ∂Ω 0 g(∇u 0 , ν 0 ) = constant on ∂Ω 0 ,
where ν 0 is the normal vector field about ∂Ω 0 .

Proof : Assume that u 0 is a positive solution of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften[END_REF]. Observe that for a volume preserving variation, we have ∂Ω0 g(Ξ, ν 0 ) dvol g = 0. Now, if λ 0 is a solution of (5), it is the first eigenvalue of -∆ g on Ω 0 , under Dirichlet boundary condition. Moreover, we have

∂Ω0 (g(∇u 0 , ν 0 )) 2 g(Ξ, ν 0 ) dvol g = 0,
and the previous Proposition shows that the domain Ω 0 is extremal in the sense of Definition 1.2.

Conversely, assume that Ω 0 is extremal. Then given any function w such that ∂Ω0 w dvol g = 0, it is easy to check that there exists a vector field Ξ which generates a volume preserving deformation of Ω 0 and which satisfies Ξ = w ν 0 on ∂Ω 0 . The result of the previous Proposition implies that ∂Ω0 (g(∇u 0 , ν 0 )) 2 w dvol g = 0.

The function w being arbitrary, we conclude that g(∇u 0 , ν 0 ) is a constant function and hence u 0 is a solution of (5). This completes the proof of the result.

Therefore, in order to find extremal domains, it is enough to find a domain Ω 0 (regular enough) for which the over-determined problem (5) has a nontrivial positive solution. We will not be able to solve this problem in full generality but we will be able to find solutions whose volumes are small.

Rephrasing the problem

To proceed, it will be useful to introduce the following notation. Given a point p ∈ M we denote by E 1 , . . . , E n an orthonormal basis of the tangent plane to M at p. Geodesic normal coordinates x := (x 1 , . . . , x n ) ∈ R n at p are defined by

X(x) := Exp g p   n j=1 x j E j  
We recall the Taylor expansion of the coefficients g ij of the metric X * g in these coordinates. Proposition 3.1. At the point of coordinate x, the following expansion holds :

(6) g ij = δ ij + 1 3 k, R ikj x k x + 1 6 k, ,m R ikjl,m x k x x m + O(|x| 4 ),
Here R is the curvature tensor of g and

R ikj = g R(E i , E k ) E j , E R ikj ;m = g ∇ Em R(E i , E k ) E j , E ,
are evaluated at the point p.

The proof of this proposition can be found in [START_REF] Willmore | Riemannian Geometry[END_REF], [START_REF] Lee | The Yamabe Problem[END_REF] or also in [START_REF] Schoen | Lectures on Differential Geometry[END_REF].

It will be convenient to identify R n with T p M and S n-1 with the unit sphere in

T p M . If x := (x 1 , . . . , x n ) ∈ R n , we set Θ(x) := n i=1 x i E i ∈ T p M .
Given a continuous function f : S n-1 -→ (0, ∞) whose L ∞ norm is small (say less than the cut locus of p) we define

B g f (p) := Exp p (Θ(x)) : x ∈ R n 0 ≤ |x| < f (x/|x|) .
The superscript g is meant to remind the reader that this definition depends on the metric.

Our aim is to show that, for all > 0 small enough, we can find a point p ∈ M and a function v :

S n-1 -→ R such that Vol B g (1+v) (p) = n Vol B1 and the over-determined problem (7)          ∆ g φ + λ φ = 0 in B g (1+v) (p) φ = 0 on ∂B g (1+v) (p) g(∇φ, ν) = constant on ∂B g (1+v) (p)
has a nontrivial positive solution, where ν is the normal vector field about ∂B g (1+v) (p).

Observe that, considering the dilated metric ḡ := -2 g, the above problem is equivalent to finding a point p ∈ M and a function v : S n-1 -→ R such that Vol B ḡ 1+v (p) = Vol B1 and for which the over-determined problem (8)

         ∆ ḡ φ + λ φ = 0 in B ḡ 1+v (p) φ = 0 on ∂B ḡ 1+v (p) ḡ(∇ φ, ν) = constant on ∂B ḡ 1+v (p)
has a nontrivial positive solution, where ν is the normal vector field about ∂B ḡ 1+v (p). The relation between the solutions of the two problems is simply given by φ = -n/2 φ and λ = -2 λ .

Let us denote by g the Euclidean metric in R n and λ 1 the first eigenvalue of -∆ g in the unit ball B1 with 0 Dirichlet boundary condition. We denote by φ 1 the associated eigenfunction

(9)    ∆ g φ 1 + λ 1 φ 1 = 0 in B1 φ 1 = 0 on ∂ B1 .
which is normalized to be positive and have L 2 ( B1 ) norm equal to 1.

For notational convenience, given a continuous function

f : S n-1 -→ (0, ∞), we set Bf := {x ∈ R n : 0 ≤ |x| < f (x/|x|)} .
The following result follows from the implicit function theorem.

Proposition 3.2. Given a point p ∈ M , there exists 0 > 0 and for all ∈ (0, 0 ) and all function v ∈ C 2,α (S n-1 ) satisfying v C 2,α (S n-1 ) ≤ 0 , and

S n-1 v dvol g = 0 , there exists a unique positive function φ = φ( , p, v) ∈ C 2,α (B ḡ 1+v (p)), a constant λ = λ( , p, v) ∈ R and a constant v 0 = v 0 ( , p, v) ∈ R such that Vol ḡ (B 1+v ) = Vol g ( B1 )
where v := v 0 + v and φ is a solution to the problem

(10)    ∆ ḡ φ + λ φ = 0 in B ḡ 1+v φ = 0 on ∂B ḡ 1+v which is normalized by (11) B ḡ 1+v (p) φ2 dvol ḡ = 1.
In addition φ, λ and v 0 depend smoothly on the function v and the parameter and φ = φ 1 , λ = λ 1 and v 0 = 0 when = 0 and v ≡ 0.

Proof : Instead of working on a domain depending on the function v = v 0 + v, it will be more convenient to work on a fixed domain B1 := {y ∈ R n : |y| < 1}, endowed with a metric depending on both and the function v. This can be achieved by considering the parameterization of B ḡ 1+v (= B g (1+v) ) given by

Y (y) := Exp ḡ p 1 + v 0 + χ(y) v y |y| i y i E i
where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when |y| ≥ 3/4.

Hence the coordinates we consider from now on are y ∈ B1 and in these coordinates the metric ĝ := Y * ḡ can be written as

ĝ = (1 + v 0 ) 2   g + i,j C ij dy i dy j   ,
where the coefficients C ij ∈ C 1,α ( B1 ) are functions of y depending on , v = v 0 + v and the first partial derivatives of v. Moreover, C ij ≡ 0 when = 0 and v = 0.

Observe that

( , v 0 , v) -→ C ij ( , v) ,
are smooth maps.

Up to some multiplicative constant, the problem we want to solve can now be rewritten in the form ( 12)

   ∆ ĝ φ + λ φ = 0 in B1 φ = 0 on ∂ B1 with (13) B1 φ2 dvol ĝ = 1 and (14) Vol ĝ ( B1 ) = Vol g ( B1 )
When = 0 and v ≡ 0, the metric ĝ = (1 + v 0 ) 2 g is nothing but the Euclidean metric and a solution of ( 9) is therefore given by φ = φ 1 , λ = λ 1 and v 0 = 0. In the general case, the relation between the function φ in the statement of the Proposition and the function φ is simply given by

Y * φ = φ and λ = λ For all ψ ∈ C 2,α ( B1 ) such that B1 ψ φ 1 dvol g = 0 we define N ( , v, ψ, v 0 ) := ∆ g ψ + λ 1 ψ + (∆ ĝ -∆ g + µ) (φ 1 + ψ) , Vol ĝ ( B1 ) -Vol g ( B1 )
where µ is given by

µ = - B1 φ 1 (∆ ĝ -∆ g ) (φ 1 + ψ) dvol g so that the first entry of M is L 2 ( B1 )-orthogonal to φ 1 .
Observe that N also depends on the choice of the point p ∈ M .

We have N (0, 0, 0, 0) = (0, 0). It should be clear that the mapping N is a smooth map from a neighborhood of (0, 0, 0, 0

) in [0, ∞) × C 2,α m (S n-1 ) × C 2,α ⊥ , 0 ( B1 ) × R into a neighborhood of (0, 0) in C 0,α ⊥ ( B1 ) × R.
Here the subscript ⊥ indicates that the functions in the corresponding space are L 2 ( B1 )-orthogonal to φ 1 (for the Euclidean metric) and the subscript 0 indicates that the functions vanish on the boundary of B1 . Finally, the subscript m indicates that the functions have mean 0 over the unit (Euclidean) sphere.

We claim that the partial differential of N with respect to ψ, computed at (0, 0, 0, 0), is given by D ψ N (0, 0, 0, 0) = (∆ g + λ 1 , 0) while the partial differential of N with respect to v 0 , computed at (0, 0, 0, 0), is given by

∂ v0 N (0, 0, 0, 0) = 0 , n Vol g ( B1 )
There is no difficulty in getting the expression of the first partial differential since ĝ = g when = v 0 = 0 and v = 0 and hence

N (0, 0, ψ, 0) = (∆ g ψ + λ 1 ψ + µ (φ 1 + ψ) , 0)
where µ = 0. The derivation of the partial differential with respect to v 0 is not hard either but requires some care. Indeed, this time we have ĝ = (1 + v 0 ) 2 g since v ≡ 0 and = 0 and hence

N (0, 0, 0, v 0 ) = ((1 + v 0 ) -2 -1) ∆ g + µ φ 1 , ((1 + v 0 ) n -1) Vol g ( B1 ) = µ -λ 1 ((1 + v 0 ) -2 -1) φ 1 , ((1 + v 0 ) n -1) Vol g ( B1 )
where µ is given by

µ = -((1 + v 0 ) -2 -1) B1 φ 1 ∆ g φ 1 dvol g = λ 1 ((1 + v 0 ) -2 -1).
So we get

∂ v0 N (0, 0, 0, 0) = (∂ v0 µ| v0=0 + 2 λ 1 ) φ 1 , n Vol g ( B1 )
and

∂ v0 µ| v0=0 = -2 λ 1
The claim then follows at once.

Hence the partial differential of N with respect to both ψ and v 0 , computed at (0, 0, 0, 0) is precisely invertible from C 2,α ⊥,0 ( B1 ) × R into C 0,α ⊥ ( B1 ) × R and the implicit function theorem ensures, for all ( , v) in a neighborhood of (0, 0) in [0, ∞) × C 2,α m (S n-1 ), the existence of a (unique) (ψ, v 0 ) ∈ C 2,α ⊥,0 ( B1 ) × R such that N ( , v, ψ, v 0 ) = 0. The function φ := φ 1 + ψ solves [START_REF] Willmore | Riemannian Geometry[END_REF] and in order to have [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] fulfilled, it is enough to divide it by its L 2 norm. The fact that the solution depends smoothly on the parameter , the function v and the point p ∈ M is standard. This completes the proof of the result.

After canonical identification of ∂B ḡ 1+v (p) with S n-1 , we define, the operator F :

F (p, , v) = ḡ(∇ φ, ν) | ∂B ḡ 1+v - 1 Vol ḡ (∂B ḡ 1+v ) ∂B ḡ 1+v ḡ(∇ φ, ν) dvol ḡ ,
where ν denotes the unit normal vector field to ∂B ḡ 1+v and ( φ, v 0 ) is the solution of (10) provided by the previous result. Recall that v = v 0 + v. Schauder's estimates imply that F is well defined from a neighborhood of M × (0, 0

) in M × [0, ∞) × C 2,α m (S n-1 ) into C 1,α m (S n-1
). The subscript m is meant to point out that the functions have mean 0. Our aim is to find (p, , v) such that F (p, , v) = 0. Observe that, with this condition, φ will be the solution to the problem [START_REF] Lee | The Yamabe Problem[END_REF].

Following the proof of the previous result, we have the alternative expression for F .

F (p, , v) = ĝ(∇ φ, ν) | ∂ B1 - 1 Vol ĝ (∂ B1 ) ∂ B1 ĝ(∇ φ, ν) dvol ĝ ,
where this time ν is the the unit normal vector field to ∂ B1 using the metric ĝ.

We end this section by the proof of the :

Lemma 3.3.
There exists a constant c > 0 such that, for all p ∈ M and all ≥ 0 small enough we have

F (p, , 0) C 1,α ≤ c 2
For all a ∈ R n , the following estimate holds

S n-1 g(a, •) F (p, , 0) dvol g -C 3 g(∇Scal(p), Θ(a)) ≤ c 4 a ,
where

C := 1 2n(n + 2) 1 ∂ r φ 1 (1) B1 r 2 |∂ r φ 1 | 2 dvol g Proof :
We keep the notations of the proof of the previous result with v ≡ 0. In order to prove these estimates, we follow the construction of F (p, , 0) step by step. First of all, since v ≡ 0, we have N ( , 0, 0, 0) = (∆ ĝ -∆ g + µ) φ 1 , Vol ĝ ( B1 ) -Vol g ( B1 ) , and

µ = - B1 φ 1 (∆ ĝ -∆ g ) φ 1 dvol g .
If in addition v 0 = 0, we can estimate

ĝij = δ ij + O( 2 ) , hence N ( , 0, 0, 0) = O( 2 ) .
The implicit function theorem immediately implies that the solution of

N ( , 0, ψ, v 0 ) = 0 satisfies ψ( , p, 0) C 2,α + |v 0 ( , p, 0)| ≤ c 2
To complete the proof, observe that ν = (1

+ v 0 ) -1 ∂ r when v ≡ 0. Therefore ĝ(∇ φ, ν) = ∂ r φ 1 + O( 2 )
(be careful that ĝ is defined with v 0 = v 0 ( , p, 0) and v ≡ 0). Since ∂ r φ 1 is constant along ∂ B1 , we conclude that

F (p, , 0) = O( 2 )
and this proves the first estimate.

We now turn to the proof of the second estimate. Instead of going through the construction of φ step by step, we compute

S n-1 g(∇φ 1 , a) ∂ φ ∂r dvol g = B1 g(∇φ 1 , a) (∆ g + λ 1 ) φ dvol g - B1 φ (∆ g + λ 1 )g(∇φ 1 , a) dvol g = B1 g(∇φ 1 , a) (∆ g + λ 1 ) φ dvol g = B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) φ dvol g + (λ 1 -λ) B1 g(∇φ 1 , a) φ dvol g = B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) φ 1 dvol g + (λ 1 -λ) B1 g(∇φ 1 , a) φ 1 dvol g + B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) ( φ -φ 1 ) dvol g + (λ 1 -λ) B1 (∇φ 1 • a) ( φ -φ 1 ) dvol g = B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) φ 1 dvol g + B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) ( φ -φ 1 ) dvol g + (λ 1 -λ) B1 g(∇φ 1 , a) ( φ -φ 1 ) dvol g
The last two terms can be estimated easily since λ -λ 1 = O( 2 ), φ -φ 1 = O( 2 ) and the coefficients of ∆ g -∆ ĝ are bounded by a constant times 2 . Therefore, we conclude that there exists a constant c such that

S n-1 g(∇φ 1 , a) ∂ φ ∂r dvol g - B1 g(∇φ 1 , a) (∆ g -∆ ĝ ) φ 1 dvol g ≤ c 4 a
To proceed, we use the result of Proposition 3.1 to show that the coefficients of the metric ĝ can be expanded as

ĝij (y) = (1+v 0 ) 2   δ ij + 1 3 k, R ikj y k y (1 + v 0 ) 2 2 + 1 6 k, ,m R ikjl,m y k y y m (1 + v 0 ) 3 3 + O( 4 )   Keeping in mind that v 0 = O( 2 ), this simplifies slightly into ĝij (y) = (1 + v 0 ) 2   δ ij + 1 3 k, R ikj y k y 2 + 1 6 k, ,m R ikjl,m y k y y m 3 + O( 4 )   This implies that ĝij = (1 + v 0 ) -2 δ ij - 1 3 R ikj y k y 2 - 1 6 R ikj ,m y k y y m 3 + O( 4 ) log |ĝ| = 2n log(1 + v 0 ) + 1 3 R k y k y 2 + 1 6 R k ,m y k y y m 3 + O( 4 )
where

R k = n i=1 R iki and R k ,m = n i=1 R iki ,m
Recall that

∆ ĝ := i,j ĝij ∂ yi ∂ yj + i,j ∂ yi ĝij ∂ yj + 1 2 i,j ĝij ∂ yi log |ĝ| ∂ yj A straightforward calculation (still keeping in mind that v 0 = O( 2 )) shows that ∆ g -∆ ĝ φ 1 = -λ 1 (1 -(1 + v 0 ) -2 ) φ 1 + 1 3 2 i,j,k, R ikj y i y j y k y r 2 ∂ 2 r φ 1 + y k y r δ i j ∂ r φ 1 - y i y j y k y r 3 ∂ r φ 1 - 2 3 2 i,j R ij y i y j r ∂ r φ 1 + + 1 6 3 i,j,k, ,m R ikj ,m y i y j y k y y m r 2 ∂ 2 r φ 1 - ∂ r φ 1 r + 1 6 3 k,j, R •kj ,• y j y k y r ∂ r φ 1 - 1 4 3 i, ,m R i ,m y i y y m r ∂ r φ 1 + O( 4 ),
where r := |y| and

R •kj ,• := n i=1 R ikj ,i
Observe that we have used the fact that R(X, X) ≡ 0 and the symmetries of the curvature tensor for which if either i = k or j = then R ikj ,m = 0.

Observe that, in the expansion of (∆ g -∆ ĝ ) φ 1 , terms which contain an even number of coordinates, such as y i y j y k y or y i y j etc. do not contribute to the result since, once multiplied by g(∇φ 1 , a), their average over S n-1 is 0. Therefore, we can write

B1 g(∇φ 1 a) ∆ g -∆ ĝ φ 1 dvol g = 3 B1 ∂ r φ 1 a σ y σ r 1 6 i,j,k, ,m R ikj ,m y t y k y l y i y j r 2 ∂ 2 r φ 1 - ∂ r φ 1 r + 1 2 j,k, ( 1 3 R •kj ,• - 1 2 R kj, ) y k y y j r ∂ r φ 1 + O( 4 ),
We make use of the identities in the Appendix to conclude that (15

) B1 g(∇φ 1 , a) ∆ g -∆ ĝ φ 1 dvol g = 1 2n(n + 2) 3 g ∇Scal(p), Θ(a) B1 r 2 |∂ r φ 1 | 2 dvol g + O( 4 ).
The second estimate follows at once from this computation together with the fact that, when v ≡ 0, ν = (1 + v 0 ) ∂ r as already mentioned and

g(∇φ 1 , a) = ∂ r φ 1 (1)g(a, •) ,
on ∂ B1 since this implies that

S n-1 g(a, •) ĝ(∇ φ, ν)| ∂ B1 dvol g = 1 + v 0 ∂ r φ 1 (1) S n-1 g(∇φ 1 , a) ∂ φ ∂r dvol
g This completes the proof of the result.

Our next task will be to understand the structure of L 0 , the operator obtained by linearizing F with respect to v at = 0 and v = 0. We will see that this operator is a first order elliptic operator which does not depend on the point p. Also, we will be interested in various properties of the expansion of F (p, , 0) in powers of .

The structure of L 0

We keep the notations of the previous section. We claim that, when = 0, ḡ = g. Indeed, observe that, if we use coordinates X(y) := Exp g p i

y i E i
to parameterize a neighborhood of p in M , the coefficients ḡij of the metric X * ḡ = -2 X * g can be expanded as

(16) ḡij (y) = δ ij + 1 3 k, R ikj y k y 2 + 1 6 k, ,m R ikjl,m y k y y m 3 + O( 4 )
and, when = 0, we conclude that X * ḡ = g. Therefore, when = 0 we have ḡ = g and ( 10) becomes ( 17)

   ∆ g φ + λ φ = 0 in B g 1+v φ = 0 on ∂B g 1+v
with the normalization (18)

B g 1+v φ2 dvol g = 1
and the volume constraint Vol g (B g 1+v ) = Vol g ( B1 )

Remember that we have set v := v 0 + v.

We already have established the existence of a unique positive function φ ∈ C 2,α (S n-1 ) (close to φ 1 ), a constant λ ∈ R (close to λ 1 ) and a constant v 0 ∈ R (close to 0), solutions to the above problem so we are going to construct an expansion of φ, λ and v 0 in powers of v and its derivatives. This will lead to the structure of the linearized operator L 0 .

Recall that λ 1 is the first eigenvalue of -∆ g in the unit ball B1 with 0 Dirichlet boundary condition and φ 1 is the associated eigenfunction which is normalized to be positive and have L 2 ( B1 ) norm equal to 1. Observe that in principle φ 1 is only defined in the unit ball, however, this function being radial, it is a solution of a second order ordinary differential equation and as such can be extended at least in a neighborhood of ∂ B1 .

We start with the easy :

Lemma 4.1. Assume that v ∈ C 2,α m (S n-1 ) is given. We define φ 0 (x) = ∂ r φ 1 (x) v (x/|x|) Then (19) ∆ g φ 0 + λ 1 φ 0 = 1 r 2 ∂ r φ 1 (∆ S n-1 + n -1) v.
Proof : This is a straightforward exercise. Using the fact that

∆ g ∂ r φ 1 = -λ 1 ∂ r φ 1 + n -1 r 2 ∂ r φ 1 , we find ∆ g φ 0 = v ∆ g ∂ r φ 1 + ∂ r φ 1 ∆ g v + 2 ∇v∇∂ r φ 1 = -λ 1 φ 0 + 1 r 2 ∂ r φ 1 (∆ S n-1 + n -1) v , This completes the proof of the result.
For all v ∈ C 2,α m (S n-1 ) let ψ be the (unique) solution of (20)

   ∆ g ψ + λ 1 ψ = 0 in B1 ψ = -∂ r φ 1 v on ∂ B1 which is L 2 ( B1 )-orthogonal to φ 1 . We define (21) H(v) := ∂ r ψ + ∂ 2 r φ 1 v | ∂ B1
Recall that the eigenvalues of the operator -∆ S n-1 are given by

µ j = j (n -2 + j)
for j ∈ N. The corresponding eigenspaces will be denoted by V j .

We will need the following result : Proposition 4.2. The operator

H : C 2,α m (S n-1 ) -→ C 1,α m (S n-1
), is a self adjoint, first order elliptic operator. (Recall that the subscript m is meant to point out that functions have mean 0 on S n-1 ). The kernel of H is given by V 1 , the eigenspace of -∆ S n-1 associated to the eigenvalue n -1. Moreover there exists c > 0 such that

w C 2,α (S n-1 ) ≤ c H(w) C 1,α (S n-1 ) , provided w is L 2 (S n-1 )-orthogonal to V 0 ⊕ V 1 .
Proof : The fact that H is a first order elliptic operator is standard since it is the sum of the Dirichlet-to-Neumann operator for ∆ g + λ 1 and a constant times the identity. In particular, elliptic estimates yield

H(w) C 1,α (S n-1 ) ≤ c w C 2,α (S n-1 )
The fact that the operator H is (formally) self-adjoint is easy. Let ψ 1 (resp. ψ 2 ) the solution of (20) corresponding to the function w 1 (resp. w 2 ). We compute

∂ r φ 1 (1) ∂ B1 (H(w 1 ) w 2 -w 1 H(w 2 )) dvol g = ∂ r φ 1 (1) ∂ B1 (∂ r ψ 1 w 2 -∂ r ψ 2 w 1 ) dvol g = ∂ B1 (ψ 1 ∂ r ψ 2 -ψ 2 ∂ r ψ 1 ) dvol g = B1 (ψ 1 ∆ g ψ 2 -ψ 2 ∆ g ψ 1 ) dvol g = 0
To prove the other statements, we define for all w ∈ C 2,α m (S n-1 ), Ψ to be the continuous solution of

(22)    ∆ g Ψ + λ 1 Ψ = 1 r 2 ∂ r φ 1 (∆ S n-1 + n -1) w in B1 Ψ = 0 on ∂ B1 .
.

Observe that ∂ r φ 1 vanishes at first order at r = 0 and hence the right hand side is bounded by a constant times r -1 near the origin. Standard elliptic estimates then imply that the solution Ψ is at least continuous near the origin. A straightforward computation using the result of Lemma 4.1 and writing Ψ = ψ + ∂ r φ 1 w, shows that

(23) H(w) := ∂ r Ψ| ∂ B1
With this alternative definition, it should be clear that H preserves the eigenspaces V j and in particular, H maps into the space of functions whose mean over S n-1 is 0. Moreover, it is clear that V 1 is included in the kernel of H since (∆ S n-1 + n -1) w = 0 for any w ∈ V 1 . We now prove that V 1 is the only kernel of this operator.

We consider w = j≥1 w j the eigenfunction decomposition of w. Namely w j ∈ V j . Then

H(w) = j α j w j
where the constants α j are given by

α j = ∂ r a j (1)
where a j is the continuous solution of (24)

a j + n -1 r a j + λ 1 a j - 1 r 2 µ j a j = 1 r 2 (n -1 -µ j ) ∂ r φ 1 , with a j (1) = 0.
Observe that α 1 = 0 and, in order to prove that the kernel of H is given by V 1 , it is enough to show that α j = 0 for all j ≥ 2.

We claim that a j ≤ 0 , for all j ≥ 2. This follows at once from the maximum principle since n -1 -µ j < 0 for all j ≥ 2 and ∂ r φ 1 ≤ 0.

Proof of the claim : By definition of λ 1 , the operator ∆ g + λ 1 is non-positive, in the sense that (25)

- B1 u (∆ g + λ 1 ) u dvol g = B1 (|∇u| 2 g -λ 1 u 2 ) dvol g ≥ 0 .
Specializing this inequality to radial functions, we get

1 0 (∂ r u) 2 -λ 1 u 2 r n-1 dr ≥ 0 provided u ∈ H 1 0 ( B1 ) is radial.
Now, assume that a j ≥ 0 in [r 1 , r 2 ] with a j (r i ) = 0, then multiplying (24) by a j r n-1 and integrating the result by parts between r 1 and r 2 , we get

r2 r1 (∂ r a j ) 2 -λ 1 a 2 j + 1 r 2 µ j a 2 j r n-1 dr ≤ 0
and hence necessarily a j ≡ 0 on [r 1 , r 2 ]. This completes the proof of the claim.

The claim being proven, we use the fact that a j (1) = 0 for all j ≥ 2 to conclude that 0 ≤ ∂ r a j (1).

If ∂ r a j (1) = 0 then necessarily ∂ 2 r a j (1) ≤ 0 but evaluation of (24) at r = 1 implies that 0 = (n -1) a j (1) = (n -1 -µ j ) ∂ r φ 1 (1) -a j (1)

≥ (n -1 -µ j ) ∂ r φ 1 (1) > 0 ,
which immediately leads to a contradiction. Hence, ∂ r a j (1) > 0 for all j ≥ 2 and this completes the proof of the fact that the kernel of the operator

H is equal to V 1 .
The main result of this section is the following : Finally, differentiating (28) with respect to s and evaluating the result at s = 0, we obtain (31)

S n-1 ( v0 + w) dvol g = 0
The last equality immediately implies (since, by definition, the average of w is 0) that v0 = 0. If we multiply the first equation of (29) by φ 1 and we integrate it, using the boundary condition and the fact that the average of w is 0 together with the fact that v0 = 0, we conclude that μ = 0. And hence ψ is precisely the solution of (20). To summarize, we have proven that φ = φ1 + s ψ + O(s 2 )

This implies that the solution of ( 8) is given by φ 1 (modulo some O(s 2 ) term) and hence its normal data is constant (modulo some O(s 2 ) term). Therefore F (p, 0, v) = O(s 2 ) which shows that L 0 v = 0.

The proof of Theorem 1.3

We shall now prove that, for > 0 small enough, it is possible to solve the equation

F (p, , v) = 0
Unfortunately, we will not be able to solve this equation at once. Instead, we first prove the : Proposition 5.1. There exists 0 > 0 such that, for all ∈ [0, 0 ] and for all p ∈ M , there exists a unique function v = v(p, ) and a vector a = a(p, ) ∈ R n such that

F (p, , v) + g(a, •) = 0
The function v and the vector a depend smoothly on p and and we have

|a| + v C 2,α (S n-1 ) ≤ c 2 Proof : We fix p ∈ M and define F (p, , v, a) := F (p, , v) + g(a, •)
It is easy to check that F is a smooth map from a neighborhood of (p, 0, 0, 0) in M × [0, ∞) × C 2,α m (S n-1 ) × R n into a neighborhood of 0 in C 1,α (S n-1 ). Moreover, F (p, 0, 0, 0) = 0 and the differential of F with respect to v, computed at (p, 0, 0, 0) is given by H. Finally the image of the linear map a -→ g(a, •) is just the vector space V 1 . Thanks to the result of Proposition 4.2, the implicit function theorem applies to get the existence of v and a, smoothly depending on p and such that F (p, , v) +g(a, •) = 0. The estimate for v and a follows at once from Lemma 3.3.

In view of the result of the previous Proposition, it is enough to show that, provided that is small enough, it is possible to choose the point p ∈ M such that a(p, ) = 0. We claim that, there exists a constant C > 0 (only depending on n) such that

Θ(a(p, )) = -3 C ∇ g Scal(p) + O( 4 ) Indeed, for all b ∈ R n we compute S n-1 g(a, •)g(b, •) dvol g = - S n-1 F (p, , v)g(b, •) dvol g = - S n-1 (F (p, , 0) + L 0 v)g(b, •) dvol g - S n-1 (F (p, , v) -F (p, , 0) -L v)g(b, •) dvol g - S n-1 (L -L 0 )v g(b, •) dvol g
Now, we use the fact that v is L 2 (S n-1 )-orthogonal to linear functions and hence so is L 0 v. Therefore,

S n-1 L 0 v g(b, •) dvol g = 0 Using the fact that v = O( 2 ), we get F (p, , v) -F (p, , 0) -L v = O( 4 )
Similarly, it follows from the result of Lemma 4.4 that

(L -L 0 ) v = O( 4 )
The claim then follows from the second estimate in Lemma 3.3 and the fact that and hence G(0, p 0 ) = 0. By assumption the differential of G with respect to p, computed at p 0 is invertible. Therefore, for all small enough there exists p close to p 0 such that Θ(a(p , )) = 0

In addition we have dist(p 0 , p ) ≤ c

This completes the proof the Theorem 1.3.

Appendix

Lemma 6.1. For all σ = 1, . . . , n, we have i,j,k, ,m S n-1 R ikj ,m x i x j x k x x m x σ dvol g = 0.

Proof : To see that we consider all terms of the above sum, obtained fixing the 6-tuple (i, k, j, , m, σ). We observe that if in such a 6-tuple there is an element that appears an odd number of time then S n-1

x i x j x k x x m x σ dvol g = 0. Moreover, the symmetries of the curvature tensor imply that, if either i = k or j = , then R ikj ,m = 0. Therefore, we have to compute i,k,σ S n-1 R * (x i ) 2 (x k ) 2 (x σ ) 2 dvol g where

R * := R ikik,σ + R ikiσ,k + R ikki,σ + R ikσi,k + R ikkσ,i + R ikσk,i + R iσik,k + R σkik,i + R iσki,k + R σkki,i
Again, we apply the symmetries of Riemann curvature which imply that R ikik,σ + R ikki,σ = 0, R ikiσ,k + R ikσi,k = 0, R ikkσ,i + R ikσk,i = 0, R σkik,i + R σkki,i = 0 and R iσik,k + R iσki,k = 0, and we conclude that the sum is equal to 0. Lemma 6.2. For all σ = 1, . . . , n, we have j,k, S n-1 R •kj ,• x j x k x x σ dvol g = 0.

Proof : Arguing as in the previous proof, we find that S n-1

x j x k x x σ dvol g = 0 unless the indices j, k, , σ are pairwise equal. Hence, we can write Vol g (S n-1 ) Scal ,σ

j,k, S n-1 R •kj ,• x j x k x x σ dvol g = S n-1 R •σσσ,• (x σ ) 4 dvol g + j =σ S n-1 (R •σjj,• + R •jσj,• + R •jjσ,• ) (x σ ) 2 (x j
Proof : Again, we find that S n-1

x i x x m x σ dvol g = 0 unless the indices i, , m, σ are pairwise equal. Hence we can write (R σj,j + R jσ,j + R jj,σ )

S n-1 (x 1 ) 2 (x 2 ) 2 dvol g = R σσ,σ S n-1 (x 1 ) 4 dvol g -3

S n-1 (x 1 ) 2 (x 2 ) 2 dvol g + j (R σj,j + R jσ,j + R jj,σ )

S n-1 (x 1 ) 2 (x 2 ) 2 dvol g

Proposition 4 . 3 .Fφ2 dvol ĝ = 1 and

 431 The operator L 0 is equal to H. Proof : By definition, the operator L 0 is the linear operator obtained by linearizing N with respect to v at = 0 and v = 0. In other words, we have L 0 ( w) = lim s→0 (p, 0, s w) -F (p, 0, 0) s .Since = 0, we have already seen that ḡ = g. Writing v = s w, we argue as in the proof of Proposition 3.2 and consider the parameterization of B1+v given byY (y) := 1 + v 0 + s χ(y) w y |y| ywhere χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when |y| ≥ 3/4. We set ĝ := Y * g so that φ = Y * φ, λ = λ and v 0 are solutions (smoothly depending on the real parameter s) of   ∆ ĝ φ + λ φ = 0 in B1 φ = 0 on ∂ B1 with B1 Vol ĝ ( B1 ) = Vol g ( B1 )We remark that φ1 := Y * φ 1 is a solution of∆ ĝ φ1 + λ 1 φ1 = 0 since ĝ = Y * g. Moreover φ1 (y) = φ 1 ((1 + v 0 + s w(y)) y) ,on ∂ B1 . Writing φ = φ1 + ψ and λ = λ 1 + µ, we find that Vol ĝ ( B1 ) = Vol g ( B1 )Obviously ψ, µ and v 0 are smooth functions of s. When s = 0, we have φ = φ 1 , λ = λ 1 and v 0 = 0. Therefore, ψ, µ and v 0 all vanish and φ1 = φ 1 , when s = 0. Moreover ĝ = g when s = 0. We set ψ = ∂ s ψ| s=0 , μ = ∂ s µ| s=0 , and v0 = ∂ s v 0 | s=0 , Differentiating (26) with respect to s and evaluating the result at s = 0, we obtain (29)   ∆ g ψ + λ 1 ψ + μ φ 1 = 0 in B1 ψ = -∂ r φ 1 ( v0 + w) on ∂ B1Observe that, as already mentioned, φ1 (y) = φ 1 ((1 + v 0 + s w(y)) y) on ∂ B1 and differentiation with respect to s at s = 0 yields ∂ s φ1 | s=0 = ∂ r φ 1 ( v0 + w).Differentiating (27) with respect to s and evaluating the result at s = 0, we obtain(30)B1 φ 1 ψ dvol g = 0 Indeed, the derivative of the right hand side of (27) with respect to s vanishes when s = 0 since φ 1 vanishes identically on ∂ B1 .

S n- 1 g

 1 (a, •)g(b, •) dvol g = g Θ(a), Θ(b)S n-1 (x 1 ) 2 dvol g = 1 n Vol g (S n-1 ) g Θ(a), Θ(b) .Now if we assume that p 0 is a nondegenerate critical point of the scalar curvature function, we can apply once more the implicit function theorem to solve the equationG( , p) := -3 Θ(a(p, )) = 0.It should be clear that G depends smoothly on ∈ [0, 0 ) and p ∈ M . Moreover, we have G(0, p) = -C ∇ g Scal(p)

) 2 dvolgLemma 6 . 3 .

 63 Using the symmetries of the Riemann curvature tensor, we getR •σσσ,• = R •σjj,• = 0 and R •jσj,• + R •jjσ,• = 0.This completes the proof of the result. For all σ = 1, . . . , n, we have i, ,m S n-1 R i ,m x i x x m x σ dvol g = 2 n(n + 2)

i, ,m, S n- 1 RS n- 1 (x σ ) 4 dvol g + j =σ S n- 1 (

 111 i ,m x i x x m x σ dvol g = R σσ,σ R σj,j + R jσ,j + R jj,σ ) (x σ ) 2 (x j )

where ψ is the solution of (20) and we also know that

In particular, in B1 \ B3/4 , we have φ(y) = φ 1 1 + s w(y/|y|) y + s ψ(y)

where we have set r := |y|.

To complete the proof of the result, it suffices to compute the normal derivative of the function φ when the normal is computed with respect to the metric ĝ. We use polar coordinates y = r z where r > 0 and z ∈ S n-1 . Then the metric ĝ can be expanded in B1 \ B3/4 as

where h is the metric on S n-1 induced by the Euclidean metric. It follows from this expression together with the fact that v 0 = O(s 2 ) that the unit normal vector field to ∂ B1 for the metric ĝ is given by ν

where ∂ zj are vector fields induced by a parameterization of S n-1 . Using this, we conclude that

) on ∂ B1 . The result then follows at once from the fact that ∂ r φ 1 is constant while the term w ∂ 2 r φ 1 + ∂ r ψ has mean 0 on the boundary ∂ B1 . This completes the proof of the proposition. We denote by L the linearization of F with respect to v, computed at the point (p, , 0). Following the proof of the previous Proposition, it is easy to check the : Lemma 4.4. There exists a constant c > 0 such that, for all > 0 small enough we have the estimate

Proof : Clearly both L and L 0 are first order differential operators. To prove the estimate, we simply use the fact that, when = 0, the difference between the coefficients of ḡ = -2 g and g can be estimated by a constant times 2 . This implies that the discrepancy between the linearized operator when = 0 and when = 0 is a first order differential operator whose coefficients can be estimated by a constant times 2 .

The main result of this section is the fact that the linearized operator L 0 is given by H. Observe that the kernel of L 0 is equal to V 1 which is the vector space spanned by the restriction of linear functions to the unit sphere. This is geometrically very natural since, when = 0, a linear function v := g(a, •) ∈ V 1 correspond to infinitesimal translation of the unit ball in the direction a ∈ R n . Therefore we have B g 1+s v (p) ∼ B1 (p + s a), Now we use the fact that

Finally, the second Bianchi identity yields This completes the proof of the result.