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Abstract. The nonlinear vibration of railway tracks is a subject of some recent investigations.
A main source of non-linearity comes from the railway foundations. For example, ballast and
its lower layers or support systems of non-ballasted railway could have nonlinear behaviors.
Models of beam under moving forces are often used for this dynamic system, and then the
models are solved by numerical method or perturbation technique for some special nonlinear
cases. This communication present a new method for calculating the response of railway tracks
under moving trains loads. Based an analytical model of periodically supported beam, this
model holds for all kinds of nonlinear foundations. Then, by using harmonic balance techniques
and iteration procedures, a new method is developed to calculate the response of the model
provided that the loading forces form a periodic impulse series. This kind of loading force
represents charges of moving trains with equal mass wagons. This method is demonstrated to
converge to the analytic solution of the model in case of linear foundation. Then, it is applied to
bilinear and nonlinear foundation as examples. The results show that the nonlinear parameters
of foundation have a strong influence on the railways track responses. This semi-analytical
method is simple and could be efficient to compute the nonlinear vibrations of railway tracks.
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1 INTRODUCTION

The nonlinear vibration of railway tracks is a subject of many investigations [2–9]. A main
source of non-linearity comes from the railway foundations. For example, ballast and its lower
layers or support systems of non-ballasted railway could have nonlinear behaviours. Models of
beam on continuous or periodical supports under moving forces are often used for this dynamic
system.

The first model was developed by Fryba [10] by considering beams on an elastic founda-
tion. Then this model has been developed for other linear foundations [11–14]. In order to
take into account the discrete supports, Mead [15, 16] presented periodically supported beams
for railway tracks. This model is also developed by other authors for different kind of linear
supports and moving forces [17–21]. Although the analytical methods are well developed for
linear cases, these methods can not be easily applied to nonlinear foundations. An alternative
is to use numerical methods [2–7] or perturbation techniques [8, 9]. However, the perturbation
techniques have some limitations when applied to general cases.

We propose here a semi-analytical method for solving the problem of the dynamics of rail-
way tracks on nonlinear foundations. Based on the model of periodically supported beam by
Hoang et al. [1], a numerical method is developed for nonlinear behaviours. This method ap-
proaches Fourier series of the response by using harmonic balance techniques and an iteration
procedure [22, 23]. The method is then compared to analytical solutions for linear founda-
tion situations. The bilinear and nonlinear constitutive laws are considered as examples for the
method. These examples show that this is a simple way to approach the responses of the system.

2 MODEL OF RAILWAY ON NONLINEAR FOUNDATION

2.1 Reduced relation between force and displacement of railway sleepers

Here we consider a railway track with sleepers distributed periodically in a nonlinear foun-
dation whose reaction force is characterized by a function f(w,w′), w(t) is the displacement of
the sleeper as shown in figure 1. The rail is subjected to moving forces Qj characterized by the
distance to the first moving force Dj (j = 1..K with K is the number of moving forces).

Qj Q1

L

x

z
Dj v

wr(0, t)

M w(t)

R(t)

f(w,w′)

η1k1

Figure 1: Periodically supported beam subjected to moving forces

When the rail is modelled by a Euler-Bernoulli beam, the response of railway tracks is gov-
erned by the following dynamical equation:

EI
∂4wr(x, t)

∂x4
+ ρS

∂2wr(x, t)

∂t2
− F (x, t) = 0 (1)

where F (x, t) is the total force (moving forces and reaction forces) acting on the beam, ρ, E are
the density, the Young’s modulus and S, I are the section and the longitudinal inertia of the rail.
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Only the stationary response of the system is considered and the reaction forces of all sleepers
are described by a same function but with a delay equal to the time for a load moving from a
support to an other (so-called ”periodic condition”). This condition leads to a description of the
total force as the following:

F (x, t) =
∞∑

n=−∞

R(t− x

v
)δ(x− nL)−

K∑
j=1

Qjδ(x+Dj − vt) (2)

From equation (1) and (2), by using the Fourier transform and Dirac comb propriety (see
[1]), we deduce a general relation between the Fourier transform of the vertical displacement
ŵr(0, ω) and of the reaction forces R̂(ω) of the rail at the sleeper position as the following:

ŵr(0, ω) = R̂(ω)ηE(ω)−
K∑
j=1

Qje
−iω

Dj
v

vEI
[(

ω
v

)4 − k4b] (3)

with kb = 4

√
ρSω2

EI
and ηE(ω) given by:

ηE(ω) =
1

4k3bEI

[
sin(Lkb)

cos(Lkb)− cos(Lω
v
)
− sinh(Lkb)

cosh(Lkb)− cos(Lω
v
)

]
For a linear foundation, an analytic solution could be deduced from this equation and the

constitutive law of the foundation. In other cases, we can not solve analytically this system. The
next section will introduce a model developed from equation (3) for the dynamics of sleepers on
a nonlinear foundation. Then, a new numerical method based on harmonic balance techniques
and iteration procedures will be used to solve the dynamic equation. Finally, the method is
applied to the foundations with linear and nonlinear behaviours. The comparison shows that the
numerical method agrees with the analytical results in case of linear behaviour. For other cases,
the numerical method shows well the effects of nonlinearities on the response.

2.2 Dynamical equation of railway sleepers on nonlinear foundation

Consider the system of sleepers and foundation as shown in figure 1. This system contains a
linear part corresponding to the rail pad (upper the sleeper) and a nonlinear part corresponding
to the foundation (under the sleeper). Here η1, k1 are the damping and spring coefficients of rail
pad; w,w′ are the vertical displacement and the velocity of the sleeper and f(w,w′) is the force
acting on the foundation.

The displacement of the sleeper is governed by the following equation:

Mw′′(t) + η1w
′(t) + k1w + f(w,w′) = η1w

′
r(0, t) + k1wr(0, t) (4)

where prime stands for the derivation in time t and M is the mass of the railway sleeper. In
addition, the reaction force of the sleeper on the rail is given by:

R(t) = −η1 [wr(0, t)− w(t)]′ − k1(wr(0, t)− w(t)) (5)

By taking the Fourier transform of (5), we obtain:

R̂(ω) = −A(ω) [ŵr(0, ω)− ŵ(ω)]
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where A(ω) = iωη1 + k1 (this is the frequency stiffness of the rail pad). By injecting the last
equation into equation (3), we have:

ŵr(0, ω) =
A(ω)ηE(ω)

1 + A(ω)ηE(ω)
ŵ(ω)− Γ(ω)

vEI

K∑
j=1

Qje
−iω

Dj
v (6)

with Γ(ω) =
{

(1 + A(ω)ηE(ω))
[(

ω
v

)4 − k4b]}−1 .
Making the Fourier transform and then the inverse Fourier transform of the right term of

equation (4) leads to the following result:

η1w
′
r(0, t) + k1wr(0, t) =

1

2π

∫ ∞
−∞

A(ω)ŵr(0, ω)eiωtdω (7)

By injecting ŵr(0, ω) in equation (6) into the last equation and then the obtained expression into
equation (4), one can write:

w′′ + βw′ + ω2
0w + g(w,w′) =

1

2πM

∫ ∞
−∞

A2(ω)ηE(ω)eiωt

1 + A(ω)ηE(ω)
ŵ(ω)dω

− 1

2πM

∫ ∞
−∞

A(ω)ΓE(ω)

vEI

K∑
j=1

Qje
−iω

Dj
v eiωtdω

(8)

where g(w,w′) =
f(w,w′)

M
, ω2

0 =
k1
M

and β =
η1
M

.

Equation (8) is the dynamical equation of the sleeper. This equation is similar to that of
nonlinear oscillators but contains terms of the interaction between the rail and the sleepers on
the right of the equation. In order to simplify this coupling terms but only periodical solution
of w(t) is considered but the general nonlinear function f(w,w′) is kept. This response occurs
when the moving forces Qj are a periodic series of forces (see [1]) which is presented in next
section.

2.3 Loads of a train as an impulse train

When the charges of each wagon of the train equal a given load (Qj = Q) and there is a great
number of wagons so that the periodical solution could be considered, the load of a train can be
approximated by an impulse train with a distance from a reference impulse given by:

Dj =

{
jH for front wheels

jH +D for back wheels
(9)

D

H

Figure 2: Charge of a train as a periodical series of loads
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where H and D are the length of each wagon and distance between the font and the back wheel
of a boogie. Using the propriety of Dirac comb, one can write:

∞∑
j=−∞

Qje
−iω

Dj
v =

2πvQ

H
(1 + e−iω

D
v )

∞∑
n=−∞

δ

(
ω +

2πv

H
n

)
(10)

By injecting the last equation into the last term of equation (8), we obtain:

1

2πM

∞∫
−∞

A(ω)Γ

vEI

∑
j

Qje
−iω

Dj
v eiωtdω =

∑
n

Q(1 + e−i
D
v
ωn)A(ωn)Γ(ωn)eiωnt

MHEI
(11)

with ωn = 2πn
v

H
.

The last equation describes a periodic function of harmonics ωn. Thus, we can find a period-
ical solution of w(t) in Fourier series form:

w(t) =
∑
n

cne
iωnt (12)

where {cn} are Fourier coefficients of w(t) given by:

cn =
1

T

T/2∫
−T/2

w(t)e−iωntdt with T =
H

v
(13)

Thus, we have:
ŵ(ω) = 2π

∑
n

cnδ(ω − ωn)

By injecting the last equation into the first term on the right side of (8), we get:

1

2πM

∞∫
−∞

A2(ω)ηE(ω)eiωt

1 + A(ω)ηE(ω)
ŵ(ω)dω =

1

M

∑
n

A2(ωn)ηE(ωn)

1 + A(ωn)ηE(ωn)
cne

iωnt (14)

Thus, equation (8) becomes:

w′′ + βw′ + ω2
0w + g(w,w′) =

∑
n

cnPne
iωnt −

∑
n

Fne
iωnt (15)

where:

Pn =
A2(ωn)ηE(ωn)

M [1 + A(ωn)ηE(ωn)]
and Fn =

Q(1 + e−iωn
D
v )

MHEI
A(ωn)Γ(ωn) (16)

Particularly, we have: P0 = k1
M

= ω2
0 and F0 = 2QL

MH
.

Thus, we reduce (8) which is a general dynamical equation of the railway sleeper to a sim-
ple equation with characteristic parameters Pn, Fn. In fact, we see that Fn corresponds to the
charges of the train affecting on the sleeper and Pn corresponds to the coupling of the sleeper
with the rail and other sleepers. In the next section, we will present a numerical method for this
equation and then consider some examples of foundations.
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3 SEMI-ANALYTICAL METHOD

Taking Fourier coefficients of equation (15) leads to the following result:

1

T

T/2∫
−T/2

(w′′ + βw′ + ω2
0w)e−iωntdt+

1

T

T/2∫
−T/2

g(w,w′)e−iωntdt = cnPn − Fn

By injection of equation (12) to the last equation, we obtain:

−ω2
ncn + iβωncn + ω2

0cn +
1

T

T/2∫
−T/2

g(w,w′)e−iωntdt = cnPn − Fn (17)

where g(w,w′) = f(w,w′)/M with w,w′ given by equation (12):

w(t) =
∑
n

cne
iωnt, w′(t) =

∑
n

iωncne
iωnt (18)

Hence, equation (17) forms a system of nonlinear equations of variable {cn}. In general,
we can not find the analytical solution of this equation. By using harmonic balance techniques
and iteration procedure, we will look at an approximation of the solution w(t) for the m first
harmonics in the following form:

wmk(t) =
m∑

n=−m

cnke
iωnt ∀k ≥ 1 (19)

Here we take ∀n, cn1 = 0. We built series {cnk} such that cnk → cn when k,m → ∞ by
inserting an evolution index k in equation (17). Such a series {cnk} is given by the following
equations:{

−ω2
ncnk + (iβωn + ω2

0)cn(k+1) + Fnk = Pncnk − Fn if 0 ≤ |n| ≤ N0

−ω2
ncn(k+1) + (iβωn + ω2

0)cnk + Fnk = Pncn(k+1) − Fn if N0 < |n| ≤ m

where N0 is defined for the convergence of the solution (it normally depends on force f(w,w′))
and Fnk is calculated by:

Fnk =
1

T

T/2∫
−T/2

g(wmk, w
′
mk)e

−iωntdt (20)

Finally, we get the series {cnk} as the following:

cn(k+1) =


(ω2

n + Pn)cnk − Fn −Fnk
ω2
0 + iβωn

if 0 ≤ |n| ≤ N0

(ω2
0 + iβωn)cnk + Fn + Fnk

ω2
n + Pn

if N0 < |n| ≤ m
(21)

The last equation defines a recurrent sequence {cnk} in k. If this sequence {cnk} converges
to {cn}∀n when k →∞, by replacing this series cnk, cn(k+1) by its limit cn, we find once again
equation (17). Hence, this sequence converges to the solution of (17). By consequence, we can
rebuild approximations of the response from (19) by using the sequence {cnk} when the value
of k is large enough. In the next section, we will use this formulation to calculate the response
of the sleeper on different foundations.
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4 EXAMPLES

4.1 Linear foundation

Let’s consider a foundation with a linear constitution law given by:

f(w) = k2w + η2w
′ (22)

In this case, the integral in equation (17) can be calculated analytically as following:

1

T

T/2∫
−T/2

g(w,w′)e−iωntdt =

T/2∫
−T/2

k2w + η2w
′

TM
e−iωntdt =

(
k2
M

+
iη2ωn
M

)
cn

Thus, equation (17) has an analytic solution given by:

cn =
Fn

ω2
n + Pn − ω2

0 − iβωn − (k2 + iη2ωn)/M
(23)

Now we calculate the solution of (17) by the numerical method. We need to verify that series
{cnk} defined by (21) converges also to the analytic solution. By injecting function f(w,w′) in
equation (22) into equation (20), we get:

Fnk =

(
k2
M

+
iη2ωn
M

)
cnk

Thus, equation (21) becomes:

cn(k+1) =


[ω2
n + Pn − (k2 + iη2ωn)/M ] cnk − Fn

ω2
0 + iβωn

if 0 ≤ |n| ≤ N0

[ω2
0 + iβωn + (k2 + iη2ωn)/M ] cnk + Fn

ω2
n + Pn

if N0 < |n| ≤ m

We see that:

cn(k+1) − cn =


ω2
n + Pn − (k2 + iη2ωn)/M

ω2
0 + iβωn

(cnk − cn) if 0 ≤ |n| ≤ N0

ω2
0 + iβωn + (k2 + iη2ωn)/M

ω2
n + Pn

(cnk − cn) if N0 < |n| ≤ m

Here cn is the analytical solution in (23). The last equations are geometric sequences which
converge to cn if and only if:

∣∣∣∣ω2
n + Pn − (k2 + iη2ωn)/M

ω2
0 + iβωn

∣∣∣∣ < 1 if 0 ≤ |n| ≤ N0∣∣∣∣ω2
0 + iβωn + (k2 + iη2ωn)/M

ω2
n + Pn

∣∣∣∣ < 1 if N0 < |n| ≤ m

Therefore, if N0 is chosen such that the last inequalities are satisfied, we have proved that the
numerical method converges to the analytic solution.

Figure 3 shows the results of the analytical and numerical methods for a railway track (type
UIC60) with parameters given in table 1. The numerical method gives a good approximation
of the analytical solution after 15 iterations. In fact the response corresponding to a linear
foundation (22) with parameters k2 = 20MNm-1 and η2 = 0.2MNsm-1.
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Content Notation Value Unite
Rail mass ρS 60 kgm-1

Rail stiffness EI 6.3 MNm2

Train speed v 45 ms-1

Charge of a wheel Q 75 kN
Block mass M 100 kg
Sleeper length L 0.6 m
Length of boogie D 3 m
Length of wagon H 18 m
Stiffness k1 220 MNm-1

Damping coefficient η1 1.0 MNsm-1

Table 1: Parameters of a linear railway track
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k = 15
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k = 25

Figure 3: Displacement of a sleeper on a linear foundation by analytical and numerical method

4.2 Bilinear foundation

Now a bilinear foundation is considered with two different stiffness for compression and
tension. Such a constitutive law can be described by the following function:

f(w,w′) =

{
k+2 w + η2w

′ if w < 0

k−2 w + η2w
′ if w ≥ 0

(24)

Here we compute the response of the railway sleeper by the numerical method and we inves-
tigate the convergence of this response when increasing the number of iterations and harmonics.
The upper graph in figure 4 shows the results of the numerical method with different number
of harmonics (while the number of iterations k = 100 remains the same). We see that when
the number of harmonics is bigger than 10, the response converges well (the variation is very
small). We find again the convergence of the response with different numbers of iteration with
m = 15 (see the bottom graph in figure 4). Here, the calculation is taken with a railway track
given by table 1 and the foundation parameters k+2 = 20, k−2 = 10 MKm-1.

For m = 15, k = 100, we now calculate the response for different tension stiffness in order
to study the effect of this nonlinear parameter. Figure 5 shows these responses for different
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Figure 4: Displacement of a sleeper on a bilinear foundation by numerical method with different numbers of
harmonics m (upper figure) and iterations k (lower figure)

ratios e = k−2 /k
+
2 .
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Figure 5: Displacement of a sleeper on bilinear foundations

9



T. Hoang, D. Duhamel, G. Foret, H. Yin, G. Cumunel, P. Joyez, R. Caby

4.3 Nonlinear foundation

In this section, a nonlinear foundation with a cubic term in the stiffness is considered:

f(w,w′) = η2w
′ + k2w + εk3w

3 (25)
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Figure 6: Displacement of a sleeper on a nonlinear elastic foundation by numerical method with different numbers
of iterations

The response is calculated for different numbers of iterations k with m = 15 in order to
study the convergence of the method. Figure 6 shows the convergence for k ≥ 15. Here we
take k2 = 20 MNm-1, k3 = 20 kNmm-3 and ε = 0.8. The effect of the nonlinear parameter
ε is also investigated in figure 7 where the amplitude of the displacement decreases when the
nonlinear force increases.
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Figure 7: Displacement of a sleeper on nonlinear foundations
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5 CONCLUSION

A semi-analytic model for periodically supported beams has been developed and applied for
the response of railway sleepers on different kinds of foundations. In linear cases, this method
is proved to converge to the analytical solution. For other cases, this method is a simple way to
approximate the response of railway tracks on complex foundations.
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