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Abstract. The wave finite element (WFE) method is investigated to describe the dynamic
behavior of periodic structures like those composed of arbitrary-shaped substructures along a
certain straight direction. A generalized eigenproblem based on the so-called S + S−1 trans-
formation is proposed for accurately computing the wave modes which travel in right and left
directions along those periodic structures. Besides, a model reduction technique is proposed
which involves partitioning a whole periodic structure into one central structure surrounded
by two extra substructures. In doing so, a few wave modes are only required for modeling the
central periodic structure. A comprehensive validation of the technique is performed on a 2D
periodic structure. Also, its efficiency in terms of CPU time savings is highlighted regarding a
3D periodic structure that exhibits substructures with large-sized FE models.
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1 Introduction

Predicting the dynamic behavior of complex periodic structures like those encountered in
engineering applications, by means of accurate and fast numerical tools, constitutes an open
industrial challenge. In many cases, these systems are made up of arbitrary-shaped substructures
which are identical to each other and are assembled along one straight direction. The need
to reduce the CPU times involved by the computation of the forced response of this kind of
periodic structures relates the motivation of the present paper. This issue is addressed here by
means of the wave finite element (WFE) combined with an original model reduction technique.

Originally, the WFE method has been initiated to describe the wave propagation along one-
dimensional periodic elastic systems [1, 2]. The computation of the forced response of bounded
elastic waveguides — i.e., periodic structures which are made up of straight substructures —
subject to Neumann and Dirichlet boundary conditions (BCs) has been addressed in several
ways using the WFE method [3, 4, 5, 6]. The procedure consists in assessing the kinematic
and mechanical fields of a structure by means of numerical wave modes traveling in right and
left directions. Their computation follows by considering a generalized eigenproblem that is
expressed from the mass and stiffness matrices of a particular substructure. Actually, there exist
two main WFE-based strategies to compute the forced response of periodic structures. These are
labeled as dynamic stiffness matrix (DSM) approach and wave amplitudes (WA) approach, and
respectively involve expressing the condensed dynamic stiffness matrix of a periodic structure
in terms of wave modes [3], or the vectors of wave amplitudes of the right-going and left-going
modes [4, 7, 8]. The feature of the WFE method is that it makes use of the FE model of one
single substructure only, rather than considering the full FE model of a whole periodic struc-
ture. This makes the WFE method quite fast for describing the dynamic behavior of periodic
structures when compared to the conventional FE method and FE-based CMS methods like the
Craig-Bampton method [9].

Two features are addressed in this work. One feature is the use of a generalized eigenprob-
lem based on the so-called S + S−1 transformation to compute the wave modes with accurate
precision. In this context, exact analytic relations can be considered so as to ensure the coher-
ence between the right-going and left-going wave modes. Besides, the Lanczos method [10]
is used to speed up the computation of the WFE eigenproblem with a view to calculating a
reduced number of wave modes only. To achieve this task, an error indicator already proposed
in [11] is considered to select in an a priori process the number of wave modes that need to be
computed. As a second feature of this work, an efficient model reduction technique is proposed
which consists in partitioning a whole periodic structure into one central structure surrounded
by two extra substructures. In doing so, a few wave modes are only required for modeling the
central periodic structure, hence enabling the computation of those wave modes to be achieved
in a very fast way by means of the Lanczos method.

The rest of the paper is organized as follows. In Section 2, the basics of the WFE method
for describing the wave propagation along a one-dimensional periodic structure are recalled.
The strategy to compute the wave modes by means of a generalized eigenproblem based on the
S + S−1 transformation is proposed. In Section 3, the WFE-based model reduction technique,
which consists in partitioning a whole periodic structure into one central structure surrounded
by two extra substructures, is fully developed. Numerical experiments are finally brought in
Section 4 that concern a 2D structure as well as a 3D stiffened shell with a periodic distribution
of longitudinal and circumferential stiffeners.
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2 WFE method

2.1 Basic framework

The basics of the WFE method for describing waves which travel in right and left directions
along a one-dimensional periodic structure (see Figure 1) are recalled hereafter.

Figure 1: FE mesh of a periodic structure and related substructure.

Within the present framework, the structures are assumed to be linear, elastic and damped
by means of a constant loss factor η. Also, they involve excitation sources which are assumed
to be harmonic time-dependent, i.e., of the form g(ω)exp(iωt) where ω denotes the pulsation.
Besides, the substructures are modeled by means of the same FE mesh with a same number
(say, n) of DOFs over their left and right boundaries. In matrix form, the dynamic equilibrium
equation of a given substructure is expressed in the frequency domain as

Dq = F, (1)

where D is the dynamic stiffness matrix of the substructure. It is expressed as D = −ω2M +
(1 + iη)K where M and K refer to the mass and stiffness matrices, respectively. Also in
Eq. (1), q and F are, respectively, the vectors of nodal displacements/rotations and nodal
forces/moments of the substructure. The key idea behind the WFE method is to express a rela-
tion which links the kinematic/mechanical quantities on the right boundary of the substructure
to those on its left boundary. From Eq. (1), it is expressed as [12]:

uR = SuL, (2)

where uR and uL are 2n× 1 state vectors, expressed as

uR =

[
qR

FR

]
, uL =

[
qL

−FL

]
. (3)

In Eq. (3), the subscripts L and R denote the DOFs which belong to the left and right boundaries
of the substructure, respectively. Also, S is a 2n× 2n matrix expressed as

S =

[
−D∗−1LR D∗LL −D∗−1LR

D∗RL −D∗RRD
∗−1
LR D∗LL −D∗RRD

∗−1
LR

]
, (4)
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where D∗ refers to the dynamic stiffness matrix of the substructure condensed on its left and
right boundaries.

We are looking for wavemodes {(µj,φj)}j which are the eigenvalues and the eigenvectors
of the matrix S such that

Sφj = µjφj (5)

Due to the symplectic nature of the matrix S, its eigenvalues come in pairs as (µj, 1/µj). So the
set {(µj,φj)}j can be partitioned into n right-going wave modes {(µj,φj)}j=1,...,n for which
|µj| < 1, and n left-going wave modes {(µ?

j ,φ
?
j)}j=1,...,n for which µ?

j = 1/µj , with |µ?
j | > 1.

2.2 Wave mode computation

To find the eigenvectors and eigenvalues of S, the so-called S + S−1 transformation of the
eigenproblem is considered [13], which yields an eigenproblem whose eigenvalues are of the
form λj = µj + 1/µj , i.e.(

(N′JL
′T + L′JN

′T )− λjL′JL
′T
)

zj = 0, (6)

where

L′ =

[
0 In

D∗LR 0

]
, N′ =

[
D∗RL 0

−(D∗LL + D∗RR) −In

]
, J =

[
0 In
−In 0

]
. (7)

N′JL
′T + L′JN

′T =

[
D∗RL −D∗LR (D∗LL + D∗RR)
−(D∗LL + D∗RR) D∗RL −D∗LR

]
, (8)

and

L′JL
′T = N′JN

′T =

[
0 −D∗RL

D∗LR 0

]
. (9)

One feature of the eigenproblem (6) is that it involves skew-symmetric matrices which are
useful for speeding up the computation of the eigensolutions. Also, the eigenvectors {zj}j
are expressed in terms of displacement/rotation components only. It is worth recalling that the
eigenvalues of the eigenproblem come in pairs as (µj, µ

?
j = 1/µj), meaning that the eigenvalues

of the eigenproblem (6) are double, i.e., (λj, λ
?
j = λj). By considering the fact that λj =

µj + 1/µj , each pair of eigenvalues (µj, µ
?
j) can be found analytically by solving a quadratic

equation of the form
x2 − λjx+ 1 = 0, (10)

where it is understood that the relation µ?
j = 1/µj can be verified with accurate precision. Also,

there exist closed-form expressions linking the eigenvectors of the eigenproblem (6) to those of
S (see [14]):

w′j = J(L
′T − µ?

jN
′T )zj , w

′?
j = J(L

′T − µjN
′T )zj. (11)

φj =

[
In 0

D∗RR In

]
w′j , φ?

j =

[
In 0

D∗RR In

]
w

′?
j , (12)

where {w′?
j }j denote the eigenvectors associated to the eigenvalues {µ?

j}j which are such that
|µ?

j | > 1 and the wave shapes {φj}j and {φ?
j}j are the eigenvectors of S. The state vector u

(k)
L

in section k can be expanded as u
(k)
L =

∑
j exp(−iβjd)Q

(k−1)
j φj . Also, the eigenvalues of S

are expressed as µj = exp(−iβjd), where {βj}j have the meaning of wavenumbers.
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2.3 Forced response computation

We consider here the structure shown in figure 2 which is made of a periodic part connected
to two elastic subsystems. The focus is on a better modeling of the periodic part. In fact, there
exist two main strategies for computing the forced response of a periodic structure, as shown in
Figure 2, namely the dynamic stiffness matrix (DSM) approach and the wave amplitude (WA)
approach. The DSM approach focuses on expressing a matrix relation to link the vector of
forces/moments to that of displacements/rotations on the left and right ends of the structure.
On the other hand, the WA approach focuses on assessing the wave reflection/transmission
coefficients at the BCs while considering the spatial variation of the wave amplitudes along the
structure.

Figure 2: Periodic structure connected to two elastic subsystems.

2.3.1 DSM approach

The framework of the DSM approach is to consider the following matrix equation, which
links the DOFs on the left and right ends of a periodic structure made up of N substructures:[

F
(1)
L

F
(N+1)
R

]
= Ds

[
q
(1)
L

q
(N+1)
R

]
, (13)

where the superscripts (1) and (N + 1) denote the left and right ends of the structure, respec-
tively. Also, Ds is the dynamic stiffness matrix of the structure which is condensed on its left
and right ends. It is expressed as (see [3])

Ds =

[
D∗LL 0
0 D∗RR

]
+

[
D∗LR 0
0 D∗RL

] [
Φ?

qµ
N−1Φ?−1

q ΦqµΦ−1q

Φ?
qµΦ?−1

q Φqµ
N−1Φ−1q

]
×
[
Φ?

qµ
NΦ?−1

q In
In Φqµ

NΦ−1q

]−1
, (14)

where Φq and Φ?
q are square n×nmatrices defined as Φq = [φq1 · · ·φqn] and Φ?

q = [φ?
q1 · · ·φ?

qn].
Also, µ is a n×n diagonal matrix whose components relate the eigenvalues for the right-going
wave modes (see Section 2.1), i.e., µ = diag{µj}j=1,...,n. Notice that the 2−norm [10] of the
matrix µ is less than one, i.e., ‖µ‖2 < 1, which is explained because ‖µ‖2 = max|µj| < 1 by
convention. The dynamic stiffness matrix Ds of the periodic structure can be readily assembled
with the dynamic stiffness matrices of other elastic subsystems as this is usually done in the FE
method, with a view to expressing a global dynamic stiffness matrix.
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2.3.2 WA approach

Within the WFE framework, the vectors of displacements/rotations and forces/moments on
the substructure boundary (k) are estimated by means of a wave expansion, as follows [8]:

q(k) = Φqµ
k−1Q + Φ?

qµ
N+1−kQ? , ±F(k) = ΦFµ

k−1Q + Φ?
Fµ

N+1−kQ?, (15)

where ΦF = [φF1 · · ·φFn] and Φ?
F = [φ?

F1 · · ·φ?
Fn]. Also, in Eq. (15), Q and Q? are vectors of

wave amplitudes at the left and right ends of the whole periodic structure, respectively. Finally,
the sign ahead of F results from the choice of description considered, i.e., it is negative when
the left boundary of a substructure is of concern, and positive for the right boundary.

The determination of the vectors of wave amplitudes Q and Q? involves considering the
BCs on the left and right ends of the whole periodic structure. For instance, regarding the case
shown in Figure 2 when the left and right ends of the periodic structure are connected to extra
elastic subsystems, the BCs are expressed as:

−F
(1)
L = Dq

(1)
L + Dqq0 + DFF0 , −F

(N+1)
R = D?q

(N+1)
R + D?

qq
?
0 + D?

FF
?
0, (16)

where D and D? denote the dynamic stiffness matrices of the subsystems which are condensed
on the interface DOFs. Also, Dq and D?

q (resp. DF and D?
F) are matrices which reflect the

effects of prescribed vectors of displacements/rotations (q0,q?
0) (resp. prescribed vectors of

forces/moments (F0,F?
0)) that may be applied to the subsystems.

By considering the wave expansion (15), the BCs can be expressed in wave-based form, as
follows:

Q = CµNQ? + F , Q? = C?µNQ + F?, (17)

where C and C? are n × n scattering matrices whose components relate the reflection coeffi-
cients for the wave modes incident to the boundaries, while F and F? are n × 1 vectors which
relate the effects of the excitation sources. Expressions for C, C?, F and F? follow from the
aforementioned BCs, i.e:

C = −[DΦq −ΦF]
−1[DΦ?

q −Φ?
F] , C? = −[D?Φ?

q + Φ?
F]
−1[D?Φq + ΦF],

F = −[DΦq −ΦF]
−1[Dqq0 + DFF0] , F? = −[D?Φq + ΦF]

−1[D?
qq

?
0 + D?

FF
?
0]. (18)

By considering the wave-based BCs, Eq. (17), a whole matrix equation is established as follows:

AQ = F , (19)

where

A =

[
In −CµN

−C?µN In

]
, Q =

[
Q
Q?

]
, F =

[
F
F?

]
. (20)

Solving the matrix equation (19) yields the vectors of wave amplitudes as Q = A−1F .

3 Model reduction

3.1 Motivation and framework

As it is well known, waves traveling along a structure like the one shown in Figure 1 can
be classified into weakly evanescent, which would be propagative if there were no damping,
and strongly evanescent, i.e., which decay exponentially from the excitation sources. So, one
may assume that far from the sources these evanescent waves are weakly contributing to the
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structure dynamics. Here, a central periodic structure consisting of N − 2 substructures is
considered which is surrounded by two extra substructures. Such a central periodic structure is
analyzed by means of the WFE method (Section 2.3), while the extra substructures are modeled
by means of the FE method and are treated as BCs like those involved by Eq. (18).

Figure 3: Central periodic structure surrounded by two extra substructures.

Prior to any rigorous derivation, a simple qualitative analysis is proposed here to quantify
the error made when some strong evanescent wave modes are neglected in the WFE-based
formulations. Consider the central periodic structure as shown in Figure 3, which is enclosed
between the substructure boundary (1) and the substructure boundary (N − 1). Assume that
the excitation sources occur on the left boundary of the left extra substructure, and the right
boundary of the right extra substructure, only. Denote as Q the vector of wave amplitudes at
the left end of the left extra substructure, and Q? the vector of wave amplitudes at the right
end of the right extra substructure. By considering the wave expansion (15), the vectors of
displacements/rotations and forces/moments along the central periodic structure are expressed
as

q(k) =
n∑

j=1

(
µk
jqj + µN−k

j q?
j

)
=

n∑
j=1

µj

(
µk−1
j qj + µN−1−k

j q?
j

)
, (21)

±F(k) =
n∑

j=1

(
µk
jFj + µN−k

j F?
j

)
=

n∑
j=1

µj

(
µk−1
j Fj + µN−1−k

j F?
j

)
, (22)

where qj = QjΦqj , q?
j = Q?

jΦqj , Fj = QjΦFj and F?
j = Q?

jΦ
?
Fj . Since the integer k is

such that 1 ≤ k ≤ N − 1, one has k − 1 ≥ 0 and N − 1 − k ≥ 0, and then |µj|k−1 ≤ 1 and
|µj|N−1−k ≤ 1. This is explained because |µj| < 1 by convention. Let us denote as q̄(k) and F̄(k)

the parts of the vectors of displacements/rotations and forces/moments which are induced by
strongly evanescent wave modes, only. Denote as {(µ̄j, φ̄j)}j=1,...,n−m and {(µ̄?

j , φ̄
?
j)}j=1,...,n−m

those evanescent wave modes which are such that {(µ̄j, φ̄j)}j=1,...,n−m ⊂ {(µj,φj)}j=1,...,n and
{(µ̄?

j , φ̄
?
j)}j=1,...,n−m ⊂ {(µ?

j ,φ
?
j)}j=1,...,n where m > 1. From Eqs. (21) and (22), q̄(k) and F̄(k)

are expressed as

‖q̄(k)‖ = ‖
n−m∑
j=1

µ̄j

(
µ̄k−1
j q̄j + µ̄N−1−k

j q̄?
j

)
‖ ≤

n−m∑
j=1

|µ̄j|
(
‖q̄j‖+ ‖q̄?

j‖
)
, (23)

‖F̄(k)‖ = ‖
n−m∑
j=1

µ̄j

(
µ̄k−1
j F̄j + µ̄N−1−k

j F̄?
j

)
‖ ≤

n−m∑
j=1

|µ̄j|
(
‖F̄j‖+ ‖F̄?

j‖
)
, (24)

where ‖.‖ denotes the 2−norm. Since highly evanescent wave modes are of concern, one ex-
pects |µ̄j| � 1. To summarize, it seems logical to neglect these wave modes.

7



Denis Duhamel and Jean-Mathieu Mencik

3.2 Reduced modelings

3.2.1 DSM approach

By expanding the vectors of displacements/rotations and forces/moments of the structure
onto the reduced wave basis {φ̃j}j=1,...,m ∪ {φ̃

?

j}j=1,...,m, the dynamic stiffness matrix of the
central periodic structure — namely, Dr

s — can be approximated as Dr
s ≈ D̃r

s, where D̃r
s is

defined so that [
F̃

(1)
L

F̃
(N−1)
R

]
= D̃r

s

[
q̃
(1)
L

q̃
(N−1)
R

]
. (25)

Here, q̃
(1)
L and F̃

(1)
L (resp. q̃

(N−1)
R and F̃

(N−1)
R ) refer to the approximated vectors of displace-

ments/rotations and forces/vectors, respectively, on the left (resp. right) end of the central struc-
ture. The derivation of the dynamic stiffness matrix D̃r

s follows from that of Ds, i.e.

D̃r
s =

[
D∗LL 0
0 D∗RR

]
+

[
D∗LR 0
0 D∗RL

] [
Φ̃?

qµ̃
N−3Φ̃?+

q Φ̃qµ̃Φ̃+
q

Φ̃?
qµ̃Φ̃?+

q Φ̃qµ̃
N−3Φ̃+

q

]
×
[
Φ̃?

qµ̃
N−2Φ̃?+

q Im
Im Φ̃qµ̃

N−2Φ̃+
q

]−1
(26)

where Φ̃q and Φ̃
?

q are n × m rectangular matrices defined so that Φ̃q = [φ̃q1 · · · φ̃qm] and
Φ̃

?

q = [φ̃
?

q1 · · · φ̃
?

qm]; also µ̃ is a m × m diagonal matrix defined as µ̃ = diag{µ̃j}j=1,...,m;
finally, Φ̃+

q and Φ̃?+
q are the left pseudo-inverses of Φ̃q and Φ̃?

q, which are defined so that
Φ̃+

q = [Φ̃H
q Φ̃q]

−1Φ̃H
q and Φ̃?+

q = [Φ̃?H
q Φ̃?

q]
−1Φ̃?H

q , where the superscript H is the conjugate
transpose. The dynamic stiffness matrix D̃r

s is to be assembled with the dynamic stiffness
matrices of the left and right extra substructures (Figure 3) to express the dynamic stiffness
matrix D̃s of the whole periodic structure, i.e., the one composed of N substructures.

3.2.2 WA approach

From Eq. (15), the approximated vectors of nodal displacements/rotations and forces/moments
on a substructure boundary (k) (1 ≤ k ≤ N − 1) along the central periodic structure are ex-
pressed as

q̃(k) = Φ̃qµ̃
k−1Q̃ + Φ̃

?

qµ̃
N−1−kQ̃? , ±F̃(k) = Φ̃Fµ̃

k−1Q̃ + Φ̃
?

Fµ̃
N−1−kQ̃?, (27)

where Φ̃q = [φ̃q1 · · · φ̃qm], Φ̃
?

q = [φ̃
?

q1 · · · φ̃
?

qm], Φ̃F = [φ̃F1 · · · φ̃Fm] and Φ̃
?

F = [φ̃
?

F1 · · · φ̃
?

Fm].
The computation of Q̃ and Q̃? follows from the following reduced matrix equation (cf. Eq.
(19)):

ÃQ̃ = F̃ , (28)

where

Ã =

[
Im −C̃µ̃N−2

−C̃?µ̃N−2 Im

]
, Q̃ =

[
Q̃

Q̃?

]
, F̃ =

[
F̃
F̃?

]
. (29)

C̃ = −[DΦ̃q − Φ̃F]
+[DΦ̃

?

q − Φ̃
?

F] , C̃? = −[D?Φ̃
?

q + Φ̃
?

F]
+[D?Φ̃q + Φ̃F], (30)

F̃ = −[DΦ̃q − Φ̃F]
+[Dqq0 + DFF0] , F̃? = −[D?Φ̃q + Φ̃F]

+[D?
qq

?
0 + D?

FF
?
0], (31)

where the superscript + denotes the left pseudo-inverse.
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3.3 Error indicator

The selection of the number m of right-going and left-going wave modes in the central
periodic structure that need to be computed from the Lanczos method is addressed here using
the strategy proposed in [11]. In this work, it is suggested to bound the relative errors, for the
vectors of nodal displacements/rotations and forces/moments, as follows:

‖q̃(k) − q(k)‖
‖q(k)‖

≤ Es ,
‖F̃(k) − F(k)‖
‖F(k)‖

≤ Es ∀k, (32)

where

Es = max

{[
(εE1 + εE2 ) +

‖As‖
1− ‖As‖

(εA1 + εA2 )

]
1 + ‖As‖
1− ‖As‖

,[
(εE

?

1 + εE
?

2 ) +
‖A?s‖

1− ‖A?s‖
(εA

?

1 + εA
?

2 )

]
1 + ‖A?s‖
1− ‖A?s‖

}
. (33)

Within the present framework, those matrix/vector terms are expressed as:

A = CµN−2C?µN−2 , A? = C?µN−2CµN−2, , B = CµN−2F? + F

B? = C?µN−2F + F?, , Es =

(
s−1∑
p=0

Ap

)
B , E?

s =

(
s−1∑
p=0

A?p

)
B?, (34)

where (C, F) and (F?, C?) are scattering matrices and vectors of excitation sources that relate
the coupling conditions between the central structure and the extra substructures, see Eqs. (18).
Also, in Eq. (34), s is an integer defined so that

s = max {u : ||Au|| ≥ 0.1 and ||A?u|| ≥ 0.1} . (35)

Besides, in Eq. (33), εE1 , εE2 , εE?

1 and εE?

2 are error parameters expressed as

εE1 =
‖Ẽs − L̃Es‖
‖Es‖

, εE2 =
‖LrEs‖
‖Es‖

, εE
?

1 =
‖Ẽ?

s − L̃E?
s‖

‖E?
s‖

, εE
?

2 =
‖LrE?

s‖
‖E?

s‖
, (36)

εA1 =
‖ÃsL̃ − L̃As‖
‖As‖

, εA2 =
‖LrAsL̃T‖
‖As‖

, εA
?

1 =
‖Ã?sL̃ − L̃A?s‖

‖A?s‖
, εA

?

2 =
‖LrA?sL̃T‖
‖A?s‖

,

(37)
where Lr and L̃ are Boolean incidence matrices that localize, respectively, the rejected and
retained wave modes. One of the features of the proposed error analysis is that the error bound
Es is to be computed at the maximum discrete frequency considered within the frequency band
of interest, only, as explained in [11].

4 Numerical experiments

To highlight the efficiency of the proposed reduction method (Section 3), two test cases are
investigated that concern: (i) a 2D periodic structure undergoing plane stresses (see Figure 1);
(ii) a 3D cylindrical shell with a periodic distribution of longitudinal and circumferential stiff-
eners (see Figure 7). Both structures exhibit substructures which are not symmetric. Within
the framework of the DSM and WA approaches, the FRFs of the structures are computed us-
ing MATLAB R©. These are compared with reference results issued from the conventional FE
method when the FRFs are computed using a commercial FE software.
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4.1 2D periodic structure

As a first example, the frequency forced response of a 2D periodic structure, undergoing
plane stresses, is investigated (see Figure 1). The whole periodic structure is made up ofN = 15
identical substructures whose dimensions are shown in Figure 4. Each substructure is meshed
by means of 2D linear triangular elements whose nodes exhibit horizontal and vertical dis-
placement DOFs. Also, the structure exhibits the following material characteristics: Young’s
modulus of 210GPa, density of 7800kg/m3, Poisson’s ratio of 0.3 and a loss factor of 0.001.
Also, its thickness is 0.001m. The structure is excited by a unit point force acting along the
horizontal x−direction at the bottom corner of the left end; also, it is clamped over its right end.

X

Y

(0,0.1) (0.1,0.1)

(0,0) (0.1,0)

(0.05,0.08) (0.08,0.08)

Figure 4: Geometry and mesh of a substructure composing the 2D periodic structure displayed in Figure 1 (dimen-
sions are provided in meters).

The DSM approach proposed in Section 3.2.1 is used to compute the FRF of the structure —
i.e., the frequency evolution of the modulus of the displacement at the location of the input force
— over a frequency band [1Hz , 2000Hz]. For this purpose, the reduction method proposed in
Section 3 is investigated. It consists in dividing the whole periodic structure into one central
structure having N − 2 = 13 substructures, which is surrounded by two extra-substructures
(Figure 3). The FRF of the whole structure is computed by considering different numbers m
of right-going and left-going wave modes. The related results are displayed in Figure 5 along
with the reference FE solution, i.e., which is issued from a commercial FE software. Here, a
moderately dense mesh is used, leading to n = 22 DOFs over the left/right boundary of each
substructure. As it can be seen, considering m = 2 right/left-going wave modes of the central
structure is clearly not enough. However, considering three or more wave modes (i.e., m ≥ 3)
yields the expected results with accurate precision. This might be explained by investigating the
first four propagation constants (see Table 1) — namely, µ1, µ2, µ3 and µ4 — at 2000Hz, among
all the 22 propagation constants whose moduli are less than one. Here, it appears that two waves
are slowly damped, one is moderately decreasing while the last one is strongly decreasing, i.e.,
the amplitude |µ4| is very small. This means that the third wave mode should be kept, while the
subsequent modes may be ignored.

Consider the case when the whole structure is partitioned into a left periodic structure made
up of N − 1 = 14 substructures, and a right extra substructure. Assume that the periodic
structure is modeled by means of a reduced number m of right/left-going wave modes, while
the right extra substructure is modeled by means of the conventional FE method. The related
FRF is displayed in Figure 6, when different number m of wave modes are dealt with. As
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Figure 5: FRF of the 2D periodic structure, as composed of a central periodic structure (13 substructures) sur-
rounded by two extra-substructures: FE solution (—–), WFE solution when the central periodic structure is
modeled by means of m = 2 wave modes (− · −), m = 3 wave modes (×××) and m = 4 wave modes (◦ ◦ ◦).

|µ1| |µ2| |µ3| |µ4|
0.999876 0.999704 0.387754 0.007128

Table 1: Modulus of the first propagation constants, at 2000Hz.

shown in Figure 6, the WFE solution doesn’t match the reference FE curve even though half the
wave modes are kept (i.e., m = 11). Convergence is reached when all the wave modes are kept,
only. This highlights the fact that near the excitation source, almost the full wave mode basis is
needed to recover the dynamic behavior of the system.
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Figure 6: FRF of the 2D periodic structure, as composed of a left periodic structure (14 substructures) coupled
with a right extra substructure: FE solution (—–), WFE solution when the left periodic structure is modeled by
means of m = 3 wave modes (− · −), m = 11 wave modes (×××) and m = n = 22 wave modes (◦ ◦ ◦).
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4.2 3D periodic structure

As a second example, the harmonic behavior of a complex 3D periodic structure is analyzed
by means of the WA approach (Section 3.2.2). The structure under concern consists in a stiff-
ened cylindrical shell, as shown in Figure 7. It is composed of N = 20 identical substructures,
each of these being made up of eighteen longitudinal flat stiffeners and one circumferential
L-shaped stiffener. The cylindrical shell and the stiffeners share the following characteristics:

Figure 7: FE model of a stiffened cylindrical shell composed of 20 substructures.

Young’s modulus of 70GPa, density of 2700kg/m3, Poisson’s ratio of 0.3, loss factor of 0.005,
thickness of 0.002m. The length and the external diameter of the whole structure are 10m and
3m, respectively. Also, the longitudinal stiffeners have a height of 0.05m, while the circum-
ferential L-shaped stiffener has a height and a width of 0.1m. The substructures are meshed in
a same manner, i.e., by means of 2D triangular shell elements with three nodes and six DOFs
per node that incorporate 3D displacements/rotations. As a whole, each substructure is meshed
using 32, 616 DOFs, which are partitioned into n = 1188 DOFs on each left/right cross-section,
and 30, 240 internal DOFs. Also, the total number of DOFs used to model the whole periodic
structure is 629, 748, which appears to be large.

Besides, the periodic structure is subject on its left end to vertical point forces of magnitude
F = 1000N acting in opposite directions on the cross-section DOFs of two diametrically op-
posed longitudinal stiffeners (Figure 7). Regarding the right end of the periodic structure, the
cross-section DOFs of the longitudinal stiffeners are translationally fixed and rotationally free,
while the cross-section DOFs of the cylindrical shell are free. The FRF of the periodic structure
is estimated using 300 discrete frequencies which are equally spaced over the frequency band
[0.5Hz , 150Hz]. Prior to the computation of the wave modes, the condensed dynamic stiffness
matrix D∗ of a substructure needs to be assessed at each discrete frequency involved within the
frequency band of concern. This is achieved using the CB method (cf. Section 3.1), by con-
sidering 1000 fixed interface modes of the substructure. The computation of the wave modes
follows by considering the eigenproblem (6). The Lanczos method enables one to compute a
reduced set of wave modes, only. For this purpose, the WA method proposed in Section 3.2.2
is considered along with the wave mode selection process proposed in Section 3.3. Here, the
number of retained wave modes is determined when the value of the error bound Es shrinks
under a tolerance threshold of 10%. This provides m = 125 right/left-going wave modes to be
retained, which represents almost 10% of the total number n = 1188 of wave modes involved
when the eigenproblem (6) is solved directly.
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The FRF of the periodic structure is displayed in Figure 8. Here, the magnitude of the radial
displacement is assessed at a measurement point located 1.5m far from the excitation sources,
along the longitudinal direction. The solution issued from the WA approach (Section 3.2.2)
is computed using MATLAB R© and compared to the solution issued from a conventional FE
software. As it can be seen, the WFE and FE solutions (black and violet curves) perfectly match
to each other, hence giving credit to the proposed approach. In terms of CPU times, it takes
around 5826s with the WFE method to compute the FRF of the structure using MATLAB R© and
an Intel R© CoreTM i7-3720QM processor, against 13, 618s with a commercial FE software and
the same processor. This means 57% time savings in benefit of the WFE method.
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Figure 8: FRF of the stiffened cylindrical shell: FE solution (—–) and WFE solution when the central periodic
structure is modeled by means of m = 125 wave modes (• • •).

5 Concluding remarks

A model reduction technique has been developed within the framework of the WFE method
for the description of the dynamic behavior of structures with one-dimensional periodicity. An
efficient generalized eigenproblem based on the so-called S + S−1 transformation has been
proposed for computing the wave modes traveling in right and left directions along a periodic
structure composed of arbitrary-shaped substructures. An error indicator has been proposed
for selecting in an a priori process those wave modes which mostly contribute to the struc-
ture dynamics. It has been shown that the efficiency of the procedure can be greatly improved
by partitioning the whole periodic structure into one central structure surrounded by two extra
substructures. The feature of this technique lies in the use of a few wave modes for model-
ing the central structure, hence enabling the CPU times associated to the computation of the
WFE eigenproblem to be largely decreased. The relevance of this reduction technique has
been clearly validated regarding a 2D periodic structure. Also, it has been successfully applied
to model a 3D periodic stiffened shell that contains several substructures with large-sized FE
models.
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