
HAL Id: hal-01266376
https://hal.science/hal-01266376

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the Douglas-Kazakov phase transition - Weighted
potential theory under constraint for probabilists

Thierry Lévy, Mylène Maïda

To cite this version:
Thierry Lévy, Mylène Maïda. On the Douglas-Kazakov phase transition - Weighted potential
theory under constraint for probabilists. ESAIM: Proceedings and Surveys, 2015, 51, pp.89-121.
�10.1051/proc/201551006�. �hal-01266376�

https://hal.science/hal-01266376
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ESAIM: PROCEEDINGS AND SURVEYS, October 2015, Vol. 51, p. 89-121
A. Garivier et al, Editors

ON THE DOUGLAS-KAZAKOV PHASE TRANSITION

WEIGHTED POTENTIAL THEORY UNDER CONSTRAINT FOR PROBABILISTS ∗

Thierry Lévy1 and Mylène Maïda2

Abstract. We give a rigorous proof of the fact that a phase transition discovered by Douglas and
Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be
formulated in terms of the Brownian bridge on the unitary group in large dimension. We explain how it
can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian
bridge, and how it can be technically approached by means of Fourier analysis on the unitary group.
Moreover, we advertise some more or less classical methods for solving certain minimisation problems
which play a fundamental role in the study of the phase transition and more generally in what can be
called ’discrete Coulomb gases’.

Résumé. Nous donnons une preuve rigoureuse de la transition de phase mise en évidence en 1993
par Douglas et Kazakov dans le cadre des théories de jauge en dimension deux. Cette transition de
phase peut s’exprimer en termes du pont brownien sur le groupe unitaire en grande dimension. Nous
expliquons comment on peut la comprendre via le comportement asymptotique des valeurs propres du
pont brownien unitaire et comment on peut la montrer en utilisant l’analyse de Fourier sur le groupe
unitaire. En chemin, nous mettons en avant des méthodes plus ou moins classiques pour résoudre
certains problèmes de minimisation qui apparaissent dans l’étude de cette transition de phase et plus
généralemnt de certains versions discrètes des gaz de Coulomb.
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1. Introduction
In 1993, Douglas and Kazakov discovered that the Euclidean U(N) Yang-Mills theory on the two-dimensional

sphere exhibits a third order phase transition in the limit where N tends to infinity (see [7]). More precisely,
they discovered that the free energy of this model is not a smooth function of the total area of the sphere. Even
more specifically, they found that the third derivative of the free energy has a jump discontinuity when the total
area of the sphere crosses the value π2.

It turns out that the partition function of the U(N) Yang-Mills theory on the two-dimensional sphere is
exactly the same as that of the Brownian bridge on U(N), in a sense which we will explain below. In this
correspondence, the area of the sphere becomes the lifetime of the bridge. The result of Douglas and Kazakov is
thus equivalent to the existence of a phase transition concerning the limit as N tends to infinity of the Brownian
bridge on the unitary group U(N). In this limit, a certain quantity has a jump discontinuity when the lifetime
of the bridge crosses the critical value π2. This is the point of view which we adopt in this paper.

Let us give a precise statement of the main result. For all integer N ≥ 1, let U(N) denote the group of
unitary N ×N matrices:

U(N) = {U ∈MN (C) : UU∗ = IN}.
Let us also denote by HN the space of Hermitian N ×N matrices:

HN = {X ∈MN (C) : X = X∗}. (1)

Let us endow the real vector space HN with the scalar product

〈X,Y 〉 = NTr(XY ). (2)

Let (Xt)t≥0 be the corresponding linear Brownian motion on HN . Let (Ut)t≥0 be the solution of the linear
stochastic differential equation

dUt = iUtdXt −
1
2Ut dt

in MN (C), with initial condition U0 = IN . The process (Ut)t≥0 is the Brownian motion on the unitary group
U(N), issued from the identity.

For all t > 0, the distribution of Ut admits a smooth positive density with respect to the Haar probability
measure on U(N). We denote this density by pN,t. The main result is the following.

Theorem 1.1. For all T ≥ 0, the limit

F (T ) = lim
N→∞

1
N2 log pN,T (IN ) (3)



ESAIM: PROCEEDINGS AND SURVEYS 91

exists. The function F : R∗+ → R is C2 on R∗+ and C∞ on R∗+ \ {π2}. Moreover, the third derivative of F
admits a jump discontinuity at the point π2. More specifically, one has

lim
T→π2

T<π2

F (3)(T ) = − 1
π6 and lim

T→π2

T>π2

F (3)(T ) = − 3
π6 .
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Figure 1. The function T 7→ F (T ) (left) and its third derivative near the critical point π2 (right).

In this paper, we give a complete proof of this theorem, based on the expression of the partition function as
a series in Fourier space, that is, as a sum over Young diagrams. There is an alternative approach to this result,
which focuses on the behaviour of the eigenvalues of the Brownian bridge (which we did not yet define). This
point of view was taken in a previous work by Liechty and Wang [15] and it has the advantage of making it
plausible, at a heuristic level, that there is a phase transition. We will discuss it rather informally, to the extent
that it allows one to better apprehend the nature of the phase transition. The work of Liechty and Wang, on
the other hand, is technically arduous, and logically independent from ours.

We also want to mention that several other third order phase transitions have been discovered over the last
twenty years by physicists. In some recent works, Schehr and Majumdar draw a general picture and establish
several general properties of these third order transitions. We refer the interested reader in particular to [16]
and the many references therein.

Besides the desire to understand Theorem 1.1, one of our main motivations in writing this paper was to
explore the concrete resolution of the minimisation problem which is at the heart of the study of the phase
transition. In this problem, a probability measure on the real line is sought which minimises the sum of its
energy of logarithmic self-interaction and its potential energy in an external field. This probability measure is
moreover subject to a constraint, in our case that its density with respect to the Lebesgue measure should exist
and not exceed 1.

The resolution of such minimisation problems seems to share some characteristics with the resolution of
ordinary differential equations, where more or less undisclosable manipulations are performed in the secrecy of
one’s draft in order to identify the solution, which is then abruptly exhibited and proved to be the right one,
using perfectly rigorous arguments which unfortunately give no hint as to the way in which the solution was
found in the first place.

In the present paper, we decided to disclose some of these shameful manipulations, with the hope that they
can be fruitfully applied to other similar problems. The method which we explain is not at all new, we learned
it in the treatise of Gakhov [10], and it is probably well known by many people who are better experts of these
problems than we are. But Gakhov’s book is written in a rather old-fashioned language and we did not find
many other accounts of this method: we are thus trying to write the account of it which we would have often
needed ourselves since we are studying problems of this kind. Sections 2.4 and 4.6 are devoted to these formal
derivations and we used a specific typography to emphasize that they do not have the same mathematical status
as the rest of the paper.
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We will also try to illustrate the power of a number of tools and methods which we learned in the books
and papers of Saff, Totik, Dragnev, Mhaskar, Kuijlaars, McLaughlin and others [8,9,13,17,18] in order to solve
these minimisation problems. In particular, we have not shied away from quoting several results which we found
particularly useful, and likely to be of interest for the potential reader. To be brief, we have treated Theorem
1.1 not only as an interesting result in itself, but also a case study in the art of solving minimisation problems
under constraints.

Particle systems of the kind that will be studied in this paper are commonly referred to as “Coulomb gases”
in the physical and mathematical literature. These systems have recently received much attention, as attested
for example by the works of Sandier, Serfaty and their coauthors (see [19] for a review), and also, closer to
our point view, by the work of Chafaï, Gozlan and Zitt in [6], based on large deviations. In these works, very
general results about the existence of the minimisers and their properties are stated, but only few minimisation
problems are explicitly solvable, and even less when a constraint is added. In contrast, in this paper, we explore
very concretely and as thoroughly as possible one very concrete example.

Acknowledgements. We would like to acknowledge the stimulating effect which the recent work of Liechty
and Wang [15] had on us. In this work, we learned among many other things that it is actually possible to
solve rigorously the minimisation problem which is the main object of this paper. We also would like to thank
Bernhard Beckermann for his decisive help in the proof of Lemma 4.5.

2. Gaussian Wigner matrices
It will be useful for us, as a warm-up, for the sake of coherence, and in order to set up some notation, to

review the case of Gaussian Wigner matrices in the light of the kind of minimisation problem which will appear
in the study of the phase transition. For this now very classical problem, we refer mainly to the monograph [2].

2.1. The Gaussian integral
For all real t > 0, the Euclidean space (HN , 1

t 〈·, ·〉) defined thanks to (1) and (2) carries a Gaussian probability
measure which we shall denote by γN,t:

dγN,t(X) ∝ e−N2tTr(X2) dX.

Consider a function f : HN → R which is continuous, bounded and invariant by unitary conjugation in the
sense that for all X ∈ HN and all U ∈ U(N), one has f(UXU−1) = f(X). Weyl’s integration formula in this
context (see section 2.5.4 in [2]) asserts that

∫
HN

fdγN,t =
(
N
t

)N2
2

1! . . . N !

∫
RN

f(diag(λ1, . . . , λN ))V (λ1, . . . , λN )2e−
N
2t (λ2

1+...+λ2
N ) dλ1 . . . dλN

√
2πN

,

where V (λ1, . . . , λN ) =
∏

1≤i<j≤N (λi − λj) is the Vandermonde determinant. The constant in front of the
integral can be determined by taking f identically equal to 1 and by writing V (λ1, . . . , λN ) as a determinant of
monic Hermite polynomials.

Introducing the empirical spectral measure

µ̂λ = 1
N

N∑
i=1

δλi ,
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the last integral can be rewritten as

(
N
t

)N2
2

1! . . . N !

∫
RN

f(diag(λ1, . . . , λN ))e−N
2J t(µ̂λ) dλ1 . . . dλN

√
2πN

, (4)

provided we define, for every Borel probability measure µ on R with compact support, and for every real t > 0,

J t(µ) =
∫∫
{(x,y)∈R2:x6=y}

− log |x− y| dµ(x)dµ(y) + 1
2t

∫
R
x2dµ(x). (5)

One of the keys to the intuitive interpretation of J t and the numerous similar functionals which we will encounter
in this paper is the fact that the function (z, w) 7→ − log |z−w| is the fundamental solution of the operator − 1

2π∆
on the complex plane. Accordingly, the number J t(µ) can be understood as twice the electrostatic potential
energy of a unit of electric charge distributed according to the measure µ in the complex plane, confined in this
case to the real line, and subject to the external potential x 7→ x2

4t . One should however observe that J t does
not take into account the infinite energy of self-interaction of an atom of charge with itself.

2.2. A large deviation principle
From (4), one naturally expects that, whenN tends to infinity, the eigenvalues of a typical Gaussian Hermitian

matrix will be distributed so as to make J t(µ̂λ) as small as possible. More precisely, since, as it will turn out,
the functional J t achieves its minimum at a unique diffuse probability measure, which we will denote by σt, one
expects that the probability for the empirical spectral measure µ̂λ to be far away from σt will be exponentially
small. This was rigorously stated and proved by Ben Arous and Guionnet in [3] in the framework of large
deviations, as follows.

Let us denote by M(R) the set of Borel probability measures on R, endowed with the topology of weak
convergence and with the corresponding Borel σ-field.

For each N ≥ 1, let us denote by ΛN,t the distribution of the random empirical spectral measure µ̂λ of a
Hermitian N ×N matrix chosen under the probability measure γN,t.

Theorem 2.1. [3, Thm 1.3] The sequence (ΛN,t)N≥1 of probability measures on M(R) satisfies a large devi-
ation principle in the scale N2 and with good rate function

µ 7→ It(µ) + 1
2 log t− 3

4 ,

with
It(µ) =

∫∫
R2
− log |x− y| dµ(x)dµ(y) + 1

2t

∫
R
x2dµ(x). (6)

More details on the large deviation principle and on the properties of the functional It can of course be found
in the original paper [3], as well as in the book [2].

2.3. A problem of minimisation
Let us make a couple of general remarks on the functional It, most of which apply mutatis mutandis to all

the functionals of the same type which we will consider in this paper.
To start with, there is an issue of definition, because the first term of the right-hand side of (6) is not defined

for every µ ∈M(R). This problem is solved by setting, for all (x, y) ∈ R2,

gt(x, y) = − log |x− y|+ x2 + y2

4t .
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The function gt is bounded below and, for all µ ∈M(R),

It(µ) =
∫∫

R2
gt(x, y) dµ(x)dµ(y)

is well defined as an element of (−∞,∞]. Moreover, the map It itself is bounded below, and not identically
equal to ∞. Since the function gt is lower semi-continuous, the map It itself is lower semi-continuous in
the weak topology. A minimising sequence for It has bounded second moment, so that it is tight, and It
attains its infimum. It is also true, although less easy to prove, that It is a strictly convex function onM(R)
(see [18, Lemma I.1.8] or [2, Lemma 2.6.2]), so that it attains its infimum at a unique probability measure. We
shall denote this unique minimiser by σt and our goal in the first part of this paper is to rediscover the shape
of σt.

Before we turn to the determination of σt, let us introduce some notation and collect a few general facts
related to minimisation problems slightly more general than that of the minimisation of It.

Consider µ ∈ M(R) with compact support. We denote by Uµ the logarithmic potential of µ, which is the
function defined on R by

Uµ(x) =
∫
R
− log |x− y| dµ(y).

We shall also make use of the Stieltjes transform Gµ of µ given, for all z ∈ C \ Supp(µ), by

Gµ(z) =
∫
R

dµ(y)
z − y

.

On R\Supp(µ), one has (Uµ)′ = −Gµ. On the support of µ, and under the assumption that µ has a sufficiently
regular density, this relation takes a slightly different form, which we now explain.

For any Hölder continuous function ψ : R → R with compact support, we shall denote respectively by Uψ
and Gψ the logarithmic potential and Stieltjes transform of the measure ψ(x)dx. We also set

PV
∫

ψ(y)
x− y

dy = lim
h→0

∫
|y−x|>h

ψ(y)
x− y

dy,

the principal value of this singular integral. Then, for all x ∈ R,

(Uψ)′(x) = −PV
∫

ψ(y)
x− y

dy. (7)

The following theorem describes the class of minimisation problems which we are going to encounter, states for
each of them the existence and uniqueness of its solution, and gives a characterisation of this solution based on
its logarithmic potential. Given a closed subset Σ of R, we denote byM(Σ) the set of Borel probability measure
on Σ. The logarithmic energy of a compactly supported measure µ ∈ M(Σ) is the number E(µ) ∈ (−∞,+∞]
defined by

E(µ) =
∫∫
− log |x− y| dµ(x)dµ(y). (8)

We say that a compact subset K of C has positive capacity if there exists a probability measure supported by
K and with finite logarithmic energy.

Theorem 2.2 ( [18, Thm I.1.3 and I.3.3]). Let Σ be a closed subset of R of positive capacity. Let Q : Σ → R
be a lower semi-continuous function such that lim|x|→+∞(Q(x)− log |x|) = +∞. Define, for any µ ∈M(Σ),

IQ(µ) =
∫∫

R2
− log |x− y| dµ(x)dµ(y) + 2

∫
R
Q(x)dµ(x). (9)
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The infimum of IQ over the set M(Σ) is finite and it is reached at a unique probability measure µ∗, which is
compactly supported.

Moreover, assume that µ is a compactly supported probability measure on Σ with finite logarithmic energy
and such that there exists a constant FQ for which{

Uµ +Q = FQ on Supp(µ),
Uµ +Q ≥ FQ on Σ. (EL)

Then µ = µ∗.

The measure µ∗ is called the weighted equilibrium measure on the set Σ in the external potential Q.
The last assertion of this theorem is a powerful touchstone which allows one to check that a given measure

is indeed the weighted equilibrium measure in a certain potential. It can be understood, in electrostatic terms,
by observing that Uµ + Q is the electrostatic potential jointly created by the distribution of charge µ and
the external potential Q. The fact that it is constant inside the support of µ indicates that the charges are
at equilibrium inside this support. The fact that it takes greater values outside this support indicates that
the charges are confined within the support, and that taking any small amount of charge outside the support
would increase the electrostatic energy of the system. Otherwise stated, the system (EL) is nothing but what
physicists call the Euler-Lagrange equations associated to this problem.

This characterisation does however not indicate how to find an expression of the measure µ∗. We will now
come back to our original problem and explain how a method which we learned in the treatise of Gakhov [10],
and which is also explained in Section IV.3 of [18], allows one to find a reasonable candidate for the weighted
equilibrium measure on R in the potential Q(x) = 1

4tx
2. Then, in Section 2.5, we will apply Theorem 2.2 and

give a rigorous proof that this candidate is indeed the minimiser.
As explained in the introduction, what we explain here is not at all new, and can be regarded as a preparation

for the much less classical minimisation problem under constraint that we will be facing in the second part of
the paper.

2.4. Derivation of the weighted equilibrium measure
Our goal in this section is to identify σt, the unique minimiser of It. As explained above, we will not care

too much about rigour: what follows is not for the faint of heart.
Let t > 0 be fixed. We start by making the ansatz that σt admits a density, which we denote by ϕt, with

respect to the Lebesgue measure, and that this density is regular enough, say Hölder continuous.
Since σt is a minimiser of It overM(R), and assuming all the required smoothness, It does not vary at first

order when we add to σt a small signed Borel measure of null total mass. A formal computation turns this
observation into the assertion that the function

x 7→ 2
∫
R
− log |x− y|ϕt(y) dy + 1

2tx
2 (10)

must be constant on the support of σt, which is nothing but the first equation of the system (EL) in this case.
Since the quadratic external potential grows much faster than the logarithmic interaction potential, we expect
σt to have compact support and, by symmetry, a support symmetric with respect to the origin. We postulate1

that this support is a symmetric interval [−a, a]. Therefore, differentiating (10) using (7) leads us to the singular
integral equation

PV
∫
ϕt(y)
x− y

dy = x

2t for all x ∈ [−a, a], (11)

where the unknown is the function ϕt.

1More details about the support will be given in Section 2.6.
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To solve this equation, we are going to use the Plemelj-Sokhotskyi formula (see for example [10]), which
asserts that if ψ is Hölder continuous, then for every x ∈ R,

Gψ±(x) = PV
∫

ψ(y)
x− y

dy ∓ iπψ(x), (12)

where we use the following notation : given a function H analytic on C \ R and a point x on the real axis, the
numbers H±(x) = limε→0H(x± iε) are the limits from above and from below of H at x.

The formula (12) can equivalently be written as follows: for every x ∈ R, we have

Gψ+(x) +Gψ−(x) = 2 PV
∫

ψ(y)
x− y

dy, (13)

Gψ+(x)−Gψ−(x) = −2iπψ(x). (14)

Our strategy for solving (11) can be summarised as follows.
• Equation (14) allows us to extract ϕt from the knowledge of its Stieltjes transform Gϕt .
• Our main goal will be to find Gϕt . In view of (11) and (13), we will look for a function Ht analytic on
C \ R which satisfies

(Ht)+(x) + (Ht)−(x) = x

t
, x ∈ [−a, a], (15)

and which has near infinity the behaviour of the Stieltjes transform of a probability measure, that is,
Ht(z) = z−1 + o(z−2). This will be our candidate for Gϕt .

• Unfortunately, Equation (15) is not particularly easy to solve directly. As (14) shows, what is easier is
to find a function analytic on C \ R with prescribed jump across the real axis. In order to bring (15)
into an equation of the form (14), we introduce an auxiliary function, as we now explain.

Let us introduce the function
R(z) =

√
z2 − a2,

analytic on C \ [−a, a], and where we choose the branch of the square root which is a positive real number on
(a,∞). For every x ∈ (−a, a), we have

R±(x) = ±i
√
a2 − x2,

which is to say that the limits of R on the real axis from above and from below are opposite. This is exactly
what is needed to turn the sum which appears in (13) into the difference which appears in (14).

More explicitly, a function Ht satisfies (15) if and only if(
Ht

R

)
+

(x)−
(
Ht

R

)
−

(x) = −2iπ x

2πt
√
a2 − x2

, x ∈ [−a, a].

According to (14), a solution of this equation is given by

Ht(z) =
√
z2 − a2

2πt

∫ a

−a

y

(z − y)
√
a2 − y2

dy.

One computes ∫ a

−a

y

(z − y)
√
a2 − y2

dy = zπ√
z2 − a2

− π,

and finds
Ht(z) = 1

2t (z −
√
z2 − a2).
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The parameter a has still to be fixed. For this, we consider the behaviour of Ht near infinity: we have
Ht(z) = a2

4t z
−1 + O(z−2). On the other hand, for Ht to be the Stieltjes transform of a probability measure, it

should be equivalent to z−1 at infinity. This entails

a = 2
√
t.

Then, for each x ∈ [−2
√
t, 2
√
t], we find the function ϕt, our candidate to be a solution of (11), by writing

ϕt(x) = − 1
2iπ ((Ht)+ − (Ht)−)(x) = 1

2πt
√

4t− x2.

This is the much expected semi-circular distribution.

2.5. Verification of the expression of the equilibrium measure
Let us now give a proof of the following proposition.

Proposition 2.3. The probability measure σt given by

dσt(x) = 1
2πt

√
4t− x2 1[−2

√
t,2
√
t](x) dx. (16)

is the unique minimiser overM(R) of the functional It defined by (6).

Proof. We want to apply Theorem 2.2. For this, we need to know the logarithmic potential of σt. Standard
computations (see for example Theorem 5.1 in [18]) show that

Uσt(x) =
{
−x

2

4t + 1−log t
2 if |x| ≤ 2

√
t,

−x2+|x|
√
x2−4t

4t − log(|x|+
√
x2 − 4t) + 1

2 + log 2 if |x| > 2
√
t.

(17)

Therefore, Uσt(x) + x2

4t is constant on the support of σt, equal to 1−log t
2 , and an elementary verification shows

that it is larger than this constant outside the support of σt. This suffices to guarantee that σt is the minimiser
of It. �

-1 1

1

2

3

Figure 2. The density of σt and the graph of x 7→ Uσt(x) + x2

4t for t = 1
4 .

Since we know where It achieves its minimum, we can compute this minimum, and find

It(σt) =
∫
R

(
Uσt(x) + x2

2t

)
dσt(x) = 1− log t

2 + 1
4t

∫
R
x2 dσt(x) = 3

4 −
1
2 log t.

In particular, the rate function appearing in Theorem 2.1 is equal to zero at σt, as expected.
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2.6. The support of the weighted equilibrium measure
Let us conclude this warm up by mentioning that we could have approached the determination of the

minimiser from a slightly different viewpoint, which we will adopt and illustrate in great detail in the problem
of minimisation under constraint which constitutes the main object of this paper.

This alternative approach relies on a series of remarkable results of Mhaskar, Saff and Totik, which allows
one to determine before anything else the support of the weighted equilibrium measure. Recall from (8) the
definition of the logarithmic energy of a compactly supported probability measure on C, and of the notion of
positive capacity for a compact subset K of C.

It follows from a classical result of Frostman, of which Theorem 2.2 is an elaborated version, that for every
compact subset K of C with positive capacity, there exists a unique probability measure ωK supported by K
and with minimal logarithmic energy. This probability measure is called the equilibrium measure of K.

In the following theorem, and until the end of this section, we work under the assumptions and with the
notations of Theorem 2.2.

Theorem 2.4 ( [18, Thm. IV.1.5]). For every compact subset K of Σ with positive capacity, set

MSQ(K) =
∫

(UωK +Q) dωK . (18)

The support of the weighted equilibrium measure on Σ in the external potential Q is the smallest compact subset
of Σ with finite logarithmic energy which minimises the functional MSQ.

The functional MSQ is called the Mhaskar and Saff functional, after the names of the authors who introduced
it. Let us emphasize that the definition which we gave for this functional is the opposite of the original one,
simply because we find it easier to consistently minimise functionals.

Theorem 2.4 alone does not suffice to identify the support of the weighted equilibrium measure, for there are
too many compact subsets of Σ. However, the following theorem allows one, in many concrete situations, to
restrict the search to a much narrower class of subsets.

Theorem 2.5 ( [18, Thm. IV.1.10 (b)]). Consider an interval I ⊂ Σ such that Q is convex on I. Then the
intersection of the support of µ∗ with I is an interval.

Using Theorems 2.4 and 2.5 and an argument of symmetry, simple computations allow one to prove that the
support of σt is [−2

√
t, 2
√
t].

One of the advantages of knowing the support of the minimising measure beforehand is the possibility of
applying the following result.

Theorem 2.6 ( [18, Thm. I.3.3]). Consider a probability measure µ ∈ M(Σ). Assume that ν has finite
logarithmic energy, that Supp(ν) ⊂ Supp(µ∗) and that Uν +Q is constant on Supp(µ∗). Then ν = µ∗.

Concretely, if we had known that the support of the weighted equilibrium measure on R in the external
potential x 7→ x2

4t was the interval [−2
√
t, 2
√
t], then the first equality of (17) would have been sufficient to

ensure that σt was indeed the minimiser. In this situation, this may not seem to be a huge economy of
effort, because the computation of Uσt is relatively easy, but there are more complicated situations where the
computation of the potential can be rather challenging.

3. Brownian motion and Brownian bridge on the unitary group
From now on, we focus on the main object of this paper, which is to investigate the Douglas-Kazakov phase

transition. In this section, we introduce the Brownian bridge on the unitary group, which is one of the models on
which this transition can be studied, and we explain how, at a heuristic level, one can understand the origin of
the Douglas-Kazakov phase transition by considering the behaviour of the eigenvalues of this Brownian bridge.
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3.1. The partition function of the model
Recall from the introduction that the spaceHN of N×N Hermitian matrices is endowed with the scalar prod-

uct 〈X,Y 〉 = NTr(XY ). The linear Brownian motion in HN is the Gaussian process (Xt)t≥0 with covariance
specified by the following relation:

∀A,B ∈ HN ,∀s, t ≥ 0, E[〈Xs, A〉〈Xt, B〉] = min(s, t)〈A,B〉.

The unique solution of the following linear stochastic differential equation in MN (C):

dUt = iUt dXt −
1
2Ut dt, with initial condition U0 = IN , (19)

is called the Brownian motion on the unitary group U(N) issued from the identity. By computing d(UtU∗t ), one
can check that almost surely, Ut stays in U(N) for all t ≥ 0.

The distribution of Ut is absolutely continuous with respect to the Haar measure on U(N) and we will give
in (21) an expression of its density, which we denote by pN,t.

Let L2
inv(U(N)) be the space of square-integrable functions with respect to the Haar measure on U(N) which

are invariant by conjugation. This space admits an orthonormal basis indexed by the set ZN↓ of decreasing
sequences ` = (`1 > . . . > `N ) of N integers, which is the Schur basis. For each ` ∈ ZN↓ , the Schur function
s` is the quotient of the restriction to U(N) of a polynomial function on MN (C) and an integer power of the
determinant. More precisely, if U is a unitary matrix with pairwise distinct eigenvalues z1, . . . , zN , then

s`(U) = det(z`ji )i,j=1...N

det(zN−ji )i,j=1...N
= det(z`ji )i,j=1...N

V (z1, . . . , zN ) ,

with the notation V for the Vandermonde determinant. The value of s` at matrices with multiple eigenvalues,
for instance IN , cannot be directly computed with this formula, but we have

s`(IN ) = lim
α→0

s`(diag(1, eiα, . . . , ei(N−1)α)) = V (`1, . . . , `N )
V (1, . . . , N) ,

an equality which is known as Weyl’s dimension formula. We can use this formula to write the Fourier series of
the Dirac mass at IN :

δIN =
∑
`∈ZN↓

V (`1, . . . , `N )
V (1, . . . , N) s`.

The equality above is to be understood in the following distributional sense: for every smooth test function f
on U(N), one has f(IN ) =

∑
`∈ZN↓

V (`1,...,`N )
V (1,...,N)

∫
U(N) f(U)s`(U) dU , the last integral being with respect to the

normalised Haar measure.
For each ` ∈ ZN↓ , the function s` is an eigenfunction of the Laplace operator ∆ on U(N), which for our

present purposes can conveniently be defined as twice the generator of the Brownian motion defined by (19).
The corresponding eigenvalue is the non-positive real −c2(`), where

c2(`) = 1
N

N∑
i=1

(
`i −

N − 1
2

)2
− N2 − 1

12 . (20)

For each t > 0, the Fourier series of the density of the heat kernel measure on U(N) at time t (which is the
distribution of Ut) can be obtained formally by applying the heat operator e t2 ∆ to the Fourier series of the Dirac
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mass at the identity. As shown for example in [14, Thm 4.4 (a)], the resulting series is the correct one and it is
normally convergent. Thus, for all U ∈ U(N), we have

pN,t(U) =
∑
`∈ZN↓

e−
t
2 c2(`)V (`1, . . . , `N )

V (1, . . . , N) s`(U). (21)

We can now define the Brownian bridge as follow. Choose a real T > 0. The Brownian bridge of length T
on the unitary group is the unique pathwise continuous stochastic process (Bt)t∈[0,T ] on U(N) such that for all
n ≥ 1, all reals 0 = t0 < t1 < . . . < tn < tn+1 = T and all continuous function f : U(N)n → R,

E[f(Bt1 , . . . , Btn)] = 1
ZN,T

∫
U(N)n

f(U1, . . . , Un)
n+1∏
i=1

pN,ti−ti−1(U−1
i−1Ui) dU1 . . . dUn,

with the convention U0 = Un+1 = IN , and where we have set

ZN,T =
∫

U(N)n

n+1∏
i=1

pN,ti−ti−1(U−1
i−1Ui) dU1 . . . dUn.

This normalisation constant, or partition function, can be expressed at least in two ways: using the convolution
property of the heat semigroup, it is equal to

ZN,T = pN,T (IN ). (22)

Then, using (21), we find that it can also be written as

ZN,T =
∑
`∈ZN↓

e−
T
2 c2(`)V (`1, . . . , `N )2

V (1, . . . , N)2 . (23)

The number ZN,T is our main quantity of technical interest: the Douglas-Kazakov phase transition expresses
a failure of smothness with respect to T of its properly normalised limit as N tends to infinity (see Theorem
1.1). Corresponding to the two descriptions of ZN,T , there are two points of view on the phase transition, and
two intuitive understandings of it.

The first point of view, which was that of Douglas and Kazakov in [7], is based on the expression (23), and
is focused on the behaviour as N tends to infinity of the positive measure on ZN↓ of which ZN,T is the total
mass. Since this is also the point of view which we adopt in the next sections, we will not dwell on it now. Let
us simply summarise the main idea: when N is large, the sum is dominated by a few terms which correspond
to certain vectors ` which are close to an optimal vector, the “shape” of which depends on T and undergoes
a non-smooth change when T crosses the critical value π2. Incidentally, the reason why Douglas and Kazakov
were interested in this quantity is that ZN,T is also the partition function of the 2-dimensional pure Euclidean
Yang-Mills theory with structure group U(N) on a sphere of total area T .

The other point of view is that of the “collective field theory”, as Gross and Matytsin call it in [11]. It is more
closely related to (22), and is concerned with the behaviour of the eigenvalues of the Brownian bridge. Because
this is not the point of view on which our technical approach is based, and because we find the phenomenon of
transition in the behaviour of the eigenvalues particularly striking, we will now give a little more details about
it in the two following short subsections.

3.2. The eigenvalues of the Brownian motion
Before discussing the eigenvalues of the Brownian bridge, it is appropriate to review the more classical and

easier case of the Brownian motion. We want to understand the global behaviour of the spectrum of a unitary
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matrix picked under the distribution of Ut. We therefore denote by

µ̂U = 1
N

N∑
i=1

δzi

the empirical spectral measure of a unitary matrix U with eigenvalues z1, . . . , zN . This is a probability measure
on the unit circle U of the complex plane.

To tackle the asymptotic behaviour of the law of µ̂U under the heat kernel measure pN,t, one could hope to
mimic the strategy presented in Section 2 for the Hermitian case. The function pN,t is invariant by conjugation on
U(N), so that its value at a unitary matrix U can, in principle, be expressed as a function of µ̂U . Unfortunately,
this is far from being as simple a function as the function µ 7→ exp(−N2J t(µ)) which arose in the Hermitian
case.

To be clear, an analysis of the distribution of the eigenvalues of the unitary Brownian motion analogous to
the one which we reviewed in the Hermitian case is still out of reach at the time of writing. A large deviation
principle somewhat similar to Theorem 2.1 is very likely to hold, but just to identify its rate function is still
an open problem. Let us nevertheless mention the partial results in this direction obtained, under the form of
dynamical upper bounds, by Cabanal-Duvillard and Guionnet in [5].

While no large deviation principle is known, there exists a law of large numbers: the asymptotic distribution
of the eigenvalues was computed by Biane in [4] using moment techniques. To state his results, we use the
notation tr for the normalised trace on MN (C), the one such that tr(IN ) = 1. Given a continuous function f
on U, we also use the notation f(U) for the result of the application on U of the functional calculus determined
by f . Thus, trf(U) =

∫
U f dµ̂U .

Theorem 3.1 ( [4]). For all t ≥ 0, there exists a probability measure νt on U such that, for all continuous
function f : U→ R, one has the convergence in probability

trf(Ut)
P−→

N→∞

∫
U
f dνt.

The measure νt is determined by the fact that for all complex number z close enough to 0,∫
U

1
1− z

z+1e
tz+ t

2 ξ
dνt(ξ) = 1 + z.

This description of the measure νt is rather indirect, but using it one can determine, among other things,
the support of νt. For each t ∈ [0, 4], the support of νt is the interval{

eiθ : |θ| ≤ 1
2

∫ t

0

√
4− s
s

ds

}
.

For t > 4, the support of νt is the full circle U. Moreover, for every t > 0, the measure νt is absolutely
continuous with respect to the uniform measure on U, and for every t 6= 4, this density is smooth and positive
on the interior of the support of νt. The density of ν4 has a singularity at eiπ and is smooth and positive on
U \ {eiπ}.

For the understanding of the Douglas-Kazakov phase transition, the most important fact is that the support
of the limiting distribution νt is equal to {1} when t = 0, then grows symmetrically to become the full circle U
at t = 4, and then stays equal to U. In other words, the choice which we made at the beginning for the scalar
product on HN (see the beginning of Section 3.1), and which determines the speed of the Brownian motion on
U(N), is exactly such that we can see, at a macroscopic scale of time, the eigenvalues of Ut progressively invade
the whole unit circle.
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It is interesting to note that, although several quantities change qualitatively when t crosses the value 4, for
instance the decay of the moments of the measure νt, which is polynomial for t ≤ 4 and exponential for t > 4,
there does not seem to be a phase transition at t = 4 in the same sense as there is for the Brownian bridge.

3.3. The eigenvalues of the Brownian bridge
Let us now turn to the behaviour of the eigenvalues of the Brownian bridge, the study of which is distinctly

harder than in the Brownian case.
It is possible to write down explicit expressions for the moments of the expected empirical spectral measure of

the random matrix Bt, but to this day we have not been able to study their asymptotic behaviour directly. The
analogue of Biane’s result was obtained recently by Liechty and Wang in the formidable paper [15], using the
point of view of determinantal processes. In particular, they prove the existence of a measure which plays for the
Brownian bridge the role played for the Brownian motion by the measure νt, and they give some description of
this measure. Note that this measure depends not only on the time t at which the Brownian bridge is observed,
but also on the lifetime T of the bridge. Fortunately, we need not enter the details of Liechty and Wang’s very
technical solution to understand at least at a heuristic level why the phase transition predicted by Douglas and
Kazakov occurs.

During the evolution of the Brownian bridge (Bt)t∈[0,T ], each eigenvalue starts from 1 at time 0, wanders in
the unit circle and finally comes back to 1 at time T . Collectively, the gas of eigenvalues undergoes an expansion
on the unit circle, followed by a contraction. Since the processes (Bt)t∈[0,T ] and (BT−t)t∈[0,T ] have the same
distribution, we expect the evolution of this gas to be symmetric with respect to the time T

2 , and its maximal
expansion to be reached precisely at t = T

2 .
Now suppose that T is small. Then the time T

2 is too small for the eigenvalues to reach the other end of the
unit circle, and the support of the limiting distribution of the eigenvalues does never expand enough to reach
the point eiπ, which is the furthest from their starting point 1.

If on the contrary T is large, much larger than 4, then the bridge will see its eigenvalues fill the unit circle
almost as quickly as those of the Brownian motion (although we would expect the influence of the conditioning
to slow this expansion slightly). Hence, at T

2 , and some time before and some time after, the support of the
limiting distribution of the eigenvalues of Bt fills the unit circle.

According to this informal discussion, we expect a transition between two regimes to occur for a critical
lifetime T of the bridge which is slightly larger than 8. The discovery of Douglas and Kazakov, proved by
Liechty and Wang, is that the transition occurs at T = π2.

We will now give another proof of the existence of the phase transition, which is closer in spirit to the
original point of view of Douglas and Kazakov, and which is logically independent of Liechty and Wang’s work.
Nevertheless, as mentioned in the introduction, Liechty and Wang’s work gave us a crucial impulsion by showing
that the minimisation which is at the core of Douglas and Kazakov’s statement can indeed be solved rigorously.

4. The shape of the dominant representation
In this section, we undertake the analysis of the partition function ZN,T . We show that the computation

of the free energy amounts to the resolution of a minimisation problem of the same kind as the one which we
solved in the case of Wigner matrices, but with an additional constraint, of which we explain the nature and
the origin. We then explain how to solve this problem, and we solve it. The computation of the free energy and
the proof of Theorem 1.1 will be presented in Section 5.
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4.1. A discrete Gaussian integral
Let us start from the expression (23) of the partition function. Using (20), we find

ZN,T =
∑
`∈ZN↓

e−
T
2 c2(`)V (`1, . . . , `N )2

V (1, . . . , N)2

= e
T
24 (N2−1)

V (1, . . . , N)2

∑
`∈ZN↓

e−
T

2N

∑N

i=1
(`i−N−1

2 )2
V (`1, . . . , `N )2,

an expression very similar to the one which we obtained at the beginning of Section 2.1, and which indeed can
be regarded as a discrete Gaussian integral.

Since V (`1, . . . , `N ) = V (`1 − N−1
2 , . . . , `N − N−1

2 ), the last sum is easily expressed as a function of the
empirical measure

µ̂` = 1
N

N∑
i=1

δ 1
N (`i−N−1

2 ).

We find

ZN,T = e
T
24 (N2−1)+N(N−1) logN

V (1, . . . , N)2

∑
`∈ZN↓

e−N
2JT (µ̂`), (24)

where we have set, for every Borel probability measure on R,

JT (µ) =
∫∫
{(x,y)∈R2:x 6=y}

− log |x− y| dµ(x)dµ(y) + T

2

∫
R
x2dµ(x). (25)

Quite wonderfully, the functional JT is none other than J 1
T , as defined by (5). Given this coincidence, which

of course is a reflection of a deeper correspondence between the eigenvalues of unitary matrices on one side and
the integer vectors which index the Schur functions on the other side, the passage from T to 1

T is the natural
consequence of our working in Fourier space.

Recall that our main objective is to compute the free energy

F (T ) = lim
N→∞

1
N2 logZN,T .

In the scale where we are working, the contribution of the prefactor of (24) is easy to compute. Indeed, a simple
computation shows that

1
N2 log

(
e
T
24 (N2−1)+N(N−1) logN

V (1, . . . , N)2

)
= T

24 + 3
2 +O

(
logN
N

)
. (26)

We will henceforward focus on the second term,

1
N2 log

∑
`∈ZN↓

e−N
2JT (µ̂`). (27)

4.2. Another large deviation principle
Just as in our investigation of Wigner matrices, we expect the sum (27) to be dominated by the terms

corresponding to those `’s for which µ̂` minimises JT . Accordingly, we expect (correctly as we will see) this
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phenomenon of concentration to give rise to a large deviation principle, and we might also expect (incorrectly
as it turns out) that the simple relation

F (T ) = T

24 + 3
2 − IQT (σ1/T ) = T

24 + 3
4 −

1
2 log T (28)

holds, where QT (x) = T
4 x

2, the functional IQT is defined by (9), and σ1/T is the minimiser defined by the
right-hand side of (16).

Let us start by stating the large deviation principle. We will then explain why (28) is not true, or at least
not for all values of T .

As always, the set M(R) of Borel probability measures on R is endowed with the weak topology and the
corresponding Borel σ-field. Another set of probability measures on R appears in the statement, namely the set

L(R) = {µ ∈M(R) : ∀a, b ∈ R, a < b, µ([a, b]) ≤ b− a} (29)

of Borel probability measures on R which are absolutely continuous with respect to the Lebesgue measure, with
a density not greater than 1.

The following result can be viewed as a “discrete analogue” of Theorem 2.1.

Theorem 4.1 ( [12, Thm 2]). Let T > 0. For each N ≥ 1, let ΠN be the Borel measure onM(R) defined by

ΠN =
∑
`∈ZN↓

e−N
2JT (µ̂`)δµ̂` .

The sequence of measures (ΠN )N≥1 satisfies onM(R) a large deviation principle in the scale N2 with good rate
function ĨQT defined as follows:

∀µ ∈M(R), ĨQT (µ) =
{
IQT (µ) if µ ∈ L(R),
+∞ otherwise.

4.3. A problem of minimisation under constraint

The fact that the rate function ĨQT of this large deviation principle is equal to +∞ outside L(R) indicates that
the measures µ̂` do not explore the whole setM(R). This is not surprising if we realise that the integer vectors
` are submitted to the constraint that their components must be pairwise distinct. Indeed, this constraint puts
an upper bound to the concentration of mass which the measures µ̂` can achieve, and we have⋂

p≥1

⋃
N≥p

{µ̂` : ` ∈ ZN↓ } = L(R).

Since L(R) is a closed subset ofM(R), the same arguments which we used after the definition of the functional
J t (see (5)) imply that the functional IQT attains its infimum on L(R) at a unique element of L(R), which we
shall denote by µ∗T . A precise statement of this fact can be found in [9, Thm 2.1], and is stated below, for the
convenience of the reader, as Theorem 4.4.

The existence and uniqueness of µ∗T , combined with the large deviation principle and with (26), yields the
following result, which is the key to our computation of the free energy.

Proposition 4.2. For all T > 0, one has

F (T ) = lim
N→∞

1
N2 logZN,T = T

24 + 3
2 − inf{IQT (µ) : µ ∈ L(R)} = T

24 + 3
2 − IQT (µ∗T ).
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Now, the reason why (28) is not true for all T is easy to explain. The problem is that σ1/T , which is
the minimiser of IQT over the whole space M(R), does not belong to L(R) for all T . In fact, a very simple
computation shows that σ1/T belongs to L(R) exactly when T ≤ π2. In this case, µ∗T = σ1/T and the equality
(28) is true, giving the correct value of the free energy.

For T > π2 on the other hand, the absolute minimiser of IQT overM(R) does not belong to L(R). We are
thus facing a minimisation problem of a new kind, which is the following.

Problem 4.3. Fix T > π2. Set QT (x) = T
4 x

2. Find µ∗T , the unique minimiser on the set L(R) (defined by
(29)) of the functional IQT (defined by (9)).

The resolution of this problem will occupy us almost until the end of this paper. Until the end of Section 4,
we always assume that T > π2.

4.4. Strategy, tools, and outline of the results
Let us start by quoting the result which ensures the existence and uniqueness of the constrained minimiser

µ∗T . This result is a version of Theorem 2.2 adapted to problems of minimisation under constraint. It is proved
in a paper of Dragnev and Saff [9], where the authors give the first systematic study of minimisation problems
under constraint.

Theorem 4.4 ( [9, Thm 2.1]). Let Σ be a closed subset of R of positive capacity. Let Q : Σ → R be a lower
semi-continuous function such that lim|x|→+∞(Q(x)− log |x|) = +∞. Let σ be a Borel measure on Σ such that
Supp(σ) = Σ and σ(Σ) > 1. Assume that the restriction of σ to every compact set has finite logarithmic energy.

Then the infimum of the functional IQ over the set {µ ∈ M(Σ) : µ ≤ σ} is finite and it is reached at a
unique probability measure µ∗, which is compactly supported.

Moreover, consider a compactly supported probability measure µ on Σ such that µ ≤ σ. Then µ = µ∗ if and
only if there exists a constant FQ such that{

Uµ +Q ≤ FQ µ almost everywhere (a.e.)
Uµ +Q ≥ FQ σ − µ a.e. (ELc)

The measure µ∗ is called the constrained weighted equilibrium measure on Σ in the external field Q and with
constraint σ.

Apart from a slight variation in the technical assumptions, the main difference between this result and
Theorem 2.2 lies in the characterisation of the minimising measure by means of its potential. This new char-
acterisation can be paraphrased by saying that Uµ + Q is equal to FQ on the part of the support of µ where
the constraint µ ≤ σ is not saturated, smaller than FQ on the set where the constraint µ ≤ σ is saturated, and
larger than FQ outside the support of µ.

In comparison with the case without constraint, the new phenomenon is that on an interval where µ puts as
much mass as it is allowed to, namely the mass given by σ, it would in general have been energetically more
efficient to put even more mass. On such an interval, Uµ +Q is smaller than FQ and, should the constraint be
released, some of the mass of µ initially located outside this interval would migrate into it (see Figure 8 for an
explicit example).

We shall often refer to the characterisation of the constrained weighted equilibrium measure in terms of its
potential, given by the system (ELc), as the Euler-Lagrange formulation of the minimisation problem.

Let us turn to our specific problem. Considering the parity of the external potential QT and of the constraint,
which is the Lebesgue measure, considering the relative position of the densities of the absolute minimiser
σ1/T and the Lebesgue measure, and using the electrostatic intuitive formulation of the problem, in which the
constraint can be understood as the specification of a finite electric capacitance of the set on which the measures
live, it seems reasonable to expect that there will exist two reals α and β with 0 < α < β such that µ∗T , the
constrained minimiser, is equal to the Lebesgue measure on [−α, α], is strictly between zero and the Lebesgue
measure on (−β,−α) ∪ (α, β), and vanishes outside (−β, β). This is illustrated on Figure 3 below.



106 ESAIM: PROCEEDINGS AND SURVEYS

σ1/T µ∗
T

α β−α−β

Figure 3. A schematic representation of the measures σ1/T and µ∗T .

According to the general principle, advertised for instance by Saff and Totik in their book [18], that the first
step in the determination of a minimising measure is the determination of its support, our first task will be to
formulate this guess precisely, to prove it, and to determine explicitly the values of α and β in function of T .

The first result which we will prove is the following. We use the notation Leb for the Lebesgue measure.
Lemma 4.5. There exists two reals 0 < α < β such that the measure µ∗T satisfies

Supp(µ∗T ) = [−β, β] and Supp(Leb− µ∗T ) = R \ (−α, α).

The proof of this lemma involves three ingredients. The first was suggested to us by Bernd Beckermann. It
consists in exploiting the symmetry of the problem and transforming it into a problem on R+ via the squaring
map. The second ingredient is a duality argument, which the form of the statement suggests a posteriori, and
which consists in studying µ∗T and Leb − µ∗T on the same footing. We learned this technique in a paper of
Kuijlaars and Mc Laughlin ( [13], see also [9, Corollary 2.10]). The third ingredient is the following version of
Theorem 2.5 for minimisation problems under constraint, which yields convexity properties of the support.
Theorem 4.6 ( [9, Thm 2.16 (a)]). Under the assumptions of Theorem 4.4, the intersection of the support of
µ∗ with any interval contained in Σ and on which Q is convex is an interval.

Let us emphasize one of the great strengths of this theorem, which is not to depend on any assumption on
the constraining measure σ.

The actual determination of α and β is based on the use of the Mhaskar-Saff functional (see Theorem 2.4). It
requires a certain amount of computation of integrals, which turn out to be elliptic integrals. The formulation
of the result requires the definition of the complete elliptic integrals of the first and second kind, which are the
two functions of a parameter k ∈ (0, 1) defined by

K(k) =
∫ 1

0

ds√
(1− s2)(1− k2s2)

and E(k) =
∫ 1

0

√
1− k2s2

1− s2 ds. (30)

There is a tradition, which we follow, not to write the dependence of K(k) and E(k) on k, and to write simply
K and E.
Lemma 4.7. The two reals α and β of which Lemma 4.5 assures the existence are uniquely determined, as
functions of T , by the relations

β = 1
2E − (1− k2)K and α = kβ,

where E and K are the complete elliptic integrals defined by (30), and k is the unique element of (0, 1) such
that

T = 8EK − 4(1− k2)K2.

We also refer the reader to Figure 7.

Once α and β are determined, there remains to compute the restriction of µ∗T to the set J(α, β) = [−β,−α]∪
[α, β]. For this, we use the following fact, which is a consequence of the result stated as Corollary 2.9 in [9].
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Proposition 4.8. The restriction of µ∗T to J(α, β) = [−β,−α]∪ [α, β] is (1−2α) times the weighted equilibrium
measure on the set (−∞,−α] ∪ [α,+∞) in the external potential QT,α = 1

1−2α (QT + ULeb|[−α,α]).

At this point, the problem has been transformed into a minimisation without constraint, on a new subset of
R, with a new potential. We will derive the solution of this problem using the same method which we used in
Section 2.4, be it to the price of more complicated computations, and we will check that the solution which we
obtain is indeed the minimiser using Theorem 2.6.

The last step of our proof of the phase transition consists in an explicit computation of the free energy of
the model, and in a direct computation of the limits on the left and on the right at π2 of the third derivative
of the free energy. This will be done in Section 5.

4.5. The support of the weighted equilibrium potential
In this section, we prove Lemma 4.5 and Lemma 4.7.

Proof of Lemma 4.5. In this proof, for the sake of simplicity, we shall denote the functional IQT by IT .
Step 0: the minimiser is even. The fact that the potential QT (z) = T

4 z
2 is even implies that the functional

IT takes the same value on a measure µ and on the measure µ∨ which is the image of µ by the map x 7→ −x.
Moreover, since IT is convex, this common value cannot be smaller than the value of IT on the symmetric
measure 1

2 (µ+ µ∨). Hence, µ∗T , the minimiser of IT , must be a symmetric measure.
The first idea of this proof is to exploit this symmetry and to transform the problem of minimisation of IT

into an equivalent but simpler problem on R+, via the squaring map. The reason why this new problem is
simpler is that 0 acts as a “hard” boundary for the problem, and reduces the freedom with which measures are
allowed to move.

Step 1: folding up the problem. Let s : R → R+ denote the squaring map x 7→ s(x) = x2. Let us define
ν∗T = µ∗T ◦ s−1, the image measure of µ∗T by s. We claim that ν∗T is the unique minimiser of the functional

IsT (ν) =
∫∫

(R+)2
− log |u− v| dν(u)dν(v) + T

∫
R+

u dν(u)

on

Ls =
{
ν ∈M(R+) : ∀a, b ∈ R+, a < b, ν([a, b]) ≤ 2(

√
b−
√
a) =

∫ b

a

du√
u

}
.

Indeed, a simple change of variables implies that for every µ ∈ L, the measure µ ◦ s−1 belongs to Ls and, if µ
is symmetric, that the equality

2 IT (µ) = IsT (µ ◦ s−1)
holds. Now, every measure ν in Ls is the image measure by the squaring map of a unique symmetric measure
µ in L, and we have IsT (ν) = 2 IT (µ) ≥ 2 IT (µ∗T ) = IsT (ν∗T ).

It must be noted that the squaring map plays a special role here: the logarithmic potential behaves par-
ticularly nicely under this transformation, and the quadratic part of the functional IsT is still the logarithmic
energy.

Let us denote by κ the measure du/
√
u on R+, which is the image of the Lebesgue measure by the squaring

map. Proving the lemma is equivalent to proving that there exist two reals a and b with 0 < a < b such that

Supp(ν∗T ) = [0, b] and Supp(κ− ν∗T ) = [a,+∞).

Step 2: restricting to a compact set. We already said that our main reference for constrained energy problems
is the paper of Dragnev and Saff [9]. In this paper, the authors work under the assumption that the constraint
is a finite measure, an assumption which is not satisfied by the measure κ on R+. Nevertheless, the proof of the
existence of the minimiser (pages 243 to 246 in [9]) uses only the fact that the constraint is finite on compact
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subsets of C, which is true for our measure κ. Moreover, as the authors explain in Remark 2.2, their proof of
the existence of the minimiser shows that it has compact support.

Thus, the arguments of [9] show that ν∗T has compact support. Let us fix M > 0, which may depend on T ,
such that the support of ν∗T is a subset of [0,M). Let us emphasize that, for a reason which shall become clear
soon, we choose M large enough that it does not belong to the support of ν∗T . Then ν∗T is the unique minimiser
of IsT on

LsM =
{
ν ∈M([0,M ]) : ν ≤ κ|[0,M ]

}
.

Since the measure κ|[0,M ] is finite, we are now exactly in the framework of the paper of Dragnev and Saff, and
we can apply their results.

Step 3: existence of b. Since the external potential qT (z) = T
2 z to which ν∗T is subjected is convex, Theorem

4.6 implies that the support of ν∗T is an interval. Since qT is increasing and the density of κ is decreasing, this
interval must contain 0, for if it did not, a translation of ν∗T to the left would produce another element of Ls
achieving a strictly smaller value of IsT . Altogether, this proves that the support of ν∗T is of the form [0, b] for
some b > 0, indeed b ≥ 1

4 , since κ([0, 1
4 ]) = 1.

Step 4: existence of a. We will now prove that the support of the difference κ|[0,M ] − ν∗T is an interval of the
form [a,M ], which is to say that the measure ν∗T saturates the constraint κ on the interval [0, a). For this, we
use the Euler-Lagrange formulation of the minimisation problem, that is, the characterisation of the minimising
measure in terms of its potential (see Theorem 4.4), and a clever duality argument which we borrow from
Kuijlaars and Mc Laughlin (see [13], and also [9, Corollary 2.10]). A glance at Figure 4 may help to memorise
the definitions of the measures which we introduce.

Ma b

κ
ν∗T cν∗

Figure 4. The measures κ, κM = κ|[0,M ], ν∗T and ν∗ = 1
c (κM − ν∗T ), with c = 2

√
M − 1.

Let us denote κM = κ|[0,M ]. According to the Euler-Lagrange formulation of the minimisation problem on
[0.M ] of which ν∗T is the solution, there exists a constant ` such that{

Uν
∗
T + qT ≤ ` ν∗T a.e.

Uν
∗
T + qT ≥ ` κM − ν∗T a.e. (EL∗)

Let us now set c = 2
√
M − 1 and define the probability measure ν∗ = 1

c (κM − ν∗T ). By merely rewriting the
system (EL∗), we see that ν∗ is the unique probability measure on [0,M ] which is dominated by 1

cκM and for
which there exists a constant `, the same as above, such that{

Uν∗ + 1
c (−UκM − qT ) ≤ − `c ν∗ a.e.

Uν∗ + 1
c (−UκM − qT ) ≥ − `c

1
cκM − ν∗ a.e.

(EL∗)
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This is exactly the Euler-Lagrange formulation of the fact that ν∗ is the minimiser of the functional

IsT,M∗(ν) =
∫∫

[0,M ]2
− log |u− v| dν(u)dν(v) + 2

∫
R+

−UκM (u)− T
2 u

2
√
M − 1

dν(u)

on

LsM∗ =
{
ν ∈M([0,M ]) : ν ≤

κ|[0,M ]

2
√
M − 1

}
.

This minimisation problem may look rather complicated, but all we need to prove is that the support of its
solution ν∗ is an interval of the form [a,M ], that is, an interval which contains M . The fact that the support
of ν∗ contains M follows immediately from the fact that we chose M outside the support of ν∗T .

In order to prove that the support of ν∗ is an interval, we apply again Theorem 4.6. For this, we need to
prove that the external potential to which ν∗ is submitted is convex. Since qT is linear, it is enough to prove
that UκM is concave. This is done by direct computation: one establishes first that for all x ∈ [0,M ],

UκM (x) = 2
√
x log

(√
M −

√
x√

M +
√
x

)
− 2
√
M log(M − x) + 4

√
M,

then that limx→0 x
3
2 (UκM )′′(x) = 0, and finally that

d

dx

(
x

3
2 (UκM )′′(x)

)
= −

√
Mx

(M − x)2 ,

from which it follows that (UκM )′′ is negative on (0,M ]. This concludes the proof that UκM is concave.
Step 5 : a 6= b. We know by definition that a ≤ b. However, we still need to rule out the possibility that

a = b. We do this by contradiction: let us assume that a = b. Then ν∗T = κ|[0,a], so that we must have a = 1
4 ,

and µ∗T = Leb|[− 1
2 ,

1
2 ]. A direct computation then shows that for all x ∈ R,

Uµ
∗
T (x) = 1 +

(
x− 1

2

)
log
∣∣∣∣x− 1

2

∣∣∣∣− (x+ 1
2

)
log
∣∣∣∣x+ 1

2

∣∣∣∣ .
In particular, (Uµ∗T )′( 1

2 ) = −∞ and no matter the value of T , the function Uµ∗T +QT is strictly decreasing in a
neighbourhood of 1

2 , which forbids µ∗T from being the solution of the Euler-Lagrange version of the minimisation
problem. �

Let us now turn to the determination of the values of α and β. We will use again a duality argument, for
which we found the inspiration in [8].

Proof of Lemma 4.7. For all reals 0 ≤ a ≤ b, let us define J(a, b) = [−b,−a] ∪ [a, b]. Let us denote by η∗ the
restriction of µ∗T to J = J(α, β). Let us denote by πα the restriction to [−α, α] of the Lebesgue measure. By
Lemma 4.5 and Proposition 4.8, the measure η∗ is equal to 1 − 2α times the unique probability measure on
Σα = R \ (−α, α) which minimises the functional IQT,α , where we have set, for all x ∈ Σα,

QT,α(x) = QT (x) + Uπα(x)
1− 2α .

Our goal is to determine α and β and this is equivalent to determining the support of η∗. To do this, we use
the functional introduced by Mhaskar and Saff and which we discussed in Section 2.6. According to Theorem
2.4, J(α, β) is, among all compact subsets of Σα, one which minimises the functional MSQT,α . From this, we
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deduce in particular that the function b 7→ MSQT,α(J(α, b)) achieves its minimum on (α,+∞) at b = β. An
explicit computation will show that this function is differentiable and we find a first relation:

∂

∂b
MSQT,a(J(a, b))

∣∣∣∣
(a,b)=(α,β)

= 0. (MS∗)

Since α is a boundary point of the closed set Σα, we cannot let a vary freely around α and it would be delicate
to justify directly that ∂

∂aMSQT,c(J(a, b)) vanishes at (a, b, c) = (α, β, α). To go around this difficulty and to
get a second relation between α and β, we use again a duality argument. Let us denote by πβ the restriction to
[−β, β] of the Lebesgue measure, and define η∗ = 1

2β−1 (πβ − µ∗T ) = 1
2β−1 (Leb|J(α,β) − η∗). See Figure 5 for an

illustration of these definitions.

α β−α−β

cη∗cη∗

η∗ η∗

µ∗
T

Figure 5. The measures η∗ and cη∗, with c = 2β − 1.

From the inequalities {
Uµ
∗
T +QT ≤ ` µ∗T a.e.

Uµ
∗
T +QT ≥ ` πβ − µ∗T a.e. (31)

it follows that {
Uη∗ + −Uπβ−QT

2β−1 ≤ − `
2β−1 η∗ a.e.

Uη∗ + −Uπβ−QT
2β−1 ≥ − `

2β−1
πβ

2β−1 − η∗ a.e.
(32)

which can conveniently be rewritten as{
Uη∗ + Uπβ+QT

1−2β ≤ −`
1−2β η∗ a.e.

Uη∗ + Uπβ+QT
1−2β ≥ −`

1−2β
πβ

2β−1 − η∗ a.e.
(33)

Since the support of πβ
2β−1 − η∗ is the full interval [−β, β], these inequalities express in Euler-Lagrange form

the fact that η∗ is the unique minimiser of IQT,β on [−β, β]. From this observation, it follows that the support
of η∗, which is none other than J(α, β), achieves the minimum of the Mhaskar-Saff functional MSQT,β among
all compact subsets of [−β, β]. In particular, taking differentiability for granted,

∂

∂a
MSQT,b(J(a, b))

∣∣∣∣
(a,b)=(α,β)

= 0. (MS∗)

Let us now compute the Mhaskar-Saff functional. In order to treat the two cases at once, let us choose a, b, c
positive reals such that a ≤ c ≤ b and compute MSQT,c(J(a, b)). According to (18), we have

(1− 2c)MSQT,c(J(a, b)) = (1− 2c)
∫
UωJ(a,b) dωJ(a,b) +

∫
(Q+ ULeb|[−c,c]) dωJ(a,b).
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It is well known (see for example Section 14 of [20]) that the equilibrium measure of the compact set J(a, b)
is given by

dωJ(a,b) = |x|
π
√

(b2 − x2)(x2 − a2)
1J(a,b)(x)dx.

From there one computes directly ∫
x2dωJ(a,b) = a2 + b2

2 .

In order to compute the capacity of J(a, b), one needs to compute the potential of the equilibrium measure
ωJ(a,b). A first step for this is to compute its Stieltjes transform

GωJ(a,b)(z) = z√
(z2 − a2)(z2 − b2)

,

where as usual we take the branch of the square root which is a positive real number near real infinity. Taking
the appropriate primitive and its real part, we find that for all x ∈ [−a, a],

UωJ(a,b)(x) = −1
2 log

(
a2 + b2

2 − x2 +
√

(b2 − x2)(a2 − x2)
)

+ 1
2 log 2.

Taking x = a, we find ∫
UωJ(a,b) dωJ(a,b) = UωJ(a,b)(a) = −1

2 log b
2 − a2

4 .

Moreover, this is also the value of UωJ(a,b) on the whole set J(a, b). Finally, we compute∫
ULeb|[−c,c]dωJ(a,b) =

∫
UωJ(a,b)dLeb|[−c,c] = 2

∫ c

0
UωJ(a,b)(x) dx.

Since the potential of ωJ(a,b) is constant on J(a, b), hence on [a, c], we find∫
ULeb|[−c,c]dωJ(a,b) = 2

∫ a

0
UωJ(a,b)(x) dx+ 2(c− a)UωJ(a,b)(a).

The last integral is relatively easily computed by parts, and we find, after some simplification,∫
ULeb|[−c,c]dωJ(a,b) = −c log b

2 − a2

4 − 2b
(
K
(a
b

)
− E

(a
b

))
.

Altogether, we find

(1− 2c)MSQT,c(J(a, b)) = −1
2 log b

2 − a2

4 + T

8 (a2 + b2)− 2b
(
K
(a
b

)
− E

(a
b

))
,

which quite remarkably does not depend on c. From there, we see in particular that the Mhaskar-Saff functional
is indeed differentiable. Therefore, Equations (MS∗) and (MS∗) are indeed satisfied and if we denote by mT (a, b)
the function on the right handside above, the numbers α and β are then solutions of the equations

∂

∂α
mT (α, β) = 0 and ∂

∂β
mT (α, β) = 0.

Taking into account the derivatives of the complete elliptic functions, and setting k = α
β , these equalities

entail
k

1− k2 + T

4 kβ
2 − 2kβ

1− k2E = − 1
1− k2 + T

4 β
2 − 2Kβ + 2β

1− k2E = 0.
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From these relations, one extracts

Tβ = 4K and β = 1
2E − (1− k2)K .

The proof is now complete. Indeed, the relation α = kβ follows from our definition of k, the expression of β
above is exactly the expected one, and the relation between T and k follows immediately from the two equalities
above. Moreover, elementary computations allow one to check that the map k 7→ 8EK − 4(1 − k2)K2 from
(0, 1) to R is an increasing bijection from (0, 1) to (π2,∞). �

4.6. Derivation of the constrained weighted equilibrium measure
Our problem is now to find the density of the measure η∗, which is the restriction of the constrained minimiser

µ∗T on J(α, β) = [−β,−α] ∪ [α, β]. According to Proposition 4.8, η∗ is (1 − 2α) times the probability measure
on J(α, β) which minimises the functional IQT,α , where for all x ∈ R, we have set

QT,α(x) = QT (x) + Uπα(x)
1− 2α = 1

1− 2α

(
T

4 x
2 + 2α+ (x− α) log |x− α| − (x+ α) log |x+ α|

)
.

As in Section 2.4, we do not care much about rigour in this subsection. A rigorous proof that the computations
we are about to do indeed yield to the minimiser will be given in the next subsection.

Let us assume that η∗ admits a Hölder continuous density ψ with respect to the Lebesgue measure. Let us
also introduce the shorthand J = J(α, β). Recall that we denote by πα the Lebesgue measure on [−α, α]. By
differentiating formally the functional IQT,α at µ∗T as we did in the case of Wigner matrices, or by writing the
Euler-Lagrange formulation of the minimisation problem, we successively find that the function

x 7→
∫
J

− log |x− y|ψ(y) dy + Tx2

4 + Uπα(x)

is constant on J , and that for all x in the interior of J ,

PV
∫
J

ψ(y)
x− y

dy = Tx

2 + (Uπα)′(x) = Tx

2 + log x− α
x+ α

.

In order to determine ψ, we introduce the Stieltjes transform of η∗:

Gη
∗
(z) =

∫
dη∗(y)
z − y

=
∫
J

ψ(y)
z − y

dy.

We are facing the same problem as in the case of Wigner matrices: we would like to know Gη
∗

+ − G
η∗

− on the
real axis but what we know is Gη

∗

+ +Gη
∗

− . Let us introduce a new auxiliary function, which we still denote by
R, and which is now analytic on C \ J :

R(z) =
√

(z2 − α2)(z2 − β2),

where we choose the branch of the square root which is a positive real number on (β,∞). For all x ∈ J , we
now have

R±(x) = ±sgn(x)i
√

(β2 − x2)(x2 − α2).
Thus, for all x ∈ J , (

Gη
∗

R

)
±

(x) = − iπψ(x)
R+(x) ∓ iπ

i

π

T
2 x+ (Uπα)′(x)

R+(x)
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and, following the same reasoning as in the Wigner case, we expect the equality

Gη
∗
(z) = i

π

√
(z2 − α2)(z2 − β2)

∫
J

T
2 y + (Uπα)′(y)
(z − y)R+(y) dy (34)

to hold. If we manage to compute the right-hand side of (34), it will be easy to compute ψ using the Sokhotski
formula (12). To start with, we have for all x ∈ J

(Uπα)′(x) = log x− α
x+ α

.

Let us introduce the function

L(z) = T

2 z + log z − α
z + α

,

which is holomorphic on C \ [−α, α], and satisfies L(x) = T
2 x+ (Uπα)′(x) for all x ∈ J .

We are going to compute a contour integral in two different ways. Let z be a point in C \ [−β, β]. Let γ be a
contour which surrounds once both z and the interval [−β, β] (see Figure 6). We want to compute the integral∫

γ

L(w)
R(w)

dw

z − w
.

On one hand, we have L(w)
R(w)

1
z−w = O( 1

w2 ) near infinity, so that, by deforming γ into a large circle, we see that
the integral is zero.

α β−α−β

z

γ

Figure 6. The contour γ and its deformation.

On the other hand, the same contour can be deformed so as to make a small circle around z and to go twice
along the interval [−β, β], once slightly below and once slightly above. We find

0 = −2iπ L(z)
R(z) +

∫ β

−β

(
−L+(y)
R+(y) + L−(y)

R−(y)

)
dy

z − y
.

By carefully keeping track of the values of L± and R± on the intervals [−β,−α], [−α, α] and [α, β], one finds∫
J

L(y)
R+(y)

dy

z − y
= −iπ L(z)

R(z) − iπ
∫ α

−α

1
R(y)

dy

z − y
,
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from which we conclude that

Gη
∗
(z) = L(z) +R(z)

∫ α

−α

1
R(y)

dy

z − y

= log z − α
z + α

+ T

2 z −
√

(z2 − α2)(z2 − β2)
∫ α

−α

dy

(z − y)
√

(β2 − y2)(α2 − y2)
.

Adding the Stieltjes transform of πα on one hand, setting k = α
β and performing elementary manipulations to

the integral, we obtain our candidate for the Stieltjes transform of the full constrained weighted equilibrium
measure µ∗T :

HT (z) = T

2 z −
2
βz

√
(z2 − α2)(z2 − β2)

∫ 1

0

ds

(1− α2

z2 s2)
√

(1− s2)(1− k2s2)
. (35)

This last integral is an elliptic integral of the third kind, for which one standard notation is

Π(ν; k) =
∫ 1

0

ds

(1− νs2)
√

(1− s2)(1− k2s2)
. (36)

For each k ∈ (0, 1), this is a function of ν analytic in C \ [1,∞), and we can deduce from (35) our candidate for
the value of the density of η∗, that is of µ∗T , on J :

∀x ∈ J, ψ(x) = − 1
2iπ ((HT )+ − (HT )−)(x) = 2

πβ|x|
√

(β2 − x2)(x2 − α2) Π
(
α2

x2 ; k
)
.

Putting everything together, we obtain the following candidate, which we denote by ϕT , for the density of µ∗T :

ϕT (x) = 1[−α,α](x) + 2
πβ|x|

√
(β2 − x2)(x2 − α2) Π

(
α2

x2 ; k
)

1[−β,−α]∪[α,β](x). (37)

It is interesting to note that we did not use the actual values of α and β in our computation. At this
point in the case of Wigner matrices, we determined the width of the support of the minimiser by considering
the asymptotic behaviour of its Stieltjes transform. The same could be done here and, if we had not already
rigorously determined the values of α and β, we could find them by writing that HT (z) = z−1 + O(z−2) near
infinity (see also the proof of Proposition 5.1 below).

The result of our derivation of µ∗T is illustrated in Figure 7 below.

Π
2 15 20

0

0.5

1

0 5 Π
2 15 20

0

1

2

Figure 7. From left to right: k as a function of T ; α (red) and β (blue) as functions of T ;
the density of the minimising measure µ∗T as a function of T .
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4.7. Verification of the expression of the equilibrium measure
We are now equipped with an explicit candidate for the minimiser µ∗T , given by (37) and Lemma 4.7. All we

need to prove is that the restriction to J of the measure ϕT (x)dx is, as we expect, (1− 2α) times the minimiser
of IQT,α on Σα. For this, according to Theorem 2.6, it suffices to check that the potential of ϕT (x)dx is constant
on J .

The next proposition concludes the whole process of determination of the minimiser.

Proposition 4.9. For every T > π2, the unique minimiser of IQT on L(R) is the measure µ∗T , whose density
ϕT is given by (37). Moreover, Gµ∗T , the Stieltjes transform of µ∗T , is the function HT given by (35).

Proof. From its explicit expression (35), we can expand HT near infinity. We find

HT (z) = T

2 z −
2z
β

(
1− α2 + β2

2z2

)(
K + α2

z2

∫ 1

0

1
k2 (1− (1− k2s2))√
(1− s2)(1− k2s2)

ds

)
+O

(
1
z2

)
=
(
T

2 −
2K
β

)
z + 1

z

(
β(2E − (1− k2)K)

)
+O

(
1
z2

)
and the relations between T , k and β imply precisely that HT (z) = z−1 +O(z−2).

Now, the function ϕT defined in (37) is positive and smooth on R\{±α,±β} and one can check directly that
its lack of smoothness at these four points is that of square root at the origin. It is thus 1

2 -Hölder continuous,
and the Sokhotski formula (12) is true at every point of R for its Stieltjes transform that we will denote by
GϕT . Hence, GϕT and HT have exactly the same jumps across the real axis. The difference between these two
functions, which is analytic on C\R and continuous on C, is thus analytic on C, for example as a consequence of
Morera’s theorem. By the computation above, we know that HT is equivalent to z−1 near infinity, and GϕT is
equivalent to z−1 ∫ ϕT (x)dx. Their difference is therefore entire and bounded, hence constant, and in fact equal
to zero. This proves that HT is the Stieltjes transform of ϕT , and also that ϕT is the density of a probability
measure.

In order to see that ϕT is the density of the minimiser, let us denote by Gψ the Stieltjes transform of ψ,
which is the restriction of ϕT to J . The computations made in the previous subsection give directly that the
function Gψ satisfies

∀x ∈ J, (Gψ)+(x) + (Gψ)−(x) = 2
(
Tx

2 + log x− α
x+ α

)
.

By regularity of the function ψ and again by (12), the left-hand side is equal to 2 PV
∫
J
ψ(y)
x−y dy. Therefore,

the function x 7→
∫
J
− log |x − y|ψ(y)dy + Tx2

4 + Uπα(x) is constant on J . An application of Proposition 4.8
concludes the proof. �

Figure 8 illustrates the shape of the potential of the measure µ∗T .

5. The Douglas-Kazakov phase transition

5.1. Computation of the free energy
We now have all the tools in hand to prove our main result, Theorem 1.1. Recall from Proposition 4.2 that

the free energy F , which is a function of T , and the regularity of which is our main concern, is the difference
between an affine function of T and the function M defined by

M(T ) = IT (µ∗T ).

Our first task is to compute M . Recall that for T > π2, the numbers k ∈ (0, 1), β > 0 and α ∈ (0, β) are
determined as functions of T by Lemma 4.7.
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Figure 8. The density of the minimising measure µ∗T and the graph of the function x 7→
Uµ
∗
T (x) + T

4 x
2, for T slightly larger than 14.

On the way of finding an explicit expression for the function M, that will eventually appear in Proposition
5.2, we will need to introduce the incomplete elliptic integrals of the first and second kind, which for each
k ∈ (0, 1) are the following analytic functions in C \

(
(−∞,−1] ∪ [1,∞])

)
:

F (z; k) =
∫ z

0

1√
(1− s2)(1− k2s2)

ds and E(z; k) =
∫ z

0

√
1− k2s2

1− s2 ds,

and to find an expression of the logarithmic potential of µ∗T at the points α and β. This is what the next lemma
does.

Proposition 5.1. For all z ∈ C \ (−∞, β], we have∫
log(z − y) dµ∗T (y) = − log

√
z2 − α2 +

√
z2 − β2

2 − 2EzF
(
β

z
; k
)

+ 2KzE
(
β

z
; k
)

− K

2β

(
(2z)2 −

(√
z2 − α2 +

√
z2 − β2

)2
)

+ 1, (38)

where log is the branch of the logarithm on C \ R− such that to log 1 = 0.

Proof. It suffices to check that the right-hand side of (38) is equal to log z + O(z−1) near infinity and that its
derivative is equal to Gµ∗T . �

We now go to the main object of this subsection, namely the computation of M.

Proposition 5.2. The function M is given by

M(T ) =
{ 1

2 log T + 3
4 if T ≤ π2,

3
2 −

1
2 log

(
β2

4 (1− k2)
)
− 2

3Kβ(1 + k2)− 1
12K

2β2(1− k2)2 if T > π2.

The proof of this proposition is a direct computation. It can be seen as elementary, but we find it difficult
enough to deserve a fairly detailed presentation. Moreover, we do not believe that this full expression has
appeared in the literature before.

Proof. Let us use the notation Q(z) = QT (z) = T
4 z

2, for all z ∈ C. To simplify the notations, let us denote µ∗T ,
Uµ
∗
T , Gµ∗T respectively by µ∗, U , G. Let us also define

g(z) =
∫

log(z − y) dµ∗(y).
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With this notation,

M(T ) =
∫

(U + 2Q) dµ∗

and we recall that U = −<g whereas G′ = g.
Let us start with the expression of M in the subcritical regime T ≤ π2. In this case, we write

M(T ) =
∫

(U + 2Q) dµ∗ =
∫

(U +Q) dµ∗ +
∫
Q dµ∗.

We know that the function U + Q is constant on the support of µ∗ = σ1/T , which is the interval [− 2√
T
, 2√

T
].

From (17), we know that this constant is 1
2 (log T + 1). For the second term, a simple change of variable yields∫

Q dµ∗ = 1
4 , from where we get that M(T ) = 1

2 log T + 3
4 , whenever T ≤ π

2.

Let us now turn to the supercritical regime T > π2. We will use the notation J = J(α, β) = [−β,−α]∪ [α, β].
Let us split M(T ) as follows:

M(T ) =
∫

(U + 2Q) dµ∗ =
∫
J

(U +Q) dµ∗︸ ︷︷ ︸
1©

+
∫ α

−α
Q(t) dt︸ ︷︷ ︸
2©

+
∫
Q dµ∗︸ ︷︷ ︸

3©

+
∫ α

−α
U(t) dt︸ ︷︷ ︸
4©

.

We will compute each term separately.

1. The function U + Q is constant almost everywhere on the set J and continuous, so that it is constant
everywhere on J . It is thus enough to evaluate it at β. In order to evaluate U at β, we use (38) and the relation

U(β) = lim
x↓β
−<g(x) = − log

√
β2 − α2

2 − K

2β (α2 + β2) + 1−Kβ.

Thus,

(U +Q)(β) = −1
2 log β

2 − α2

4 − Kβ

2 (1 + k2) + 1, (39)

so that ∫
J

(U +Q) dµ∗ = (1− 2α)(U +Q)(β) = (2kβ − 1)
(

1
2 log β

2 − α2

4 + Kβ

2 (1 + k2)− 1
)
. (40)

2. The second term is the easiest: since Q(z) = K
β z

2 and α = kβ, we have

∫ α

−α
Q(t) dt = 2

3Kβ
2k3. (41)

3. To compute the third term, we use the fact that
∫
y2 dµ∗(y) is the coefficient of 1

z3 in the expansion of
G(z) =

∫ 1
z−y dµ

∗(y) near infinity.
Recall from (36) the definition of the elliptic integral of the third kind. By Formula 17.7.6 in [1], we get that

for any z ∈ [β,∞),

Π
(
α2

z2 ; k
)

= K + βz√
(z2 − β2)(z2 − α2)

(
KE

(
β

z
; k
)
− EF

(
β

z
; k
))

.
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We can thus rewrite (35) and find, for all z ∈ [β,∞),

G(z) = 2EF
(
β

z
; k
)
− 2KE

(
β

z
; k
)
− 2K

β
z

(√(
1− α2

z2

)(
1− β2

z2

)
− 1
)
. (42)

One has the following expansions in the vicinity of zero:

F (u; k) = u+ 1 + k2

6 u3 +O(u5) and E(u; k) = u+ 1− k2

6 u3 +O(u5).

Thus,

G(z) = 1
z

+
(
E
β3

3 (1 + k2) +Kβ3
(

(1 + k2)2

4 − 1− k2

3 − k2
))

1
z3 + o

(
1
z3

)
.

so that ∫
Q dµ∗ = Kβ

6 (1 + k2) + K2β2

12 (1− k2)2. (43)

4. The last term is the most delicate to compute.
By using the symmetries of the functions U and g, and performing integrations by parts, we have∫ α

−α
U(t)dt = −<

∫ α

−α
g(t)dt = −2<

∫ α

0
g(t)dt = −2<

∫ α

0
g+(t)dt

= 2αU(α) + 2<
∫ α

0
tG+(t)dt = 2αU(α) + α2<G+(α)−<

∫ α

0
t2G′+(t)dt.

We compute U(α) using again the fact that U +Q is constant on J :

U(α) = (U +Q)(β)−Q(α) = −1
2 log β

2 − α2

4 − Kβ

2 (1 + 3k2) + 1.

We then compute G+ from the (42): for x ∈ [−α, α] we find

G+(x) = 2EF−
(
β

x
; k
)
− 2KE−

(
β

x
; k
)

+ 2K
β

(√
(α2 − x2)(β2 − x2)

x
+ x

)
. (44)

One can check that, for x ∈ [−α, α],

F−

(
β

x
; k
)

= K −
∫ β/x

1/k

ds√
(s2 − 1)(k2s2 − 1)

+ i

∫ 1/k

1

ds√
(s2 − 1)(1− k2s2)

(45)

E−

(
β

x
; k
)

= E +
∫ β/x

1/k

√
k2s2 − 1
s2 − 1 ds+ i

∫ 1/k

1

√
1− k2s2

s2 − 1 ds, (46)

so that <G+(α) = 2Kk.
Differentiating (44), we get that, for all x ∈ [−α, α],

x2<G′+(x) = 2K
β
x2 + 2K

β

x4√
(α2 − x2)(β2 − x2)

+ 2(E −K)β x2√
(α2 − x2)(β2 − x2)

.

One can check that ∫ z

0

x2√
(α2 − x2)(β2 − x2)

dx = β
(
F
( z
α

; k
)
− E

( z
α

; k
))
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and, computing the derivative of x 7→ x
√

(α2 − x2)(β2 − x2), that∫ z

0

x4√
(α2 − x2)(β2 − x2)

dx =

z

3
√

(α2 − z2)(β2 − z2) + β

3 (α2 + 2β2)F
( z
α

; k
)
− 2β

3 (α2 + β2)E
( z
α

; k
)
.

Therefore, using again the relation 2Eβ = 1 + (1− k2)Kβ, we get

<
∫ α

0
t2G′+(t)dt = 2

3Kβ
2k3 + Kβ

3 (1 + k2) + K2β2

6 (1− k2)2 − 1
2 .

There remains to put all the pieces together, and we get the expected expression for M(T ). �

5.2. The jump of the third derivative
We finally turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. It follows immediately from Proposition 5.2 that the function M , hence the free energy,
is a smooth function of T on R+ \ {π2}. We want to check that the function M (3), which is the third derivative
of M , has a discontinuity of the first kind at T = π2.

It follows from Lemma 4.7 and from the definitions (30) of the complete elliptic integrals that

lim
T↓π2

k(T ) = 0, lim
T↓π2

K(k(T )) = K(0) = π

2 and lim
T↓π2

β(k(T )) = 2
π
.

Therefore,

lim
T↓π2

M(T ) = 1
2 log(π2) + 3

4 = M(π2),

so that M is continuous at T = π2.
We will now compute the derivatives of M at π2 from both sides. It turns out to be convenient to introduce

the variable m = 1− k2. Considering E and K as functions of m, one easily gets that, for m ∈ (0, 1),

∂E

∂m
= 1

2(m− 1)(E −K) and ∂K

∂m
= E

2m(m− 1) −
K

2(m− 1) .

The relation 2Eβ = 1 + (1− k2)Kβ can be rewritten β = 1
2E −mK , so that

∂β

∂m
= − β

4(m− 1)(1−mKβ) and ∂(Kβ)
∂m

= (1−mKβ)2

4m(m− 1) .

The function M itself can be rewritten as

M = − log β − 1
2 logm− 2

3Kβ(2−m)− 1
12m

2K2β2,

and we find that the derivative ∂M
∂m factorises very nicely under the form

∂M

∂m
= (1−mKβ)(1 +mKβ)

24m(m− 1) (m2Kβ − 2m+ 4).
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Moreover, from the relation βT = 4K, one gets that

∂m

∂T
= m(m− 1)β2

(1−mKβ)(1 +mKβ) ,

so that we finally get, that for any T > π2,

M ′(T ) = dM

dT
= β2

24 (m2Kβ − 2m+ 4).

This formula is exactly the one predicted by Douglas and Kazakov when they introduced the model (see Equation
(35) in [7]).

From this expression of M ′(T ), one can check that

lim
T↓π2

M ′(T ) = 1
2π2 ,

so that M is continuously derivable at π2. We keep the notation M ′ for the first derivative of M with respect
to T .

From the same formulæ as above, one gets that

∂M ′

∂m
= − mβ2

32(m− 1)(1−mKβ)(1 +mKβ),

so that
M ′′(T ) = d2M

dT 2 = −m
2β4

32 .

This formula yields
lim
T↓π2

M ′′(T ) = − 1
2π4 ,

so that M is twice continuously derivable at π2.

Then
M (3)(T ) = d3M

dT 3 = m2β6

32

(
m

1 +mKβ
− 2(m− 1)

(1−mKβ)(1 +mKβ)

)
.

By L’Hôpital’s rule, we find

lim
T↓π2

M (3)(T ) = 3
π6 , whereas lim

T↑π2
M (3)(T ) = 1

π6 ,

so that M (3) has a discontinuity of the first kind at T = π2.
Since the free energy is an affine function of T minus the function M , we find the announced limits on the

left and on the right for the third derivatives of F . �
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